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Propagation and blocking in a two-patch reaction-diffusion
model

François Hamel∗, Frithjof Lutscher† and Mingmin Zhang‡

Abstract

This paper is concerned with propagation phenomena for the solutions of the Cauchy problem
associated with a two-patch one-dimensional reaction-diffusion model. It is assumed that each
patch has a relatively well-defined structure which is considered as homogeneous. A coupling
interface condition between the two patches is involved. We first study the spreading properties of
solutions in the case when the per capita growth rate in each patch is maximal at low densities, a
configuration which we call the KPP-KPP case, and which turns out to have some analogies with
the homogeneous KPP equation in the whole line. Then, in the KPP-bistable case, we provide
various conditions under which the solutions show different dynamics in the bistable patch, that
is, blocking, virtual blocking (propagation with speed zero), or spreading with positive speed.
Moreover, when propagation occurs with positive speed, a global stability result is proved. Finally,
the analysis in the KPP-bistable frame is extended to the bistable-bistable case.

AMS Subject Classifications: 35B40; 35C07; 35K57.
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1 Introduction

Propagation and propagation failure are two fundamental phenomena of great importance to many
fields of science. For example, signal propagation in nerve cells occurs when the medium is homogeneous
but can fail when inhomogeneities are present, such as a change in cross-sectional area, junctions to
several other cells, or localized regions of reduced excitability [36, 43]. The mathematical framework
of choice for modeling such phenomena are reaction-diffusion equations. In the simplest case, space
is one-dimensional and inhomogeneities are represented as spatial changes in diffusivity or reaction
terms at a single location, within a bounded region, or at periodically repeating locations. Our work
here is inspired by the ecological dynamics of invasive species. When such species spread across a
landscape, they encounter different habitat types, and their movement behavior as well as population
dynamics may change according to landscape type. Our work is based on recent progress in modeling
individual movement behaviors around interfaces where the landscape type changes [40] and continues
the rigorous analysis of propagation phenomena in such models [28,44].

Specifically, we consider a one-dimensional infinite landscape comprised of two semi-infinite patches.
We denote (−∞, 0) as patch 1 and (0,+∞) as patch 2. The interface that separates the two patches
occurs at x = 0. Our model consists of a reaction-diffusion equation for the species’ density on each
patch and conditions that match the density and flux across the interface. We assume that each patch is
homogeneous but the two patches may differ, so that the diffusion coefficients and the reaction terms
(i.e. net population growth rates) may differ. Whereas most existing models for propagation and
propagation failure assume that the population dynamics outside of a bounded region are identical, we
are explicitly interested in the case where the dynamics differ, qualitatively and quantitatively, between
the two patches. Hence, on each patch, the population density ũ = ũ(t, x) satisfies an equation of the
form

ũt = diũxx + f̃i(ũ),

where i = 1, 2, depending on patch type. Since we want the interface to be neutral with respect to
reaction dynamics (i.e. no individuals are born or die from crossing the interface), the density flux
is continuous at the interface, i.e., d1ũx(t, 0−) = d2ũx(t, 0+). Continuity of the flux implies mass
conservation in the absence of reaction terms. Individuals at the interface may show a preference for
one or the other patch type. We denote this preference by α ∈ (0, 1), where α > 0.5 indicates a
preference for patch 1 and α < 0.5 for patch 2. Then the population density may be discontinuous at
the interface with

(1− α)d1ũ(t, 0−) = αd2ũ(t, 0+).

Please see [40] for a detailed derivation of this condition from a random walk and a thorough discussion
of the biological implications. (A second case exists where both diffusion constants appear under square
roots [40]; the theory developed below applies to that case as well.)

The discontinuity of the density at x = 0 creates some difficulties in the analysis of propagation
phenomena in our equations. It turns out to be much easier to scale the equations (by setting u(t, x) =
ũ(t, x) in patch 1, u(t, x) = kũ(t, x) in patch 2 with k = α

1−α
d2
d1
, f1 = f̃1 and f2(s) = kf̃2(s/k)) so
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that the density is continuous; see [28] for details. Hence, in the present paper, we study the following
equivalent two-patch problem:

ut = d1uxx + f1(u), t > 0, x < 0,

ut = d2uxx + f2(u), t > 0, x > 0,

u(t, 0−) = u(t, 0+), t > 0,

ux(t, 0−) = σux(t, 0+), t > 0.

(1.1)

Here, the density is continuous across the interface but its derivative is not. The diffusion constants
are assumed positive. Parameter σ = (1− α)/α > 0 is related to α, the probability that an individual
at the interface chooses to move to patch 1. Please see Section 2.5 for more biological background and
some interpretation of our results. Throughout this work, we assume that the functions fi (i = 1, 2)
are of class C1(R) and that

∃Ki > 0, fi(0) = fi(Ki) = 0 and fi ≤ 0 in [Ki,+∞). (1.2)

Our analysis and results will depend on a few characteristic properties of the functions fi. We dis-
tinguish between the Fisher-KPP type and the bistable type. We give precise definitions of these
properties below in (1.4) and (1.7), respectively.

In [28], we analyzed in full detail the well-posedness problem for a related patch model in a one-
dimensional spatially periodic habitat and also the spatial dynamics of the solution for the Cauchy
problem under certain hypotheses on the reaction terms. Our goal of the present paper is to study
spreading properties and propagation vs. blocking phenomena for the solutions of this two-patch model
for various combinations of the reaction terms. Specifically, we investigate:

1. the asymptotic spreading properties of the solutions to the Cauchy problem (1.1) with compactly
supported initial data when both reaction terms are of KPP type;

2. conditions for the solutions to the Cauchy problem (1.1) with compactly supported initial data
to be blocked or to propagate with positive or zero speed when one reaction term is of KPP type
and the other of bistable type; we also study the stability of a traveling wave in the bistable
patch;

3. the asymptotic dynamics when both reaction terms are of bistable type.

Previous work on action potentials in nerve cells obtained some propagation and stability results
when the reaction terms in both patches are identical and of bistable type and when the derivative is
continuous at the interface, i.e., σ = 1 [43]. We also mention recent work on a bistable equation in
multiple (three or more) disjoint half-lines with a junction [32]: the existence of entire (defined for all
times t ∈ R) solutions is proved and blocking phenomena of entire solutions caused by the emergence
of certain stationary solutions are investigated.

Before we state our main results, we summarize some relevant results on the classical homogeneous
reaction-diffusion equation

ut = uxx + f(u), t > 0, x ∈ R, (1.3)

where f is a C1(R) function satisfying f(0) = f(1) = 0. This equation has been extensively studied
in the mathematical, physical and biological literature since the pioneering works of Fisher [24] and
Kolmogorov, Petrovskii and Piskunov [34] on population genetics. We say that f is of Fisher-KPP
type (or simply KPP type) if

f(0) = f(1) = 0 and 0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1). (1.4)
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If f in (1.3) is of KPP type, (1.3) admits traveling front solutions u(t, x) = ϕc(x · e − ct) with ϕc :
R→ (0, 1) and ϕc(−∞) = 1, ϕc(+∞) = 0, if and only if c ≥ c∗ = 2

√
f ′(0), where e = ±1 denotes the

direction of propagation and c is the speed. For each c ≥ c∗, ϕc satisfies

ϕ′′c + cϕ′c + f(ϕc) = 0 in R, ϕ′c < 0 in R, ϕc(−∞) = 1, ϕc(+∞) = 0, (1.5)

and it is unique up to shifts. Moreover, there holds

ϕc(s) ∼
s→+∞

{
Ae−λcs if c > c∗,

A∗se−λcs if c = c∗,
(1.6)

where A, A∗ are positive constants and the decay rate λc > 0 is obtained from the linearized equation
ut = uxx+f ′(0)u and is given by λc =

(
c−
√
c2 − 4f ′(0)

)
/2. It was proved in [12,30,35,45] that the front

with minimal speed c∗ attracts, in some sense, the solutions of the Cauchy problem (1.3) associated
with nonnegative bounded nontrivial compactly supported initial data u0 = u(0, ·). Furthermore,
Aronson and Weinberger [4] proved that if 0 ≤ u ≤ 1 is the solution to the Cauchy problem (1.3) with
a nontrivial compactly supported initial datum 0 ≤ u0 ≤ 1, then supR\(−ct,ct) u(t, ·) → 0 as t → +∞
for every c > c∗, and inf [−ct,ct] u(t, ·) → 1 as t → +∞ for every c ∈ [0, c∗). We refer to these results
as spreading properties. The minimal speed of traveling fronts, c∗, can therefore also be thought of as
the asymptotic spreading speed.

In contrast, in the bistable case, defined as

f(0)=f(θ)=f(1)=0 for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0, f < 0 in (0, θ), f > 0 in (θ, 1), (1.7)

equation (1.3) has traveling front solutions u(t, x) = φ(x · e − ct), where φ : R → (0, 1), φ(−∞) = 1,
φ(+∞) = 0, and e = ±1 is the direction of propagation, for a unique propagation speed c ∈ R,
depending only on f . Furthermore, the sign of c equals the sign of

∫ 1
0 f(s)ds [4, 23]. The profile φ

satisfies (1.5) (with φ instead of ϕc) and is unique up to shifts. It is known that{
a0e
−αs ≤ φ(s) ≤ a1e

−αs, s ≥ 0,

b0e
βs ≤ 1− φ(s) ≤ b1eβs, s ≤ 0,

where a0, a1, b0 and b1 are some positive constants, α and β are given by α = (c+
√
c2 − 4f ′(0))/2 > 0

and β = (−c +
√
c2 − 4f ′(1))/2 > 0 [23]. Fronts in the bistable case are globally stable in the

sense that any solution of the Cauchy problem (1.3) with an initial datum 0 ≤ u0 ≤ 1 satisfying
lim infx→−∞ u0(x)>θ> lim supx→+∞ u0(x) converges to the unique bistable traveling front φ(x−ct+ξ)
uniformly in x ∈ R as t→ +∞, where ξ is a real number depending only on u0 and f [23]. Stationary
solutions u : R → [0, 1] of equation (1.3) in the bistable case (1.7) are either: (a) constant solutions
(zeros of f , that is, 0, θ or 1); or (b) periodic non-constant solutions; or (c) symmetrically decreasing
solutions, namely, for some x0 ∈ R, u(x) = u(2x0 − x) in R, u′ < 0 in (x0,+∞) and u(±∞) = 0;
or (d) symmetrically increasing solutions, namely, for some x0 ∈ R, u(x) = u(2x0 − x) in R, u′ > 0
in (x0,+∞), and u(±∞) = 1; or (e) strictly decreasing or increasing solutions converging to 0 and 1
at ±∞ [23]. Case (c) (respectively case (d), respectively case (e)) occurs if and only if

∫ 1
0 f(s)ds > 0

(respectively
∫ 1

0 f(s)ds < 0, respectively
∫ 1

0 f(s)ds = 0). Notice that, in the KPP case (1.4), the only
stationary solutions u : R→ [0, 1] of (1.3) are the constants 0 and 1.

Much work has been devoted to extinction, blocking, and propagation results for the one-dimensional
homogeneous equation (1.3), where extinction, blocking and propagation are understood as follows:

• extinction: u(t, x)→ 0 as t→ +∞ uniformly in x ∈ R;

• blocking (say, in the right direction): u(t, x)→ 0 as x→ +∞ uniformly in t ≥ 0;
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• propagation: u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ R.

Kanel’ [33] considered the combustion nonlinearity (i.e., f = 0 in [0, θ] ∪ {1} and f > 0 in (θ, 1)
for some 0 < θ < 1) and showed that, for the particular family of initial data being characteristic
functions of intervals (namely, u0 = χ[−L,L], with L > 0), there exist 0 < L0 ≤ L1 such that extinction
occurs for L < L0, while propagation occurs for L > L1. This result was then extended by Aronson
and Weinberger [3] to the bistable case (1.7) with

∫ 1
0 f(s)ds > 0 (so-called bistable unbalanced case).

Zlatoš [48] improved these results in both cases by showing that L0 = L1. Du and Matano [17]
generalized this sharp transition result for a wider class of one-parameter families of initial data.
Moreover, they showed that the solutions to the Cauchy problem (1.3) with nonnegative bounded and
compactly supported initial data always converge to a stationary solution of (1.3) as t→ +∞ locally
uniformly in x ∈ R, and this limit turns out to be either a constant or a symmetrically decreasing
stationary solution of (1.3). Whether such a sharp criterion for extinction vs. propagation holds in
our patch model (1.1) is a delicate issue, since there is no translation invariance due to the interface
conditions at x = 0 and since the reaction terms and diffusion coefficients may differ in general.
This question will be left for future work. We however provide in the present paper for the patch
problem (1.1) a list of sufficient conditions for extinction, blocking and/or propagation with KPP
and/or bistable dynamic in the two patches.

To see the difficulties in our patchy setting, let us briefly recall the standard methods used for the
one-dimensional reaction-diffusion equation (1.3). For the investigation of the Cauchy problem (1.3)
with compactly supported initial data, reflection techniques can be effectively used to prove, among
other things, the monotonicity of the solution u(t, ·) outside any interval containing the initial support
[17, 18, 48]. Properties of the solutions to the parabolic equation (1.3) can also be connected with
certain structures in the phase plane portrait of the ODE u′′ + f(u) = 0. However, this is no longer
the case for the patch model (1.1). Our proofs rest on comparison and PDE arguments. For instance,
by estimating the behavior, for large |x| and/or t, of the solution u(t, x) of the Cauchy problem (1.1)
with compactly supported initial data and then by comparing it with the standard traveling fronts, we
can retrieve the classical spreading results [4, 23] in a sense (see Theorems 2.6, 2.12 and 2.17 below).
Besides, in the KPP-bistable case (i.e., the case where f1 is KPP and f2 is bistable), we provide
some sufficient conditions under which either blocking or propagation occurs in the bistable patch. At
first glance, one may anticipate similar dynamics or features at large times for the solutions of the
Cauchy problem (1.1) as for the solutions of the scalar homogeneous equation (1.3) in each patch,
possibly with some nuances. However, that turns out to be not exactly true. We prove that the
propagation phenomena in the KPP-bistable case can be remarkably different from what happens for
the homogeneous bistable equation. We especially show a “virtual blocking” phenomenon, i.e., the
solution indeed does propagate, but with speed zero. This unusual phenomenon reveals that the effect
of the KPP patch on the bistable patch cannot be neglected and that (1.1) is truly a coupled system
of the reaction-diffusion equations.

2 Definitions and main results

Throughout the paper, we set

I1 = (−∞, 0) and I2 = (0,+∞).

By a solution to the Cauchy problem (1.1) associated with a continuous bounded initial datum u0,
we mean a classical solution in the following sense [28].

Definition 2.1. For T ∈ (0,+∞], we say that a continuous function u : [0, T )× R→ R is a classical
solution of the Cauchy problem (1.1) in [0, T ) × R with an initial datum u0, if u(0, ·) = u0 in R,
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if u|(0,T )×Ii ∈ C1;2
t;x

(
(0, T ) × Ii

)
(i = 1, 2), and if all identities in (1.1) are satisfied pointwise for

0 < t < T .

Similarly, by a classical stationary solution of (1.1), we mean a continuous function U : R → R
such that U |Ii ∈ C

2(Ii) (i = 1, 2) and all identities in (1.1) are satisfied pointwise, but without any
dependence on t.

We also define super- and subsolutions as follows.

Definition 2.2. For T ∈ (0,+∞], we say that a continuous function u : [0, T ) × R → R, which is
assumed to be bounded in [0, T0] × R for every T0 ∈ (0, T ), is a supersolution of (1.1) in [0, T ) × R,
if u|(0,T )×Ii ∈ C

1;2
t;x ((0, T )× Ii) (i = 1, 2), if ut(t, x) ≥ diuxx(t, x) +fi(u(t, x)) for all i = 1, 2, 0 < t < T

and x ∈ Ii, and if
ux(t, 0−) ≥ σux(t, 0+) for all t ∈ (0, T ).

A subsolution is defined in a similar way with all the inequality signs above reversed.

2.1 Existence and comparison results for the Cauchy problem associated with (1.1)

Proposition 2.3. For any nonnegative bounded continuous function u0 : R → R, there is a unique
nonnegative bounded classical solution u of (1.1) in [0,+∞) × R with initial datum u0 such that, for
any τ > 0 and A > 0,

‖u|[τ,+∞)×[−A,0]‖C1,γ;2,γ
t;x ([τ,+∞)×[−A,0])

+ ‖u|[τ,+∞)×[0,A]‖C1,γ;2,γ
t;x ([τ,+∞)×[0,A])

≤ C,

with a positive constant C depending on τ , A, d1,2, f1,2, σ and ‖u0‖L∞(R), and with a universal positive
constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0,+∞) × R if u0 6≡ 0 in R. Lastly, the
solutions depend monotonically and continuously on the initial data, in the sense that if u0 ≤ v0 then
the corresponding solutions satisfy u ≤ v in [0,+∞) × R, and for any T ∈ (0,+∞) the map u0 7→ u
is continuous from C+(R) ∩ L∞(R) to C([0, T ] × R) ∩ L∞([0, T ] × R) equipped with the sup norms,
where C+(R) denotes the set of nonnegative continuous functions in R.

The existence in Proposition 2.3 can be proved by following the proof of [28, Theorem 2.2]. Namely,
we can introduce a sequence of continuous cut-off functions (δn)n≥1 such that 0 ≤ δn ≤ 1 in R,
δn = 1 in [−n + 1, n − 1] and δn = 0 in R \ (−n, n). As in [28, Section 3.1, Theorem 3.2], for
each integer n ≥ 1, there is a unique continuous function un : [0,+∞) × [−n, n] → R such that
un|(0,+∞)×[−n,0] ∈ C

1;2
t;x ((0,+∞)× [−n, 0]), un|(0,+∞)×[0,n] ∈ C

1;2
t;x ((0,+∞)× [0, n]), and

(un)t = d1(un)xx + f1(un), t > 0, x ∈ [−n, 0),

(un)t = d2(un)xx + f2(un), t > 0, x ∈ (0, n],

(un)x(t, 0−) = σ(un)x(t, 0+), t > 0,

un(t,±n) = 0, t ≥ 0,

un(0, x) = δn(x)u0(x), x ∈ [−n, n].

Furthermore, 0 ≤ un(t, x) ≤ max(K1,K2, ‖u0‖L∞(R)) for all (t, x) ∈ [0,+∞) × [−n, n], with K1,2

as in (1.2). A comparison principle holds for the above truncated problem and, for each (t, x) ∈
[0,+∞) × R, the sequence (un(t, x))n≥max(1,|x|) is nondecreasing. Next, as in [28, Section 3.2], the
following properties hold: 1) there is γ > 0 such that, for every A > 0 and τ > 0, the sequences
(un|[τ,+∞)×[−A,0])n≥max(A,1) and (un|[τ,+∞)×[0,A])n≥max(A,1) are bounded in C1,γ;2,γ

t;x ([τ,+∞)× [−A, 0])

and C1,γ;2,γ
t;x ([τ,+∞) × [0, A]) respectively, by a constant depending only on τ , A, d1,2, f1,2, σ and

‖u0‖L∞(R); 2) the sequence (un)n≥1 converges pointwise in [0,+∞) × R to a nonnegative bounded
classical solution u of (1.1) with initial datum u0, in the sense of Definition 2.1, and u satisfies

0 ≤ u(t, x) ≤ max(K1,K2, ‖u0‖L∞(R)) for all (t, x) ∈ [0,+∞)× R;

6



3) the solutions u depend continuously on the initial data in the sense of Proposition 2.3. Lastly, the
monotonicity with respect to the initial data and the uniqueness in Proposition 2.3 are consequences
of the following comparison principle stated in [28, Proposition A.3].

Proposition 2.4. [28] For T ∈ (0,+∞], let u and u be, respectively, a super- and a subsolution of (1.1)
in [0, T ) × R in the sense of Definition 2.2, and assume that u(0, ·) ≥ u(0, ·) in R. Then, u ≥ u
in [0, T )× R and, if u(0, ·) 6≡ u(0, ·) in R, then u > u in (0, T )× R.

In the sequel, when we speak of the solution u to (1.1) with a nonnegative bounded continuous initial
datum u0, we always mean the unique nonnegative bounded classical solution u given in Proposition 2.3.

2.2 Propagation in the KPP-KPP case

We here investigate the spreading properties of the solutions to the Cauchy problem (1.1) associated
with nonnegative, continuous and compactly supported initial data u0 when fi (i = 1, 2) in both
patches Ii satisfy, in addition to (1.2), the KPP assumptions, that is,

fi(0) = fi(Ki) = 0, 0 < fi(s) ≤ f ′i(0)s for all s ∈ (0,Ki), f
′
i(Ki) < 0, fi < 0 in (Ki,+∞). (2.1)

We call this configuration the KPP-KPP case. Without loss of generality, we assume that K1 ≤ K2. In
particular, if each function fi satisfies (1.2) and is positive in (0,Ki) and concave in [0,+∞), then (2.1)
holds. An archetype is the logistic function fi(s) = s(1− s/Ki).

We start with a Liouville-type result, which is proved essentially with ODE tools, for the stationary
problem associated with (1.1).

Proposition 2.5. Under the assumption (2.1) with 0 < K1 ≤ K2, problem (1.1) admits a unique
positive, bounded and classical stationary solution V . Furthermore, V (−∞) = K1, V (+∞) = K2,
and V ′ > 0 in (−∞, 0−] ∪ [0+,+∞) if K1 < K2,1 while V ≡ K1 in R if K1 = K2.

Figure 1: The profile of the unique positive bounded stationary solution V in the KPP-KPP case.

The assumption (2.1) guarantees that the zero state is unstable with respect to any nontrivial per-
turbation, a phenomenon known from [4] as the hair-trigger effect for the homogeneous equation (1.3).
It turns out that the hair-trigger effect holds good for the patch model (1.1) in the KPP-KPP case (2.1),
and that the solutions to (1.1) spread with well defined spreading speeds in both directions, as the
following first main result of the paper shows.

Theorem 2.6. Assume that (2.1) holds with K1 ≤ K2. Then, the solution u of (1.1) with a non-
negative bounded and continuous initial datum u0 6≡ 0 satisfies:

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (2.2)
1The notation V ′ > 0 in (−∞, 0−]∪ [0+,+∞) means that the functions V |(−∞,0] and V |[0,+∞) have positive first-order

derivatives in (−∞, 0] and [0,+∞), respectively.
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where V is the unique positive bounded classical stationary solution given in Proposition 2.5. Fur-
thermore, if u0 is compactly supported, there exist leftward and rightward asymptotic spreading speeds,
c∗1 = 2

√
d1f ′1(0) > 0 and c∗2 = 2

√
d2f ′2(0) > 0, respectively, such that

lim
t→+∞

(
sup

x≤−(c∗1+ε)t
u(t, x)

)
= lim

t→+∞

(
sup

x≥(c∗2+ε)t
u(t, x)

)
= 0 for all ε > 0,

lim
t→+∞

(
sup

(−c∗1+ε)t≤x≤(c∗2−ε)t
|u(t, x)− V (x)|

)
= 0 for all 0 < ε ≤ min(c∗1, c

∗
2).

(2.3)

This theorem says that the positions of the level sets of u(t, ·) asymptotically behave as 2
√
d1f ′1(0)t

in patch 1 and as 2
√
d2f ′2(0)t in patch 2 at large times. It is an analogue of the standard spreading

result for the solutions to homogeneous KPP equations (1.3) (see, e.g. [4]). This demonstrates that, in
the KPP-KPP case, the spreading speeds are essentially determined by the problems obtained at the
limits as x → ±∞. The proofs actually rely on comparisons with sub- or supersolutions, which solve
some approximated problems, in semi-infinite intervals away from the interface, and at large times.

It is easy to see from the proofs given in Section 3 that Proposition 2.5 and the convergence
result (2.2) in Theorem 2.6 still hold, while the spreading property (2.3) in Theorem 2.6 can be extended
(though with non-explicit values of the positive spreading speeds c∗i ), when the KPP assumption
fi(s) ≤ f ′i(0)s is deleted in (2.1) (with still keeping the positivity of f ′i(0)). Nevertheless, for the
clarity of the presentation and in order to reduce the number of hypotheses, we chose to include the
KPP assumption in (2.1).

2.3 Persistence, blocking or propagation in the KPP-bistable case

In this section, in addition to (1.2), we assume that f1 is of KPP type, whereas f2 is of bistable type,
namely:

f1(0)=f1(K1)=0, 0<f1(s)≤f ′1(0)s for s∈(0,K1), f ′1(K1)<0, f1<0 in (−∞, 0)∪(K1,+∞) (2.4)

and{
f2(0) = f2(θ) = f2(K2) = 0 for some θ ∈ (0,K2),

f ′2(0)<0, f ′2(θ)>0, f ′2(K2)<0, f2<0 in (0, θ)∪(K2,+∞), f2>0 in (−∞, 0)∪(θ,K2).
(2.5)

Let φ(x− c2t) be the unique traveling wave solution connecting K2 to 0 for the equation ut = d2uxx +
f2(u) viewed in the whole line R, that is, φ : R→ (0,K2) obeys:{

d2φ
′′ + c2φ

′ + f2(φ) = 0 in R, φ′ < 0 in R,
φ(−∞) = K2, φ(+∞) = 0, φ(0) = θ,

(2.6)

where the speed c2 has the same sign as
∫K2

0 f2(s)ds [23]. The normalization condition φ(0) = θ
uniquely determines φ. Moreover,{

a0e
−αs ≤ φ(s) ≤ a1e

−αs, s ≥ 0,

b0e
βs ≤ K2 − φ(s) ≤ b1eβs, s ≤ 0,

(2.7)

where a0, a1, b0 and b1 are positive constants, and α and β are given by

α =
c2 +

√
(c2)2 − 4d2f ′2(0)

2d2
> 0, β =

−c2 +
√

(c2)2 − 4d2f ′2(K2)

2d2
> 0.

For scalar equations of the type ut = uxx + f(x, u) with bistable reaction terms f , solutions may
be blocked (especially by the existence of certain steady states) or may propagate (see e.g. [2, 5, 13–
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16, 19–22, 27, 31, 36, 42, 43, 47] for various inhomogeneities and geometric configurations), whereas, for
KPP reactions f , solutions mostly propagate (see e.g. [7–9, 11, 25, 27, 29, 37, 38, 46, 49]). For the patch
problem (1.1) in the mixed KPP-bistable framework, we will give sufficient conditions so that blocking
phenomena occur in patch 2, see Theorem 2.11. We point out that the ordering between K1 and K2 is
considered here in complete generality. Besides, we also prove propagation and stability results inspired
by Fife and McLeod [23], see Theorems 2.12–2.13. A specific “virtual blocking” phenomenon is also
investigated, see Theorem 2.13. Before that, we start with the following persistence and propagation
result in the KPP patch 1, which is the second main result of the paper.

Persistence in the KPP patch 1

Theorem 2.7. Assume that (2.4)–(2.5) hold. Let u be the solution of (1.1) with a nonnegative con-
tinuous and compactly supported initial datum u0 6≡ 0. Then, for every x ∈ R,

inf
x≤x̄

(
lim inf
t→+∞

u(t, x)
)
> 0.

Moreover, u propagates to the left with speed c∗1 = 2
√
d1f ′1(0) > 0 in the sense that

∀ ε > 0, lim
t→+∞

(
sup

x≤−(c∗1+ε)t
u(t, x)

)
= 0,

∀ ε ∈ (0, c∗1), ∀ δ > 0, ∃x1 ∈ R, lim sup
t→+∞

(
sup

−(c∗1−ε)t≤x≤x1
|u(t, x)−K1|

)
< δ.

In particular, sup−ct≤x≤−c′t |u(t, x)−K1| → 0 as t→ +∞ for every 0 < c′ ≤ c < c∗1.

An immediate consequence of Theorem 2.7 is that, for each ε ∈ (0, c∗1) and each map t 7→ ζ(t) such
that ζ(t)→ −∞ and |ζ(t)| = o(t) as t→ +∞, it holds

lim
t→+∞

sup
−(c∗1−ε)t≤x≤ζ(t)

|u(t, x)−K1| = 0.

Furthermore, Theorem 2.7, together with Proposition 2.3, provides some informations on the ω-limit
set ω(u) of u in the topology of C2

loc((−∞, 0]) and C2
loc([0,+∞)) (more precisely, a function w belongs

to ω(u) if and only if there exists a sequence (tk)k∈N diverging to +∞ such that limk→+∞ u(tk, ·)|[−A,0] =
w|[−A,0] in C2([−A, 0]) and limk→+∞ u(tk, ·)|[0,A] = w|[0,A] in C2([0, A]), for every A > 0). Proposi-
tion 2.3 implies that ω(u) is not empty and Theorem 2.7 yields w(−∞) = K1 for any w ∈ ω(u).

Stationary solutions connecting K1 and 0, or K1 and K2

In the KPP-bistable case (2.4)–(2.5), because of the existence of several possible limit profiles as
x → +∞, the description of the set of positive bounded and classical stationary solutions of (1.1) is
not as simple as in Proposition 2.5 concerned with the KPP-KPP case (2.1). We start with the following
Proposition 2.8, which provides some necessary conditions for a stationary solution connectingK1 and 0
to exist, whereas Proposition 2.9 gives some sufficient conditions for such a solution to exist. These
solutions will act as blocking barriers in the bistable patch 2 for the solutions of (1.1) with initial data
which are in some sense small (see part (iv) of Theorem 2.11).

Proposition 2.8. Assume that (2.4)–(2.5) hold and (1.1) admits a nonnegative classical stationary
solution U with U(−∞) = K1 and U(+∞) = 0. Then U > 0 in R and:

(i) if
∫K2

0 f2(s)ds < 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < K1, and∫ K1

U(0)
f1(s)ds = −d1σ

2

d2

∫ U(0)

0
f2(s)ds > 0; (2.8)
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(ii) if
∫K2

0 f2(s)ds = 0, then U ′ < 0 in (−∞, 0−]∪[0+,+∞), 0 < U(0) < min(K1,K2), and (2.8) holds;

(iii) if
∫K2

0 f2(s)ds > 0, with θ∗ ∈ (θ,K2) such that
∫ θ∗

0 f2(s)ds = 0, then:

(a) either U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < min(K1, θ
∗), and (2.8) holds;

(b) or U ′ ≥ 0 in (−∞, 0−] ∪ [0+, x0) and U ′ < 0 in (x0,+∞) for some x0 ≥ 0, with U(x0) =
maxR U = θ∗ and U ′(x0) = 0. Furthermore, either x0 > 0, U ′ > 0 in (−∞, 0−] ∪ [0+, x0),
K1 < U(0) < θ∗ and (2.8) holds (U is then bump-like); or x0 = 0, K1 = θ∗, U ≡ K1

in (−∞, 0], and both integrals in (2.8) vanish.

Proposition 2.9. Assume that (2.4)–(2.5) hold. Then (1.1) admits a positive classical stationary
solution U with U(−∞) = K1 and U(+∞) = 0, provided one of the following conditions holds:

(i)
∫K2

0 f2(s)ds < 0;

(ii)
∫K2

0 f2(s)ds = 0 and K1 < K2;

(iii)
∫K2

0 f2(s)ds > 0 and K1 ≤ θ∗, with θ∗ ∈ (θ,K2) such that
∫ θ∗

0 f2(s)ds = 0.

In the sufficient conditions (i)-(iii) of Proposition 2.9 for the existence of a stationary solution U
of (1.1) such that U(−∞) = K1 and U(+∞) = 0, the parameters d1,2 and σ do not play any role
(only the functions f1,2 are involved). On the other hand, when

∫K2

0 f2(s)ds = 0 and K1 ≥ K2,
or when

∫K2

0 f2(s)ds > 0 and K1 > θ∗, it turns out that stationary solutions U of (1.1) such
that U(−∞) = K1 and U(+∞) = 0 may not exist and the parameters d1,2 and σ play crucial roles in
the non-existence of U (see Remark 4.1 below for further details).

The third proposition, which will be a key step in the large-time dynamics of the spreading solutions
in patch 2, is the analogue of Proposition 2.5 in the present KPP-bistable framework, namely it is
concerned with the stationary solutions of (1.1) connecting K1 and K2.

Proposition 2.10. Assume that (2.4)–(2.5) hold and that
∫K2

0 f2(s)ds ≥ 0. Then problem (1.1) has
a positive monotone and classical stationary solution V such that V (−∞) = K1 and V (+∞) = K2.
Moreover, V is unique if K1 ≥ θ.

Notice from the statements that the functions U and V given in Propositions 2.9–2.10 can coexist.

Blocking phenomena if patch 2 has bistable dynamics

We now turn to the investigation of blocking phenomena. If U is a stationary solution of (1.1)
with U(−∞) = K1 and U(+∞) = 0 and if a nonnegative bounded continuous function u0 satis-
fies 0 ≤ u0 ≤ U in R, then the comparison principle (Proposition 2.4) implies that the solution u of the
Cauchy problem (1.1) with initial datum u0 satisfies 0 ≤ u(t, x) ≤ U(x) for all (t, x) ∈ [0,+∞) × R,
hence it is blocked in patch 2, that is,

u(t, x)→ 0 as x→ +∞, uniformly in t ≥ 0. (2.9)

In the following and much less immediate result, which is one of the main results of the paper, we
provide various sufficient conditions for the solutions u of (1.1) to be blocked in the bistable patch 2.

Theorem 2.11. Assume that (2.4)–(2.5) hold. Let u be the solution to (1.1) with a nonnegative contin-
uous and compactly supported initial datum u0. Then, u is blocked in patch 2, that is, it satisfies (2.9),
if one of the following conditions is satisfied:

(i) either
∫K2

0 f2(s)ds < 0;
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(ii) or
∫K2

0 f2(s)ds = 0 and K1 < K2;

(iii) or K1 < θ and u0 < θ in R;

(iv) or (1.1) admits a nonnegative classical stationary solution U with U(−∞) = K1 and U(+∞) = 0,
and ‖u0‖L1(R) ≤ ε, for some ε > 0 depending on f1,2, d1,2, U and L, with spt(u0) ⊂ [−L,L].2

Notice that, in contrast with parts (i) and (ii) of Theorem 2.11, which are concerned with the
case

∫K2

0 f2(s)ds ≤ 0 and for which the traveling front solution φ(x− c2t) of (2.6) serves as a blocking
barrier in patch 2 independently of the initial datum u0, parts (iii) and (iv) show that blocking can
also occur when

∫K2

0 f2(s)ds > 0 provided the initial datum u0 is not too large in L∞ or L1 (notice
also that the existence of U in part (iv) is fulfilled when

∫K2

0 f2(s)ds > 0 and K1 ≤ θ∗, as follows from
Proposition 2.9) . These results show some similarities with the standard results of Fife and McLeod [23]
concerned with the homogeneous bistable equation (1.3). However, for our patch problem (1.1), the
presence of patch 1 with KPP dynamics introduces new difficulties and, in particular, the solutions u
never converge to 0 as t→ +∞ even only pointwise in R, thanks to Theorem 2.7.

Propagation with positive or zero speed when patch 2 has bistable dynamics

Finally, we turn to propagation results in patch 2. Our first result is motivated by the one-dimensional
propagation result of Fife and McLeod [23], saying that a solution of the homogeneous equation (1.3)
with f of bistable type (1.7) spreads with positive speed in both directions if its initial datum exceeds
θ + η (with η > 0) on a large enough set and if

∫K2

0 f2(s)ds > 0.

Theorem 2.12. Assume that (2.4)–(2.5) hold and that
∫K2

0 f2(s)ds > 0. Let u be the solution of (1.1)
with a nonnegative continuous and compactly supported initial datum u0 6≡ 0. Then, for any η > 0,
there is L > 0 such that, if u0 ≥ θ + η in an interval of size L included in patch 2, then u propagates
to the right with speed c2 and, more precisely, there is ξ ∈ R such that

sup
t≥A, x≥A

|u(t, x)− φ(x− c2t+ ξ)| → 0 as A→ +∞, (2.10)

where φ is the traveling front profile given by (2.6).

Theorem 2.12 assumes some conditions on f2 and u0. The following result shows that propagation
can also occur independently of u0, provided no stationary solution connecting K1 and 0 exists.

Theorem 2.13. Assume that (2.4)–(2.5) hold, that
∫K2

0 f2(s)ds ≥ 0, and that (1.1) has no nonnegative
classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0 (then, necessarily, K1 > θ by
Proposition 2.9). Then the solution u of (1.1) with a nonnegative continuous and compactly supported
initial datum u0 6≡ 0 propagates completely, namely,

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (2.11)

where V is the unique positive classical stationary solution of (1.1) such that V (−∞) = K1 and
V (+∞) = K2, given in Proposition 2.10. Furthermore,

(i) if
∫K2

0 f2(s)ds > 0, then u spreads with speed c2 > 0 in patch 2, and (2.10) holds for some ξ ∈ R;

(ii) if
∫K2

0 f2(s)ds = 0, then u propagates to the right with speed zero in patch 2, in the sense
that (2.11) holds and supx≥ct u(t, x)→ 0 as t→ +∞ for every c > 0.

2Throughout the paper, for any continuous function ψ : R→ R, we denote spt(ψ) the support of ψ.
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Theorem 2.13 leads to several comments. Firstly, we provide in Remark 4.1 below explicit examples
of functions satisfying (2.4)–(2.5) for which

∫K2

0 f2(s)ds > 0 and (1.1) has no nonnegative classical
stationary solution U such that U(−∞) = K1 and U(+∞) = K2, whence Theorem 2.13 yields (2.11)
and implies that all nontrivial solutions u of (1.1) spread in patch 2 with speed c2 > 0.

Secondly, in the balanced case ∫ K2

0
f2(s)ds = 0, (2.12)

blocking in patch 2 can occur, as follows from part (ii)–(iv) of Theorem 2.11. However, in contrast to the
case

∫K2

0 f2(s)ds < 0 (see part (i) of Theorem 2.11), blocking is not guaranteed. Indeed, if (2.12) holds,
Proposition 2.8 (ii) and Theorem 2.13 (ii) provide some sufficient conditions for the solution u of (1.1)
to propagate to the right with speed zero.3 We give a heuristic explanation for this phenomenon.
First, it follows from Proposition 2.9 that K1 ≥ K2 under the assumptions of Theorem 2.13 (ii).
Then, since u(t, x) converges as t → +∞ locally uniformly in x ∈ R to the stationary solution V
connecting K1 and K2, the KPP patch provides exterior energy through the interface and forces the
solution u to persist in patch 2 and then propagate with zero speed. A similar phenomenon, called
“virtual blocking” or “virtual pinning”, was previously investigated in a one-dimensional heterogeneous
bistable equation [41] and in the mean curvature equation in two-dimensional sawtooth cylinders [39].
It is also well known that for the homogeneous bistable equation (1.3) with f satisfying (2.12), the
solution u to the Cauchy problem with any nonnegative bounded compactly supported initial datum
is blocked at large times and extinction occurs. In contrast, Theorem 2.13 states that, when (2.12) is
fulfilled, the solution to the patch problem (1.1) with a compactly supported initial datum can still
propagate into the bistable patch 2, but its level sets then move to the right with speed zero.

Thirdly, when the initial datum of the scalar homogeneous bistable equation (1.3) is small in
the L1(R) norm, then ‖u(1, ·)‖L∞(R) can be bounded from above by a constant less than θ. Hence,
extinction occurs and the blocking property (2.9) holds if the initial datum is compactly supported.
In our work, due to the presence of the KPP patch 1 in (1.1), the smallness of the L1(R) norm of the
initial datum is not sufficient to cause blocking in general, as follows from Theorem 2.13, since the
conclusion of Theorem 2.13 is independent of u0.

2.4 Blocking or propagation in the bistable-bistable case

In this section, we deal with the bistable-bistable case, namely we assume that the functions fi (i = 1, 2)
are of bistable type:{

fi(0) = fi(θi) = fi(Ki) = 0 for some θi ∈ (0,Ki),

f ′i(0)<0, f ′i(θi)>0, f ′i(Ki)<0, fi < 0 in (0, θi)∪(Ki,+∞), fi > 0 in (−∞, 0)∪(θi,Ki).
(2.13)

For each i ∈ {1, 2}, let φi(x − cit) (i = 1, 2) be the unique traveling wave connecting Ki to 0 for the
equation ut = diuxx + fi(u) viewed in the whole line R, that is, φi : R→ (0,Ki) satisfies{

diφ
′′
i + ciφ

′
i + fi(φi) = 0 in R, φ′i < 0 in R,

φi(−∞) = Ki, φi(+∞) = 0, φi(0) = θi,
(2.14)

3It is straightforward to see that these conditions are fulfilled, for instance, when f2 is of the type f2(s) = f̃2(s/ε)
for a fixed function f̃2 satisfying (2.5) (with a parameter K̃2 > 0) and when ε > 0 is small enough, while all other
parameters are fixed. More precisely, under these assumptions, a nonnegative classical stationary solution U of (1.1)
satisfying U(−∞) = K1 and U(+∞) = 0 can not exist when ε > 0 is small enough: the equality in (2.8) can not be
fulfilled when ε > 0 is small enough, since otherwise the second integral in (2.8) would converge to 0 as ε → 0 because
0 < U(0) < K2 = εK̃2 → 0 as ε→ 0 whereas the first integral would converge to the positive constant

∫K1

0
f1(s)ds > 0

as ε→ 0.
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where the speed ci has the sign of
∫Ki

0 fi(s)ds [23] (the normalization condition φi(0) = θi uniquely
determines φi). Moreover, each function φi satisfies similar exponential estimates to (2.7).

The first main result in the bistable-bistable case states that, when the traveling fronts φi(x− cit)
have negative speeds ci, all solutions to (1.1) with compactly supported initial data go to extinction:

Theorem 2.14. Assume that (2.13) holds with
∫Ki

0 fi(s)ds < 0, that is, ci < 0, for i = 1, 2. Then,
for any nonnegative continuous and compactly supported initial datum u0, the solution u to (1.1) goes
to extinction, that is, ‖u(t, ·)‖L∞(R) → 0 as t→ +∞.

In other words, for propagation to occur, at least one of the reaction terms fi must have a nonneg-
ative mass. By analogy with the KPP-bistable case (2.4)–(2.5) and without loss of generality, we then
assume in some statements that

∫K1

0 f1(s)ds ≥ 0.
In the spirit of Propositions 2.8–2.10, we then provide some necessary and/or sufficient conditions

for a stationary solution connecting K1 and 0 (or K2) exists. Namely, the following result holds.

Proposition 2.15. Assume that (2.13) holds with
∫K1

0 f1(s)ds ≥ 0.

(i) If (1.1) admits a nonnegative classical stationary solution U such that U(−∞) = K1 and
U(+∞) = 0, then the conclusion of Proposition 2.8 holds true, in which θ∗ is replaced by
θ∗2 ∈ (θ2,K2) such that

∫ θ∗2
0 f2(s)ds = 0 when

∫K2

0 f2(s)ds > 0;

(ii) if
∫K1

0 f1(s)ds > 0, then the conclusion of Proposition 2.9 holds true, in which θ∗ is replaced by
θ∗2 ∈ (θ2,K2) such that

∫ θ∗2
0 f2(s)ds = 0 when

∫K2

0 f2(s)ds > 0;

(iii) if
∫K2

0 f2(s)ds ≥ 0, then problem (1.1) has a positive classical stationary solution V such that
V (−∞) = K1 and V (+∞) = K2. Moreover, all solutions V are monotone, and V is unique if
K2 ≥ K1 ≥ θ2 or K1 ≥ K2 ≥ θ1.

Finally, as in Theorems 2.11–2.13 in the KPP-bistable case, the last two main theorems are con-
cerned with blocking or propagation with positive or zero speed.4

Theorem 2.16. Under the assumption (2.13), the conclusion of Theorem 2.11 holds, with θ replaced
by θ2 in (ii).

Theorem 2.17. Assume that (2.13) holds.

(i) If
∫K2

0 f2(s)ds > 0, then the conclusion of Theorem 2.12 holds with θ and φ replaced by θ2 and φ2;

(ii) if
∫K1

0 f1(s)ds > 0 and
∫K2

0 f2(s)ds ≥ 0, and if (1.1) has no nonnegative classical stationary
solution U such that U(−∞) = K1 and U(+∞) = 0, then, for any η > 0, there is L > 0 such
that the following holds: for any nonnegative continuous and compactly supported initial datum
satisfying u0 ≥ θ1 + η on an interval of size L included in patch 1, the solution u of (1.1) with
initial datum u0 propagates completely, more precisely,

lim inf
t→+∞

u(t, x) ≥ p(x), locally uniformly in x ∈ R, (2.15)

where p is a positive classical stationary solution of (1.1) such that p(−∞) = K1 and p(+∞) =
K2. Moreover, if K2 ≥ K1 ≥ θ2 or K1 ≥ K2 ≥ θ1, then u(t, x) → V (x) as t → +∞ locally
uniformly in x ∈ R, where V is the unique positive classical stationary solution of (1.1) such that

4We state the blocking phenomena and propagation with zero speed only in patch 2, but similar statements hold true
in patch 1 with suitable assumptions.
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V (−∞) = K1 and V (+∞) = K2, given in Proposition 2.15 (iii). Lastly, u also propagates in
patch 1 with speed c1 and

sup
t≥A, x≤−A

|u(t, x)− φ1(−x− c1t+ ξ1)| → 0 as A→ +∞, (2.16)

for some ξ1 ∈ R, while it propagates with positive or zero speed in patch 2 as in the conclusions (i)
and (ii) of Theorem 2.13, with φ replaced by φ2 in (i).

2.5 Biological interpretation and explanation

We briefly discuss our results from an ecological point of view here. We envision a landscape of two
different characteristics, say a large wooded area and an adjacent open grassland area. We assume
that the movement rates of individuals are small relative to landscape scale so that we can essentially
consider each landscape type as infinitely large. In the first scenario (KPP–KPP), the population
has its highest growth rate at low density in both patches. While the low-density growth rates and
carrying capacities may differ between the two landscape types, the population will grow in each type
from low densities to the carrying capacity. When introduced locally, the population will spread in
both directions, and the speed of spread will approach the famous Fisher speed 2

√
dif ′i(0) in each

patch. The interface will not stop the population advance unless it is completely impermeable. This
would be the special case (that we excluded from our analysis) where an individual at the interface
will choose one of the two habitat types with probability one, i.e., α = 0 or α = 1.

The second scenario (KPP–bistable) is more interesting. This time, the population dynamics change
qualitatively from the highest growth rate being at low density to being at intermediate density. In
ecological terms, this corresponds to a strong Allee effect and the threshold value θ is known as the Allee
threshold. In this case, the interface can prevent a population that is spreading in the one habitat type
(without Allee dynamic) from continuing to spread in the other type (with Allee dynamics). At first
glance, it seems surprising that the conditions for propagation failure do not include parameter σ that
reflects the movement behavior at the interface. To understand the reasons, we need to understand the
scaling that led to system (1.1). The scaled reaction function f2 and its unscaled counterpart, say f̃2,
are related via

f2(s) = kf̃2

( s
k

)
, k =

α

1− α
d2

d1
,

see [28]. In particular, if K̃2 and θ̃ are the unscaled carrying capacity and Allee threshold, then
K2 = kK̃2 and θ = kθ̃ are the corresponding scaled quantities. The sign of the integral that determines
the sign of the speed of propagation in the homogeneous bistable equation does not change under this
scaling. Hence, by choosing k large enough, one can satisfy the condition K1 < θ in part (iii) of
Theorem 2.11. A population that starts on a bounded set inside the KPP patch will be bounded by
K1 and therefore unable to spread in the Allee patch. Large values of k arise when the preference
for patch 1 is high (α ≈ 1) or when the diffusion rate in the Allee patch is much larger than in the
KPP patch. The mechanisms in this last scenario is similar to that when a population spreads from
a narrow into a wide region in two or higher dimensions [14, 31]. As individuals diffuse broadly, their
density drops below the Allee threshold and the population cannot reproduce and spread.

A change in population dynamics from KPP to Allee effect need not be triggered by landscape
properties, it can also be induced by management measures. For example, when male sterile insects
are released in large enough densities, the probability of a female insect to meet a non-sterile male
decreases substantially so that a mate-finding Allee effect may arise. The use of this technique to create
barrier zones for insect pest spread has recently been explored by related but different means [1].
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Outline of this paper

The rest of this paper is organized as follows. In Section 3, we consider (1.1) with KPP-KPP reactions
and prove Proposition 2.5 and Theorem 2.6. Section 4 is devoted to the KPP-bistable case. We begin
by proving the semi-persistence result Theorem 2.7 in Section 4.1. Then, in Section 4.2, we present
the proofs of Propositions 2.8–2.10. In Sections 4.3 and 4.4, we collect the proofs of the main results
on blocking, virtual blocking and propagation in patch 2, namely, Theorems 2.11–2.13. In Section 5,
we sketch the essential parts of the proofs in the bistable-bistable case which are different from those
in the KPP-bistable case.

3 The KPP-KPP case

This section is devoted to the analysis of (1.1) with KPP-KPP reactions satisfying (2.1). We start
with proving Proposition 2.5 for the stationary problem associated with (1.1).

Proof of Proposition 2.5. The existence of the stationary solution follows immediately from the exis-
tence of a pair of ordered sub- and supersolutions. Indeed, from (2.1) and the condition K1 ≤ K2, one
sees that the functions equal to the constants K1 and K2 are, respectively, a sub- and a supersolution
for (1.1), in the sense of Definition 2.2. Thus, from Proposition 2.4, the solution u of (1.1) with initial
datumK1 satisfiesK1 ≤ u(t, x) ≤ K2 for all (t, x) ∈ [0,+∞)×R, hence u(t′, x) ≤ u(t′+t, x) for all t ≥ 0
and for all (t′, x) ∈ [0,+∞) × R, that is, u(t, x) is nondecreasing with respect to t in [0,+∞) × R.
Together with Proposition 2.3, it follows that the function V defined by V (x) := limt→+∞ u(t, x) is a
positive bounded classical stationary solution to (1.1) such that K1 ≤ V (x) ≤ K2 for all x ∈ R.

Next, let us turn to the uniqueness, which actually holds in the class of nonnegative nontrivial
bounded classical solutions. So, consider any nonnegative bounded classical stationary solution V
of (1.1). If there is x0 ∈ (−∞, 0) such that V (x0) = 0, then V ≡ 0 in (−∞, 0) from the elliptic
strong maximum principle (or the Cauchy-Lipschitz theorem), and then in (−∞, 0] by continuity of V .
If V > 0 in (−∞, 0) and V (0) = 0, then it follows from the Hopf lemma (or the Cauchy-Lipschitz
theorem) that V ′(0−) < 0. Similarly, if there is x0 ∈ (0,+∞) such that V (x0) = 0, then V ≡ 0
in [0,+∞). If V > 0 in (0,+∞) and V (0) = 0, then V ′(0+) > 0. From these observations and the fact
that V (0−) = σV ′(0+) with σ > 0, it follows that either V ≡ 0 in R, or V > 0 in R.

In the sequel, we assume that V > 0 in R. We then claim that infR V > 0 and

V (−∞) = K1, V (+∞) = K2. (3.1)

As a matter of fact, since f ′i(0) > 0 (i = 1, 2), one can choose R > 0 so large that

0 <
π

2R
≤

√
min(f ′1(0), f ′2(0))

2 max(d1, d2)
. (3.2)

Set

Ψ(x) =

{
cos
( π

2R
x
)

for x ∈ [−R,R],

0 for x ∈ R \ [−R,R].
(3.3)

Then there exists ε̃ > 0 such that −di(εΨ)′′ < fi(εΨ) in (−R,R) for i = 1, 2 and for all ε ∈ (0, ε̃],
since fi(0) = 0 and f ′i(0) > 0 (i = 1, 2). Fixing x0 = −R− 1, one can choose ε0 ∈ (0, ε̃] such that

V > ε0 Ψ(· − x0) in R.

Then, by continuity of V and ε0Ψ, there is s0 > 1 such that

V > ε0Ψ(· − sx0) in [sx0 −R, sx0 +R] for all s ∈ [1, s0].
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Define

s∗ = sup
{
s̃ > 1 : V > ε0Ψ(· − sx0) in [sx0 −R, sx0 +R] for all s ∈ [1, s̃]

}
∈ [s0,+∞].

We wish to prove that s∗ = +∞. Assume not. By the definition of s∗, one has V ≥ ε0Ψ(· − s∗x0)
in [s∗x0 − R, s∗x0 + R] and there is x̂ ∈ [s∗x0 − R, s∗x0 + R] such that V (x̂) = ε0Ψ(x̂ − s∗x0).
Since V > 0 in R and Ψ(· − s∗x0) = 0 at x = s∗x0 ± R, one derives that x̂ ∈ (s∗x0 − R, s∗x0 + R).
The elliptic strong maximum principle then yields V ≡ ε0Ψ(· − s∗x0) in (s∗x0−R, s∗x0 +R) and then
in [s∗x0 −R, s∗x0 +R] by continuity. This is impossible at s∗x0 ±R. Consequently, s∗ = +∞, hence

V > ε0Ψ(· − sx0) in [sx0 −R, sx0 +R] for all s ≥ 1

and infx≤−R−1 V (x) ≥ ε0. Similarly, one can also show that infx≥R+1 V (x) ≥ ε1 for some ε1 ∈ (0, ε̃].
Together with the continuity and positivity of V in R, we get infR V > 0.

In order to show (3.1), consider now an arbitrary sequence (xn)n∈N in R diverging to −∞ as
n → +∞ and define Vn := V (· + xn) in R for each n ∈ N. Then, by standard elliptic estimates, the
sequence (Vn)n∈N converges as n→ +∞, up to extraction of some subsequence, in C2

loc(R) to a bounded
function V∞ which solves d1V

′′
∞ + f1(V∞) = 0 in R. Moreover, infR V∞ > 0. It follows that V∞ ≡ K1

in R, thanks to the hypothesis that f1 > 0 in (0,K1) and f1 < 0 in (K1,+∞). That is, Vn → K1

as n→ +∞ in C2
loc(R). Since the limit does not depend on the particular sequence (xn)n∈N, it follows

that V (x) → K1 as x → −∞ and V ′(x) → 0 as x → −∞. By the same argument as above and
by the assumption that f2 > 0 in (0,K2) and f2 < 0 in (K2,+∞), one can also derive V (x) → K2

and V ′(x)→ 0 as x→ +∞. Thus, (3.1) is achieved.
We prove now that V is monotone in R. Assume first that V is not monotone in (−∞, 0). Then there

is x0 ∈ (−∞, 0) such that V (x0) reaches a local minimum or maximum with V 6≡ V (x0) in (−∞, 0).
On the one hand, V ′(x0) = 0. On the other hand, by multiplying d1V

′′ + f1(V ) = 0 by V ′ and
integrating over (−∞, x] for any x ≤ 0, one gets that

d1

2
(V ′(x−))2 =

∫ K1

V (x)
f1(s)ds.5 (3.4)

Remember that f1 > 0 in (0,K1) and f1 < 0 in (K1,+∞), while V > 0 in R. Hence, (3.4)
yields V (x0) = K1. By the Cauchy-Lipschitz theorem, one then has V ≡ K1 in (−∞, 0], a con-
tradiction. Similarly, integrating d2V

′′ + f2(V ) = 0 against V ′ over [x,+∞) for any x ≥ 0 implies

d2

2
(V ′(x+))2 =

∫ K2

V (x)
f2(s)ds. (3.5)

One can use the same procedure to show that V is monotone in (0,+∞). Consequently, V is monotone
in (−∞, 0) and in (0,+∞). Together with the continuity of V in R and the interface condition
V ′(0−) = σV ′(0+) with σ > 0, one then deduces that V is nondecreasing in R if V ′(0±) > 0 (and then
K1 < K2 in this case). Furthermore, if V ′(0±) = 0, then necessarily V (0) = K1 = K2 by (3.4)–(3.5),
hence V ≡ K1 = K2 in (−∞, 0] and V ≡ K2 = K1 in [0,+∞) by the Cauchy-Lipschitz theorem.
Notice that the case V ′(0±) < 0 is impossible since it would imply that V is nonincreasing and not
constant in R, and then K1 > K2, which is ruled out by assumption. Therefore, in all cases, V is
monotone in R, and V ≡ K1 = K2 in R if K1 = K2.

Consider now the case K1 < K2. Then, V ′ ≥ 0 in (−∞, 0−] ∪ [0+,+∞) and V ′(0±) > 0, from
the previous paragraph. If there is x0 ∈ R \ {0} such that V ′(x0) = 0, then (3.4)–(3.5) and the
Cauchy-Lipschitz theorem imply that V (x0) = K1 and V ≡ K1 in (−∞, 0] (if x0 < 0), or V (x0) = K2

5The notation x− in V ′(x−) is used in order to cover the case x = 0, where V is not differentiable in general. The
same type of notation is used in (3.5), as well as in further subsequent proofs.
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and V ≡ K2 in [0,+∞) (if x0 > 0), hence V ′(0−) = 0 or V ′(0+) = 0, a contradiction. Therefore, V ′ > 0
in R \ {0} and then in (−∞, 0−] ∪ [0+,+∞), yielding in particular K1 < V < K2 in R. Moreover,
by (3.4)–(3.5) and by the interface condition V ′(0−) = σV ′(0+), one has∫ K1

V (0)
f1(s)ds =

d1σ
2

d2

∫ K2

V (0)
f2(s)ds.

Notice that the function ν 7→
∫K1

ν f1(s)ds is continuous increasing in [K1,K2] and vanishes atK1, while
the function ν 7→ d1σ2

d2

∫K2

ν f2(s)ds is continuous decreasing in [K1,K2] and vanishes at K2. Therefore,
there exists a unique ν0 ∈ (K1,K2) such that∫ K1

ν0

f1(s)ds =
d1σ

2

d2

∫ K2

ν0

f2(s)ds,

and necessarily V (0) = ν0. Hence, V (0) is unique, and V ′(0−) and V ′(0+) are uniquely determined by

V ′(0−) =

√
2

d1

∫ K1

V (0)
f1(s)ds, V ′(0+) =

√
2

d2

∫ K2

V (0)
f2(s)ds,

whence the uniqueness of V follows from the Cauchy-Lipschitz theorem. This completes the proof of
Proposition 2.5.

Proof of Theorem 2.6. Let u be the solution to (1.1) with a nonnegative bounded and continuous
initial datum u0 6≡ 0. The comparison principle (Proposition 2.4) yields 0 < u(t, x) ≤ M :=
max(K2, ‖u0‖L∞(R)) for all (t, x) ∈ (0,+∞)× R.

Choosing R > 0 and Ψ as in (3.2)–(3.3), there is ε > 0 small enough such that −d2εΨ
′′ < f2(εΨ)

in (−R,R) and εΨ(· −R− 1) < u(1, ·) ≤M in R. Let u and u be, respectively, the solutions to (1.1)
with initial data εΨ(·−R−1) andM . It follows in particular from Proposition 2.4 that u is nonnegative
in [0,+∞)×R (and even positive in (0,+∞)×R). The standard parabolic maximum principle applied
in [0,+∞)× [1, 2R+ 1] then implies that u(t, x) > Ψ(x−R− 1) for all (t, x) ∈ (0,+∞)× [1, 2R+ 1].
Therefore, u(h, ·) > Ψ(·−R−1) = u(0, ·) in R, for every h > 0. Proposition 2.4 again then implies that
u(t+h, ·) > u(t, ·) in R for every h > 0 and t ≥ 0, that is, u is increasing with respect to t in [0,+∞)×R.
Similarly, u is nonincreasing with respect to t in [0,+∞) × R. Since 0 < u(t, x) < u(t, x) ≤ M for
all (t, x) ∈ (0,+∞)× R (the strict inequalities come from Proposition 2.4), the Schauder estimates of
Proposition 2.3 imply that u(t, ·) and u(t, ·) converge as t → +∞, locally uniformly in R, to positive
bounded classical stationary solutions p and q of (1.1), respectively. Moreover,

0 < p = lim
t→+∞

u(t, ·) ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ lim
t→+∞

u(t, ·) = q ≤M,

locally uniformly in R. From Proposition 2.5 and the uniqueness of the positive bounded classical
stationary solution V to problem (1.1), one gets p = q = V in R, and the desired property (2.2) of
Theorem 2.6 is thereby proved.

Assume now that u0 is compactly supported. Since V (−∞) = K1, V (+∞) = K2 and K1 ≤ V (x) ≤
K2 for all x ∈ R, it follows that, for any δ ∈ (0,K1), there exist x1 < 0 negative enough and x2 > 0
positive enough such that

K1 ≤ V (x) ≤ K1 +
δ

2
for all x ≤ x1, and K2 −

δ

2
≤ V (x) ≤ K2 for all x ≥ x2. (3.6)

By (2.2), one can pick t0 > 0 sufficiently large so that

|u(t, x)− V (x)| ≤ δ

2
for all t ≥ t0 and x ∈ [x1, x2]. (3.7)
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Thanks to (3.6)–(3.7), it is easily seen that, for all t ≥ t0,

K1 −
δ

2
≤ u(t, x1) ≤ K1 + δ, (3.8)

and
K2 − δ ≤ u(t, x2) ≤ K2 +

δ

2
.

We first look at the spreading of u in patch 1. Let z0 6≡ 0 be a nonnegative bounded continu-
ous and compactly supported function in R such that spt(z0) ⊂ [x1 − 2, x1 − 1] and 0 ≤ z0(x) <
min

(
‖u0‖L∞(R),K1 − δ, u(t0, x)

)
for all x ∈ R. Consider the Cauchy problem{
zt = d1zxx + g1(z), t > 0, x ∈ R,
z(0, x) = z0, x ∈ R,

(3.9)

where g1 is of class C1([0,+∞)) and satisfies g1(0) = g1(K1 − δ) = 0, 0 < g1(s) ≤ g′1(0)s for
all s ∈ (0,K1 − δ), g′1(K1 − δ) < 0, and g1 < 0 in (K1 − δ,+∞). Moreover, g1 can be chosen so
that g′1(0) = f ′1(0) and g1 ≤ f1 in [0,K1 − δ]. From the maximum principle, it immediately follows
that 0 ≤ z(t, x) < K1 − δ for all t ≥ 0 and x ∈ R. This implies that z(t− t0, x1) < K1 − δ < u(t, x1)
for all t ≥ t0, thanks to (3.8). Notice also that z0(x) < u(t0, x) for x ∈ (−∞, x1]. By the comparison
principle, it turns out that z(t−t0, x) < u(t, x) for all t > t0 and x ≤ x1. Furthermore, it is known that
the solution z of (3.9) spreads in both directions with the spreading speed c∗1 = 2

√
d1g′1(0) = 2

√
d1f ′1(0)

(see [4]), hence

inf
|x|≤(c∗1−ε)t

z(t, x)→ K1 − δ as t→ +∞, for all 0 < ε < c∗1.

By virtue of (3.6), we then obtain that, for any 0 < ε < c∗1, there is t′0 > t0 such that, for all t > t′0
and x ≤ x1,

V (x)− 3δ < K1 − 2δ ≤ inf
(−c∗1+ε/2)(t−t0)≤y≤x1

z(t− t0, y)≤ inf
(−c∗1+ε)t≤y≤x1

u(t, y). (3.10)

Next, set M1 := max
(
‖u0‖L∞(R),K1 + δ,K2

)
. Let g̃1 be a C1([0,+∞)) function such that g̃1(0) =

g̃1(K1 + δ) = 0, g̃1 > 0 in (0,K1 + δ), g̃′1(0) > 0, g̃′1(K1 + δ) < 0, and g̃ < 0 in (K1 + δ,+∞).
We can also choose g̃1 so that f1 ≤ g̃1 in [0,+∞). Then, the solution to the ODE ξ′(t) = g̃1(ξ(t))
for t ≥ t0 with ξ(t0) = M1 is nonincreasing for t ≥ t0 and satisfies ξ(t) → K1 + δ as t → +∞. One
has 0 < u(t, x) ≤M1 for all (t, x) ∈ (0,+∞)×R thanks to Proposition 2.4, hence u(t0, x) ≤M1 = ξ(t0)
for all x ≤ x1. Moreover, u(t, x1) ≤ K1 + δ ≤ ξ(t) for all t ≥ t0 by (3.8). Applying a comparison
argument yields u(t, x) ≤ ξ(t) for all t ≥ t0 and x ≤ x1. Therefore, we can choose t1 > t0 such that

sup
x≤x1

u(t1, x) ≤ K1 +
3δ

2
. (3.11)

Let now g1 be of class C1([0,+∞)) satisfying g1(0) = g1(K1 + 2δ) = 0, 0 < g1(s) ≤ g′1(0)s
for s ∈ (0,K1 + 2δ), g′1(0) = f ′1(0) and f1 ≤ g1 in [0,+∞). Then, it is well-known that the KPP
equation vt = d1vxx + g1(v) admits standard traveling wave solutions of the type v(t, x) = ϕc(±x− ct)
with (decreasing) ϕc : R → (0,K1 + 2δ) if and only if c ≥ c∗1 = 2

√
d1g′1(0) = 2

√
d1f ′1(0). For

each c ≥ c∗1, the function ϕc satisfies

d1ϕ
′′
c + cϕ′c + g1(ϕc) = 0 in R, ϕ′c < 0 in R, ϕc(−∞) = K1 + 2δ, ϕc(+∞) = 0, (3.12)

and ϕc is unique up to translations. In particular, for c = c∗1, by choosing A > 0 sufficiently large,
there holds

K1 +
3δ

2
≤ ϕc∗1(−x1 − c∗1t−A) < K1 + 2δ for all t ≥ t1. (3.13)
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Due to the exponential decay of ϕc∗1(s) as s→ +∞ (as in the second case of (1.6)) and the Gaussian
upper bound of u(t1, x) for all x ≤ x1 by Lemma A.1, together with (3.11), it can be derived that (up
to increasing A if needed)

u(t1, x) ≤ ϕc∗1(−x− c∗1t1 −A) for x ≤ x1.

We also notice from (3.8) and (3.13) that u(t, x1) ≤ K1 + δ < ϕc∗1(−x1 − c∗1t − A) for all t ≥ t1. The
comparison principle gives

u(t, x) ≤ ϕc∗1(−x− c∗1t−A) for all t ≥ t1 and x ≤ x1. (3.14)

Therefore, for all 0 < ε < c∗1 and for all t ≥ t1 and x ≤ x1, there holds

sup
−(c∗1−ε)t≤y≤x1

u(t, y)≤ sup
−(c∗1−ε)t≤y≤x1

ϕc∗1(−y − c∗1t−A)≤K1 + 2δ≤V (x) + 2δ. (3.15)

Combining (3.10) with (3.15), we obtain

lim sup
t→+∞

(
sup

−(c∗1−ε)t≤x≤x1
|u(t, x)− V (x)|

)
≤ 3δ for all 0 < ε < c∗1.

Together with (2.2) and the arbitrariness of δ > 0 small enough, one gets that u spreads to the left at
least with speed c∗1, that is, for every 0 < ε ≤ c∗1,

sup
−(c∗1−ε)t≤x≤0

|u(t, x)− V (x)| → 0 as t→ +∞.

On the other hand, (3.14) also implies that, for all ε > 0,

lim sup
t→+∞

(
sup

x≤−(c∗1+ε)t
u(t, x)

)
≤ lim

t→+∞

(
sup

x≤−(c∗1+ε)t
ϕc∗1(−x− c∗1t−A)

)
= 0,

hence the limsup is a limit and u spreads to the left at most with speed c∗1.
Therefore, the leftward spreading result of u is proved. Similarly, one can also show that u spreads in

patch 2 with speed c∗2 = 2
√
d2f ′2(0). Hence, (2.3) follows, and the proof of Theorem 2.6 is complete.

4 The KPP-bistable case

In this section, we investigate (1.1) with KPP-bistable reactions. We assume that patch 1 is of KPP
type, whereas patch 2 is of bistable type, that is, we assume (2.4)–(2.5). We consider in complete
generality the sign of the mass

∫K2

0 f2(s)ds and the relation between K1 and θ or K2 (or possibly θ∗

where θ∗ ∈ (θ,K2) is such that
∫ θ∗

0 f2(s)ds = 0 when
∫K2

0 f2(s)ds > 0).

4.1 Semi-persistence result: proof of Theorem 2.7

To begin with, we prove the semi-persistence result and the spreading result in patch 1, thanks to the
KPP assumption on f1. The technique here is similar to that of Theorem 2.6.

Proof of Theorem 2.7. Let u be the solution to (1.1) with a nonnegative continuous and compactly sup-
ported initial datum u0 6≡ 0. By Proposition 2.4, we have 0<u(t, x)<M := max

(
K1,K2, ‖u0‖L∞(R)

)
for all t > 0 and x ∈ R.

Take R > 0 large enough such that
π

2R
<

√
f ′1(0)

2d1
, (4.1)
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and then define Ψ : R→ R as in (3.3), that is,

Ψ(x) =

{
cos
( π

2R
x
)

for x ∈ [−R,R],

0 for x ∈ R \ [−R,R].
(4.2)

Then there exists η0 > 0 such that −d1(ηΨ)′′ ≤ f1(ηΨ) in (−R,R) for all 0 < η ≤ η0. Choose now
any x0 ≤ −R and pick η ∈ (0, η0] such that ηΨ(·−x0) < u(1, ·) in R. Let v and w be solutions to (1.1)
with initial data v(0, ·) = ηΨ(· − x0) in R and w(0, ·) ≡ max(K1,K2, ‖u0‖L∞(R)) in R. Then, as in the
proof of the first part of Theorem 2.6, v is increasing with respect to t and w is nonincreasing with
respect to t. Moreover, 0 < v(t, x) < u(t + 1, x) < w(t + 1, x) ≤ M for all t > 0 and x ∈ R. By the
Schauder estimates of Proposition 2.3, it follows that v(t, ·) and w(t, ·) converge as t → +∞, locally
uniformly in R, to positive bounded stationary solutions p and q of (1.1), respectively. Furthermore,

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, locally uniformly in R. (4.3)

Notice also that p > v0 in R. We observe from the continuity of p and v0 that there is κ̂ > 1 such
that p > ηΨ(· − κx0) in [κx0 −R, κx0 +R] for all κ ∈ [1, κ̂]. Define

κ∗ := sup
{
κ ≥ 1 : p > ηΨ(· − κ̃x0) in [κ̃x0 −R, κ̃x0 +R] for all κ̃ ∈ [1, κ]

}
.

It follows that κ∗ ≥ κ̂ > 1. We are going to prove that κ∗ = +∞. Assuming by contradiction
that κ∗ < +∞, we see from the definition of κ∗ that p ≥ ηΨ(·−κ∗x0) in [κ∗x0−R, κ∗x0 +R] and there
is x∗ ∈ [κ∗x0 −R, κ∗x0 +R] such that p(x∗) = ηΨ(x∗ − κ∗x0). Since p > 0 in R and Ψ(· − κ∗x0) = 0
at κ∗x0 ± R, one has x∗ ∈ (κ∗x0 − R, κ∗x0 + R). Then the strong elliptic maximum principle implies
that p ≡ ηΨ(· − κ∗x0) in (κ∗x0 −R, κ∗x0 +R) and then in [κ∗x0 −R, κ∗x0 +R] by continuity, which
is impossible at κ∗x0 ± R. Thus, κ∗ = +∞ and p > ηΨ(· − κx0) in [κx0 − R, κx0 + R] for all κ ≥ 1.
This implies, in particular, that p(x) > ηΨ(0) = η for all x ≤ x0. Thus,

lim inf
t→+∞

u(t, x) ≥ p(x) > η for all x ≤ x0. (4.4)

On the other hand, since p is continuous and positive in R, one gets from (4.3) that, for any given x > x0,

lim inf
t→+∞

u(t, x) ≥ min
[x0,x]

p > 0 for all x ∈ [x0, x]. (4.5)

Combining (4.4) with (4.5), one reaches the semi-persistence result, that is, for any x ∈ R,

inf
x≤x

(
lim inf
t→+∞

u(t, x)
)
> 0.

In what follows, we turn to the proof of the spreading result in patch 1. First of all, as for V
in the proof of Proposition 2.5, one sees that the functions p and q given in (4.3) satisfy p(x) → K1

and q(x) → K1 as x → −∞. Fix now any δ ∈ (0,K1/2). From the previous observations together
with (4.3), there exist t1 > 0 and x1 < 0 such that

K1 −
δ

2
≤ u(t, x1) ≤ K1 + δ for all t ≥ t1. (4.6)

The rest of the proof is similar to that of Theorem 2.6. We just sketch main steps. With z0 and g1

as in (3.9) in the proof of Theorem 2.6, and using especially the left inequality in (4.6), it follows as
in (3.10) that, for any ε ∈ (0, c∗1), there is t′1 > t1 such that, for all t > t′1,

K1 − 2δ ≤ inf
−(c∗1−ε/2)(t−t1)≤y≤x1

z(t− t1, y) ≤ inf
−(c∗1−ε)t≤y≤x1

u(t, y). (4.7)
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Similarly, as in (3.11), using especially the right inequality in (4.6), there is t2 > t′1 such that

sup
x≤x1

u(t2, x) ≤ K1 +
3δ

2
.

Next, let g1 and ϕc∗1 be as in (3.12) with c∗ = 2
√
d1f ′1(0). Then there is A > 0 such that, for each

ε ∈ (0, c∗1), (3.15) holds without any reference to V , that is, there is t3 > 0 such that

sup
−(c∗1−ε)t≤x≤x1

u(t, x) ≤ sup
−(c∗1−ε)t≤x≤x1

ϕc∗1(−x− c∗1t−A) ≤ K1 + 2δ for all t ≥ t3. (4.8)

Owing to (4.7) and (4.8), it follows that

∀ ε ∈ (0, c∗1), ∀ δ ∈
(

0,
K1

2

)
, ∃x1 ∈ R, lim sup

t→+∞

(
sup

−(c∗1−ε)t≤x≤x1
|u(t, x)−K1|

)
≤ 2δ,

namely, u spreads to the left at least with speed c∗1. Moreover, we can also deduce as in the proof of
Theorem 2.6 that, for every ε > 0,

lim sup
t→+∞

(
sup

x≤−(c∗1+ε)t
u(t, x)

)
≤ lim

t→+∞

(
sup

x≤−(c∗1+ε)t
ϕc∗1(−x− c∗1t−A)

)
= 0,

hence supx≤−(c∗1+ε)t u(t, x)→ 0 as t→ +∞, for all ε > 0. That is, u spreads at most with speed c∗1 in
the negative direction. This finishes the proof of Theorem 2.7.

4.2 Preliminaries on the stationary problem: proofs of Propositions 2.8–2.10

This section is devoted to the study of the stationary problem associated with (1.1) in the KPP-bistable
case (2.4)–(2.5), and we give the proofs of Propositions 2.8–2.10.

Proof of Proposition 2.8. Suppose that U is a nonnegative classical stationary solution of (1.1) such
that U(−∞) = K1 and U(+∞) = 0 (hence, U ′(±∞) = 0 from standard elliptic estimates). As in the
proof of Proposition 2.5, it follows that U > 0 in R, that U is monotone in (−∞, 0], and that U ′ < 0
(resp. U ′ > 0, resp. U ′ ≡ 0) in (−∞, 0−] if U(0) < K1 (resp. if U(0) > K1, resp. if U(0) = K1).
Furthermore, multiplying d2U

′′+ f2(U) = 0 by U ′ and integrating the resulting equation over [x,+∞)
for any x ≥ 0 yields

d2

2
(U ′(x+))2 = −

∫ U(x)

0
f2(s)ds for all x ≥ 0. (4.9)

To discuss the behavior of U in [0,+∞), we distinguish three cases, according to the sign of
∫K2

0 f2(s)ds.

Case 1:
∫K2

0 f2(s)ds < 0. Then,
∫ ν

0 f2(s)ds < 0 for all ν > 0 and one infers from (4.9) that U ′

has a strict constant sign in [0+,+∞), whence U ′ < 0 in [0+,+∞) since U(0) > 0 and U(+∞) = 0.
This implies that U ′(0−) < 0 by using the interface condition in (1.1), hence U(0) < K1 and U ′ < 0
in (−∞, 0−] from the previous paragraph. Lastly, formulas (4.9) and (3.4) (at x = 0 and with U
instead of V ), together with the interface condition U ′(0−) = σU ′(0+), lead to (2.8).

Case 2:
∫K2

0 f2(s)ds = 0. Suppose that there is a point x0 ∈ [0,+∞) such that U(x0) = K2.
By (4.9), one deduces that U ′(x+

0 ) = 0, and then U ≡ K2 in [0,+∞) by the Cauchy-Lipschitz theorem.
This contradicts the limit U(+∞) = 0. Thus, 0 < U < K2 in [0,+∞) and therefore U ′ has a strict
constant sign in [0+,+∞) by (4.9), hence U ′ < 0 in [0+,+∞). Consequently, as in Case 1, U ′(0−) < 0,
U ′ < 0 in (−∞, 0−] and U(0) < K1 (see Fig. 2). Notice also that

∫ U(0)
0 f2(s)ds < 0 and that (2.8)

holds as in Case 1.
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(a) K1 > K2 (b) K1 = K2 (c) K1 < K2

Figure 2: Profile of a steady solution U with U(−∞)=K1 and U(+∞)=0, if
∫K2

0 f2(s)ds=0.

Case 3:
∫K2

0 f2(s)ds > 0. Let θ∗ ∈ (θ,K2) be such that
∫ θ∗

0 f2(s)ds = 0, and denote

Q = sup
{
ν > θ∗ :

∫ ν′

0
f2(s)ds > 0 for all ν ′ ∈ (θ∗, ν)

}
∈ (θ∗,+∞]. (4.10)

We first observe from (4.9) that U(x) /∈ (θ∗, Q) for all x ≥ 0. By continuity of U and U(+∞) = 0, one
then derives that 0 < U ≤ θ∗ in [0,+∞). Suppose in this paragraph that the set {x ≥ 0 : U ′(x) = 0} is
not empty.6 From (4.9) and the inequality U ≤ θ∗ in [0,+∞), this set is included in {x ≥ 0 : U(x) = θ∗}
and, since U(+∞) = 0, one can then define x0 := max{x ≥ 0 : U ′(x) = 0} ∈ [0,+∞). One then
has U(x0) = θ∗ and U ′ < 0 in (x0,+∞) by definition of x0. The Cauchy-Lipschitz theorem then
implies that U(x) = U(2x0−x) for all x ∈ [0, x0], hence U ′ > 0 in [0+, x0) if x0 > 0. From the general
observations at the beginning of the proof of the present proposition, one then gets that, if x0 > 0,
then U ′ > 0 in (−∞, 0−] ∪ [0+, x0), K1 < U(0) < θ∗, and U ′ < 0 in (x0,+∞) (see the black curve in
Fig. 3 (a)), whereas U ≡ K1 = θ∗ in (−∞, 0] and U ′ < 0 in (0,+∞) if x0 = 0 (see the black curve in
Fig. 3 (b)). To sum up, under the assumption {x ≥ 0 : U ′(x) = 0} 6= ∅, one has K1 ≤ θ∗ and (2.8)
holds good if x0 > 0, while the two integrals in (2.8) vanish if x0 = 0.

(a) K1 < θ∗ (b) K1 = θ∗ (c) K1 > θ∗

Figure 3: Profile of a steady solution U with U(−∞)=K1 and U(+∞)=0, if
∫K2

0 f2(s)ds>0.

Now suppose that U ′ has a strict constant sign in [0+,+∞), which implies necessarily U ′ < 0
in [0+,+∞) since U(0) > 0 and U(+∞) = 0. Then, U ′ < 0 in (−∞, 0−], U(0) < K1 and (2.8) holds
as before, while the inequality U(0) < θ∗ holds too from (4.9) since U(0) ≤ θ∗ and U ′(0+) < 0 (see the
blue curves in Fig. 3). The proof of Proposition 2.8 is complete.

Proof of Proposition 2.9. We first claim that the existence of a positive classical stationary solution U
of (1.1) such that U(−∞) = K1 and U(+∞) = 0 is equivalent to the existence of ξ > 0 such that∫ ξ

0
f2(s)ds ≤ 0,

∫ K1

ξ
f1(s)ds = −d1σ

2

d2

∫ ξ

0
f2(s)ds (4.11)

6Notice that, if U ′(0+) = 0, then U ′(0−) = 0 as well, hence U is differentiable at 0 with U ′(0) = 0.
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and 

0 < ξ < K1 if
∫ K2

0
f2(s)ds < 0,

0 < ξ < min(K1,K2) if
∫ K2

0
f2(s)ds = 0,

0 < ξ ≤ θ∗ if
∫ K2

0
f2(s)ds > 0,

(4.12)

where θ∗ ∈ (θ,K2) is such that
∫ θ∗

0 f2(s)ds = 0 when
∫K2

0 f2(s)ds > 0. Assume this claim for the
moment. Under the assumptions of Proposition 2.9, it is straightforward to see that such a ξ > 0
satisfying (4.11)–(4.12) exists by qualitative comparisons of the graphs of the integrals in (4.11), namely:

(i) in the case
∫K2

0 f2(s)ds < 0, since the function ν 7→
∫K1

ν f1(s)ds is continuous decreasing in [0,K1]
and vanishes at K1, whereas the function ν 7→ −(d1σ

2/d2)
∫ ν

0 f2(s)ds is continuous in [0,K1],
positive in (0,K1] and vanishes at 0, it follows that there is ξ ∈ (0,K1) satisfying (4.11);

(ii) in the case
∫K2

0 f2(s)ds = 0 with K1 < K2, since the function ν 7→
∫K1

ν f1(s)ds is continuous
decreasing in [0,K1] and vanishes at K1, whereas the function ν 7→ −(d1σ

2/d2)
∫ ν

0 f2(s)ds is
continuous and positive in (0,K2) ⊇ (0,K1] and vanishes at 0, then there is ξ ∈ (0,K1) such
that (4.11) holds true;

(iii) in the case
∫K2

0 f2(s)ds > 0 with K1 ≤ θ∗, we consider two subcases. Assume first that K1 < θ∗.
Since the function ν 7→

∫K1

ν f1(s)ds is continuous decreasing in [0,K1] and vanishes at K1,
whereas the function ν 7→ −(d1σ

2/d2)
∫ ν

0 f2(s)ds is continuous and positive in (0, θ∗) ⊇ (0,K1]
and vanishes at 0, there exists ξ ∈ (0,K1) such that (4.11) holds. Lastly, if K1 = θ∗, then
ξ = K1 = θ∗ satisfies (4.11).

The conclusion of Proposition 2.9 will therefore be achieved once the claim is proved. For the
proof of the claim, observe first that, if U is a positive classical stationary solution of (1.1) such that
U(−∞) = K1 and U(+∞) = 0, then the quantity ξ := U(0) > 0 necessarily satisfies (4.11)–(4.12) by
Proposition 2.8. Therefore, we only have to show that the conditions (4.11)–(4.12) yield the existence
of such a solution U . So let ξ > 0 satisfy (4.11)–(4.12). We wish to show that (1.1) admits a positive
classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Set

U(0) = ξ,

U ′(0+) = sgn(U(0)−K1)

√
− 2

d2

∫ U(0)

0
f2(s)ds,

U ′(0−) = sgn(U(0)−K1)

√
2

d1

∫ K1

U(0)
f1(s)ds,

(4.13)

where sgn(t) = t/|t| if t ∈ R∗ and sgn(0) = 0. Observe that U ′(0−) = σU ′(0+), thanks to (4.11)
and (4.13). Given these values at 0±, we will now solve the two Cauchy problems in (−∞, 0] and
[0,+∞) and show that these two solutions, glued together, give rise to a solution U of (1.1) such
that U(−∞) = K1 and U(+∞) = 0.

Step 1. Consider first the Cauchy problem in (−∞, 0]:
d1U

′′ + f1(U) = 0, x ≤ 0,

U(0) = ξ > 0, U ′(0−) = sgn(U(0)−K1)

√
2

d1

∫ K1

U(0)
f1(s)ds.

(4.14)
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By the Cauchy-Lipschitz theorem, (4.14) has a unique solution U of class C2 and defined in a maximal
interval (x, 0] for some x ∈ [−∞, 0). Multiplying the equation in (4.14) by U ′ and then integrating
over [x, 0] for any x ∈ (x, 0], and using the definition of U ′(0−), yields

d1

2
(U ′(x−))2 =

∫ K1

U(x)
f1(s)ds for all x ∈ (x, 0]. (4.15)

We claim that 
either U > K1 in (x, 0] and U ′ > 0 in (x, 0−],

or U < K1 in (x, 0] and U ′ < 0 in (x, 0−],

or U ≡ K1 in (x, 0].

(4.16)

For this purpose, we first prove that either U−K1 has a strict constant sign in (x, 0] or U ≡ K1 in (x, 0].
Indeed, assume that there is x0 ∈ (x, 0] such that U(x0) = K1, then (4.15) implies U ′(x−0 ) = 0,
hence U ≡ K1 in (x, 0] by the Cauchy-Lipschitz theorem. Assume now that U − K1 has a strict
constant sign in (x, 0]. Then (4.15) implies that U ′ has a strict constant sign in (x, 0−]. Together
with the definition of U ′(0−) in (4.14), one concludes that, if U(0) > K1 (respectively U(0) < K1),
then U > K1 in (x, 0] and U ′ > 0 in (x, 0−] (respectively U < K1 in (x, 0] and U ′ < 0 in (x, 0−]). Our
claim (4.16) is achieved.

From the above observation, we derive that U is monotone and bounded in (x, 0] and, from the
Cauchy-Lipschitz theorem, that the solution U of (4.14) is defined on (−∞, 0], i.e. x = −∞. Let
us finally show that U(−∞) = K1. Let a := U(−∞). Then, by (4.16), a = K1 if U(0) = K1,
K1 ≤ a < U(0) if U(0) > K1, or U(0) < a ≤ K1 if 0 < U(0) < K1. Using (4.15), one has

d1

2
(U ′(x))2 →

∫ K1

a
f1(s)ds as x→ −∞,

whence U ′(−∞) = 0 and U(−∞) = a = K1, from the assumption (2.4) on f1.

Step 2. Consider now the Cauchy problem in [0,+∞):
d2U

′′ + f2(U) = 0, x ≥ 0,

U(0) = ξ > 0, U ′(0+) = sgn(U(0)−K1)

√
− 2

d2

∫ U(0)

0
f2(s)ds.

(4.17)

The solution of (4.17) exists, is of class C2 and is unique in a maximal interval [0, x∗), for some
x∗ ∈ (0,+∞]. Integrating the equation in (4.17) against U ′ over [0, x] for any x ∈ [0, x∗), and using
the expression of U ′(0+), yields

d2

2
(U ′(x+))2 =


−
∫ U(x)

0
f2(s)ds for all x ∈ [0, x∗) if U(0) 6= K1,

−
∫ U(x)

U(0)
f2(s)ds for all x ∈ [0, x∗) if U(0) = K1.

(4.18)

Notice from (4.12)–(4.13) that the case U(0) = K1 can only occur when
∫K2

0 f2(s)ds > 0, and then
ξ = U(0) = K1 = θ∗ by (4.11), while U ′(0+) = 0 by (4.13). In that case, by uniqueness, U is equal
in [0,+∞) to the half-bump associated to the reaction f2, that is, x∗ = +∞, U ′ < 0 in (0,+∞),
U(+∞) = 0, U(0) = θ∗ and U ′(0+) = 0.

Therefore, one can assume in the sequel that U(0) 6= K1. We observe that U > 0 in [0, x∗). Indeed,
otherwise, there is x0 ∈ (0, x∗) such that U(x0) = 0, hence U ′(x0) = 0 by (4.18) and U ≡ 0 in [0, x∗)
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by the Cauchy-Lipschitz theorem. This would contradict U(0) > 0. Thus, U > 0 in [0, x∗). Next, we
solve (4.17) by dividing into three cases according to the sign of the mass

∫K2

0 f2(s)ds.

Case 1:
∫K2

0 f2(s)ds < 0. One infers from (4.12) that U(0) = ξ < K1 and thus U ′(0+) < 0 by (4.17).
Moreover, one deduces from (4.18) that U ′ does not change sign in [0+, x∗). Therefore, U ′ < 0
in [0+, x∗). Since U > 0 in [0, x∗), one has 0 < U < U(0) < K1 in (0, x∗), whence x∗ = +∞.
Define b := U(+∞) ≥ 0. From (4.18), it follows that

d2

2
(U ′(x))2 → −

∫ b

0
f2(s)ds as x→ +∞,

hence, U ′(+∞) = 0 and U(+∞) = b = 0.

Case 2:
∫K2

0 f2(s)ds = 0. It follows from (4.12) that 0 < U(0) = ξ < min(K1,K2) and thus U ′(0+) < 0
by (4.17). We now show that U ′ < 0 in (0, x∗). Assume by contradiction that there is x0 = min{x ∈
(0, x∗) : U ′(x) = 0} ∈ (0, x∗). Then 0 < U(x0) < U < U(0) < min(K1,K2) in (0, x0). On the other
hand, taking x = x0 in (4.18) and using U(x0) > 0 yields U(x0) = K2, a contradiction. Thus, U ′ < 0 in
[0+, x∗), whence 0 < U < U(0) in (0, x∗) and x∗ = +∞. As in Case 1, one concludes that U(+∞) = 0.

Case 3:
∫K2

0 f2(s)ds > 0. We let θ∗ ∈ (θ,K2) be such that
∫ θ∗

0 f2(s)ds = 0 and Q ∈ (θ∗,+∞] be
as in (4.10). From (4.12), it is seen that 0 < U(0) = ξ ≤ θ∗. Moreover, we observe from (4.18)
that U(x) /∈ (θ∗, Q) for every x ∈ [0, x∗), hence 0 < U ≤ θ∗ in [0, x∗) and x∗ = +∞. We recall that
the bistable equation d2u

′′ + f2(u) = 0 in R admits an even bump-like solution u, satisfying

u(0) = θ∗, u′(0) = 0, u′ < 0 in (0,+∞), u(±∞) = 0.

(i) Suppose first that K1 < U(0) = ξ (≤ θ∗), whence U ′(0+) > 0 and K1 < U(0) = ξ < θ∗ by (4.11)
and (4.17). If U ′ > 0 in [0+,+∞), then U(+∞) exists and belongs to (0, θ∗], and U ′(+∞) =
U ′′(+∞) = 0 from standard elliptic estimates. Together with (4.18), one gets that U(+∞) = θ∗,
hence U ′′(x) = −f2(U(x))/d2 → −f2(θ∗)/d2 < 0 as x → +∞, a contradiction. Therefore, U
has a critical point in (0,+∞), that is, x0 = min{x > 0 : U ′(x) = 0} is a well defined positive
real number, and one has U ′ > 0 in (0, x0) and U ′(x0) = 0. Combining (4.18) with the fact
that 0 < U ≤ θ∗ in [0,+∞), one infers that U(x0) = θ∗. Therefore, by the uniqueness of
the solution to the Cauchy problem, U has to be the bump-like solution u(· − x0) in [0,+∞).
Namely, U(x0) = θ∗, U ′(x0) = 0, U ′ < 0 in (x0,+∞) and U(+∞) = 0.

(ii) Finally, let us assume U(0) = ξ < K1. Then, U ′(0+) < 0 by (4.11) and (4.17). Remember
also that 0 < U(0) = ξ ≤ θ∗. We now show that U ′ < 0 in (0,+∞). If not, then there
is x0 = min{x > 0 : U ′(x) = 0} > 0 such that U ′(x0) = 0 and 0 < U(x0) < U < U(0) ≤ θ∗

in (0, x0). It follows from (4.18) that 0 = (d2/2)(U ′(x0))2 = −
∫ U(x0)

0 f2(s)ds > 0, a contradiction.
Consequently, U ′ < 0 in (0,+∞) and the argument used in Case 1 yields U(+∞) = 0.

Gluing the solutions of (4.14) and (4.17) proves the existence of the desired stationary solution U
of (1.1) such that U(−∞) = K1 and U(+∞) = 0. Therefore, our claim at the beginning of the proof
is achieved and the proof of Proposition 2.9 is thereby complete.

Remark 4.1. Based on the above proof, it is easy to find examples of functions f1,2 satisfying (2.4)–
(2.5) and

∫K2

0 f2(s)ds > 0 such that (1.1) has no stationary solution U connecting K1 and 0. For
instance, let us take d1 = d2 = σ = 1, and set

f1(u) = u(K1 − u), f2(u) = u(K2 − u)(u− θ)

with K1 = K2 = 4 and θ = 1. It is straightforward to check that (4.11) (with ξ > 0) yields ξ > 4, con-
tradicting the condition ξ ≤ θ∗ < 4 implied by (4.12). Therefore, (4.11) and (4.12) can not be fulfilled
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simultaneously, and there is no positive classical stationary solution U of (1.1) such that U(−∞) = K1

and U(+∞) = 0.

Proof of Proposition 2.10. The strategy is very similar to that of Proposition 2.9. For completeness, we
sketch the proof. Here, in addition to (2.4)–(2.5), we assume that

∫K2

0 f2(s)ds ≥ 0. We first claim that
the existence (respectively the existence and uniqueness) of a positive classical stationary solution V
of (1.1) satisfying V (−∞) = K1 and V (+∞) = K2 is equivalent to the existence (respectively the
existence and uniqueness) of ξ > 0 such that{

ξ = K1 = K2 if K1 = K2,

min(K1,K2) < ξ < max(K1,K2) if K1 6= K2,
(4.19)

and ∫ K1

ξ
f1(s)ds =

d1σ
2

d2

∫ K2

ξ
f2(s)ds. (4.20)

In this paragraph, we observe that such ξ > 0 satisfying (4.19)–(4.20) always exists, and is unique
if K1 ≥ θ. To check this, it is sufficient to consider the case of K1 6= K2. Suppose K1 < K2. Observe
that the function ν 7→

∫K1

ν f1(s)ds is continuous increasing in [K1,K2] and vanishes at K1, whereas
the function ν 7→ (d1σ

2/d2)
∫K2

ν f2(s)ds is continuous positive in [K1,K2), vanishes at K2, and is
either increasing in [K1, θ] and decreasing in [θ,K2] (if K1 < θ), or decreasing in [K1,K2] (if K1 ≥ θ).
Therefore, there is ξ ∈ (K1,K2) such that (4.20) is satisfied, and ξ is unique if K1 ≥ θ. Consider now
the case of K2 < K1. Since the function ν 7→

∫K1

ν f1(s)ds is continuous decreasing in [K2,K1] and
vanishes at K1, whereas the function ν 7→ (d1σ

2/d2)
∫K2

ν f2(s)ds is continuous increasing in [K2,K1]
and vanishes at K2, it follows that there is a unique ξ ∈ (K2,K1) satisfying (4.20).

Therefore, it remains to prove our claim, whose proof is divided into two steps, each corresponding
to one implication of the equivalence.

Step 1: necessary condition for the existence of V . Suppose V is a positive classical stationary solution
of (1.1) satisfying V (−∞) = K1 and V (+∞) = K2. Multiplying d1V

′′ + f1(V ) = 0 by V ′ and
integrating the resulting equation over (−∞, x] for any x ∈ (−∞, 0] yields

d1

2
(V ′(x−))2 =

∫ K1

V (x)
f1(s)ds for all x ≤ 0. (4.21)

Similarly, one also derives that

d2

2
(V ′(x+))2 =

∫ K2

V (x)
f2(s)ds ≥ 0 for all x ≥ 0. (4.22)

Following the same argument as for (4.15)-(4.16), one derives from (4.21) that V is monotone in patch 1
and, more precisely, 

either V > K1 in (−∞, 0] and V ′ > 0 in (−∞, 0−],

or V < K1 in (−∞, 0] and V ′ < 0 in (−∞, 0−],

or V ≡ K1 in (−∞, 0].

Similarly, since
∫K2

ν f2(s)ds > 0 for all ν ∈ (0,K2) ∪ (K2,+∞), it follows from (4.22) that V is also
monotone in patch 2 and, more precisely,

either V > K2 in [0,+∞) and V ′ < 0 in [0+,+∞),

or V < K2 in [0,+∞) and V ′ > 0 in [0+,+∞),

or V ≡ K2 in [0,+∞).
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Using V ′(0−) = σV ′(0+), one then infers that V is monotone in R and, more precisely,{
V ≡ K1 = K2 if K1 = K2,

min(K1,K2) < V < max(K1,K2) and sgn(V ′) = sgn(V (0)−K1) if K1 6= K2.

Moreover, thanks to (4.21)–(4.22), V (0) satisfies∫ K1

V (0)
f1(s)ds =

d1σ
2

d2

∫ K2

V (0)
f2(s)ds.

Hence, the quantity ξ = V (0) satisfies (4.19)–(4.20).

Step 2: sufficient condition for the existence of V . Assume that there is ξ > 0 satisfying (4.19)–
(4.20). If K1 = K2, then ξ = K1 = K2 and the function V ≡ K1 = K2 obviously satisfies (1.1)
with V (−∞) = K1 = K2 = V (+∞). One can then assume in the sequel that K1 6= K2. Let us set
V (0) = ξ ∈ (min(K1,K2),max(K1,K2)) and define

V ′(0−) = sgn(V (0)−K1)

√
2

d1

∫ K1

V (0)
f1(s)ds,

and

V ′(0+) = sgn(V (0)−K1)

√
2

d2

∫ K2

V (0)
f2(s)ds.

It is obvious to see that V ′(0−) = σV ′(0+), thanks to (4.20). Notice also that V (0) = ξ 6= K1, here.

Step 2.1. As for (4.14), the solution V of the Cauchy problem
d1V

′′ + f1(V ) = 0, x ≤ 0,

V (0) = ξ > 0, V ′(0−) = sgn(V (0)−K1)

√
2

d1

∫ K1

V (0)
f1(s)ds.

(4.23)

is defined in (−∞, 0] and satisfies (4.16) with V instead of U and x = −∞, that is,{
either V > K1 in (−∞, 0] and V ′ > 0 in (−∞, 0−],

or V < K1 in (−∞, 0] and V ′ < 0 in (−∞, 0−],

and V (−∞) = K1.

Step 2.2. Let V denote the solution of
d2V

′′ + f2(V ) = 0, x ≥ 0,

V (0) = ξ > 0, V ′(0+) = sgn(V (0)−K1)

√
2

d2

∫ K2

V (0)
f2(s)ds.

(4.24)

Notice that, here, min(K1,K2) < V (0) < max(K1,K2), hence V ′(0+) 6= 0 since
∫K2

ν f2(s)ds > 0 for
all ν ∈ R \ {0,K2}. The Cauchy-Lipschitz theorem implies that there is a unique solution of (4.24)
defined in a maximal interval [0, x∗) for some x∗ ∈ (0,+∞]. Multiplying the equation in (4.24) by V ′

and then integrating over [0, x] for any x ∈ [0, x∗), and using the formula of V ′(0+), yields

d2

2
(V ′(x+))2 =

∫ K2

V (x)
f2(s)ds for all x ∈ [0, x∗). (4.25)
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Moreover, we claim that V ′ has a strict constant sign in [0+, x∗). Indeed, otherwise, there is x0 ∈
[0+, x∗) such that V ′(x0) = 0, and (4.25) implies that

V (x0) = K2 if
∫ K2

0
f2(s)ds > 0,

V (x0) = K2 or 0 if
∫ K2

0
f2(s)ds = 0.

Thus, one would derive V ≡ K2 or V ≡ 0 in [0, x∗) by the Cauchy-Lipschitz theorem, contra-
dicting min(K1,K2) < V (0) = ξ < max(K1,K2). Thus, V ′ has a constant strict sign in [0+, x∗).
Hence, V (x) 6= K2 for every x ∈ [0, x∗), by (4.25). Therefore, we conclude that{

if K1 < V (0) < K2, then V ′ > 0 in [0+, x∗) and K1 < V < K2 in [0, x∗),

if K2 < V (0) < K1, then V ′ < 0 in [0+, x∗) and K2 < V < K1 in [0, x∗).

Both cases imply that x∗ = +∞. Defining V (+∞) = a, one has K1 ≤ a ≤ K2 and (4.25) implies

d2

2
(V ′(x))2 →

∫ K2

a
f2(s)ds as x→ +∞,

hence V ′(+∞) = 0 and V (+∞) = a = K2.

Step 2.3: conclusion. By gluing the solutions of the above two Cauchy problems (4.23) and (4.24), one
obtains the existence of a monotone positive classical stationary solution V of (1.1) such that V (−∞) =
K1 and V (+∞) = K2. Lastly, if K1 ≥ θ, then we have already seen that ξ > 0 solving (4.19)–
(4.20) is unique, hence the above proof shows that V (0) = ξ is unique and the positive classical
stationary solution V of (1.1) such that V (−∞) = K1 and V (+∞) = K2 is itself unique. The proof
of Proposition 2.10 is thereby complete.

4.3 Blocking in the bistable patch 2: proof of Theorem 2.11

In this section, we study the qualitative behavior of the solution u to (1.1) under the KPP-bistable
assumptions (2.4)–(2.5). We carry out the proof of Theorem 2.11 on various sufficient conditions for
blocking in the bistable patch 2. The proof is based, among other things, on a comparison with some
barriers, such as a traveling front with negative or zero speed (up to some exponentially small terms,
when

∫K2

0 f2(s)ds ≤ 0), or a stationary solution connecting K1 to 0 (when ‖u0‖L1(R) is small enough).

Proof of Theorem 2.11. (i) We first assume that∫ K2

0
f2(s)ds < 0.

Let u be the solution to the Cauchy problem (1.1) with a nonnegative continuous and compactly
supported initial datum u0 6≡ 0. The strategy of the proof consists in constructing a supersolution
which blocks the solution u(t, x) for all times t ≥ 0 as x→ +∞. SetM := max

(
K1,K2, ‖u0‖L∞(R)

)
+1.

Since the function f2 satisfies (2.5) with
∫K2

0 f2(s)ds < 0, there is a C1(R) function f2 such that
f2 ≥ f2 in R, f2(0) = f2(θ) = f2(M) = 0, f ′2(0) < 0, f ′2(M) < 0, f2 > 0 in (−∞, 0) ∪ (θ,M), f2 < 0

in (0, θ)∪(M,+∞), and
∫M

0 f2(s)ds < 0 (it is even possible to choose f2 so that f2 = f2 in (−∞,K2−δ]
for some small δ > 0). There is then a decreasing front profile φ solving (2.6) with f2 and M instead
of f2 and K2, and with negative speed c2 instead of c2. Since φ(−∞) = M > max(K1, ‖u0‖L∞(R))
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and u0 is compactly supported, one can then choose A > 0 large enough so that u0(x) ≤ φ(x−A) for
all x ≥ 0, u0(x) ≤ φ(−A) for all x ≤ 0, and K1 ≤ φ(−A). Set, for (t, x) ∈ [0,+∞)× R,

u(t, x) =

{
φ(x−A) if x ≥ 0,

φ(−A) if x < 0.

Since f1(φ(−A)) ≤ 0 by (2.4), since d2φ
′′

+ f2(φ) ≤ d2φ
′′

+ f2(φ) = −c2φ
′
< 0 in R and since

φ
′
(−A) < 0, it follows that u is a supersolution of (1.1) in the sense of Definition 2.2, while u0 ≤ u(0, ·)

in R. Therefore, Proposition 2.4 implies that u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,+∞) × R. Since u is
nonnegative and φ(+∞) = 0, this immediately yields the blocking property (2.9).

(ii) We then assume that
∫K2

0 f2(s)ds = 0 and K1 < K2. First, it is convenient to introduce some
parameters. Let ε > 0 be such that

0 < ε < min

(
|f ′2(0)|

2
,
|f ′2(K2)|

2

)
, f ′2 ≤

f ′2(0)

2
in [0, 2ε], f ′2 ≤

f ′2(K2)

2
in [K2 − ε,K2 + ε]. (4.26)

Choose C > 0 large enough such that

φ ≥ K2 − ε in (−∞,−C] and φ ≤ ε in [C,+∞). (4.27)

As the front profile φ solving (2.6) is such that φ′ is negative and continuous, there is κ > 0 such that

− φ′ ≥ κ > 0 in [−C,C]. (4.28)

Finally, pick ρ > 0 be such that
κρ ≥ ε+ max

[0,K2+ε]
|f ′2|. (4.29)

Let u be the solution to the Cauchy problem (1.1) with a nonnegative continuous and compactly
supported initial datum u0 6≡ 0 and let V be a positive monotone classical stationary solution of (1.1)
such that V (−∞) = K1 and V (+∞) = K2, given in Proposition 2.10. Denote w the solution to (1.1)
with initial datum w(0, ·) = M := max

(
K2, ‖u0‖L∞(R)

)
. As in the proof of the first part of Theo-

rem 2.6, Proposition 2.4 implies that w is nonincreasing in time, and that 0 < u(t, x) < w(t, x) ≤ M
and V (x) < w(t, x) for all t > 0 and x ∈ R. From the Schauder estimates of Proposition 2.3, it follows
that w(t, x) converges as t→ +∞, locally uniformly in x ∈ R, to a stationary solution q of (1.1), such
that M ≥ q(x) ≥ V (x) ≥ K1 for all x ∈ R and

lim sup
t→+∞

u(t, ·) ≤ q locally uniformly in R. (4.30)

As shown in Theorem 2.7, one also has q(−∞) = K1. On the other hand, since f2 < 0 in (K2,+∞)
and q is bounded, one easily infers that lim supx→+∞ q(x) ≤ K2. Furthermore, as in the proof of
Propositions 2.5 and 2.8, the function q is monotone in (−∞, 0], and q′ has a constant strict sign
in (−∞, 0−] unless q ≡ K1 in (−∞, 0]. Thus, if one would assume that supR q > K2 (> K1), there
would exist x0 ∈ (0,+∞) such that q(x0) = supR q > K2, which is impossible since f2 < 0 in (K2,+∞).
Therefore, q ≤ K2 in R and even q < K2 in R since the constant K2 is a supersolution of (1.1) and
the stationary solution q can not be identically equal to K2.

Similarly, we claim that
lim sup
A→+∞

(
sup

t≥A, x≥A
u(t, x)

)
≤ K2. (4.31)

Indeed, otherwise, since u is bounded in [0,+∞) × R, there are K2 ∈ (K2,+∞) (with K2 the above
limsup) and two sequences (tn)n∈N and (xn)n∈N diverging to +∞ such that u(tn, xn)→ K2 as n→ +∞
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and lim supn→+∞ u(tn+ t, xn+x) ≤ K2 for all (t, x) ∈ R×R. From parabolic estimates, the functions
(t, x) 7→ u(tn + t, xn + x) converge in C1;2

t;x;loc(R×R), up to extraction of a subsequence, to a bounded
classical solution u∞ of (u∞)t = d2(u∞)xx + f2(u∞) in R × R with u∞ ≤ u∞(0, 0) = K2 in R × R.
The negativity of f2(K2) leads to a contradiction. Therefore, (4.31) holds.

Let then X > 0 be large enough so that

u(t, x) ≤ K2 +
ε

2
for all t ≥ X and x ≥ X. (4.32)

Thanks to (4.30) and q(X) < K2, there is T ≥ X so large that

sup
t≥T

u(t,X) < K2. (4.33)

Remember that the front profile φ associated with the reaction f2, given in (2.6) with speed c2 = 0

(since
∫K2

0 f2(s)ds = 0), satisfies φ(−∞) = K2. Due to (4.32)–(4.33) and the Gaussian upper bound
of u(t, x) for |x| large at each time t > 0 derived in Lemma A.1, together with the exponential lower
bound of φ(s) as s→ +∞ in (2.7), there exists B > 0 large enough such that

u(T, x) ≤ φ(x−X −B − C) + ε for all x ≥ X, and sup
t≥T

u(t,X) ≤ φ(−B − C). (4.34)

Define
u(t, x) = φ(ζ(t, x)) + εe−ε(t−T ) for t ≥ T and x ≥ X,

where ζ(t, x) = x−X + ρe−ε(t−T ) − ρ−B −C. We wish to show that u(t, x) is a supersolution of the
equation ut = d2uxx + f2(u) for t ≥ T and x ≥ X. First of all, at time t = T , one has

u(T, x) = φ(x−X −B − C) + ε ≥ u(T, x)

for x ≥ X, thanks to (4.34). Furthermore, for t ≥ T , u(t,X) = φ(ρe−ε(t−T )−ρ−B−C) + εe−ε(t−T ) ≥
φ(−B − C) ≥ u(t,X) by (4.34) again. It then remains to check that

Nu(t, x) := ut(t, x)− d2uxx(t, x)− f2(u(t, x)) ≥ 0

for t ≥ T and x ≥ X. A direct computation leads to

Nu(t, x) = f2(φ(ζ(t, x)))− f2(u(t, x))− φ′(ζ(t, x))ρεe−ε(t−T ) − ε2e−ε(t−T ).

We divide the proof into three cases:

• if ζ(t, x) ≤ −C, one has K2 + ε ≥ u(t, x) ≥ φ(ζ(t, x)) ≥ K2 − ε by (4.27); one then derives
from (4.26) and the negativity of φ′ that

Nu(t, x) ≥ −f
′
2(K2)

2
εe−ε(t−T ) − ε2e−ε(t−T ) =

(
− f ′2(K2)

2
− ε
)
εe−ε(t−T ) ≥ 0;

• if ζ(t, x) ≥ C, then 0 < φ(ζ(t, x)) ≤ ε by (4.27) and 0 < u(t, x) ≤ 2ε; it follows from (4.26) and
the negativity of φ′ that

Nu(t, x) ≥ −f
′
2(0)

2
εe−ε(t−T ) − ε2e−ε(t−T ) =

(
− f ′2(0)

2
− ε
)
εe−ε(t−T ) ≥ 0;

• eventually, if −C ≤ ζ(t, x) ≤ C, then −φ′(ζ(t, x)) ≥ κ > 0 by (4.28), and (4.29) then yields

30



Nu(t, x) ≥ − max
[0,K2+ε]

|f ′2| εe−ε(t−T )+κρεe−ε(t−T )−ε2e−ε(t−T ) ≥
(
κρ− max

[0,K2+ε]
|f ′2|−ε

)
εe−ε(t−T ) ≥ 0.

In conclusion, the function u is a supersolution of ut = d2uxx + f2(u) for t ≥ T and x ≥ X. The
maximum principle implies that

u(t, x) ≤ u(t, x) = φ(x−X + ρe−ε(t−T ) − ρ−B − C) + εe−ε(t−T ) for all t ≥ T and x ≥ X.

Consequently, lim supx→+∞
(

supt≥T u(t, x)
)
≤ε. On the other hand, Lemma A.1 implies that u(t, x)→0

as x→ +∞ locally uniformly in t ≥ 0. Since ε > 0 can be chosen arbitrarily small, one gets that u is
blocked in patch 2 and satisfies (2.9). This completes the proof of part (ii) of Theorem 2.11.

(iii) We here assume that K1 < θ. Let u be the solution to (1.1) with a nonnegative continuous
and compactly supported initial datum u0 6≡ 0 satisfying u0 < θ in R. The constant function equal
toM := max

(
K1, ‖u0‖L∞(R)

)
is a supersolution of (1.1) in the sense of Definition 2.2 (since f1(M) ≤ 0

and f2(M) < 0), and Proposition 2.4 then implies that

0 < u(t, x) < max
(
K1, ‖u0‖L∞(R)

)
< θ for all t ≥ 0 and x ∈ R. (4.35)

Choose ε ∈ (0,K2−θ) and let g2 be a C1(R) function such that g2 = f2 in (−∞, θ], g2 > 0 in (θ, θ+ε),
g2(θ+ε) = 0, g′2(θ+ε) < 0, g2 < 0 in (θ+ε,+∞), and

∫ θ+ε
0 g2(s)ds < 0. Let z be the solution to (1.1)

in which f2 is replaced by g2, starting from the initial datum u0. By comparison, and using (4.35),
one has u(t, x) = z(t, x) for all t ≥ 0 and x ∈ R. Thanks to part (i) of Theorem 2.11 applied to the
solution z with the nonlinearities f1 and g2, it follows that z is blocked in patch 2 and z satisfies (2.9),
which is then also true for u. The conclusion is therefore achieved.

(iv) We finally assume that (1.1) admits a nonnegative classical stationary solution U such that
U(−∞) = K1 and U(+∞) = 0 (actually, U is then positive in R as a consequence of the Cauchy-
Lipschitz theorem for instance, as in the second paragraph of the proof of Proposition 2.5). Fix then
any L > 0. Let u be the solution to the Cauchy problem (1.1) with any nonnegative continuous and
compactly supported initial datum u0 such that spt(u0) ⊂ [−L,L]. Notice that, if u0 ≤ U in R, the
conclusion of part (iv) of Theorem 2.11 immediately follows. Let us now discuss the general case.

By a rescaling of space in patch 2, namely, by setting

ũ(t, x) =

{
u(t, x), for t ≥ 0 and x < 0,

u(t,
√
d2/d1x) for t ≥ 0 and x ≥ 0,

we see that the function ũ satisfies
ũt = d1ũxx + f1(ũ), t > 0, x < 0,

ũt = d1ũxx + f2(ũ), t > 0, x > 0,

ũ(t, 0−) = ũ(t, 0+), t > 0,

ũx(t, 0−) = σ
√
d1/d2 ũx(t, 0+), t > 0,

while the rescaled function Ũ , defined by Ũ(x) = U(x) for x < 0 and Ũ(x) = U(
√
d2/d1x) for x ≥ 0, is

a positive classical stationary solution of the above problem, satisfying Ũ(−∞) = K1 and Ũ(+∞) = 0.
When ‖u0‖L1(R) is small, it is seen that ‖ũ(0, ·)‖L1(R) = ‖u0‖L1(−∞,0) +

√
d1/d2‖u0‖L1(0,+∞) remains

small, while spt(ũ(0, ·)) ⊂ [−L,
√
d1/d2L]. Therefore, for the proof of part (iv) of Theorem 2.11, it is

not restrictive to assume that d1 = d2 =: d in (1.1), which we do in the sequel.
By the assumptions (2.4)–(2.5) on f1 and f2, and their C1 smoothness, there is K > 0 such

that fi(s) ≤ Ks for all s ≥ 0 and i ∈ {1, 2}. Let v be the solution of the initial value problem{
vt = dvxx +Kv, t > 0, x ∈ R,
v0(x) = u0(x) + u0(−x), x ∈ R.
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Since u0 ≥ 0 satisfies spt(u0) ⊂ [−L,L], so does v0. By uniqueness, we see that v is even with respect
to x and smooth with respect to x in (0,+∞) × R, whence vx(t, 0) = 0 for all t > 0. Proposition 2.4
implies that u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R.

We now claim that v(1, ·) ≤ U in R provided ‖u0‖L1(R) is small enough. Indeed, by choosing ε > 0
such that

0 < ε ≤
√
πd

eK
min

(−∞,2L]
U,

we get that

v(1, x) ≤ eK√
4πd

∫
R
e−
|x−y|2

4d v0(y)dy ≤ eK√
4πd
‖v0‖L1(R) =

eK√
πd
‖u0‖L1(R) ≤ min

(−∞,2L]
U

for all x ∈ R, provided ‖u0‖L1(R) ≤ ε. Furthermore, for all x ≥ 2L, there holds

v(1, x) ≤ eK√
4πd

∫ L

−L
e−
|x−y|2

4d v0(y)dy ≤ eK−
x2

16d

√
4πd

∫ L

−L
v0(y)dy =

eK√
πd
‖u0‖L1(R)e

− x2

16d ,

since spt(v0) ⊂ [−L,L] and since x−y ≥ x/2 > 0 for all x ≥ 2L and −L ≤ y ≤ L. Observe also that U
is positive continuous in R and that U(x) ∼ Ae−

√
−f ′2(0)/d2 x as x→ +∞, for some A > 0. Thus,

v(1, x) ≤ eK√
πd
‖u0‖L1(R)e

− x2

16d ≤ U(x) for all x ≥ 2L,

provided ‖u0‖L1(R) ≤ ε, up to decreasing ε > 0 if needed.
Consequently, v(1, ·) ≤ U in R provided ‖u0‖L1(R) is small enough, and then u(1, ·) ≤ v(1, ·) ≤ U

in R and u(t, x) ≤ U(x) for all t ≥ 1 and x ∈ R by Proposition 2.4. Hence, u(t, x) → 0 as x → +∞
uniformly in t ≥ 1. Together with Lemma A.1 stating that u(t, x) → 0 as x → +∞ locally uniformly
in t ≥ 0, we conclude that u is blocked in patch 2 and satisfies (2.9). The proof of Theorem 2.11 is
therefore complete.

4.4 Propagation in the bistable patch 2: proofs of Theorems 2.12–2.13

This section is devoted to the proofs of Theorems 2.12–2.13 on propagation phenomena with positive
speed or speed zero in the bistable patch 2. The proof of the propagation with positive speed in
Theorems 2.12–2.13 uses some tools inspired by [23] on solutions developing into two spreading fronts
for the homogeneous equation (1.3). Here, for our patch problem (1.1), new difficulties arise due to
the presence of the interface between the two different media, and we have to show further estimates
on the local behavior of the solutions at large time.

We start with the following auxiliary lemma that gives the existence of solutions to elliptic equations
in large intervals. The proof is based on variational methods, see for instance [10, Theorem A] and [26,
Problem (2.25)]. We omit it here.

Lemma 4.2. Assume that (2.5) holds and
∫K2

0 f2(s)ds > 0. Then there exist R > 0 and a function ψ
of class C2([−R,R]) such that 

d2ψ
′′ + f2(ψ) = 0 in [−R,R],

0 ≤ ψ < K2 in [−R,R],

ψ(±R) = 0,

max
[−R,R]

ψ = ψ(0) > θ.

(4.36)
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To prove Theorem 2.12, we take a roundabout way to prove the following result as a first step.

Theorem 4.3. Assume that (2.4)–(2.5) hold and that
∫K2

0 f2(s)ds > 0. Let R > 0 and ψ be as in
Lemma 4.2. Let u be the solution to (1.1) with a nonnegative continuous and compactly supported
initial datum u0 6≡ 0. If u0 ≥ ψ(·−x0) in [x0−R, x0 +R] for some x0 ≥ R, then the conclusion (2.10)
of Theorem 2.12 holds true.

Proof of Theorem 4.3 (beginning). Let R > 0, ψ ∈ C2([−R,R]), x0 ≥ R and u0 be as in the statement.
Let v and w be, respectively, the solutions to (1.1) with initial data v0 = M := max

(
K1,K2, ‖u0‖L∞(R)

)
,

and w0 given by w0(x) = ψ(x−x0) for x ∈ [x0−R, x0 +R] and w0(x) = 0 for x ∈ R \ [x0−R, x0 +R].
Then Proposition 2.4 yields 0 < w(t, x) ≤ u(t, x) ≤ v(t, x) ≤M for all t > 0 and x ∈ R. Moreover, as
in the proof of the first part of Theorem 2.6, w is increasing with respect to t in [0,+∞)×R, whereas
v is nonincreasing with respect to t in [0,+∞)× R. From the parabolic estimates of Proposition 2.3,
the functions w(t, ·) and v(t, ·) converge as t → +∞, locally uniformly in R, to classical stationary
solutions p and q of (1.1), respectively. Moreover,

0 ≤ w0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, locally uniformly in R. (4.37)

Let us now show that
p(x)→ K2 as x→ +∞. (4.38)

As a matter of fact, since p > w0 in R, by continuity there exists %0 > 1 such that p > ψ(· − %x0)
in [%x0 −R, %x0 +R] for all % ∈ [1, %0]. Define

%∗ = sup
{
% > 0 : p > ψ(· − %̃x0) in [%̃x0 −R, %̃x0 +R] for all %̃ ∈ [1, %]

}
∈ [%0,+∞].

We claim that %∗ = +∞. Indeed, otherwise, one would have p ≥ ψ(· − %∗x0) in [%∗x0 − R, %∗x0 + R]
with equality somewhere in (%∗x0−R, %∗x0 +R), since p > 0 in R and ψ(±R) = 0. The elliptic strong
maximum principle then implies that p ≡ ψ(· − %∗x0) in (%∗x0−R, %∗x0 +R) and then at %∗x0±R by
continuity, which is impossible. Thus, %∗ = +∞ and p > ψ(· − %x0) in [%x0−R, %x0 +R] for all % ≥ 1.
In particular, this implies that

p(x) > ψ(0) > θ for all x ≥ x0.

Since p is bounded and since f2 > 0 in (θ,K2) and f2 < 0 in (K2,+∞), it then follows as in the proof
of the limit V (−∞) = K1 in Proposition 2.5, that (4.38) holds. Likewise,

q(x)→ K2 as x→ +∞. (4.39)

The rest of the proof of Theorem 4.3 relies on three preliminary lemmas.

Lemma 4.4. Under the assumptions of Theorem 4.3, there exist X1 > 0, X2 > 0, T1 > 0, T2 > 0,
z1 ∈ R, z2 ∈ R, µ > 0 and δ > 0 such that

u(t, x) ≤ φ(x− c2(t− T1) + z1) + δe−δ(t−T1) + δe−µ(x−X1) for all t ≥ T1 and x ≥ X1, (4.40)

and

u(t, x) ≥ φ(x− c2(t− T2) + z2)− δe−δ(t−T2) − δe−µ(x−X2) for all t ≥ T2 and x ≥ X2, (4.41)

where φ is the traveling front profile solving (2.6), with speed c2 > 0.
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Proof. We first introduce some parameters. Choose µ > 0 such that

0 < µ <

√
min

( |f ′2(0)|
2d2

,
|f ′2(K2)|

2d2

)
. (4.42)

Then we take δ > 0 such that (we remember that c2 > 0)
0 < δ < min

(
µc2,

|f ′2(0)|
2

,
|f ′2(K2)|

2

)
,

f ′2 ≤
f ′2(0)

2
in [−2δ, 3δ], f ′2 ≤

f ′2(K2)

2
in [K2 − 3δ,K2 + 2δ].

(4.43)

Let C > 0 be such that

φ ≥ K2 −
δ

2
in (−∞,−C] and φ ≤ δ in [C,+∞). (4.44)

Since φ′ is negative and continuous in R, there is κ > 0 such that

φ′ ≤ −κ < 0 in [−C,C]. (4.45)

Finally, pick ω > 0 so large that
κω ≥ 2δ + max

[−2δ,K2+2δ]
|f ′2|, (4.46)

and B > ω such that(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µB <

(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µ(B−ω) ≤ δ. (4.47)

Step 1: proof of (4.40). First of all, property (4.31) still holds as in the proof of part (ii) of Theo-
rem 2.11, and there is X1 > 0 such that

u(t, x) ≤ K2 +
δ

2
for all t ≥ X1 and x ≥ X1. (4.48)

Moreover, since u(t, x) has a Gaussian upper bound at each fixed t > 0 for all |x| large enough by
Lemma A.1, whereas φ(s) decays exponentially to 0 as s→ +∞ by (2.7), there is A ≥ B such that

u(X1, x) ≤ φ(x−X1 −A− C) + δ for all x ≥ X1. (4.49)

For t ≥ X1 and x ≥ X1, let us define

u(t, x) = φ(ξ(t, x)) + δe−δ(t−X1) + δe−µ(x−X1),

where
ξ(t, x) = x−X1 − c2(t−X1) + ωe−δ(t−X1) − ω −A− C.

Let us check that u(t, x) is a supersolution to ut = d2uxx + f2(u) for t ≥ X1 and x ≥ X1. At time X1,
one has u(X1, x) ≥ φ(x−X1−A−C) + δ ≥ u(X1, x) for all x ≥ X1, by (4.49). Moreover, for t ≥ X1,
since ξ(t,X1) ≤ −A−C < −C, one gets that u(t,X1) ≥ K2−δ/2+δe−δ(t−X1)+δ ≥ K2+δ/2 ≥ u(t,X1)
by (4.44) and (4.48). Therefore, it remains to check that Nu(t, x) :=ut(t, x)−d2uxx(t, x)−f2(u(t, x))≥0
for all t ≥ X1 and x ≥ X1. After a straightforward computation, one derives

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x))− φ′(ξ(t, x)))ωδe−δ(t−X1) − δ2e−δ(t−X1) − d2µ
2δe−µ(x−X1).

We distinguish three cases:
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• if ξ(t, x) ≤ −C, one hasK2−δ/2 ≤ φ(ξ(t, x)) < K2 by (4.44), henceK2+2δ > u(t, x) ≥ K2−δ/2;
it follows from (4.43) that f2(φ(ξ(t, x))) − f2(u(t, x)) ≥ −(f ′2(K2)/2)

(
δe−δ(t−X1) + δe−µ(x−X1)

)
and it then can be deduced from (4.42)–(4.43) as well as the negativity of φ′ and f ′2(K2) that

Nu(t, x) ≥ −f
′
2(K2)

2

(
δe−δ(t−X1) + δe−µ(x−X1)

)
− δ2e−δ(t−X1) − d2µ

2δe−µ(x−X1)

=
(
− f ′2(K2)

2
− δ
)
δe−δ(t−X1) +

(
− f ′2(K2)

2
− d2µ

2
)
δe−µ(x−X1) > 0;

• if ξ(t, x) ≥ C, one derives 0 < φ(ξ(t, x)) ≤ δ by (4.44), and then 0 < u(t, x) ≤ 3δ; it follows
from (4.43) that f2(φ(ξ(t, x))) − f2(u(t, x)) ≥ −(f ′2(0)/2)

(
δe−δ(t−X1) + δe−µ(x−X1)

)
; by virtue

of (4.42)–(4.43) and the negativity of φ′ and f ′2(0), there holds

Nu(t, x) ≥ −f
′
2(0)

2

(
δe−δ(t−X1) + δe−µ(x−X1)

)
− δ2e−δ(t−X1) − d2µ

2δe−µ(x−X1)

=
(
− f ′2(0)

2
− δ
)
δe−δ(t−X1) +

(
− f ′2(0)

2
− d2µ

2
)
δe−µ(x−X1) > 0;

• if −C ≤ ξ(t, x) ≤ C, it turns out that x−X1 ≥ c2(t−X1)−ωe−δ(t−X1) +ω+A ≥ c2(t−X1)+B,
whence e−µ(x−X1) ≤ e−µ(c2(t−X1)+B). By (4.43) and (4.45)–(4.47), one infers that

Nu(t, x) ≥ − max
[0,K2+2δ]

|f ′2|
(
δe−δ(t−X1)+δe−µ(x−X1)

)
+κωδe−δ(t−X1)−δ2e−δ(t−X1)−d2µ

2δe−µ(x−X1)

≥
(
κω − δ − max

[0,K2+2δ]
|f ′2|
)
δe−δ(t−X1) −

(
max

[0,K2+2δ]
|f ′2|+ d2µ

2
)
δe−µ(c2(t−X1)+B)

≥
(
κω − 2δ − max

[0,K2+2δ]
|f ′2|
)
δe−δ(t−X1) ≥ 0.

As a consequence, we have proved that Nu(t, x) := ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≥ 0 for all
t ≥ X1 and x ≥ X1. The maximum principle implies that

u(t, x) ≤ u(t, x) = φ
(
x−X1 − c2(t−X1) + ωe−δ(t−X1) − ω −A− C

)
+ δe−δ(t−X1) + δe−µ(x−X1)

for all t ≥ X1 and x ≥ X1, whence (4.40) is achieved by taking T1 = X1 and z1 = −X1 − ω − A− C,
since φ is decreasing.

Step 2: proof of (4.41). Since p(x)→ K2 as x→ +∞ by (4.38), there is X2 > 0 such that |p(x)−K2| ≤
δ/2 for all x ≥ X2. Moreover, since lim inft→+∞ u(t, ·) ≥ p locally uniformly in x ∈ R by (4.37), one
can choose T2 > 0 so large that

u(t, x) ≥ p(x)− δ

2
≥ K2 − δ for all t ≥ T2 and for all x ∈ [X2, X2 +B + 2C]. (4.50)

For t ≥ T2 and x ≥ X2, we set

u(t, x) = φ(ξ(t, x))− δe−δ(t−T2) − δe−µ(x−X2),

in which
ξ(t, x) = x−X2 − c2(t− T2)− ωe−δ(t−T2) + ω −B − C.

We shall check that u(t, x) is a subsolution to ut = d2uxx + f2(u) for all t ≥ T2 and x ≥ X2. At time
t = T2, one has u(T2, x) ≤ K2 − δ − δe−µ(x−X2) ≤ K2 − δ ≤ u(T2, x) for X2 ≤ x ≤ X2 + B + 2C due
to (4.50). For x ≥ X2+B+2C, since ξ(T2, x) ≥ X2+B+2C−X2−B−C = C, one has φ(ξ(T2, x)) ≤ δ
by (4.44), hence u(T2, x) ≤ δ − δ − δe−µ(x−X2) < 0 < u(T2, x). In conclusion, u(T2, x) ≤ u(T2, x) for
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all x ≥ X2. At x = X2, one sees that u(t,X2) ≤ K2 − δe−δ(t−T2) − δ < u(t,X2) for all t ≥ T2, owing
to (4.50). It thus suffices to check that Nu(t, x) := ut(t, x)−d2uxx(t, x)− f2(u(t, x)) ≤ 0 for all t ≥ T2

and x ≥ X2. By a straightforward computation, one has

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x)) + φ′(ξ(t, x))ωδe−δ(t−T2) + δ2e−δ(t−T2) + d2µ
2δe−µ(x−X2)

By analogy to Step 1, we consider three cases:

• if ξ(t, x) ≤ −C, then K2 − δ/2 ≤ φ(ξ(t, x)) < K2 by (4.44) and thus K2 > u(t, x) ≥ K2 − 3δ;
thanks to (4.43), one has f2(φ(ξ(t, x))) − f2(u(t, x)) ≤ (f ′2(K2)/2)(δe−δ(t−T2) + δe−µ(x−X2));
therefore, by using (4.42)–(4.43) as well as the negativity of φ′ and f ′2(K2), it comes that

Nu(t, x) <
f ′2(K2)

2

(
δe−δ(t−T2) + δe−µ(x−X2)

)
+ δ2e−δ(t−T2) + d2µ

2δe−µ(x−X2)

=
(f ′2(K2)

2
+ δ
)
δe−δ(t−T2) +

(f ′2(K2)

2
+ d2µ

2
)
δe−µ(x−X2) < 0;

• if ξ(t, x) ≥ C, then 0 < φ(ξ(t, x)) ≤ δ by (4.44) and thus −2δ < u(t, x) ≤ δ; it follows from (4.43)
that f2(φ(ξ(t, x)))− f2(u(t, x)) ≤ (f ′2(0)/2)(δe−δ(t−T2) + δe−µ(x−X2)); therefore, owing to (4.42)–
(4.43) as well as the negativity of φ′ and f ′2(0), one infers that

Nu(t, x) <
f ′2(0)

2

(
δe−δ(t−T2) + δe−µ(x−X2)

)
+ δ2e−δ(t−T2) + d2µ

2δe−µ(x−X2)

=
(f ′2(0)

2
+ δ
)
δe−δ(t−T2) +

(f ′2(0)

2
+ d2µ

2
)
δe−µ(x−X2) < 0;

• if −C ≤ ξ(t, x) ≤ C, one has x −X2 ≥ c2(t − T2) + ωe−δ(t−T2) − ω + B ≥ c2(t − T2) − ω + B,
whence e−µ(x−X2) ≤ e−µ(c2(t−T2)+B−ω); by (4.43) and (4.45)–(4.47), one deduces that

Nu(t, x) ≤ max
[−2δ,K2]

|f ′2|
(
δe−δ(t−T2)+δe−µ(x−X2)

)
−κωδe−δ(t−T2)+δ2e−δ(t−T2)+d2µ

2δe−µ(x−X2)

≤
(

max
[−2δ,K2]

|f ′2| − κω + δ
)
δe−δ(t−T2) +

(
max

[−2δ,K2]
|f ′2|+ d2µ

2
)
δe−µ(c2(t−T2)+B−ω)

≤
(

max
[−2δ,K2]

|f ′2| − κω + 2δ
)
δe−δ(t−T2) ≤ 0.

Consequently, one has Nu(t, x) := ut(t, x)−d2uxx(t, x)−f2(u(t, x)) ≤ 0 for all t ≥ T2 and x ≥ X2.
The maximum principle implies that

u(t, x) ≥ u(t, x) = φ
(
x−X2 − c2(t− T2)− ωe−δ(t−T2) + ω −B − C

)
− δe−δ(t−T2) − δe−µ(x−X2)

for all t ≥ T2 and x ≥ X2. Therefore, (4.41) is proved by taking z2 = −X2 + ω − B − C, since φ is
decreasing. The proof of Lemma 4.4 is thereby complete.

More generally, we have:

Lemma 4.5. Under the assumptions of Theorem 4.3, for any ε > 0, there exist X1,ε > 0, X2,ε > 0,
T1,ε > 0, T2,ε > 0, z1,ε ∈ R and z2,ε ∈ R such that

u(t, x) ≤ φ(x− c2(t− T1,ε) + z1,ε) + εe−δ(t−T1,ε) + εe−µ(x−X1,ε) for all t ≥ T1,ε and x ≥ X1,ε, (4.51)

and

u(t, x) ≥ φ(x− c2(t− T2,ε) + z2,ε)− εe−δ(t−T2,ε) − εe−µ(x−X2,ε) for all t ≥ T2,ε and x ≥ X2,ε, (4.52)

with the same parameters δ > 0 and µ > 0 as in Lemma 4.4.
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Proof. Let µ > 0, δ > 0, C > 0, κ > 0 and ω > 0 be defined as in (4.42)–(4.46) (notice that these
parameters are independent of ε). It is immediate to see from Lemma 4.4 that, when ε ≥ δ, the
conclusion of Lemma 4.5 holds true with Xi,ε = Xi, Ti,ε = Ti and zi,ε = zi, for i = 1, 2. It remains to
discuss the case

0 < ε < δ.

For convenience, let us introduce some further parameters. Pick Cε > 0 such that

φ ≥ K2 −
ε

2
in (−∞,−Cε] and φ ≤ ε in [Cε,+∞).

Define
ωε :=

εω

δ
> 0. (4.53)

Finally, let Bε > ωε be large enough such that(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µBε <

(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µ(Bε−ωε) ≤ δ.

Step 1: proof of (4.51). By repeating the arguments used in the proof of (4.48)–(4.49) in Step 1 of
Lemma 4.4 and by replacing δ by ε, there is X1,ε > 0 such that u(t,X1,ε) ≤ K2 + ε/2 for all t ≥ X1,ε

and u(X1,ε, x) ≤ φ(x−X1,ε −Aε − Cε) + ε for all x ≥ X1,ε, for some Aε ≥ Bε. Define

uε(t, x) = φ(ξε(t, x)) + εe−δ(t−X1,ε) + εe−µ(x−X1,ε) for t ≥ X1,ε and x ≥ X1,ε,

where
ξε(t, x) = x−X1,ε − c2(t−X1,ε) + ωεe

−δ(t−X1,ε) − ωε −Aε − Cε.

Following the same lines as in Step 1 of Lemma 4.4, one has uε(X1,ε, x) ≥ u(X1,ε, x) for all x ≥ X1,ε,
uε(t,X1,ε) ≥ u(t,X1,ε) for all t ≥ X1,ε, and it can be deduced that uε(t, x) is a supersolution to
ut = d2uxx + f2(u) for all t ≥ X1,ε and x ≥ X1,ε, by dividing the calculations into three cases:
ξε(t, x) ≤ −C, ξε(t, x) ≥ C and ξε(t, x) ∈ [−C,C]. Therefore, the maximum principle implies that

u(t, x) ≤ φ
(
x−X1,ε − c2(t−X1,ε) + ωεe

−δ(t−X1,ε) − ωε −Aε − Cε
)

+ εe−δ(t−X1,ε) + εe−µ(x−X1,ε)

for all t ≥ X1,ε and x ≥ X1,ε. Consequently, (4.51) follows by choosing z1,ε = −X1,ε − ωε −Aε − Cε.

Step 2: proof of (4.52). Using the same argument as for the proof of (4.50) with δ replaced by ε, one
infers that there exist X2,ε > 0 and T2,ε > 0 such that

u(t, x) ≥ K2 − ε for all t ≥ T2,ε and x ∈ [X2,ε, X2,ε +Bε + 2Cε].

Then we set

uε(t, x) = φ(ξ
ε
(t, x))− εe−δ(t−T2,ε) − εe−µ(x−X2,ε) for t ≥ T2,ε and x ≥ X2,ε,

in which
ξ
ε
(t, x) = x−X2,ε − c2(t− T2,ε)− ωεe−δ(t−T2,ε) + ωε −Bε − Cε.

As in the proof of (4.41), one can show that uε(T2,ε, x) ≤ u(T2,ε, x) for all x ≥ X2,ε, that uε(t,X2,ε) ≤
u(t,X2,ε) for all t ≥ T2,ε, and that uε(t, x) is a subsolution of ut = d2uxx + f2(u) for all t ≥ T2,ε and
x ≥ X2,ε. By the maximum principle, one derives that

u(t, x) ≥ φ
(
x−X2,ε − c2(t− T2,ε)− ωεe−δ(t−T2,ε) + ωε −Bε − Cε

)
− εe−δ(t−T2,ε) − εe−µ(x−X2,ε)

for all t ≥ T2,ε and x ≥ X2,ε. Then (4.52) follows by taking z2,ε = −X2,ε + ωε −Bε −Cε, since φ′ < 0.
The proof of Lemma 4.5 is thereby complete.
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Based on Lemmas 4.4 and 4.5, we now provide the stability result of the bistable traveling front in
patch 2.

Lemma 4.6. Assume that (2.4)–(2.5) hold and that
∫K2

0 f2(s)ds > 0. Let µ > 0, δ > 0, C > 0, κ > 0

and ω > 0 be as in (4.42)–(4.46) in the proof of Lemma 4.4. Then there exists M̃ > 0 such that the
following holds. If there are ε ∈ (0, δ], t0 > 0, x0 > 0 and ξ ∈ R such that

sup
x≥x0

∣∣u(t0, x)− φ(x− c2t0 + ξ)
∣∣ ≤ ε, (4.54)

K2 − ε ≤ u(t, x0) ≤ K2 +
ε

2
for all t ≥ t0, (4.55)

φ(x0 − c2t0 + ξ) ≥ K2 −
ε

2
,

and (
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µ(c2t0−x0−ωε−ξ−C) ≤ δ (4.56)

with ωε = εω/δ, then

sup
x≥x0

∣∣u(t, x)− φ(x− c2t+ ξ)
∣∣ ≤ M̃ε for all t ≥ t0.

Proof. Let µ > 0, δ > 0, C > 0, κ > 0 and ω > 0 be as in (4.42)–(4.46), and let ε ∈ (0, δ], t0 > 0,
x0 > 0 and ξ ∈ R be as in the statement, with ωε = εω/δ, as in (4.53). We claim that

u(t, x) = φ(x− c2t+ ωεe
−δ(t−t0) − ωε + ξ) + εe−δ(t−t0) + εe−µ(x−x0)

and
u(t, x) = φ(x− c2t− ωεe−δ(t−t0) + ωε + ξ)− εe−δ(t−t0) − εe−µ(x−x0)

are, respectively, a super- and a subsolution of ut = d2uxx+f2(u) for t ≥ t0 and x ≥ x0. We just check
that u(t, x) is a subsolution in detail (the supersolution can be handled in a similar way).

At time t = t0, one has u(t0, x) = φ(x− c2t0 + ξ)− ε− εe−µ(x−x0) ≤ u(t0, x) for all x ≥ x0 thanks
to (4.54). Moreover, u(t, x0) = φ(x0−c2t−ωεe−δ(t−t0)+ωε+ξ)−εe−δ(t−t0)−ε ≤ K2−ε ≤ u(t, x0) for all
t ≥ t0, owing to (4.55). It then remains to show that Nu(t, x) := ut(t, x)−d2uxx(t, x)−f2(u(t, x)) ≤ 0
for all t ≥ t0 and x ≥ x0. For convenience, we set

ξ(t, x) := x− c2t− ωεe−δ(t−t0) + ωε + ξ.

By a straightforward computation, one has

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x)) + φ′(ξ(t, x))ωεδe
−δ(t−t0) + εδe−δ(t−t0) + d2µ

2εe−µ(x−x0).

There are three cases:

• if ξ(t, x) ≤ −C, then K2−δ/2 ≤ φ(ξ(t, x)) < K2 by (4.44), hence K2 > u(t, x) ≥ K2−δ/2−2ε ≥
K2 − 3δ; therefore, by using (4.42)–(4.43) and the negativity of φ′ and f ′2(K2), it follows that

Nu(t, x) ≤ f ′2(K2)

2

(
εe−δ(t−t0) + εe−µ(x−x0)

)
+ εδe−δ(t−t0) + d2µ

2εe−µ(x−x0)

=
(f ′2(K2)

2
+ δ
)
εe−δ(t−t0) +

(f ′2(K2)

2
+ d2µ

2
)
εe−µ(x−x0) ≤ 0;
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• if ξ(t, x) ≥ C, then 0 < φ(ξ(t, x)) ≤ δ by (4.44) and thus −2δ ≤ −2ε ≤ u(t, x) ≤ δ; therefore,
owing to (4.42)–(4.43) as well as the negativity of φ′ and f ′2(0), it follows that

Nu(t, x) ≤ f ′2(0)

2

(
εe−δ(t−t0) + εe−µ(x−x0)

)
+ εδe−δ(t−t0) + d2µ

2εe−µ(x−x0)

=
(f ′2(0)

2
+ δ
)
εe−δ(t−t0) +

(f ′2(0)

2
+ d2µ

2
)
εe−µ(x−x0) ≤ 0;

• if −C ≤ ξ(t, x) ≤ C, one has x − x0 ≥ c2(t − t0) + c2t0 − x0 + ωεe
−δ(t−t0) − ωε − ξ − C ≥

c2(t−t0)+c2t0−x0−ωε−ξ−C, hence e−µ(x−x0) ≤ e−µ(c2(t−t0)+c2t0−x0−ωε−ξ−C); since ωε = εω/δ,
one infers from (4.43), (4.45)–(4.46), and (4.56), that

Nu(t, x)≤ max
[−2δ,K2+2δ]

|f ′2|
(
εe−δ(t−t0)+εe−µ(x−x0)

)
−κωεδe−δ(t−t0)+εδe−δ(t−t0)+d2µ

2εe−µ(x−x0)

≤
(

max
[−2δ,K2+2δ]

|f ′2|−κω+δ
)
εe−δ(t−t0)+

(
max

[−2δ,K2+2δ]
|f ′2|+d2µ

2
)
εe−µ(c2(t−t0)+c2t0−x0−ωε−ξ−C)

≤
(

max
[−2δ,K2+2δ]

|f ′2| − κω + 2δ
)
εe−δ(t−t0) ≤ 0.

Eventually, one concludes that Nu(t, x) := ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≤ 0 for all t ≥ t0
and x ≥ x0. The maximum principle implies that

u(t, x) ≥ φ
(
x− c2t− ωεe−δ(t−t0) + ωε + ξ

)
− εe−δ(t−t0) − εe−µ(x−x0)

for all t ≥ t0 and x ≥ x0. For these t and x, since φ′ < 0, one derives that

u(t, x) ≥ φ(x− c2t+ ωε + ξ)− 2ε ≥ φ(x− c2t+ ξ)− ωε‖φ′‖L∞(R) − 2ε.

Similarly, using especially that(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µ(c2t0−x0−ξ−C) ≤

(
max

[−2δ,K2+2δ]
|f ′2|+ d2µ

2
)
e−µ(c2t0−x0−ωε−ξ−C) ≤ δ

by (4.56), one can also derive that u(t, x) ≤ u(t, x) = φ
(
x− c2t+ ωεe

−δ(t−t0) − ωε + ξ
)

+ εe−δ(t−t0) +

εe−µ(x−x0) for all t ≥ t0 and x ≥ x0, hence

u(t, x) ≤ φ(x− c2t− ωε + ξ) + 2ε ≤ φ(x− c2t+ ξ) + ωε‖φ′‖L∞(R) + 2ε.

In conclusion, one has

sup
x≥x0

∣∣u(t, x)− φ(x− ct+ ξ)
∣∣ ≤ ωε‖φ′‖L∞(R) + 2ε = M̃ε for all t ≥ t0,

where M̃ := ωε‖φ′‖L∞(R)/ε + 2 = ω‖φ′‖L∞(R)/δ + 2 is independent of ε, t0, x0 and ξ. The proof of
Lemma 4.6 is thereby complete.

Now we are in a position to complete the proof of Theorem 4.3.

Proof of Theorem 4.3 (continued). Let X1 > 0, X2 > 0, T1 > 0, T2 > 0, z1 ∈ R, z2 ∈ R, µ > 0
and δ > 0 be as in Lemma 4.4, and let also C > 0 be as in (4.44) in the proof of Lemma 4.4. For
t ≥ max(T1, T2) and x ≥ max(X1, X2), there holds

φ(x− c2(t− T2) + z2)− δe−δ(t−T2) − δe−µ(x−X2)

≤ u(t, x) ≤ φ(x− c2(t− T1) + z1) + δe−δ(t−T1) + δe−µ(x−X1).
(4.57)
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Consider any given sequence (tn)n∈N such that tn → +∞ as n→ +∞. By standard parabolic estimates,
the functions

(t, y) 7→ un(t, y) := u(t+ tn, y + c2tn)

converge as n → +∞ up to extraction of a subsequence, locally uniformly in (t, y) ∈ R × R, to a
classical solution u∞ of (u∞)t = d2(u∞)yy + f2(u∞) in R×R. From (4.57) applied at (t+ tn, y+ c2tn),
the passage to the limit as n→ +∞ gives

φ(y − c2(t− T2) + z2) ≤ u∞(t, y) ≤ φ(y − c2(t− T1) + z1) for all (t, y) ∈ R× R.

Then, [6, Theorem 3.1] implies that there exists ξ ∈ R such that u∞(t, y) = φ(y − c2t + ξ) for all
(t, y) ∈ R× R, whence

un(t, y)→ φ(y − c2t+ ξ) as n→ +∞, locally uniformly in (t, y) ∈ R× R. (4.58)

Consider now any ε ∈ (0, δ/3]. Let Aε > 0 be such that

φ ≥ K2 −
ε

2
in (−∞,−Aε] and φ ≤ ε

2
in [Aε,+∞). (4.59)

Set E1 := max
(
Aε − c2T1 − z1, Aε − ξ

)
and E2 := min(−Aε − c2T2 − z2,−Aε − ξ

)
< E1. Then, it can

be deduced from (4.58) that

sup
E2≤y≤E1

∣∣un(0, y)− φ(y + ξ)
∣∣ ≤ ε for all n large enough. (4.60)

Since tn → +∞ as n→ +∞, (4.57) and (4.59) imply that, for all n large enough,{
0 < un(0, y) ≤ ε for all y ≥ E1,

K2 − ε ≤ un(0, y) ≤ K2 + ε for all E2 −
c2

2
tn ≤ y ≤ E2.

(4.61)

Furthermore, since E1 ≥ Aε − ξ and E2 ≤ −Aε − ξ, one has0 < φ(y + ξ) ≤ ε

2
< ε for all y ≥ E1,

K2 − ε < K2 −
ε

2
≤ φ(y + ξ) < K2 for all y ≤ E2.

(4.62)

Then (4.61)–(4.62) imply that, for all n large enough,∣∣un(0, y)− φ(y + ξ)
∣∣ ≤ 2ε for all y ∈

[
E2 −

c2

2
tn, E2

]
∪ [E1,+∞).

Together with (4.60) and the definition of un(t, y), one has, for all n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 2ε for all x ≥ E2 +

c2

2
tn. (4.63)

On the other hand, one infers from Lemma 4.5 that, for all n large enough,

K2 − 3ε ≤ φ(x− c2(tn − T2,ε) + z2,ε)− εe−δ(tn−T2,ε) − εe−µ(x−X2,ε) ≤ u(tn, x)

≤ φ(x− c2(tn − T1,ε) + z1,ε) + εe−δ(tn−T1,ε) + εe−µ(x−X1,ε) ≤ K2 + 2ε, (4.64)

for all max(X1, X2, X1,ε, X2,ε) ≤ x ≤ E2 + c2tn/2, where X1,ε > 0, X2,ε > 0, T1,ε > 0, T2,ε > 0,
z1,ε ∈ R and z2,ε ∈ R were given in Lemma 4.5. Notice also that, for all n large enough,

K2 − ε ≤ φ(x− c2tn + ξ) < K2 for all max(X1, X2, X1,ε, X2,ε) ≤ x ≤ E2 +
c2

2
tn. (4.65)
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From (4.64)–(4.65) one deduces that, for all n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 3ε for all max(X1, X2, X1,ε, X2,ε) ≤ x ≤ E2 +

c2

2
tn.

Together with (4.63), one derives that, for all n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 3ε for all x ≥ max(X1, X2, X1,ε, X2,ε).

Furthermore, due to (4.37)–(4.39), there is xε ≥ max(X1, X2, X1,ε, X2,ε) such that, for all n large
enough,

K2 − 3ε ≤ u(t, xε) ≤ K2 +
3ε

2
for all t ≥ tn,

and
φ(xε − c2tn + ξ) ≥ K2 −

3ε

2
,
(

max
[−2δ,K2+2δ]

|f ′2|+ d2µ
2
)
e−µ(c2tn−xε−3εω/δ−ξ−C) ≤ δ.

It then follows from Lemma 4.6 (applied with t0 = tn, x0 = xε and 3ε instead of ε) that, for all n large
enough, ∣∣u(t, x)− φ(x− c2t+ ξ)

∣∣ ≤ 3M̃ε for all t ≥ tn and x ≥ xε,

with M̃ given in Lemma 4.6. Since ε ∈ (0, δ/3] was arbitrary, one finally infers that

sup
t≥A, x≥A

|u(t, x)− φ(x− c2t+ ξ)| → 0 as A→ +∞.

This completes the proof of Theorem 4.3.

Finally, we are in a position to prove Theorem 2.12.

Proof of Theorem 2.12. Fix any η > 0 throughout the proof. For some L ≥ 2 (which will be fixed
later), let xL ≥ L/2 > 0 and denote by uL the solution of the Cauchy problem (1.1) with initial datum

uL(0, ·) =

{
θ + η in [xL − L/2 + 1, xL + L/2− 1],

0 in R \ (xL − L/2, xL + L/2),

and uL(0, ·) is affine in [xL −L/2, xL −L/2 + 1] and in [xL +L/2− 1, xL +L/2]. It follows from local
parabolic estimates that, for any A > 0,

uL(t, x)→ ζ(t) as L→ +∞ locally in t ≥ 0, uniformly in x ∈ [xL −A, xL +A], (4.66)

where ζ is the solution of the ODE ζ ′(t) = f2(ζ(t)) for t ≥ 0 with initial datum ζ(0) = θ+η. Let R > 0
and ψ ∈ C2([−R,R]) be as in Lemma 4.2, and pick ε ∈ (0,K2 − ψ(0)). Since ζ(t) → K2 as t → +∞
by (2.5), it follows that there is T > 0 such that ζ(T ) ≥ ψ(0) + ε. By (4.36) and (4.66), one can then
choose L ∈ (max(2R, 2),+∞) sufficiently large such that, for every xL ≥ L/2,

uL(T, ·) > ζ(T )− ε ≥ ψ(0) ≥ ψ(· − xL) in [xL −R, xL +R].

Let now u be the solution to (1.1) with a nonnegative continuous and compactly supported initial
datum u0 6≡ 0 satisfying u0 ≥ θ+η in an interval of size L included in patch 2, say (xL−L/2, xL+L/2)
for some xL ≥ L/2 (thus, xL ≥ R). The comparison principle then gives that

u(T, ·) ≥ uL(T, ·) > ψ(0) ≥ ψ(· − xL) in [xL −R, xL +R].

The conclusion of Theorem 2.12 then follows from Proposition 2.4 and from Theorem 4.3 applied with
initial datum ψ(· − xL) (extended by 0 outside [xL −R, xL +R]).
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We finally turn to the proof of Theorem 2.13. For the proof of the propagation with speed zero
when f2 has zero mass over [0,K2], in order to get the property (2.11), we especially show and use the
stability of the large-time limit of solutions of some auxiliary problems.

Proof of Theorem 2.13. Assume that (2.4)–(2.5) hold with
∫K2

0 f2(s)ds ≥ 0, and that there is no
nonnegative classical stationary solution U of (1.1) such that U(−∞) = K1 and U(+∞) = 0. Proposi-
tion 2.9 implies in particular that K1 > θ, and Proposition 2.10 yields the existence and the uniqueness
of a positive classical stationary solution V of (1.1) such that V (−∞) = K1 and V (+∞) = K2. Fur-
thermore, V is monotone (and even strictly monotone if K1 6= K2, from the proof of Proposition 2.10).

Let u be the solution to the Cauchy problem (1.1) with a nonnegative continuous and compactly sup-
ported initial datum u0 6≡ 0. Proposition 2.4 implies that 0 < u(t, x) < M := max(K1,K2, ‖u0‖L∞(R))
for all t > 0 and x ∈ R.

Let v and w be as in the beginning of the proof of Theorem 2.7, namely: 1) v is the solution to the
Cauchy problem (1.1) with initial datum v(0, ·) = ηΨ(·−x0) < u(1, ·) in R for η > 0 small enough and
for any arbitrary x0 ≤ −R, where R > 0 and Ψ are given as in (4.1)–(4.2); and 2) w denotes the solution
to (1.1) with initial condition w(0, ·) = M in R. Proposition 2.4 implies that 0 < v(t, x) < u(t+1, x) <
w(t+ 1, x) ≤M for all t > 0 and x ∈ R. Moreover, as in the proof of the first part of Theorem 2.6, v is
increasing with respect to t and w is nonincreasing with respect to t in [0,+∞)×R. From the parabolic
estimates of Proposition 2.3, v(t, ·) and w(t, ·) converge as t→ +∞, locally uniformly in R, to classical
stationary solutions p and q of (1.1), respectively. Moreover, there holds

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, (4.67)

locally uniformly in R. From the proofs of Proposition 2.5 and Theorem 2.7, it is seen that

p(−∞) = q(−∞) = K1. (4.68)

In the following, we wish to show that p ≡ q ≡ V in R and p(+∞) = q(+∞) = K2. First of all,
since p and q are bounded and f2 satisfies (2.5), one infers that

lim sup
x→+∞

p(x) ≤ K2 and lim sup
x→+∞

q(x) ≤ K2. (4.69)

Let us now prove that p is stable in (0,+∞) in the sense that∫ +∞

0
d2|ϕ′|2 − f ′2(p)ϕ2 ≥ 0, (4.70)

for every ϕ ∈ C1((0,+∞)) with compact support included in (0,+∞). In fact, we first notice that the
function v satisfies

0 ≤ vt = d2(v − p)xx + f2(v)− f2(p) for all t > 0 and x > 0.

For any given ϕ ∈ C1((0,+∞)) with compact support included in (0,+∞), multiplying the above
equation by the nonnegative function ϕ2/(p−v(t, ·)) at a fixed time t > 0 and integrating over (0,+∞)
yields

0 ≤
∫ +∞

0
d2(p− v(t, ·))x

(
ϕ2

(p− v(t, ·))

)
x

− f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2

=

∫ +∞

0
d2

(
2

(p− v(t, ·))xϕϕ′

p− v(t, ·)
− |(p− v(t, ·))x|2ϕ2

(p− v(t, ·))2

)
− f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2

≤
∫ +∞

0
d2|ϕ′|2 −

f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2.
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Since v(t, ·)→ p as t→ +∞ locally uniformly in R, passing to the limit t→ +∞ yields (4.70).
Next, we show that p(+∞) = K2. Assume first that p has two critical points a < b ∈ [0,+∞), that

is, p′(a) = p′(b) = 0. By reflection, the function z1 := p(2b− ·) satisfies d2z
′′
1 + f2(z1) = 0 in [b, 2b− a],

with z1(b) = p(b) and z′1(b) = p′(b) = 0. The Cauchy-Lipschitz theorem implies that z1 = p in [b, 2b−a].
Thus, p(2b− a) = p(a) and p′(2b− a) = 0. With an immediate induction, one infers that p is periodic
in [a,+∞). Together with (4.67) and (4.69), one gets 0 < p ≤ K2 in [a,+∞). But the nonconstant
stationary periodic solutions of (1.1) in (0,+∞) are known to be unstable. Hence, p is constant
in [a,+∞). However, since f ′2(θ) > 0, the constant solution θ is unstable as well. Finally, p ≡ K2

in [a,+∞) and then in [0,+∞) by the Cauchy-Lipschitz theorem, and thus K1 = K2 and p ≡ K1 = K2

in R (indeed, as in the proof of Proposition 2.5, p′ is either of a constant strict sign in (−∞, 0−], or
identically equal to 0 in (−∞, 0−]). Therefore, either p is constant (and p ≡ K1 = K2 in R), or p has at
most one critical point in [0,+∞). The later case implies that p is strictly monotone in, say, [B,+∞)
for some B > 0 large. Hence, p(+∞) exists, with p(+∞) ∈ {0, θ,K2}. Since p(+∞) 6= θ (because p is
stable) and since there is no stationary solution U of (1.1) connecting K1 and 0, it follows that

p(+∞) = K2.

Together with (4.68), one concludes that p ≡ V in R in all cases. As a consequence, (4.69) and the
inequality p ≤ q given by (4.67) imply that q(+∞) = K2 and then

q ≡ V ≡ p in R.

The desired conclusion (2.11) is therefore achieved, due to (4.67).
By using (2.11) and the fact that V (+∞) = K2 > θ, the property (i) of Theorem 2.13 (in the case∫K2

0 f2(s)ds > 0) can be derived from Theorem 2.12 and a comparison argument.
It now remains to prove property (ii), that is, we assume now that

∫K2

0 f2(s)ds = 0. Our goal is
to show that supx≥ct u(t, x) → 0 as t → +∞ for every c > 0. So let us fix c > 0 in the sequel. For
ε ∈ (0, (K2 − θ)/2), let f2,ε be a C1(R) function such that{

f2,ε(0) = f2,ε(θ) = f2,ε(K2 + ε) = 0, f ′2,ε(0) < 0, f ′2,ε(K2 + ε) < 0,

f2,ε = f2 in (−∞,K2 − ε), f2,ε > 0 in (θ,K2 + ε), f2,ε < 0 in (K2 + ε,+∞).

We can also choose f2,ε so that f2,ε ≥ f2 in R, so that f2,ε is decreasing in [K2− ε,K2 + ε], and so that
the family (‖f2,ε‖C1([0,K2+ε]))0<ε<(K2−θ)/2 is bounded. Notice that, necessarily,

∫K2+ε
0 f2(s)ds > 0. For

each ε ∈ (0, (K2 − θ)/2)), let φε be the unique traveling front profile of ut = d2uxx + f2,ε(u) such that

d2φ
′′
ε + c2,εφ

′
ε + f2,ε(φε) = 0 in R, φ′ε < 0 in R, φε(0) = θ, φε(−∞) = K2 + ε, φε(+∞) = 0,

with speed c2,ε > 0. It is standard to see that φε → φ in C2
loc(R) and c2,ε → 0 as ε → 0. We

can then fix ε ∈ (0, (K2 − θ)/2) small enough such that 0 < c2,ε < c. As in the proof of (4.31)–
(4.32) in Theorem 2.11, there is then X > 0 such that u(t, x) ≤ K2 + ε/2 for all t ≥ X and x ≥ X.
Since u(t, x) has a Gaussian upper bound as x→ +∞ at each fixed t > 0 by Lemma A.1, whereas φε(s)
has an exponential decay (similar to (2.7)) as s → +∞, it follows that there is A > 0 such that
u(X,x) ≤ φε(x − c2,εX − A) for all x ≥ X, and u(t,X) ≤ φε(X − c2,εt − A) for all t ≥ X (we also
here use the fact c2,ε > 0 and φε(−∞) = K2 + ε). Since f2,ε ≥ f2 in R, the maximum principle implies
that 0 < u(t, x) ≤ φε(x − c2,εt − A) for all t ≥ X and x ≥ X, hence supx≥ct u(t, x) → 0 as t → +∞,
since c2,ε < c and φε(+∞) = 0. This completes the proof of Theorem 2.13.

5 The bistable-bistable case

In this section, we only outline the proofs in the bistable-bistable case (2.13), since most of the argu-
ments are similar to those of the preceding section. However, the main novelty is the extinction result
in the case of reaction terms fi having negative masses over [0,Ki]. We start with this case.
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Extinction in the case of reactions with negative masses

Proof of Theorem 2.14. We here assume that
∫Ki

0 fi(s)ds < 0 for i = 1, 2. Let u be the solution to the
Cauchy problem (1.1) with a nonnegative continuous and compactly supported initial datum u0 6≡ 0.
SetM := max

(
K1,K2, ‖u0‖L∞(R)

)
+1. As in the proof of part (i) of Theorem 2.11, for each i ∈ {1, 2},

since fi satisfies (2.5) with
∫Ki

0 fi(s)ds < 0, there is a C1(R) function f i such that f i ≥ fi in R, f i(0) =

f i(θi) = f i(M) = 0, f ′i(0) < 0, f ′i(M) < 0, f i > 0 in (−∞, 0) ∪ (θi,M), f i < 0 in (0, θi) ∪ (M,+∞),
and

∫M
0 f i(s)ds < 0 (it is even possible to choose f i so that f i = fi in (−∞,Ki − δ] for some

small δ > 0). There is then a decreasing front profile φi solving (2.6) with f i and M instead of f2

and K2, and with negative speed ci instead of c2. Since φi(−∞) = M > max(K1,K2, ‖u0‖L∞(R))
and u0 is compactly supported, one can then choose two positive real numbers A1 and A2 so large that

u0(x) ≤ φ1(−x−A1) for all x ≤ 0, u0(x) ≤ φ2(x−A2) for all x ≥ 0, and φ1(−A1) = φ2(−A2).

Let u be the solution to (1.1) with reactions f i instead of fi and with initial datum u0 given by

u0(x) :=

{
φ1(−x−A1) if x ≤ 0,

φ2(x−A2) if x > 0.

The comparison principle of Proposition 2.4 implies that

0 < u(t, x) ≤ u(t, x) for all t > 0 and x ∈ R. (5.1)

Furthermore, since ci < 0 and φ
′
i < 0 in R for each i = 1, 2, it follows that the time-independent

function v equal to v(t, x) := u0(x) in [0,+∞)×R is a supersolution of (1.1) (with reactions f i instead
of fi) in the sense of Definition 2.2. Then, as in the proof of the first part of Theorem 2.6, one has

u(t, x) ≤ u0(x) for all (t, x) ∈ [0,+∞)× R (5.2)

and u is nonincreasing with respect to t in [0,+∞) × R. Together with the parabolic estimates of
Proposition 2.3, there is then a nonnegative classical bounded stationary solution p of (1.1) (with
reactions f i instead of fi) such that u(t, x) → p(x) as t → +∞ locally uniformly in x ∈ R. The
inequalities (5.1)–(5.2) also imply that p(±∞) = 0 and that u(t, ·)→ p as t→ +∞ uniformly in R.

Let us finally show that p ≡ 0 in R, which will lead to the desired extinction result. Assume by
contradiction that p 6≡ 0. Since p is nonnegative continuous and converges to 0 at ±∞, there is then
x0 ∈ R such that p(x0) = maxR p > 0. If x0 > 0, then the integration of the equation d2p

′′+ f2(p) = 0

against p′ over the interval [x0,+∞) yields
∫ p(x0)

0 f2(s)ds = 0, which is impossible from the choice
of f2. The case x0 < 0 is similarly ruled out. Therefore, x0 = 0 and the interface conditions at 0
then imply that p′(0±) = 0 and the integration of the equation d2p

′′ + f2(p) = 0 against p′ over the
interval [0,+∞) leads to the same impossibility. As a conclusion p ≡ 0 in R and the inequalities (5.1)
and the uniform convergence of u(t, ·) to p ≡ 0 as t→ +∞ imply that ‖u(t, ·)‖L∞(R) → 0 as t→ +∞.
The proof of Theorem 2.14 is thereby complete.

Stationary solutions connecting K1 to 0, and K1 to K2

Proof of Proposition 2.15. (i) Suppose that U is a positive classical stationary solution of (1.1) such
that U(−∞) = K1 and U(+∞) = 0. From the strong maximum principle and the Hopf lemma (or
the Cauchy-Lipschitz theorem), it follows that U > 0 in R. Multiplying d1U

′′ + f1(U) = 0 by U ′ and
integrating by parts over (−∞, x] for any x ≤ 0 yields

d1

2
(U ′(x−))2 =

∫ K1

U(x)
f1(s)ds ≥ 0. (5.3)
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Then, we claim that 
either U > K1 in (−∞, 0] and U ′ > 0 in (−∞, 0−],

or U < K1 in (−∞, 0] and U ′ < 0 in (−∞, 0−],

or U ≡ K1 in (−∞, 0].

(5.4)

To prove (5.4), we first show that either U −K1 has a strict constant sign in (−∞, 0] or U ≡ K1 in
(−∞, 0]. Indeed, if there is x0 ≤ 0 such that U(x0) = K1, then (5.3) implies U ′(x−0 ) = 0 and the
Cauchy-Lipschitz theorem then yields U ≡ K1 in (−∞, 0]. Assume now that U − K1 has a strict
constant sign in (−∞, 0]. Then in (5.3) the integral is positive from the assumption on f1, hence U ′

has a strict constant sign in (−∞, 0−]. Our claim (5.4) follows, since U(−∞) = K1. The argument in
patch 2 is exactly the same as the one in the proof of Proposition 2.8, thus completing the proof of
part (i) of Proposition 2.15.

(ii) The proof of (ii) is an adaptation of the proof of Proposition 2.9, with the fact that the function
ν 7→

∫K1

ν f1(s)ds is continuous in [0,K1], vanishes at K1, is positive in [0,K1), due to the positivity of∫K1

0 f1(s)ds, here. The rest of the proof is identical to that of Proposition 2.9.
(iii) The proof of (iii) follows the same lines as the proof of Proposition 2.10.

Blocking phenomena

Proof of Theorem 2.16. It is exactly as that of part (i) of Theorem 2.11 if
∫K2

0 f2(s)ds < 0. In the
case

∫K2

0 f2(s)ds = 0 and K1 < K2, let w be the solution of (1.1) with initial datum w0 = M :=
max(K2, ‖u0‖L∞(R)). As in the proof of the first part of Theorem 2.6, the function w is nonincreasing
with respect to t in [0,+∞)×R and there is a nonnegative classical stationary solution q of (1.1) such
that w(t, ·)→ q as t→ +∞ locally uniformly in R, with 0 ≤ q ≤M in R. Since f1,2 < 0 in (K1,2,+∞),
one gets that lim supx→−∞ q(x) ≤ K1 and lim supx→+∞ q(x) ≤ K2 and, since f1 < 0 in (K1,+∞) ⊃
(K2,+∞), one easily infers that supR q ≤ K2 and even q < K2 in R. Next, properties (4.30)–(4.31)
and (4.33) hold and the rest of the proof is identical to that of part (ii) of Theorem 2.11. The other
cases can be handled as in the proofs of parts (iii) and (iv) of Theorem 2.11 (since those proofs did
not use the specific KPP assumption in patch 1).

Propagation with positive or zero speed

Parallel to Lemma 4.2 and Theorem 4.3, which lead to the proof of Theorem 2.12, we have the following
results.

Lemma 5.1. Assume that (2.13) holds and there is i ∈ {1, 2} such that
∫Ki

0 fi(s)ds > 0. Then there
exist Ri > 0 and a function ψi of class C2([−Ri, Ri]) such that

diψ
′′
i + f2(ψi) = 0 in [−Ri, Ri],

0 ≤ ψi < Ki in [−Ri, Ri],
ψi(±Ri) = 0,

max
[−Ri,Ri]

ψi = ψi(0) > θi.

Theorem 5.2. Assume that (2.13) holds and there is i ∈ {1, 2} such that
∫Ki

0 fi(s)ds > 0. Let
Ri > 0 and ψi ∈ C2([−Ri, Ri]) be as in Lemma 5.1. Let u be the solution to (1.1) with a nonnegative
continuous and compactly supported initial datum u0 6≡ 0. If u0 ≥ ψi(· − xi) in [xi − Ri, xi + Ri] for
some |xi| ≥ Ri with the interval (xi−Ri, xi+Ri) included in patch i, then the conclusion of part (i) of
Theorem 2.17 holds true if i = 2 and property (2.16) of part (ii) of Theorem 2.17 holds true if i = 1.
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Proof of Theorem 2.17. Since part (i) of Theorem 2.17 and property (2.16) of part (ii) follow from
Theorem 5.2, while the last two statements of part (ii) of Theorem 2.17 (about the propagation in
patch 2) follow exactly as in the proofs of Theorems 2.12–2.13 once (2.15) is known, it remains to show
the large-time behavior (2.15) of u in part (ii).

So, let us assume that
∫K1

0 f1(s)ds > 0 and
∫K2

0 f2(s)ds ≥ 0, and let u be the solution of (1.1)
with a nonnegative continuous and compactly supported initial datum u0 6≡ 0. By Proposition 2.4, one
has 0 < u(t, x) < M := (K1,K2, ‖u0‖L∞(R)) for all t > 0 and x ∈ R. The arguments of the proof of
Theorem 2.12 also imply that, if η > 0 is fixed and if u0 ≥ θ1 + η in a large enough interval in patch 1,
then u(T, ·) > ψ1(0) ≥ ψ1(· − x1) in [x1 − R1, x1 + R1] for some T > 0 and x1 ≤ −R1, where R1 > 0
and ψ1 ∈ C2([−R1, R1]) are given as in Lemma 5.1. Let now v and w be, respectively, the solutions
of (1.1) with initial data v(0, ·) = ψ1(· − x1) (extended by 0 in R \ [x1−R1, x1 +R1]) and w(0, ·) = M
in R. Proposition 2.4 implies that

0 < v(t, x) < u(t+ T, x) < w(t+ T, x) ≤M for all t > 0 and x ∈ R.

Moreover, as in the proof of the first part of Theorem 2.6, v is increasing with respect to t and w
is nonincreasing with respect to t, in [0,+∞) × R. By the Schauder estimates of Proposition 2.3,
v(t, ·) and w(t, ·) converge as t→ +∞, locally uniformly in R, to classical stationary solutions p and q
of (1.1), respectively. Therefore,

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M locally uniformly in R. (5.5)

Theorem 5.2 then implies that v propagates in patch 1 with speed c1 and (2.16) holds with v for some
ξ′1 ∈ R instead of ξ1. Hence, p(−∞) = K1. Therefore, lim infx→−∞ q(x) ≥ K1 and, since f1 < 0 in
(K1,+∞), one infers as before that lim supx→−∞ q(x) ≤ K1, hence q(−∞) = K1. On the other hand,
one can show as in the proof of Theorem 2.13 that p is stable in (0,+∞), whence p(+∞) = K2 from the
bistable profile of f2 and the nonexistence of a stationary solution U of (1.1) such that U(−∞) = K1

and U(+∞) = 0. As a consequence, (2.15) follows from (5.5), with p being a positive classical stationary
solution of (1.1) such that p(−∞) = K1 and p(+∞) = K2. Moreover, lim infx→+∞ q(x) ≥ K2 and, as
before, q(+∞) = K2. Finally, if K2 ≥ K1 ≥ θ2 or K1 ≥ K2 ≥ θ1, then p ≡ q ≡ V , where V is the
unique positive classical stationary solution of (1.1) satisfying V (−∞) = K1 and V (+∞) = K2, given
by part (iii) of Proposition 2.15. The proof of Theorem 2.17 is thereby complete.

A Appendix

In this appendix, we show Gaussian upper bounds for the solutions to the Cauchy problem (1.1)
with nonnegative continuous compactly supported initial data. We recall that the C1(R) functions fi
satisfy (1.2), and we call K any nonnegative real number such that

f1(s) ≤ Ks and f2(s) ≤ Ks for all s ≥ 0. (A.1)

Lemma A.1. Let L1 > 0, L2 > 0, and let u be the solution to the Cauchy problem (1.1) with
a nonnegative continuous and compactly supported initial datum u0 satisfying spt(u0) ⊂ [−L1, L2].
Then, with M := max(K1,K2, ‖u0‖L∞(R)) and K ≥ 0 as in (A.1), there holds, for all t > 0,

u(t, x) ≤MeKte
− (x+L1)

2

4d1t for all x ≤ −L1, and u(t, x) ≤MeKte
− (x−L2)

2

4d2t for all x ≥ L2.

Proof. It is based on the comparison between u and the solution of certain initial–boundary value
problem defined in a half-line. We only do the proof of the first inequality, as the second one can be
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handled analogously. By Proposition 2.4, one has 0 < u(t, x) < M for all t > 0 and x ∈ R. Let v be
the solution of the following initial-boundary value problem

vt = d1vxx, t > 0, x ≤ 0,

v(0, x) = χ[−L1,0](x), x ≤ 0,

v(t, 0) = 1, t > 0,

(A.2)

where χ denotes the indicator function. With (A.1), the maximum principle yields

u(t, x) ≤MeKtv(t, x) for all t ≥ 0 and x ≤ 0.

To solve (A.2), we define w(t, x) := v(t, x)− 1 for t ≥ 0 and x ≤ 0. Then w satisfies
wt = d1wxx, t > 0, x ≤ 0,

w(0, x) = −χ(−∞,−L1)(x), x ≤ 0,

w(t, 0) = 0, t > 0.

For each t ≥ 0, w(t, ·) is then the restriction to (−∞, 0] of the functionW (t, ·), whereW solves the heat
equationWt = d1Wxx in (0,+∞)×R with initial conditionW (0, ·) given as the odd extension of w(0, ·),
that is W (0, x) = w(0, x) = −χ(−∞,−L1)(x) if x ≤ 0 and W (0, x) = −w(0,−x) = χ(L1,+∞)(x) if x > 0.
Denote by S1 the standard heat kernel, namely S1(t, x) = (4πd1t)

−1/2e−x
2/(4d1t) for t > 0 and x ∈ R.

Then, for every t > 0 and x ∈ R,

W (t, x) =

∫ +∞

−∞
S1(t, x− y)W (0, y)dy =

∫ 0

−∞
(S1(t, x− y)− S1(t, x+ y))w(0, y)dy.

It follows that, for every t > 0 and x ≤ 0,

w(t, x) = W (t, x) = − 1√
4πd1t

∫ −L1

−∞

(
e
− (x−y)2

4d1t − e−
(x+y)2

4d1t

)
dy,

hence

v(t, x) = 1 + w(t, x) = 1− 1√
4πd1t

∫ −L1

−∞

(
e
− (x−y)2

4d1t − e−
(x+y)2

4d1t

)
dy

= 1− 1√
π

∫ −x−L1√
4d1t

−∞
e−z

2
dz +

1√
π

∫ x−L1√
4d1t

−∞
e−z

2
dz ≤ 2√

π

∫ +∞

−x−L1√
4d1t

e−z
2
dz.

Finally, for every t > 0 and x ≤ −L1, there holds

u(t, x) ≤MeKtv(t, x) ≤ 2MeKt√
π

∫ +∞

−x−L1√
4d1t

e−z
2
dz ≤Me

Kt− (x+L1)
2

4d1t ,

since (2/
√
π)
∫ +∞
A e−z

2
dz ≤ e−A2 for all A ≥ 0. This completes the proof.
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