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Triangulations de Delaunay Conformes en 3D

Résumé : Cerapport décrit un algorithme qui construit, pour tout complexe de contrainte
linéaire par morceaux dans ’espace 3D, une triangulation de Delaunay conforme & ce com-
plexe. L’algorithme a été implémenté. Cet algorithme s’adapte & la géométrie locale du
complexe et produit en pratique un nombre relativement faible de sommets de Steiner. A
notre connaissance, cet algorithme est le premier algorithme efficace en pratique pour ré-
soudre ce probléme.

Mots-clés : Triangulations de Delaunay, triangulations de Delaunay conformes, maillages



Triangulations de Delaunay Conformes en 3D 3

Introduction

In the following, the term faces denotes objects in 3D space which are either 0-dimensional
faces called vertices, 1-dimensional faces called edges or 2-dimensional faces called 2-faces.
The vertices are just points, the edges are straight line segments, and the 2-faces are polyg-
onal regions possibly with holes and isolated edges or vertices included in their interior. A
piecewise linear complex, called for short PLC, is a finite set C of faces such that:

e the boundary of any face of C is a union of faces of C;

e the intersection of any two faces of C is either empty or a union of faces of C.

A triangulation 7 is said to conform to a PLC C if any face of C is a union of faces of 7.
In this paper, we propose an algorithm which, given a PLC C, finds a set of points P whose
Delaunay triangulation conforms to C.

This question is motivated by problems in mesh generation and geometric modeling: in
these fields, it is crucial to decompose the space into a set of simplices which conforms to a
given PLC, with the additional restriction that the shapes of the cells must satisfy certain
properties. Delaunay triangulations present several features (see, e.g., [1]) which can be
exploited to solve this problem, and many mesh generation algorithms make use of this
concept.

The problem of conforming 2D Delaunay triangulations was solved by Saalfeld [6] and
Edelsbrunner and Tan [3]. The algorithm by Edelsbrunner and Tan [3] guarantees an O(n®)
bound on the number of generated Steiner vertices, if n is the size of the input. Most of the
further works on the subject are based on the Delaunay refinement approach pioneered by
Ruppert [5] and Chew [2]. Shewchuk [7] gave an algorithm in 3D which builds a conforming
Delaunay triangulation under restrictive conditions on the angles of the PLC. Murphy,
Mount and Gable [4] found a solution which works under no restriction, but produces far
too many points in practice. The main interest of their paper is to show the existence of a
conforming Delaunay triangulation with a finite set of vertices for any 3D PLC.

Our algorithm uses the Delaunay refinement approach. Initially the set P is the set of
vertices of the complex C. Points are then added to P until each edge and each face of the
complex C is a union of simplices which are in the Delaunay triangulation of P.

The main difficulty with such a strategy is to ensure termination. Indeed it is known
that sharp edges and corners may induce cascading additions of Steiner points. To avoid this
effect, we first define a protected area around edges and vertices of the PLC with a special
refinement process. Outside the protected area, the PLC can be refined using Ruppert’s
process and the interaction between refinements in both areas can be controlled. Mount,
Murphy and Gable use a similar approach. The main difference with our work lies in the
definition of the protected area. In our case this area adapts to the local geometry of the
input PLC.

The algorithm is presented in Section 1 and proved to be correct in Section 2. In Section 3,
we present the details of the construction of the initial protected area, skipped in Section 1.
Section 4 presents some refinements to improve the running time of the algorithm and to
lower the number of vertices in the output conforming triangulation. At last, we end with
experimental results in Section 5.
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4 David Cohen-Steiner , Eric Colin de Verdiére , Mariette Yvinec

1 The algorithm

After a few definitions, we describe the protected area (Subsections 1.2 and 1.3). We then
define the refinement process used for this area (Subsections 1.4 and 1.5). Finally, we
describe the main procedure and summarize the whole algorithm.

1.1 Definitions and notations

The circumball of a segment ab is the ball admitting the segment ab as diameter.
The circumball of a triangle abe is the ball admitting the circumscribing circle of abc as great
circle.
An edge (resp. a triangle) is said to have the Gabriel property if its circumball contains
no point of P in its interior. A point in the interior of the circumball of an edge (resp. a
triangle) is said to encroach upon this edge (resp. this triangle).

In the following, we note bd(B) the boundary of B, int(B) the interior of B and
circum(ab) (resp circum(abc)) the circumball of the segment ab (resp. of the triangle abc).

1.2 Protecting balls

The protected area is defined by means of a set B of closed balls, called protecting balls,
satisfying the following requirements:
i. the union of the balls in B covers the 1-skeleton Sk of the complex C;
ii. the balls are centered on points which are in Sk;
iii. if two balls intersect, their centers belong to the same edge of the complex C;
iv. if a face of C intersects a ball, then it contains the center of this ball;
v. the intersection of any three balls in B is empty;
vi. any two balls are not tangent;
vii. the center of any ball is inside no other ball.
(i) and (iv) imply that any vertex in C is the center of a ball in B. We show in Section 3
how to build a set of balls satisfying these requirements. Furthermore, in Section 4, we show
that there is in fact no need to cover all the edges.

1.3 Center-points, h-points, p-points, and SOS-points

We describe here a few subsets of points, included in the balls of B, that we need to add
first in the set P.

Let B be a ball in B with center o (see Figure 1). Let B be the set of balls in B which
intersect B. By condition (v), the intersections of B with the elements of Bg are disjoint.

We first add the center o of B. Such a point will be called a center-point. Then, for each
element B; of B, consider the radical plane of B and B;. It intersects the line joining the
centers of B and B; at a point h;, which is added to the set P (h; is on an edge of C by
condition (iii)). Such points will be called h-points.

INRIA
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protected area

unprotected area

L ] 2-faces of C

— edges of C
shield edges

Figure 1: The situation in the neighborhood of a ball B, incident to three other balls By, Bs
and Bs. There are two faces in the complex, limited by three edges, in the plane of the
figure. Point h; is added on the radical plane of B and B;. p-points a,b,c and d belong to
the boundaries of two balls and to a face, they are therefore also inserted in P. Incident
to o are four right-angled triangles (e.g., oh2a) and two isosceles triangles (e.g., oab). The
shield edges are ab and cd.

By condition (iv), any face of C which intersects B N B; contains the centers of B and
B;, and thus can be either the edge including the segment o0o; or a 2-face incident this edge.
For each 2-face F' of C intersecting B N B;, we add to P the intersection points of F' with
the circle bd(B) N bd(B;). We called those points p-points.

Consider the plane Q of a 2-face of C intersecting B (and thus containing o). The edges
of C split the disk @ N B into one or several sectors. We focus on sectors which are included
in C. The p-points further split these sectors in subsectors. We call right-angled subsectors
the subsectors limited by an edge of C and a p-point and isosceles subsectors the subsectors
limited by two p-points.

If some isosceles subsectors form an angle > 7, we add some points on their bounding
circular arcs to subdivide them in new subsectors forming an angle < 7. For reasons that
will be clear in Subsection 1.4, these points are called SOS-points. The new subsectors with
angle < § are still called isosceles subsectors.

RR n° 4345



6 David Cohen-Steiner , Eric Colin de Verdiére , Mariette Yvinec

Center points and h-points are the only categories of points added in the interior of
protecting balls. p-points and SOS-points lie on the boundaries of protecting balls. SOS-
points belong to a single protecting ball while p-points belong to the intersection of two
balls.

Isosceles subsectors are defined by the center o of a ball B and by two points a and b
(either p-points or SOS-points) on bd(B). Line segments such as ab, joining two points that
define an isosceles subsector, are called shield edges. In the following, triangles defined by
center-points and shield edges such as oab are referred to as isosceles triangles. Triangles
spanned by a center-point, a h-point and a p-point on the boundary of some right-angled
subsector are referred to as right-angled triangles.

Definition 1 The protected area is the union of the isosceles and right-angled triangles.
See the dark gray area in Figure 1. In particular, the protected area is included in the union
of the protecting balls.

The unprotected area is the complex C, minus the protected area.

1.4 The “split-on-a-sphere” strategy

During the process, it will be necessary to split shield edges. Since we do not want to add
more points inside the balls in B, we use a special treatment to split such a shield edge,
called the “split-on-a-sphere” strategy (SOS for short).

Let ab be a shield edge to be split, in a ball B. We distinguish two cases: a and b are
both SOS-points and belong to a single ball B, or at least one of these two points (for
example a) is a p-point and belongs to another ball B’.

C
dY=T~ub
B
0]

Figure 2: The SOS strategy: We split the shield edge ab by inserting the point ¢ on the
boundary of the ball.

If a and b belong only to B, let ¢ be the midpoint of the shortest geodesic arc ab on
bd(B). We add ¢ to P and replace the shield edge ab by two shield edges ac and cb.

If a is a p-point belonging to bd(B) N bd(B’), the idea is quite similar; however, if we do
not take care, the SOS strategy could lead to cascading insertions of points, because refining
an edge on B would lead to refinement of an edge on B’, and so on. We thus use a strategy
“a la Ruppert” [5], using circular shells. We consider the length of the segment ab, divided

INRIA
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by two, and round it to the nearest distance d which is of the form 2% k € Z (the unit
distance has been chosen arbitrarily at the beginning of the algorithm). Let ¢ be the point
of the geodesic arc ab on bd(B) at distance d from a. We split the shield edge ab using the
point c.

In both cases, the added point ¢ belongs to the category of SOS-points.

Note that, due to the SOS refinement strategy, the protected and unprotected areas, still
defined as in Subsection 1.3, will slightly evolve during the algorithm. Each SOS refinement
increases the protected area and decreases the unprotected area.

1.5 The protection procedure

This procedure adds some points to set P to ensure that shield edges and isosceles triangles
have the Gabriel property. It uses recursively the SOS strategy and works as follows.
While there is an encroached shield edge ab or an encroached isosceles triangle oab, refine
the edge ab using the SOS strategy.

1.6 The whole algorithm

Let us recall that the algorithm works by adding points to set P. We note Dt3(P) the 3D
Delaunay triangulation of points in P. For each plane @ of a 2-face in C, we note Dit2(PNQ)
the 2D Delaunay triangulation of points in P N (). These triangulations are updated upon
each insertion of a point in P.

The algorithm performs the initialization step and the main procedure described below.

The Initialization Step:
e Construct and initialize the protected area (as described in 1.2 and 1.3).
e Execute the protection procedure.

Because the algorithm maintains the Gabriel property of shield edges, in each plane @ of
a 2-face F of C, the 2D triangulation Dto(P N Q) conforms to the shield edges in this plane
and thus to the unprotected part F;, of F. The main procedure ensures that the triangles
of Dt2(P N Q) included in F,, appear in the 3D triangulation Dt3(P).

The Main Procedure:
While there is a triangle 7" in the 2D Delaunay triangulation Dt2(P N Q) of the plane Q of
a 2-face F' of C such that:
a. T is included in the unprotected part F, of F
b. T does not appear in Dt3(P),
refine T' trying to insert its circumcenter ¢, that is:
e if ¢ encroaches upon no shield edge, insert it;
e otherwise, split all the shield edges encroached upon by ¢ using the SOS strategy, and
then execute the protection procedure.

RR n° 4345
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2 Proof of the algorithm

We prove the algorithm in four steps.

e We first show that, at the end of the initialization step, the right-angled triangles have
the Gabriel property.

e Next, we show that the protection procedure terminates. Together with the first point
this ensures that, at the end of this procedure, all the triangles in the protected area
and the shield edges have the Gabriel property.

e Then, we show that the main procedure terminates

e Finally, we show that it yields a Delaunay triangulation conforming to the PLC.

2.1 The right-angled triangles

Proposition 2 After the initialization step, no point in P encroaches upon a right-angled
triangle. This property is maintained during the whole algorithm.

Proof. A right-angled triangle included in a protecting ball B has its circumball included
in B. Therefore it can only be encroached upon by a vertex in this ball, and not by the
center of B, hence only by a h-vertex in B. Since no point is inserted inside the balls after
the initialization step, it is sufficient to check the property just after this step.

Let @ be the plane of a 2-face F' intersecting B. By condition (iv), this plane contains
o (the center of B).

Let oh;p be a right-angled triangle in B. Triangle oh;p lies in a two 2-face F' of C which
contains the centers o and o; of the ball B and B; defining h; and intersects bd(B) N bd(B;)
in p. Suppose that the right-angled triangle oh;p, is encroached upon by a point h; defined
by the protecting balls B and B;. As the circumball of oh;p is the circumball of op, the
encroachment condition can be rewritten 07171) > m /2. Because points ¢ in bd(b) that satisfy
o/h]\-q > m/2 lie in bd(B) N int(B;), this condition implies that p belongs to balls B, B; and
B;, which is impossible by condition (v). O

Center points and h-points cut the edges of C in subedges. Note that Proposition 2
implies that these subedges are edges of Dt3(P).

2.2 Termination of the protection procedure

Proposition 3 The protection procedure always terminates.
The proof is a straightforward consequence of the following lemma.

Lemma 4 For each call to the protection procedure, there exists 8 > 0 such that the pro-
tection procedure splits no isosceles triangle with angle at the center of the ball less than

0.

INRIA
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Proof. Let oab be an isosceles triangle with shield edge ab in a protecting ball B. We
consider in turn three kinds of possible encroaching points: points on the boundary of B
(case 1), points in the interior of B (case 2) and points outside B (case 3). In each case k,
we prove the existence 9{ a value 6, such that neither oab nor ab can be encroached upon
by a point of type k if aob < 0.

First notice that the three balls B, circum(ab) and circum(oab) belong to a pencil of
spheres. Because the angle aob is smaller than /2, we have circum(oab) C B U circum(ab)
and circum(ab) N B C circum(oab) (see Figure 3). Therefore, it is enough to check that
points on or outside B (case 1 and 3) do not encroach upon ab and that points in B (case
2) do not encroach upon oab.

Figure 3: The balls B, circum(oab) and circum(ab).

1. For a plane @ of a 2-face of C intersecting B, we consider the circle bounding B N @

and we denote by S(Q, B) the union of arcs on this circle spanned by the isosceles
triangles in (). Notice that all the SOS-points inserted on B are located on such a set
5(Q, B).
If Q is the plane containing oab, no point of S(Q, B) encroaches upon ab. If Q' is
another plane, the distance between S(Q, B) and S(Q', B) is strictly positive, so there
is a value 6, (B, Q, Q") such that ab is not encroached upon by a point on S(Q’, B) if
aob < 6;. Setting #; = min{#;(B, Q, ')} achieves the proof of case 1.

2. The only points in a ball B which can encroach upon an isosceles triangle oab in B
are the h-points in B. Suppose that a point h; (on the radical plane of B and B;)
encroaches upon oab.

If h; is in the plane @ of oab, we prove that encroachment is not possible. Indeed, if
h; encroaches upon oab, h; encroaches either upon oa or upon ob. Thus a or b would

RR n° 4345
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belong bd(B) N int(B;) (as in the proof of Proposition 2) which is impossible because
a and b are either p-points or SOS-points.

Let us now deal with the case where h; does not belong to the plane Q.

For any point ¢ € S(Q, B), the distance between h; and circum(oc) is strictly pos-
itive. Indeed, because S(Q,B) N B; is empty, ¢ does not belong to B; and thus h;
cannot encroach upon oc nor be on the boundary of circum(oc) (as in the proof of
Proposition 2).

Let 6(B,Q, h;) be the minimum (strictly positive) of this distance for ¢ € S(Q, B).
Let 6'(B,0) be the Hausdorff distance between circum(oc) and circum(oa’b’) where
oa'l’ is an isosceles triangle with ¢’ and b’ on bd(B), axis oc and alobl = 0. As 8'(B,0)
goes to 0 when 6 goes to 0, there exists 62(B, @, h;) such that §'(B,0) < §(B,Q, h;)
for any 6 < 602(B,Q, h;). It follows that oab cannot be encroached upon by h; if
aob < 02(B,Q, h;). Setting 62 = min{62(B, Q, h;)} achieves the proof of case 2.

3. Consider now the case where edge ab is encroached upon by a point p outside the ball
B. At each call of the protection procedure, the set of points outside the protecting
spheres is fixed. Also, the distance between two sets S(Q1,B;) and S(Q2, Bs) which
do not share a p-point is bounded from below. Thus, there is a value 6% such that,
if aob < 04, edge ab cannot be encroached upon by p except if p belongs to S(Q, B’)
where @ is the plane of oab and B’ intersects B. Therefore, the only case remaining to
be considered is the case where a is a p-point in QNbd(B)Nbd(B’) and ab is encroached
upon by a point p of S(Q, B'). However, in this case, we split edges incident to a using
circular shells. Hence, after a few splits, the edges incident to a will have the same
lengths and will be unable to encroach upon each other. Therefore, we get a value
03 < 0% satisfying the desired requirement.

O

2.3 Termination of the main procedure

Theorem 5 The Main Procedure terminates.

Proof. In the following, we define an added circumcenter to be a circumcenter inserted in
the set P, and a rejected circumcenter to be a circumcenter considered in the algorithm but
not inserted because it encroaches upon some shield edge.

We prove the termination of the main procedure by proving first that the number of
added circumcenters is finite and second that the number of shield edges encroached upon
by rejected circumcenters is finite. Because the protection procedure is already known to
terminate, these two facts imply the termination of the main procedure.

By construction of the protecting spheres, the unprotected area is a disjoint union of
plane regions. Let F, be such a region. As previously noticed, owing to the SOS strategy,
the unprotected area regions slightly evolve during the algorithm; however, these regions are

INRIA
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always shrinking. Consequently, the distance between F, and the other regions as well as
the distance between F, and the set of center points and h-points added in the interior of
the protecting balls can be bounded from below by a constant 6. Let T be a triangle in F,
whose circumcenter has to be inserted in P and let C be the circumcircle of T'. Because
T belongs to the 2D Delaunay triangulation in the plane of F,, C'r encloses no point of P.
As T does not belong to Dt3(P), its circumball circum(T) contains a point in P which is
not in F,,. Such a point is either in the interior of a protecting sphere or it is an SO.S-point
or a p-point, or an added circumcenter. SOS-points and p-points belong to the boundary
of unprotected regions, and we prove in the lemma 6 below that added circumcenters lie
in unprotected regions. Therefore circum(T') either contains a point added in the interior
of a protecting sphere or intersects another unprotected region, and the radius of Cr is
thus larger than 6r. The area of F, being finite, this shows that the number of added
circumcenters is bounded.

Let us now show that the total number of edges encroached upon by rejected circum-
centers is finite. For this purpose, consider a shield edge encroached upon by the center p
of a circumcircle C in a region F,. C being empty and of radius larger than dp, it is easy
to show that the shield edge has length at least 52 (see Figure 4). Thus the number of
those edges is finite. O

Figure 4: The shortest shield edge ab which may be encroached upon by a rejected circum-
center p.

2.4 Conformity

We show here that the algorithm yields a set of points P whose Delaunay triangulation
conforms to the PLC.

For each plane @ of a 2-face F' of C, the main procedure ensures that any triangle of the
2D triangulation Dt2(P N @) included in the unprotected part F,, of F' appears in Dt3(P).
Thus, at the end of the main procedure, the Delaunay triangulation Dt3(P) conforms to the
unprotected area of C.

RR n° 4345



12 David Cohen-Steiner , Eric Colin de Verdiére , Mariette Yvinec

Proposition 2 ensures that Dt3(P) conforms to the right-angled triangles. Thus it re-
mains to consider isosceles triangles. The next proposition 7 shows that, at each step of the
main procedure, the triangulation Dt3(P) conforms to isosceles triangles. We first prove the
lemma already called for in the proof of Theorem 5.

Lemma 6 Any circumcentered (rejected or added) considered by the algorithm lies in the
unprotected area.

Proof. At each step of the algorithm, the shield edges have the Gabriel property because
added circumcenters encroach upon no shield edge. Let T" be a triangle considered at some
step of the algorithm. T belongs to the 2D Delaunay triangulation Dts(P N Q) of the plane
Q@ of some 2-face in C. Let C be the circumcircle of 7' and let p be its circumcenter. Assume
for contradiction that p lies outside the protected area. Then if m is a point in T, the
segment pm intersects a shield edge ab. The vertices a and b cannot be inside C' because T
belongs to Dto(P N Q), thus the vertices of T would encroach upon ab, which is impossible
(Figure 5). O

,\\

Figure 5: The circumcenter p of a triangle 7" lies in the unprotected area.

Proposition 7 After the initialization step and at each step of the main procedure, the
isosceles triangles and the shield edges have the Gabriel property.

Proof. The proposition is obvious after the initialization step or when a circumcenter is
rejected, because in each case the protection procedure which enforces the Gabriel property
of isosceles triangles and shield edges is called. It remains to show that this proposition is
still true when a circumcenter is inserted.

The lemma 6 shows that any added circumcenter lies in the unprotected area Moreover,
since the circumballs of shield edges cover the intersection of the unprotected area with the
protecting balls (see Figure 6), any added circumcenter is actually outside the protecting
spheres. Then, because such a point cannot encroach upon a shield edge, it cannot encroach
upon an isosceles triangle either. O

INRIA
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Figure 6: Inserted circumcenters lie outside the spheres.

3 Construction of the protecting balls

We have to build the set B of protecting balls satisfying the conditions described in Subsec-
tion 1.2. The efficiency of the algorithm really depends on this construction: the less balls
there are, the less points will be produced in P.

Definition 8 Let C be a PLC. The local feature size of a point p with respect to C is the
distance between p and the union of faces of C which do not contain p.

Let Ifs(p) denote the local feature size of point p with respect to the PLC which is given
as input of the algorithm. We address the following construction of the enclosing balls. Let
a be areal, 0 < o < 1 (typically a = 0.4).

First, for each vertex v of the PLC, construct a ball of radius « - Ifs(v).

Then, on each edge e, do the following. While e is not completely covered by balls,
consider a maximal open line segment aqas in e and outside the union of the balls in the
current set B. Point a; (i = 1,2)) is an intersection of ball B; (with center o; and radius r;)
with edge e. We will insert a ball between B; and B;. Let o be the midpoint of a;as. Insert
a new ball B in B, of center o and radius r, with:

r = min {a - Ifs(0),0a1 + %,oag + %2}

To ensure condition (vi), if r = oay, we replace r by (1 — &)r where ¢ is a small constant.
Lemma 9 This construction terminates.

Proof. Consider an edge e, whose vertices have just been protected by two spheres. Let
A be the union of the (open) line segments which are in e minus the union of the current
set of balls. Call Ay the set A just after the protection of the endpoints of e. The distance
d = min{lfs(p)| p € Ao} is strictly positive (the Ifs function is continuous on Ay, and Ifs does
not vanish on Ag). The insertion of a new ball:
e either increases by one the number of connected components of A and decreases the
measure of A by at least 2(1 —¢)-«-d (hence this case can happen only a finite number
of times),

RR n° 4345



14 David Cohen-Steiner , Eric Colin de Verdiére , Mariette Yvinec

e or decreases by one the number of connected components of A (without increasing the
measure of A).
The result follows. O

Conditions (i), (ii), (iv), (vi) and (vii) are obviously satisfied. (iii) follows from the fact
that if two points o and o' do not belong to the same edge, 0o’ is larger than or equal to
Ifs(0) and Ifs(o’). If two balls B and B’, centered at o and o' with radii r and 7/, are in B,
then 7 < 1ifs(0) and similarly for 7. Thus r + 7' < 00/, hence the balls cannot intersect.

(v) is also true. Indeed, if three balls intersect, their centers must be vertices of a triangle
in C. But it follows from our construction that two balls centered on vertices of the PLC
cannot intersect because a < %

Hence we have:

Proposition 10 This construction of B is correct.

4 Improvements

4.1 Speeding up the protection procedure

The following proposition shows that when the protection procedure is called from the main
procedure, there is no need to check whether isosceles triangles have the Gabriel property.

Proposition 11 After the initialization process, enforcing Gabriel property for shield edges
is enough to ensure Gabriel property for isosceles triangles.

Proof. Upon termination of the initialization step, all isosceles triangles have the Gabriel
property.

The points added in the set P by the main procedure are either SOS-points on the
boundary of protecting spheres or circumcenters which, from the proof in Section 2.4, are
known to lie outside the protecting spheres. Therefore, we know from Section 2.2 points
added by main procedure cannot encroach upon isosceles triangles without encroaching upon
corresponding shield edges.

Therefore, it just remains to show that, after the initialization step, no isosceles triangle
can be encroched upon by a point lying inside protecting spheres. For contradiction, let
T = oab be the first isosceles triangle encroached upon by a point lying inside a protecting
sphere. The encroaching point can only be a h-point, h;, lying in the protecting sphere B
which contains T'. T results from the splitting of some triangle 7' = oac. Arguing that
circum(oab), circum(oac) and circum(oa) belong to a sphere pencil and comparing their
radii, we deduce (Figure 7) that circum(oab) C circum(oac) U circum(oa). However, h;
does not belong to circum(oac) because T' = oac was not encroached upon by h;, nor
to circum(oa) (as seen in the proof of Proposition 2). Therefore h; does not belong to
circum(oab), which yields the contradiction. O

INRIA
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Figure 7: circum(oab) C circum(oac) U circum(oa).

4.2 Restricting the area where balls are required

In 1.2, the set B is constructed so that the balls cover the whole 1-skeleton Sk of C. We
explain here that this is not always necessary. Indeed, the balls are introduced to avoid
troubles with small angles; they are thus not required at places where faces intersect with
an angle large enough. This remark enables to put less balls in B, hence to reduce the size
of the output P. We first describe the modification in the construction of the balls, and
then prove that, despite this slight modification, the algorithm is still correct.

Let e = 0102 be an edge of the PLC so that all angles between faces incident to e are
> 7/2. We modify the algorithm in the following way. Still construct balls B; and Bs
centered at the vertices o; and oy. In P, insert 01, 02, and the two intersections p; and ps
of e with the boundaries of B; and Bs.

Consider p;p; as a shield edge in the Main Procedure. In other words, whenever this
edge would be encroached upon by the insertion of a point in P, split this edge in the middle,
to keep it protected at each stage of the algorithm. The original edge of C is thus not in the
protected area, but the process is exactly like in the standard algorithm. We describe now
the modifications with the first version of the proof.

Points are still inserted on the faces of C, because the border of the faces is made with
shield edges (Figure 5). The proof of termination of the protection procedure is analogous:
Lemma 4 can be adapted without difficulty to show that there also exists a length § > 0
such that the protection procedure never splits a shield edge which is a part of an edge and
with length less than 6. The only difficulty is to show the following theorem.

Theorem 12 The modified version of the Main Procedure always terminates.

Proof. Let F, be a region, in a plane @, incident to edge e. The distance between F},
and the regions non-incident to e as well as the distance between F, and the set of center
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points and h-points outside @) can be bounded from below by a constant 6 > 0. Let p be
the circumcenter of a triangle T in F,, added to P. We will show that the circumball of T'
cannot contain a vertex of another face incident to e, which implies that the radius of this
circumball is larger than 6.

Suppose for contradiction that T is encroached upon by a point p’ of P on a face incident
to e. Necessarily, because the angles of the faces of C are obtuse at e, the circumball of T
must intersect e. Let a and b be the intersection points of the boundary of circum(T") with
e. Let a’'b’ be the unique shield edge included in e which is intersected by circum(T'). (The
uniqueness follows from the fact that points in P, like a’ and V', cannot lie in circum(T)).
Let H be the plane orthogonal to F,, and containing e, and H* be the half-space bounded by
H and not containing T'. Clearly, circum(T)NH™ C circum(ab)NH*' C circum(a’d')NH™
(see Figure 8). The point p’ is in circum(T) N H*, hence in circum(a'd’), which means that
p’ encroaches upon the shield edge a'b’ and yields the contradiction.

Figure 8: In the half-space H* (above the edge e in the figure), the part of circum(T) is
included in the part of circum(ab) which is, in turn, contained in the part of circum(a'd’).

The remaining part of the proof of termination of the Main Procedure is exactly the
same as in the proof of Theorem 5. O

5 Experimental results

The algorithm has been implemented and tested using the Computational Geometry Algo-
rithms Library CGAL!. Results for several models are displayed in Table 9 and Figures 13,
11, 14, and 15

The Table 9 gives for each model, the number of vertices of the input PLC (nb input
vertices), the number of 2-faces to which the Delaunay triangulation of input vertices does
not conform (non Delaunay faces), and the number of vertices of the conforming output
triangulation (nb output wvertices). In those examples and in most cases the number of

Thttp:/ /www.cgal.org/
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venus | geological data | triceratops | Umbrella
nb input vertices 711 7566 2832 16
nb non Delaunay faces | 130 1045 2194 5
nb output vertices 2366 25793 27947 122
running time (s) 9 83 570 0.7

Figure 9: Experimental data

vertices in the output conforming triangulation and the number of input vertices are in a
ratio comprised between 3 to 1 and 10 to 1.

The running times, measured on a PC with 500Mhz processor, do not include the com-
putations of local feature size values, because the current implementation uses a very slow
brute force algorithm for it. We are currently designing a data structure devoted to speed
up these computations.

Conclusion

We have presented an algorithm for computing a conforming Delaunay triangulation of any
three-dimensional piecewise linear complex. The most important innovation, compared to
the paper by Murphy et al. [4], is to enclose critical places by balls whose radii fit the local
complexity of the complex, with the use of the local feature size. Our experimental results
show that it is valuable in practice.

The algorithm could be easily modified to guarantee in the resulting mesh the Gabriel
property for any triangle included in a constraint. The next step currently under work is to
investigate how conforming meshes with guarantees on the shape and size of the elements
can be obtained. Several questions remain open: we did not try to find the time complexity
of our algorithm. It would also be interesting, as in [3] in the plane, to find a bound on the
output depending on the size of the initial complex and/or (like in [5]) the Ifs function.
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Figure 10: Venus
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Figure 11: Umbrella
Solid line segments stand for shield edges
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Figure 12: Geological data.
(Courtesy of T-surf and Mr. Reinsdorff)
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Figure 13: Detail of the geological formation
Solid line segments stand for shield edges
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Figure 14: Triceratops
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Figure 15: Detail of the triceratops
Solid line segments stand for shield edges
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