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On the Smith Reduction Theorem for Almost
Periodic ODEs Satisfying the Squeezing Property
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We give a supplement to the Smith reduction theorem for nonautonomous ordinary differ-
ential equations (ODEs) that satisfy the squeezing property in the case when the right-hand
side is almost periodic in time. The reduction theorem states that some set of nice solutions
(including the bounded ones) of a given nonautonomous ODE satisfying the squeezing property
with respect to some quadratic form can be mapped one-to-one onto the set of solutions of
a certain system in the space of lower dimensions (the dimensions depend on the spectrum of
the quadratic form). Thus, some properties of bounded solutions to the original equation can
be studied through this projected equation. The main result of the present paper is that the
projected system is almost periodic provided that the original differential equation is almost
periodic and the inclusion for frequency modules of their right-hand sides holds (however, the
right-hand sides must be of a special type). From such an improvement we derive an exten-
sion of Cartwright’s result on the frequency spectrum of almost periodic solutions and obtain
some theorems on the existence of almost periodic solutions based on low-dimensional analogs
in dimensions 2 and 3. The latter results require an additional hypothesis about the positive
uniformly Lyapunov stability and, since we are interested in nonlinear phenomena, our exis-
tence theorems cannot be directly applied. On the other hand, our results may be applicable
to study the question of sensitive dependence on initial conditions in an almost periodic system
with a strange nonchaotic attractor. We discuss how to apply this kind of results to the Chua
system with an almost periodic perturbation. In such a system the appearance of regular almost
periodic oscillations as well as strange nonchaotic and chaotic attractors is possible.

Keywords: almost periodic function, dimension theory, squeezing property, strange non-
chaotic attractor

Received January 21, 2019
Accepted March 21, 2019

This work is supported by the Leading Scientific Schools of Russia (project NSh-2858.2018.1).

Mikhail M. Anikushin

demolishka@gmail.com

Saint-Petersburg State University

Universitetskiy pr. 28, Peterhof, Saint-Petersburg, 198504 Russia

____ RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 97-108 _E



98 M. M. Anikushin

1. Introduction

1.1. Background

Consider the following ordinary differential equation:

u= f(t u), (1.1)
where f: R x R” — R" is continuous. We denote the Euclidean scalar product in R™ by (-,-)
and the corresponding Euclidean norm of a vector or matrix by |- |. The following conditions

for (1.1) will be considered.

(A1) For every compact set K C R™ there is a constant C' = C(K) > 0 such that
|f(t,u) — f(t,v)] < Clu—v| for all u,v € K and t € R.

(A2) Each maximal solution u(t) = u(t,tg, ug) of (1.1) with initial conditions (to,up) exists at
least on [tg, +00).

(A3) There exist constants > 0 and v > 0 and a constant real symmetric n x n-matrix P
such that for all £ € R and u,v € R" we have

(P(u— ), f(t,u) — f(t,v) + v(u—v)) < =dlu —v[> (1.2)

(A4) The matrix P has j > 0 negative and n — j positive eigenvalues.

In [13] it was shown (see Corollary 8.1 therein) that under conditions (A1)—(A4) and (A6)
(see below) there exist a continuous function @ : R x R/ — R” and a linear map II: R” — R/
such that “nice” solutions (called amenable, see Section 2) to (1.1) are mapped one-to-one by II
onto the solutions of the following equation! in R7:

é = Hf(t7 (I)(O) (t7 C))a (13)

and if f is T-periodic in time, then so is ®© and, consequently, the right-hand side of (1.3).
The latter led to an extension of results of Massera (on the existence of periodic solutions?) and
Cartwright (on the size of the Fourier spectrum of almost periodic solutions). In the present
paper we study the almost periodicity of the right-hand side in (1.3) in the case when the original
differential equation (1.1) is almost periodic and show some consequences of our investigation.
In Section 3 we discuss some applications of our results to the question of sensitive dependence
on initial conditions in a system with a strange nonchaotic attractor. In particular, an almost
periodically forced Chua system will be studied. In [15] it was shown that for certain parameters
the appearance of strange nonchaotic attractors in such a system is possible.

Conditions (A3) (the squeezing property®) and (A4) can be effectively verified for a cer-
tain class of control systems by using frequency-domain methods (see [13] and [3]). For various
applications of frequency-domain methods in the dimension theory of dynamical systems (in-
cluding, in particular, the study of dimensional-like properties of almost periodic oscillations)
we refer to [1, 2, 8]. The Smith method was developed for evolution equations in [11] using the
Yakubovich-Likhtarnikov frequency theorem.

To make precise statements of our results, we need to introduce some concepts.

'For a precise definitions of II and &, see Section 2.

2Later, these ideas were applied by Smith in [14] to study a class of periodic control systems with
delay.
3The term squeezing property comes from inertial manifold theory [12].
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On the Smith Reduction Theorem 99

1.2. Fourier spectrum of almost periodic functions

Recall that a subset A C R is called relatively dense if there is L > 0 such that the set
[a,a + L] N A is not empty for any a € R.

Suppose E is a Banach space with the norm || - || and u: R — E is continuous. For a given
e > 0 the number 7 € R is called an e-almost period of u if supcp ||u(t + 7) — u(t)|| < € holds.
Denote the set of all e-almost periods by 7:(u). The function u is called E-almost periodic
(or simply, almost periodic) if the set 7-(u) is relatively dense for every ¢ > 0.

For every E-almost periodic function u there is a formal Fourier series (see [9])

u(t) ~ Y Upe™, (1.4)
k=1

with the Fourier coefficients Uy € EC and the Fourier exponents A\r € R. Let modyz(u) be the
least additive subgroup of R containing the Fourier exponents A1, Ag,.... The group modz(u)
is the Z-module of u. The least Q-vector space in R containing A1, A, ... is called the Q-
module of u(-) and is denoted by modg(u). For two almost periodic functions, say u and v, it
is convenient to use a subgroup mody(u,v) generated by the union of their Fourier exponents.
The set modg(u,v) can be introduced analogously.

Now consider the following assumptions.

(A5) The function f(-,u) is almost periodic uniformly in u from compact subsets of R™.

(A6) There exists at least one amenable solution to (1.1).

REMARK 1. Condition (A5) means that f is almost periodic as a function ¢t — f(¢,-) € C(IC;R™)
for every compact K C R™. We say that the corresponding e-almost periods are the e-almost periods
of f(-,u) uniformly in v € K. Since C'(IC; R™) is a Banach space, we have the introduced Fourier theory
for such functions, namely, one can write

Ftu) ~ Y Fi(u)es, (1.5)
k=1

where Fi(-), k = 1,2,..., are continuous functions that are not identically zero on R™. Thus, we can
consider the Z-module modz(f) of f generated by all the exponents from (1.5). In [4] Theorem 1 states
that if u(-) is an almost periodic solution to (1.1) and f(¢,u(s)) is independent of ¢ for every s, then the
inclusion modz(u) D modz(f) holds. We have to note that this cannot be true since some of the Fourier
coefficients Fi(-) may vanish on the closure of u(-), i.e., on the set M,, = Clu(R). From this observation
a simple counterexample to the statement can be constructed. However, even if we consider the Fourier
expansion of f with the coefficients that do not vanish on M,, Theorem 1 from [4] in the claimed
generality still seems to fail*. So, we have to emphasize what do we mean by such modules containments
for functions like f(t,u) to avoid any misunderstandings in the future. Namely, for a compact set K we
denote by f|,C the almost periodic function ¢ — f(¢,-) € C(KC;R™). It is clear that the module mOdz(f|,C)
is generated by the Fourier exponents from (1.5) for which the corresponding Fourier coefficients do not
vanish on K. Now suppose we have a function g: R xR/ — RJ and g(-, ) is almost periodic in ¢ uniformly
on ¢ from compact subsets of R?. We use the notation modz(g) € modz(f) meaning that for every
compact subset K1 in R’ there exists a compact subset Ky in R™ such that modz(g|,c1) C modZ(f|,C2).

4There is a one more scenario of “loss of exponents” (i.e., the conditions under which the Z-module
of the solution may not contain a given exponent of f) that may happen under the conditions of Theo-
rem 1 in [4].
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100 M. M. Anikushin

Note that the property modz(g) € modz(f) is stronger than the inclusion modz(g) C modz(f). Similar
definitions may be given for the Q-modules of such functions.

Unfortunately, we have to restrict the right-hand sides of (1.1) as in the following assumption
(see also Remark 2 below).

(A5*) Suppose that f(t,u) = h(u) + f(t), where f(t) is R™-almost periodic.

1.3. Main results

The main theorem of this paper is as follows.

Theorem 1. Suppose that assumptions (Al)—(A4), (A5*) and (A6) hold; then the
Sfunction <I>(O)(-, () is almost periodic uniformly in ¢ from compact subsets of R? and we have

modz(®?) € modz(f). (1.6)

REMARK 2. It seems that for more general (than it is required in (A5%*)) right-hand sides the
inclusion in (1.6) may fail even if we know that the function ®(®) is almost periodic. This is due to the
fact that the function ®(©) operates with solutions and the almost periodic ones may have additional
frequencies some of which ®© may inherit. However, the latter is impossible under condition (A5%).
The specificity of that is in the last inequality in (2.9).

The proof of Theorem 1 is outlined in the next section. Now we are going to discuss some of its
corollaries.

An almost periodic solution u*(-) to (1.1) may have the Fourier exponents that do not
belong to the Q-module of f. It turns out that the dimension of the subspace generated by
these additional exponents is bounded from above by n — 1. Namely,

modg(u*, f)
modg(f)

The bound in (1.7) was shown by Cartwright (see [4]) and reproved by O’Brien (see [10]). As

a corollary of our Theorem 1 we may sharp (1.7) as in the following theorem?®.

Theorem 2. Assume that (A1l)—(A4) and (A5*) are satisfied. Let u*(-) be an almost
periodic solution to (1.1); then

dim <n-—1. (1.7)

modg(u*, f) )
modg(f) 0T o

Moreover, the function g(t,¢) = ILf(t, ®©)(t,¢)) is almost periodic and modz(g) C modz(f).

dim

For the proof of Theorem 2 see the next section.

Analogously to Theorem 7 in [13], extending the results of Massera to periodic ODEs
satisfying (A4) with j = 2, due to our Theorem 1 we can obtain below the theorems on the
existence of almost periodic solutions to (1.1). Here we use well-known results in low dimensions,
namely, in dimensions 2 and 3 (see [9]). These theorems are stated and proved in the next section
(see Theorems 3 and 4).

5The estimate in (1.8) can be shown by using only conditions (A2)-(A3) and without referring to
the Smith projection theorem. To get this one has to follow Cartwright’s proof in [4] to construct an
almost periodic flow on the set of initial values of almost periodic solutions. The map II defined in
the next section takes the flow into R? (since the initial values belong to an amenable set on which IT
is a homeomorphism), where the Cartwright theorem can be used. In the proof of our Theorem 2 we
establish some additional properties required for further investigations.
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2. The proofs

We need the following lemma from [7].

Lemma 1. Letu: R = E and v: R — F be two almost periodic functions with the values
in some Banach spaces E and F. The following conditions are equivalent:

1) modz(u) C modgz(v);

2) For every € > 0 there exists § > 0 such that Ts(v) C Tz(u).

Along with (1.1) consider the family of ordinary differential equations for 7 € R
w=o"f(t,u) = f(t+ 1,u). (2.7)
It is clear that conditions (A1)—(A4) are satisfied for (2.7). The solution u(-) to (2.7) is called
amenable if it exists on the left semiaxis and

0

/ e u(s)|?ds < oo. (2.1)

— 00

Suppose A (o7 f) := {u(t) | u(-) is an amenable solution to (2.7)}. The set 2A;(c” f) is an
amenable set for (2.7).

Put V(u) := (Pu,u), where P is from (A3). By (A4) there exists a linear transformation @
sending (¢,1) € RY x R"™J to u such that for u = Q(¢, 1)’ we have V(u) = |n|> — [¢|?. Define a
linear map IT: R — RJ as TTu := (. Since |Q'u| = [¢|? + |n|> we have

V(u) + 2[Tul? = |Q tul> > [TTul?. (2.2)

An important property of two amenable solutions u(-) and v(+) to (2.7) is that V(u(t) —v(t)) <0

(see Lemma 1 on p. 687 in [13]). Putting u = u(t) € (07 f), v =v(t) € (o7 f), Hu(t) = 1
and ITv(t) = (2 from (2.2), we obtain
Q7™ 10— Gl S Ju— vl <20QF G — Gl (233)

From (2.3) it follows that II: (o7 f) — A (07 f) is a homeomorphism. Theorem 8 in
[13] states that under assumptions (A1)-(A4) and (A6) we have I, (07 f) = R/ for all t € R
and 7 € R.

Now the map ®(7)(¢,¢) is defined by the identity ®(7) (¢, IIu) = u for every u € (7). By
Corollary 8.1 in [13] (which we call the Smith reduction theorem) the relations ¢(¢) = ITu(t) and
u(t) = ®)(t,¢(t)) provide a one-to-one correspondence between the amenable solutions u(-)
to (2.7) and the solutions ¢(-) to the following equation in R:

C(t) = o™ f(t, 27 (2, ¢)). (2.4)

Now we are going to prove Theorem 1.
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Proof. 1Tt is clear that u(-) is an amenable solution to (1.1) iff v(¢) := u(t+7) is an amenable
solution to (2.7). From this we get

Apyr (f) = Ae(07f). (2.5)
One may rewrite (2.5) in terms of ®(7) as

M (t,¢) = V(L +7,¢), forall ¢ € R7, (2.6)

Now fix ¢y € R and (p € K1 C R for a given compact set ;. From (2.6) we have
Ot +7,¢) — 2O (t0, Co) = @ (t0, Co) — 2V (t0, Co). (2.7)
So, there are amenable solutions u(-) of (1.1) and v(-) of (2.7) such that Tu(to) = Co, Iv(te) = Co,

O)(t,¢o) = ultg) and @ (ty, ) = v(tp). From (2.7) and (2.2) we have

2O (tg +7,¢) — @ (to,Co)‘2 = [u(to) — v(to)|? < |QI? |Q (ulte) — v(to))|”

= QP - [V(u(to) - v(to)) + 2 M(u(to) - v(to))?]  (28)
= 1Q* - V(u(to) — v(to))-

Suppose 7 is an e-almost period of f from (A5*). From (A3) for any s € R we deduce

d Vs vs Vs . .
< (7 V (u(s)=v(s))) = 2ve™V (u(s) - U(S))+2€2 (P(u(s) —v(s)),u(s) — 0(s))

= 2™ (P(u(s) = 0(s)). f (s u(s)) — (57 0() - v(u(s)~o(s))) )

~206*"*|u(s) — (S)\2+2|P|562”3|U( ) = v(s)l-
0

Since the integral [ €2”* |u(s) — v(s)|* ds converges there exists a sequence tj, — —o00 as k — 00
such that eV (u(t;) — v(ty)) — 0. Integrating (2.9) on [t,to] and taking it to the limit
as k — oo we get

to

210V (u(to) — v(to)) < —26 / e2|u(s) — v(s)2ds + 2| Ple / 2 u(s) — v(s)|ds.  (2.10)
Since the quadratic function —az? + bz, where a,b > 0, reaches its maximum at z = %, we

have )

P
V(u(to) —v(tp)) < ‘5—‘52. (2.11)

v

From (2.8) and (2.11) we obtain
(0) 0) 2 2 2 \P\Z

O™ (to + 7,C0) — 2 (t0, Go)| < [QITV (ulto) — v(to)) < QI (2.12)

Note that the last estimate is independent of ty € R and (y e K1 (due to (A5*) it holds even
for all ¢y € R7). Therefore, 7 is an Ce-almost period of ®©)(-,¢) for C = |Q| - |P| - (v)~/?
uniformly in ¢ € Ky. From Lemma 1 it follows that modz( ) ‘ICI C modz(f). Thus, the proof
is finished. g

The proof of Theorem 2 is as follows.
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On the Smith Reduction Theorem 103

Proof. Since u*(+) is an almost periodic solution to (1.1) for (*(¢) = llu*(¢), we have that
¢*(+) is almost periodic and the inclusion modz(¢*) C modyz(u*) holds due to Lemma 1.

Now let 7 be an e-almost period for ¢*(-) and f. Put v*(¢) := u*(t + 7) and from (2.2) we
have

(1) = v (O <IQP2 - [¢(t) = ¢t + 1) + V(' (1) — v*(1)]. (2.13)

As in the proof of Theorem 1 we can estimate V(u*(t) — v*(t)) < Ce for some C' > 0. There-
fore, Lemma 1 guarantees that modz(u*) C modz(¢*, f) and, consequently, modyz(u*, f) =
= modz(C*, f). Put g(t,¢) = ILf(t, 0 (¢,¢)). Using (2.2) we get

96t +7.0) — 96, O < 1Q7|- 1t + 7,20t +7,0)) — (¢ +7,20(t,0))]

2.14
Q7 £t + 1,20 (t,0) - f(t, 2V, ), .

and in virtue of (A1) and (A5*) it follows that modz(g) € modz(f,®©) and, by Theorem 1,

o

modz(g) € modz(f). Therefore,

dim 0o /) _ o modo(C 1) g mode(Go) (2.15)
modg(f) modg(f) modg(9)
where the last inequality is due to Theorem 2 in [4]. O

To study the existence of almost periodic solutions we need to consider the limiting equations
(Egs. (2.f) below). The hull H(f) of f is the set of all functions f(t,u) such that for some
sequence {t;}7°, we have f(t+ty,u) — f(t,u) uniformly on R x K for any compact I C R™.
The topology on H(f) is the topology of uniform convergence on the sets R x K where £ C R”
is compact. It is obvious that the limiting equations satisfy an analog of (A1), (A3) and (A4).
However, to make further developments we have to postulate that an analog of (A2) holds as
in the following assumption.

(A7) For any f € H(f) each maximal solution of the equation

w= f(t,u) (2.1)
with initial conditions (o, ug) exists at least on [tg, +00).

Before giving proofs of the existence theorems we state some observations concerning the
required properties of the projected equation and corresponding to it limiting ones. By (A1),
(A7), (A3), (A4) we can apply the Smith reduction theorem to (2.f) to get the auxiliary
function ® and the corresponding projected equation

¢ =TI/ (t,(t,()). (2.16)
Now put g(t,¢) = ILf (t, ) (t,¢)) and for any § € H(g) consider the equation
¢ =4(t.0)- (2.9)

It turns out that every limiting equation of the projected equation, i.e., Eq. (2.g) is a pro-
jected equation for some limiting equation (2.f). This is the content of the following lemma.
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Lemma 2. FEvery Eq. (2.g9) has the form as in (2.16). In other words, for any g € H(g)
there are f € H(f) and the corresponding & such that g(t, ) = Hf(t, ‘f(t, €)).

Proof. Suppose fk € H(f) converges to some f € H(f) as k — co. Repeating the argument
as in the proof of Theorem 1 (condition (A5*) is necessary), we may show the convergence for
corresponding auxiliary functions, namely, that d;, — &. Now the required statement follows
from this observation. Indeed, suppose g(t + tx,() — §(¢,(). By the Bochner theorem (see, for
example, [9]) we may assume (taking a subsequence if necessary) that f(t +t,u) — f(t,u) and
Ot + t,¢) — i)(t, ¢). It is evident that g(¢,() = Hf(t, <i>(t, (¢) from the expression of g. But we
have just proved that & corresponds to Eq. (2.f). Therefore, §(t,¢) is the right-hand side of the

A~

projectied equation for the limiting equation (2.f). O

From Lemma 2 it follows that any solution to Egs. (2.g) exists on the whole real line, is
unique and depends continously on the initial conditions due to the presence of this property
for projected equations obtained by the Smith reduction theorem. However, to study almost
periodic solutions we need the continuous dependence in the extended space, which we will
postulate in the next assumption.

(A8) For all t > 0 the map (g, (o) — ¢(t, 3, o), where ((t,3,(p) is a solution of (2.¢) such that
¢(0,4,¢) = (o, is continuous as a map from H(g) x R/ to R7,

Also, we need the so-called positive uniform Lyapunov stability on compact sets as stated
in the next assumption.

(A9) For every compact set  C R™ and every € > 0 there is § > 0 such that |u(t, %o, ug) —
—v(t,tg,vp)| < e for all t > ty provided that |ug — vg| < 0 and ugp, vy € K.

Note that the projected equation inherits the positive uniform Lyapunov stability on com-
pact sets since due to (2.3) the auxiliary function ®©)(¢,¢) is globally Lipschitz in ¢ uniformly
intelR.

Theorem 3. Let assumptions (Al)—(A4), (A5*) and (A7)—(A9) hold. Suppose that
j =2 and (1.1) has a solution bounded on [ty,+0o0); then (1.1) has an almost periodic solu-
tion u*(-) with modg(u*) C modg(f). Moreover, any bounded solution is almost periodic.

Proof. Let v(t) = v(t,to,v0) be a solution to (1.1) bounded on [tg,+00]. We will show
that there exists a solution bounded on (—o0,400). For some M > 0 we have |v(t)] < M
for all t > tg. Let 74, k = 1,2..., be a sequence of ei-almost periods for f(-,u) uniformly
on |u| < M and such that 7, — 400, e — 0 as k — oo. Consider vi(t) := v(t + 1) which
is a solution to (2.7%). Note that wvg(t) is defined for ¢ € (t9 — 7%, +00) and |vg(t)] < M.
Therefore, the sequence v(+) is uniformly bounded and equicontinuous. By the Arzela—Ascoli
theorem and Cantor’s diagonal argument we may subtract a subsequence which converges on
every compact interval to some v*(-). From the integral equation equivalent to (1.1) it is clear
that v*(+) is a solution to (1.1) bounded on the whole real line. In particular, v*(-) is amenable
and, consequently, (A6) holds. The corresponding projected equation (1.3) (which is almost
periodic due to Theorem 1) has a bounded solution ITv*(-). From Theorem 5, p. 118 in [9]
we get the existence of an almost periodic solution (*(-) with modg(¢*) C modg(g), where
g(t,¢) = TLf(t,®©(¢,¢)) is the right-hand side of (1.3). Denote the corresponding almost
periodic solution to (1.1) by w*(-), i.e. u*(t) = ®O)(¢,¢*(¢)). From the proof of Theorem 2 and

Theorem 1 we have modg(¢*) € modg(g) € modg(f) and modg(®®) € modg(f). Therefore,
modg(u*) € modg(®©), ¢*) C mon(f).
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On the Smith Reduction Theorem 105

Moreover, by Theorem 5, p. 118 in [9] every bounded solution to the projected equation is
almost periodic. By Theorem 1 ®(©) takes these solutions to almost periodic solutions of (1.1).
Therefore, any bounded solution to (1.1) is almost periodic. 0

o

REMARK 3. By (A5%) any almost periodic solution u(-) to (1.1) must have modz(u) D mody(f)
(however, as we stated in Remark 1, this inclusion may fail for more general right-hand sides) and by
Theorem 2 for j = 2 the dimension of the space generated by additional exponents is < 1.

To apply the existence theorem in dimension 3, we need an additional hypothesis.

(A10) There are a nonempty compact convex subset By C R™ and a constant 7" > 0 such that
u(t,0,ug) € B for all t > T provided that ug € By.

Theorem 4. Let assumptions (Al)—(A4), (A5*) and (AT)-(A10) hold. Suppose
that j = 3; then (1.1) has an almost periodic solution u*(-) with modg(u*) C modg(f).

Proof. From (A10) we have a solution bounded in [0, +00), and as in the proof of Theo-
rem 3, we can establish the existence of a solution to (1.1) that is bounded on the entire line (and
therefore amenable). Thus, (1.1) satisfies (A6) and we can consider (1.3). It is clear that (1.3)
satisfies (A9) and (A10) with IIB, instead of By. Therefore, Theorem 6, p. 118 in [9], gives
us the existence of an almost periodic solution ¢*(-) with modg(¢*) € modg(g). By Theorem 1
the function u*(t) := ®©)(¢,¢*(t)) is an almost periodic solution to (1.1). As in the proof of

o

Theorem 3 we have modg(u*) C modg(f). O

3. Applications

3.1. Verification of main conditions

Consider the following class of control systems:
i = Au+ bp(cu) + f(8) = f(tu) (3.1)

with a real n x n matrix A; n-vectors b and ¢; a scalar continuous function ¢(-) and an R™-almost
periodic function f(t). Suppose that for some constants 0 < s < 3 < oo the function ¢(-)
satisfies
1) = p(v2)
V1 — U2
Theorem 5. Let ¢ from (3.1) satisfy (3.2); then assumptions (A1), (A2) and (A7) hold
for (3.1). Moreover, if (A3) and (A4) are satisfied, then (A8) holds too.

1 < s for all vy, v9 € R. (3.2)

N

Proof. Tt is obvious that (A1) holds. Since the nonlinearity ¢ is globally Lipschitz, any
solution of (3.1) can be extended to the whole real line. Therefore, (A2) is satisfied.

Now let f € H(f). It is clear that f(t,u) = Au + bp(c*u) + f(t), where f € H(f). By the
previous arguments we have (AT).

Suppose (A3) and (A4) are satisfied for (3.1) and, consequently, for any system (2.f),
i.e., we can apply the Smith reduction theorem and consider the projected equations (2.g). In
our case g(t,¢) = ITh(®©) (¢,¢)) + T1f(t), where h(u) = Au + bp(c*u) is globally Lipschitz. Now
let ¢ > 0 be fixed and suppose that g € H(g) converges to some § € H(g), Co(k) converges
to (o € R7. Let us show that (y(t) := ((t,gk,gé’“)> converges to ((t) := ¢ (t,9,¢p). Indeed,
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consider Ag(s) := (x(s) — ((s). We have the equality
t
A0 = A0)+ [ (G5, Gs) = a6, (5)) . (33
0
In the identity

(s, Cr(s)) = 9(s,¢(5)) = [9r (s, Cr(s)) — Gr(s,C(5)] + [Gk(s,C(s)) = (s, C(s))] (3.4)
the second term in square brackets is small due to the convergence of gi. To deal with the first

term we use Lemma 2 to get the functions f, € H(f) and & such that ji(s, ¢) = (P (s, ¢)) +

+1I fk (s). Since II, h and &, are globally Lipschitz,% there exists a constant C' > 0 (independent
of k) such that

19k (5, Cr(5)) = Gr(s,C(5))] < ClGr(s) — C(s)| = ClA(s)]. (3.5)

Therefore, for some sequence €, — 0 we have
¢
Bult)] <2 +C [ 1Al (3.6)
0

From the Gronwall inequality we conclude that Ag(t) — 0 as k — oo. The proof is finished. O

Now let W (p) := c*(A —pI)~1b be the transfer function of the linear part of (3.1). Suppose
that for some v > 0 the matrix A 4+ vI has j eigenvalues with positive real parts and n — j
eigenvalues with negative real parts and the pair (A + vI,b) is stabilizable”. In this case the
following frequency domain condition can be checked to get the matrix P such that (3.1) will
satisfy assumptions (A3) and (A4).

(F1) Re ([1 + >aW(iw — v)]*[1 4 W (iw — v)]) > 0 for w € [—00, 0.

This condition is well-known in control theory ([3, 8, 16]). For the proof of this fact we refer
to [16]. It is worth noting that the above properties can be verified for control systems with
several nonlinearities (see [16]).

3.2. Sensitive dependence on initial conditions

We start with the following

Theorem 6. Suppose that (F1) is satisfied for (3.1) with the matriz A+ vI having j = 2
eigenvalues with positive real parts. If (A9) is satisfied, then any bounded solution to any
limiting equation for (3.1) is almost periodic.

Proof. We apply Theorem 3 to each of the limiting equations for (3.1). This is possible
since (A9) automatically holds for limiting equations. O

Now we consider Chua’s oscillator with an almost periodic force:
&= oy — = — h(z)),
y=x—y+=z, (3.7)
= —(By+72) + 1)

6For @, by (2.3) the Lipschitz constant depends only on the matrix P in (A3).

TA pair of matrices (A, B) with sizes n x n and n x k is called stabilizable if there exists an n x k
matrix K such that any eigenvalue of the matrix A + BK™ is located to the left of the imaginary axis.
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Here h(z) = mla:—i-%(mo—ml)(\x—i—l] —|z—1]) and «, 3,7, mo, my are parameters. System (3.7)

can be considered as (3.1), where b = [a,0,0]7, ¢ = [1,0,0]7, —p(c) = mio + %(mg —my) X
(lo + 1] —|o —1|) and

—a o 0
A=1|11 -1 1. (3.8)
0 =8 —v

In [15] the so-called strange nonchaotic attractor in (3.7) was discovered for the values of pa-
rameters®: o = 5.8333, B = 12.8012, v = 0, mg = —1.1862 and m; = —0.64. We will show
that with these parameters system (3.7) satisfies (F1) with j = 2. In this case the matrix A
has the eigenvalues: \; ~ —6.607, A\23 ~ —0.113 £ 3.360. We take v = 5 and »; = —my =
= 0.64, 3.0 = —mp = 1.1862 in (3.2). It can be checked that for these parameters we have
Re ([1 4+ >0 W (iw — v)[*[1 4+ s0W (iw — v)]) > 0, w € R. Therefore, condition (F1) holds. The
stabilizability of (A + vI,b) in this case can be verified too, for example, by checking its con-
trollabity? (this fact is well-known in control theory, [16]).

We say that system (3.1) has sensitive dependence on initial conditions if the contrary
to (A9) holds, i.e., the system is not uniformly positive Lyapunov stable. It was proved in [5]
that certain classes of classical strange nonchaotic attractors (see [6]) have sensitive dependence
on initial conditions (in a much stronger sense than considered in our work). To understand
this phenomenon, for example, in model (3.7), one may need to know some structure of the
attractor in the absence of sensitivity. Thus, if one supposes that the system has no sensitive
dependence on initial conditions (in the sense given above), then from Theorem 6 we have the
property that all bounded solutions are almost periodic. In particular, any trajectory on the
attractor is almost periodic. This fact together with some knowledge of the structure of these
almost periodic solutions may contradict to other established properties of the attractor.

Moreover, under the conditions of Theorem 6 something more can be shown. Namely, not
only all bounded solutions are almost periodic, but every solution which remains bounded in
the future converges to one of these almost periodic solutions as ¢ — 4o0. Thus, under the
condition of the uniformly positive Lyapunov stability the only observable regimes of the system
are almost periodic. We will deal with this problem elsewhere in a more expanded form.
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