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Abstract

Extended-spectrum β -lactamases (ESBLs) are defined as those
bacterial enzymes which are capable to hydrolyze most beta-lactam
antibiotics, including penicillins, cephalosporins, and the monobactam
aztreonam and especially expanded spectrum cephalosporins such as
ceftriaxone, cefotaxime, ceftazidime. Worldwide, ESBLs are considered
to be a serious threat, especially in hospitalized and immunocompro-
mised patients. There is a growing prevalence and dissemination of
ESBLs in bacterial isolates all over the world. Individuals at high risk
are those exposed to bacterial species harboring ESBLs as they result
in treatment failure in many cases. Thus, there is an urgent need to
detect ESBLs producers with the formulation of strategic initiatives that
participate in controlling their prevalence and dissemination. The current
review aims to illustrate the importance of ESBLs and give a simple
definition of their major types emphasizing on their substrate profiles
and characteristics.

1. Introduction:
It is well established that antimicrobials are employed for

treating and preventing microbial, particularly bacterial, dis-
eases in both humans and animals. They are produced from
synthetic, natural, or semi-synthetic origins and inhibit or
kill microbial cells [1], [2]. Antimicrobial agents have saved
millions of lives worldwide in the past years by treating infec-
tions and preventing them. Unfortunately, the emergence of
antimicrobial resistance has accompanied their introduction
and usage in the medical field posing a growing global health
challenge and threat [3]. Antimicrobial abuse, misuse, and
overuse in different sectors and fields (medical, veterinary,
agricultural, and industrial) are reported as the leading causes
of what we can call an antimicrobial resistance pandemic [2],
[3]. Deaths resulting from multidrug-resistant bacterial in-
fections are expected to rise from seven hundred thousand to
more than10 million per year, and the cost may exceed 100
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trillion US dollars by the year 2050 [3], [4], [5], [6].
Bacterial possession of β -lactamases is considered as the

most prevalent mechanism used to overcome the fatal effect
of β -lactams through the breaking of the β -lactam ring which
is crucial for the bactericidal action of the drug [7], [8], [9].
The resistance to β -lactams developed even before the dis-
covery of the first antibiotic, penicillin. Penicillinase (the
first β -lactamase known) was characterized in Escherichia
coli (previously Bacillus coli) before the use of penicillin
medically [10]. Chromosomally mediated β -lactamases are
naturally occurring in many Gram-negative bacteria. Such
enzymes are believed to be originated from bacterial penicillin
binding proteins (PBPs), as their sequence share some homol-
ogy with them. It is presumed that this evolution was likely
because of the co-occurrence of soil microorganisms which
produce β -lactam antibiotics and exert their selective pressure
in the surrounding environment [11]. The enzyme TEM-1,
a plasmid-encoded enzyme, was reported in the 1960s [12].
This enzyme was initially characterized in E. coli recovered
from a Greek patient called Temoniera [13]. Being transpo-
son and plasmid-encoded has assisted the dissemination of
TEM-1 to other bacteria. Within several years, this enzyme
had been spread globally in some species of the Enterobacteri-
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aceae, Haemophilus influenza, Pseudomonas aeruginosa, and
Neisseria gonorrhoeae [7], [14]. SHV-1 (sulfhydryl variable)
is another plasmid-encoded enzyme found commonly in E.
coli and Klebsiella pneumoniae strains. SHV-1 was firstly
detected in 1979. In general, it is chromosomally mediated in
K. pneumoniae strains, however, it is commonly located on
plasmid in the isolates belonging to E. coli [15].

In an attempt to overcome the new and growing challenge
imposed by β -lactamases, many semi-synthetic β -lactam an-
timicrobials have been introduced that were specially manu-
factured to resist β -lactamase activity. Though, new variants
have evolved with each new class causing resistance to those
antimicrobials. The selective pressure imposed by the ran-
dom use and abuse of the antimicrobials in health settings has
participated in the emergence of new β -lactamases with ex-
panded hydrolytic capabilities. Oxyimino-cephalosporins was
one of the new antimicrobials introduced and became broadly
used for the management of serious diseases, especially those
caused by multi-resistant Gram-negative bacilli in the 1980s
[7], [14]. Not surprisingly, the emergence of the β -lactamase
variants capable of destroying oxyimino-cephalosporins was
quick. SHV-2 was the first enzyme of this group, it was firstly
described in a Klebsiella ozaenae strain recovered in Germany
[16]. Due to their extended range of action and hydrolytic
activity, particularly towards oxyimino-cephalosporins, these
enzymes were termed extended-spectrum β -lactamases (ES-
BLs). At present, several hundred variants of ESBLs have
been characterized. These enzymes have been reported glob-
ally in different bacterial species especially those belonging
to Enterobacterales and P. aeruginosa [7], [14], [17]. This
review aims to give a simple definition of ESBL types and
their impact on the global threat of antimicrobial resistance.

2. ESBLs:
ESBL enzymes represent an important category of serine

enzymes that belong to class A of Ambler’s molecular scheme
and 2be subgroup of the functional scheme of Bush [18],
[19]. They are widely disseminated in nature and categorized
into numerous groups Table 1. ESBL-producing bacterial
strains are distinguished by having the power to resist and
hydrolyze numerous β -lactam agents i.e., penicillins, first
cephalosporins, aztreonam (a monobactam), and oxyimino-β -
lactams, such as ceftazidime, cefotaxime, with no ability to
hydrolyze carbapenems or cephamycins. However, they are
affected by clavulanic acid, tazobactam, and sulbactam [9].
The largest subset of 2be subgroup was a result of mutations
that lead to substitutions in amino acid sequences of TEM-
1, SHV-1, and TEM-2 that expanded their action to include
oxyimino-β -lactams and decreased, in return, their hydrolytic
power for cephaloridine and benzylpenicillin [9][14].

Subsequently, the rapidly proliferated Cefotaxime- hy-
drolyzing β -lactamase from Munich (CTX-M) enzymes were
functionally similar to SHV and TEM enzymes and were re-

lated to the chromosomally encoded β -lactamases of Kluyvera
[14]. The majority of these variants attack cefotaxime more
rapidly than ceftazidime (hence the name), and a number of
them can attack cefepime as well. Contrary to the SHV or
TEM enzymes, CTX-M variants are inhibited by tazobactam
more readily than clavulanic acid [20], [21]. Furthermore,
other types of ESBLs are also present, they are less com-
mon and unrelated to CTX-M, SHV, or TEM. Examples of
these enzymes are SFO-1, BEL-1, TLA-1, BES-1, TLA-2,
and members of the families VEB and PER. Typically, 2be
subgroup enzymes remain susceptible to clavulanic acid, this
characteristic is usually employed by clinical laboratories in
the detection test for ESBLs [9], [22]. Additionally, active
site extension which permits the activity increase against oxy-
imino drugs may also make the enzymes more susceptible to
inhibitors such as tazobactam and clavulanic acid [23]. Gen-
erally, ESBLs are sensitive to cephamycins, and the majority
of ESBLs-producing bacteria are sensitive to cefotetan and
cefoxitin. Nevertheless, it has been documented that strains
expressing ESBLs can show resistance to cephamycins be-
cause of the loss of a porin protein in the outer membrane
[24], [25], [26].

β -lactamase variety has numerous reasons, the serine en-
zymes are very ancient once. It is estimated that they have
been developing and evolving for almost 2 billion years, even
before the bacterial divergence into Gram-positive and Gram-
negative species [27]. They have been found in different
bacterial species living in varied environments and hence are
exposed to various selective pressures. Furthermore, ESBL
genes have used the horizontal gene transfer mechanisms,
i.e., conjugation and transduction, to transfer to new bacte-
rial hosts and to become part of multi-resistance transpos-
able elements now spreading in clinical and environmental
isolates [14], [17]. In consequence, it is unfortunately true
expectation that these enzymes will persist and continue to
develop. ESBL-expressing strains, usually correlated with
antimicrobial-resistant infections, are continuously reported
with increasing rates worldwide which represents a univer-
sal threat facing the control and treatment of hospital- and
community- acquired bacterial infections, especially those
caused by Gram-negative bacilli with multiple drug-resistance
such as Klebsiella spp., Pseudomonas aeruginosa, and Es-
cherichia coli. which will limit therapeutic options and may
lead to treatment failure [6], [9].

3. Types of ESBLs:
Many ESBL enzymes are derived from the original SHV

or TEM β -lactamases and categorized in several groups with
different designations Table 2 [18], [23] The ESBLs pheno-
type usually evolved as a consequence of point mutations at
selected loci. SHV and TEM enzymes are most common
in bacterial strains belonging to Klebsiella pneumoniae and
Escherichia coli. As well, they have also been detected in
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Table 1. Classification and characteristics of selected groups of β -lactamases (mainly ESBLs).

Functional Molecular Preferable Inhibition by: Main characteristic(s) Example(s)
group class substrate(s): CA* EDTA

1 C cephalosporins no no hydrolyze cephalosporins more AmpC, ACT-1, CMY-2
efficiently than benzylpenicillin FOX-1, MIR-1

hydrolyze cephamycins

2a A Penicillins yes no hydrolyze benzylpenicillin more PC1
efficiently than cephalosporins

2b A Penicillins, yes no Hydrolyze benzylpenicillin and TEM-1, TEM-2, SHV-1
early cephalosporins cephalosporins equally

2be A Extended-spectrum yes no preferentially hydrolyze TEM-3, SHV-2, CTX-M-15,
cephalosporins, oxyimino-drugs (cefotaxime, CTX-M-15, PER-1,
monobactams ceftazidime, cefepime, aztreonam) VEB-1

2de D Extended-spectrum variable no efficiently hydrolyzes oxacillin or OXA-11, OXA-15
cephalosporins cloxacillin and oxyimino-drugs as well

2ber A Extended-spectrum no no inhibitor resistant, hydrolyze TEM-50
cephalosporins, monobactams oxyimino-drugs

2br A Penicillins no no resistant to tazobactam, clavulanic TEM-30, SHV-10
acid, and sulbactam,

∗CA: Clavulanic acid

other genera of Enterobacteriaceae like Providencia spp. and
Proteus spp.

Table 2. Nomenclature origin of the major groups of the
Extended-spectrum β -lactamase.

Group Designation Designation Origin

TEM Temoneira, patient name

SHV Sulfhydryl reagent variable

CTX-M Cefotaxime-hydrolyzing β -lactamase from Munich

IRT Inhibitor-Resistant TEM

OXA Active on oxacillin

GES Guiana-extended spectrum

VEB Vietnam Extended Spectrum β -lactamase

BEL Belgium Extended β -Lactamase

SFO In Serratia fonticola

OXY In K. oxytoca

TLA Tlahuicas Indians (Mexican people group)

PER Pseudomonas Extended Resistant

CME From Chryseobacterium meningosepticum

BES Brazil Extended Spectrum

3.1 TEMs:
These enzyme variants are originated from TEM-1 enzyme,

which was plasmid-mediated and firstly reported in the early
1960s [12]. It was initially characterized in an E. coli strain
recovered in Greece from a local patient named Temoneira
[13]. TEM-1 is considered the most frequently expressed
enzyme in Gram-negative strains. It has been reported that
almost 90% of ampicillin-resistant E. coli isolates are possess-
ing this enzyme [8]. In addition, TEM-1 is also one of the
major mechanisms used in resisting penicillin and ampicillin
increasingly seen in N. gonorrhoeae and H. influenza clinical

isolates. This enzyme can hydrolyze the first cephalosporins
such as cephaloridine, cephalothin, and penicillins. TEM-2,
as the first variant of TEM, has one substitution (glutamine
for lysine at position 39) in comparison to the parent enzyme
[28]. Although changing the isoelectric point (pI) from (5.4)
to (5.6), it has no effect to alter the substrate profile. However,
TEM-2 acted as the originator of several TEM variants with
extended-spectrum activity [7], [14]. TEM-3, originally re-
ported in K. pneumoniae in France in the late 1980s, was the
first extended-spectrum TEM enzyme reported [29]. In the
beginning, the enzyme was known as CTX-1, as it was more
active against cefotaxime [30]. At present, nearly 243 various
TEM variants have been reported and characterized, some of
them are inhibitor-resistant, but most of them are ESBLs.

Amino acid alterations usually take place at a few specific
and known number of positions [7]. These alterations result
in numerous modifications in the enzyme phenotype, i.e., the
ability to attack certain antimicrobials like cefotaxime and
ceftazidime, or changing the enzyme isoelectric points (usual
range: 5.2 - 6.5). Several residues are particularly signifi-
cant for generating the extended spectrum phenotype when
alterations take place at that positions. For example, arginine
substitution to either histidine or serine at position 164, gluta-
mate to lysine at position 104, glutamate to lysine at position
240, and glycine to serine at position 238. It is noteworthy
that among these substitutions, the alteration of glycine to
serine and glutamate to lysine appear to have the most influ-
ence on the production of the extended-spectrum phenotype
of the enzyme [14]. Furthermore, newer TEM enzymes show
subtle alterations in their profiles. For instance, TEM-184
with the following substitutions: glutamate to lysine (posi-
tion 6), glutamic acid substitution to lysine (position 104),
isoleucine to valine (position 127), arginine substitution to ser-
ine (position 164), and methionine to threonine (position 182)
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can hydrolyze aztreonam more efficiently than cefotaxime or
ceftazidime [31]. Although the analyzing of bacteria genomes
through Whole Genome Sequencing (WGS) participated in
detecting and discovering so many new TEM variants, only
a few of them are phenotypically characterized. Neverthe-
less, network analysis with computer modeling has enabled
researchers to predict whether a specific enzyme sequence has
the probability to fit in the functional groups 2be (extended-
spectrum), 2br (inhibitor resistant), or 2b (the original broad
spectrum) [32].

Interestingly, it has been documented that the occurrence
of TEM enzymes was regional to some geographical areas.
For example, TEM-10 was the most prevailing enzyme in the
USA [33]. In contrast, TEM- 3 was infrequently described
in the USA, but it was very common in France [34]. On the
other hand, the TEM-26 variant was characterized in differ-
ent bacterial species worldwide [34], [35], [36], [37]. At the
present, as the CTX-M enzymes came to be the prevalent
ESBLs globally, TEM variants have become infrequently re-
ported. In a recent study screening bacterial isolates in Europe
for ESBLs, these enzymes were characterized in no more than
1% of ESBL-expressing Klebsiella spp. and Escherichia coli
[14], [38].

Although TEM variants are most commonly detected in
bacterial strains belonging to E.coli and Klebsiella pneumo-
niae, they have been reported in other Gram-negative species
as well including different members of Enterobacteriaceae,
i.e. Salmonella spp, M. morganii, E. aerogenes, Pr. mirabilis,
and E. cloacae [8], [39], [40], [41], [42]. Furthermore, they
have also been reported in non-Enterobacteriaceae, for ex-
ample, TEM-42 was detected in P. aeruginosa isolates and
TEM-17 was characterized in a Capnocytophaga ochracea
strain isolated from blood [43], [44], [45], [46].

3.2 SHVs:
Sulfhydryl variable (SHV) β -lactamases were firstly re-

ported as chromosomally determined enzymes in the strains
of K. pneumoniae [8]. The first variant with ESBL phenotype
(designated as SHV-2) was characterized in 1985 in an isolate
of K. ozaenae recovered in Germany, this variant is varied
from the SHV-1 enzyme by only one substitution (glycine to
serine, position 238) [47]. Like TEM variants, most of the
SHV-variants have substitutions at positions 238 (glycine to
serine) and 240 (lysine to glutamine) [8]. Interestingly, both
of these alterations are resemble of those found in the TEM
variants. Serine substitution seems to be important for the
effective breakdown of ceftazidime, while lysine substitution
(position 240) is important for the effective cefotaxime hydrol-
ysis as well [47]. The significance of amino acid substitutions
concerning the phenotypic alterations in substrate profile has
been studied and analyzed by mathematical modeling [48].
The SHV-1 enzyme is frequently characterized in bacterial iso-
lates belonging to K. pneumoniae and it is the mechanism used
in more than 20% of ampicillin resistance (usually plasmid-

encoded) in these strains [49]. Noteworthy, SHV enzymes are
more prevalent in clinical bacterial isolates than other types
of ESBLs [50]. In many isolates of K. pneumoniae, blaSHV-1
has been found to be integrated into the chromosomal DNA
[8]. Although the hypothesis of being part of transposable
elements like plasmids, the SHV-1 encoding gene has never
been characterized as so [51]. Contrary to the TEM enzymes,
there are few variants of the SHV-1 enzyme. Additionally, the
alterations that have been detected in the blaSHV gene to pro-
duce the variants take place in fewer positions in comparison
to TEM enzyme, many of these variants express the ESBL
phenotype. Though, a single variant, SHV-10, is documented
to have the IR (Inhibitor Resistant) characteristics, it seems
this variant has been resulted from the SHV-5 enzyme con-
taining an extra alteration in amino acid sequence at position
130 as glycine replaced by serine [52].

Up to the present time, 228 SHV variants have been de-
scribed. Nonetheless, not all of them have been phenotypically
described as extended-spectrum enzymes. Globally, SHV-12
and SHV-5 are the most prevalent SHV- ESBLs documented
in Enterobacterales [14], [53], [54]. Although most of the
SHV- ESBLs are present in the clinically isolated K. pneu-
moniae, they have also been reported in E. coli, Citrobacter
diversus, other Enterobacterales, Acinetobacter spp, and P.
aeruginosa isolates [53], [54], [55], [56], [57], [58], [59],
[60], [61].

In the latest European surveillance, 3.1%–17.0% of the
clinical strains belonging to K. pneumoniae were found to
harbor SHV- ESBLs [38]. Nevertheless, in a clinical study
investigated clinically recovered ceftazidime resistant bacte-
ria, SHV enzymes were infrequently detected and were only
presented in isolates that also harbored a carbapenemase or
a plasmid-encoded AmpC [62]. Although SHV and TEM
enzymes are still reported, it seems that the influence of their
occurrence amongst clinical strains is insignificant [14].

3.3 CTX-Ms:
Afterward, a new group of plasmid-encoded enzymes named

CTX-M, which favorably attack cefotaxime has developed.
This group of enzymes is differing from the SHV or TEM
enzymes as they show approximately 40% homology with
the both enzymes [63]. Initially, CTX-M was first reported
in the late 1980s and their numbers are continuously growing
as more than 128 variants of this enzyme have been detected
worldwide [14], [46], [63]]. These enzymes are distinguished
from others by hydrolyzing cefotaxime more effectively than
ceftazidime, and cephalothin more efficiently than benzyl-
penicillin, they attack cefepime as well [63]. Unlike SHV
and TEM ESBLs, no point mutation is occurred in CTX-M
enzyme. It is believed that this enzyme was firstly described in
the Kluyvera spp chromosome [14], [64]. The term CTX-M
(standing for cefotaximase from Munich, Table 2 was firstly
used in a German study [65]. Nevertheless, CTX-Ms that rec-
ognized in other areas were given diverse designations, like
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Toho-1 (Japan), MEN-1 (France), and FEC-1 (Japan) [21].
Outbreaks in different countries were followed and presenting
an alarm for the potential threat that these enzymes could rep-
resent. Additionally, these variants have been documented as
the most prevalent ESBL enzymes, instead of SHV and TEM.
Variants of CTX-M have been described amongst various
members of the enteric bacteria, Acinetobacter isolates and
P. aeruginosa strains [66], [67], [68]. Furthermore, bacterial
strains harboring CTX-M genes have been identified in the
community and public health establishments, the environment,
food products, livestock, and the companion animals [69].

As mentioned previously, the CTX-M enzymes prefer-
entially hydrolyze cephaloridine or cephalothin (in compar-
ison to benzylpenicillin) and cefotaxime (in comparison to
ceftazidime) [63], [70]. As for ceftazidime, although these
enzymes have a minor effect on it, they could not provide
the required hydrolysis activity to make the strains clinically
resistant to the antimicrobial. Serine (found in all CTX-M
variants at position 237) is believed to have a critical effect
in the extended-spectrum action of these enzymes [63]. Like-
wise as proposed by molecular modeling studies, the arginine
residue (at position 276) which is equivalent in position to
arginine 244 in SHV or TEM ESBLs, may participate in the
enzymatic hydrolysis of oxyimino-cephalosporins [71]. Addi-
tionally, CTX-M ESBLs have an extra unique characteristic of
being inhibited more efficiently by tazobactam in comparison
to clavulanic acid or sulbactam [63], [70], [72], [73].

Based on the sequence homologies, most of the CTX-M
variants are classified into five groups: CTX-M-1, CTX-M-8,
CTX-M-25, CTX-M-2, and CTX-M-9. The prevailing en-
zyme in the first group is CTX-M-15, then the CTX-M-3 and
CTX-M-1 enzymes. CTX-M-9, CTX-M-14, and CTX-M-
27 are the most common variants in CTX-M-9 group [74],
[75], [76], [77], [78]. CTX-M-25, CTX-M-2, and CTX-M-8
are prevailing in their own groups. Interestingly, it is docu-
mented by the analysis and studying of the CTX-M-2 gene to
be originated from Kluyvera spp. Additional investigations
had confirmed that this group has resulted from the Kluyvera
ascorbate KLUA-1 enzyme [79], [80]. Likewise, CTX-M-
134 (CTX-M-1 group) is documented to be resulting from
the Kluyvera cryocrescens KLUC-1 enzyme and the CTX-
M-9 has a resemble like characteristics with the Kluyvera
georgiana KLUG-1 enzyme [81], [82]. Accordingly, an early
divergence from a common ancestor may be suggested based
on the evolutionary distances among these groups [7], [83].
Noteworthy, these variants also showed basic resemblance and
enzymatic activities with various class A enzymes that were
described in bacterial strains recovered from the environment,
such as Rahnella aquatilis and Erwinia persicina [84], [85].

CTX-M β -lactamases are known to hydrolyze ceftriax-
one (CRO) and cefotaxime (CTX) more efficiently than cef-
tazidime (CAZ) [21]. Nevertheless, variants with increased
hydrolytic power against ceftazidime were also reported. CTX-

M-27 and CTX-M-15 are good examples of that. CTX-M-15
is a derivative from CTX-M-3 with only one amino acid al-
teration (aspartic acid to glycine at position 240) [86]. This
substitution is responsible for the enzymatic accommodation
to ceftazidime molecule, which has a larger size compared
to cefotaxime [87], [88]. Similarly, CTX-M-27 has the same
amino acid (position 240) which is believed to be responsible
for the increased MIC values for ceftazidime in comparison
to its originator CTX-M-14 [89]. Recently, a new variant
(CTX-M-33) with a substitution of aspartic acid to serine (at
position 109) compared with CTX-M-15 was described in a
K. pneumoniae clinical isolate [90]. This enzyme has showed
decreased hydrolytic activity against ceftazidime and elevated
hydrolysis against meropenem. Interestingly, the isolate also
had impaired permeability resulting in an elevated MIC for
meropenem [90]. CTX-M enzymes are widely distributed and
continuously emerging globally. However, even though alter-
native options are still available for bacterial strains carrying
them alone, the concurrent occurrence of CTX-M ESBLs with
other resistance mechanisms (i.e. impermeability) in the same
isolate could affect the action of carbapenems or other newer
agents and limit it [1].

Bacterial strains expressing various types of CTX-M en-
zymes have been reported from different parts of the globe,
although they mostly have been related to outbreaks recorded
in eastern Europe [70], [90], [91], [92], Japan, and South
America [72], [93]. Furthermore, these enzymes also have
been reported in bacterial strains isolated from immigrated pa-
tients in western Europe [94]. For instance, a clinical strain of
Enterobacter cloacae with CTX-M-3 was isolated in France
in 1998 [95]. Numerous laboratories and institutions in the
outbreaks areas had documented the prevalence of CTX-M
variants in the recovered isolates in comparison to other types
of ESBLs [73]. Remarkably, some of these enzymes have
been described in Salmonella enterica clinical isolates as well
[70], [91], [94], [96], [97]. S. enterica strains possessing
CTX-M enzymes were responsible for large outbreaks that
occurred in both eastern Europe and South America. Addition-
ally, these strains were documented to have multiple CTX-M
enzymes. Consequently, it is questionable thing that a single
origin for the existence and tendency of CTX-M enzymes
within S. enterica can be existed [7], [14].

3.4 OXAs:
OXA β -lactamase is a growing group of ESBLs belonging

to the functional group 2d and Ambler class D [18]. These en-
zymes, which display resistance to cephalothin and ampicillin,
are well known for their specific hydrolysis of cloxacillin
and oxacillin and poor inhibition by clavulanic acid [9], [18].
Generally, OXA enzymes show variability in amino acid se-
quences and substrate profiles. Nevertheless, many OXA
enzymes have been reported to hydrolyze cephems, and/or
monobactams as well as cephalosporins. Therefore, these
enzymes are now classified as subgroup 2de [9]. Whether
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or not OXA enzymes with expanded-spectrum activity are
considered as ESBLs is still questionable [98]. Many scien-
tists do not agree with applying the ESBLs designation to
oxacillinases because the OXA variants are grouped in the
2de subgroup and not in the 2be, in addition to their resistance
to inhibition by clavulanate [14].

As documented by a current review, 27 oxacillinases have
been characterized as ESBLs. The substrate profile includes
the new cephalosporins (3rd and/or 4th generation drugs) in
addition to the early ones and penicillins [99]. OXA enzymes
have been described mostly in bacterial isolates belonging to
P. aeruginosa in addition to Acinetobacter baumannii strains,
and not in K. pneumoniae and E. coli as other ESBLs. For
instance, OXA-21 was reported in an isolate of Acinetobacter
baumannii as the first occurrence of OXA enzymes in this
species [100]. The majority of OXA ESBL variants originate
from OXA-2 and OXA-10 (PSE-2). The variants originated
from OXA-10 are OXA-16, -14, -13, -11, -17, -28, and -19
[101], while those derived from OXA-2 include OXA-15, -53,
-34, -141, -32, -36, -161, -226, and -210, most of these variants
are described in P. aeruginosa [99]. OXA-14 originated from
the OXA-10 enzyme and differs from it by one substitution,
OXA-16 and -11 differ by two, and OXA-19 and -13 differ
by nine. Interestingly, amongst these enzymes, the ESBL
variants have one of these amino acids alterations: aspartate
for glycine (amino acid position: 157), or asparagine for
serine (amino acid position: 73). Particularly, the aspartate for
glycine substitution may be critical for ceftazidime resistance
[102]. Either substitutions could be essential to display the
extended spectrum phenotype. On the other hand, the OXA-
17 variant shows resistance to ceftriaxone and cefotaxime but
displays only minimal hydrolysis activity against ceftazidime
[103]. Additionally, although the traditional OXA enzymes
were known for their resistance to inhibition by clavulanate,
the OXA-18 variant was characterized to be affected and
inhibited by it [7], [103].

Although OXA-1 and OXA-30 are not considered as ES-
BLs, their capabilities to destroy cefepime have been docu-
mented [104], [105], [106]. These two variants were firstly
reported to be different by one substitution; but it was revised
later that these enzymes were actually the same [107]. Note-
worthy, the OXA-1 enzyme accompanied by porin deficiency
has been detected in false-ESBL phenotype-expressing E. coli
strains [108]. Furthermore, an OXA-31 variant described in a
P. aeruginosa strain had (3) alterations in comparison to OXA-
1 and also showed a hydrolytic effect towards cefepime [109].
As well, OXA-405 and OXA-163 (derivatives from OXA-48)
have also been reported to show hydrolytic effect towards the
new cephalosporins in addition to the carbapenemase activ-
ity characteristic of OXA-48-like enzymes [14],[110], [111],
[112].

4. Inhibitor Resistant β -Lactamases:

Inhibitor-resistant enzymes were firstly discovered in the
early 1990s. Although these enzymes don not have the distin-
guished ESBL phenotype, they are regularly discussed with
them because they are usually originated from the traditional
SHV or TEM enzymes. They are categorized into the func-
tional group 2br Table 1 [9], [18]. The inhibitor-resistant
variants derived from TEM enzymes are often not inhibited
by sulbactam and clavulanic acid, but they remain sensitive to
tazobactam and avibactam [112], [113], [114], [115], [116].
It is suggested that the mutations conferring resistance to
sulbactam and clavulanate are also reduce the enzyme effi-
ciency of hydrolyzing some cephalosporins like cephalothin
and penicillins [115], [117].

Inhibitor-resistant TEM variants have been detected mostly
in E. coli clinical strains, and infrequently in P. mirabilis, K.
pneumoniae, Citrobacter freundii, and Klebsiella oxytoca iso-
lates [118], [119]. They have mainly been described in France
and in some other countries within the Europe continent [115].
Although these enzymes are infrequently detected, the variant
TEM-30 was characterized in a K. pneumoniae strain with nu-
merous KPC-producing bacteria isolated from a carbapenem-
resistant Enterobacteriaceae outbreak occurred in New York
[113]. As documented by nucleotide sequencing data, the
majority of these enzymes originated from TEM-1 and were
previously known as “ Inhibitor Resistant TEM, IRT”, but
now they are renamed using numerical TEM designations
with 19 distinct inhibitor-resistant TEM variants known and
documented so far [14], [120]. The common alterations in
these enzymes are methionine at position 69, serine at position
130, arginine at position 244, arginine at position 275, and
asparagine at position 276 [121]. These alterations in amino
acids sequence are different from those described in the ESBL
variants. Several variants of the SHV-1 and OHIO-1 have been
reported to be resistant to inhibitors, such as SHV-107, -56,
and -49 characterized in clinical isolates of K. pneumoniae in
Europe [52], [116], [122], [123], [124].

In a laboratory experiment, mutants containing common
substitutions for both extended spectrum and inhibitor re-
sistant phenotypes have been constructed. These variants
possessed either the IRT or the ESBL phenotype, but not
both [125]. Additionally, a few TEM variants with both the
inhibitor resistance and the ESBL phenotype have been re-
ported [121]. Interestingly, these enzymes could be detected
with ESBLs-screening methods depending on the clavulanic
acid inhibition principle. For instance, TEM-50 enzyme with
alterations characteristic of both the inhibitor-resistant and the
ESBL phenotypes was reported in 1997. This variant was not
affected by clavulanic acid, and displayed a minor resistance
to 3rd . generation cephalosporins [126]. TEM-152 is another
variant of such enzymes, it was described in an E. coli isolate
recovered from a French patient [127]. This mutant harbored
the following amino acid substitutions: arginine for histidine
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(position164) and glutamine for lysine (position 240) which
characterize the ESBLs phenotype, in addition to methionine
for valine (position 69) and asparagine for aspartic acid (po-
sition 276) which characterize the inhibitor-resistant variant
TEM-36. This variant efficiently hydrolyzes ceftazidime with
50% susceptibility to clavulanic acid. This could specify the
emergence likelihood of a new subgroup with a complicated
profile that shares features of inhibitor-resistant and ESBL en-
zymes. Interestingly, these complex enzymes are susceptible
to avibactam, therefore the combination of a new β -lactamase
inhibitor like ceftazidime/avibactam may represent an alter-
native therapy to face and treat bacterial diseases caused by
strains with one of these variants [127]. It is expected that the
dissemination of SHV- or TEM-type IR-variants is underval-
ued due to the absence of a specific phenotypic screening test
that could be used routinely by laboratories to identify and
detect the occurrence of these enzymes [14], [128], [129].

5. Other ESBLs:
There are several extended-spectrum β -lactamases have

been described that are not part of the well-known groups of β -
lactamases Table 3. The PER-1 (Pseudomonas Extended Re-
sistant) enzyme was firstly characterized in a P. aeruginosa iso-
late which was resistant to 3rd generation cephalosporins and
inhibited by clavulanate [130], [131]. Furthermore, this en-
zyme could hydrolyze many penicillins as well as cephalosporins
including ceftazidime, cefoperazone, cefalotin, cefuroxime,
and ceftriaxone, but not oxacillin, imipenem, and cephamycins.
Soon after, it was also reported among other bacterial strains
belonging to A. baumannii and S. enterica Typhimurium [132],
[133], [134]. This enzyme is most commonly described in
Turkey and Mediterranean countries in up to 60% of A. bau-
mannii isolates that are ceftazidime-resistant [134], [135],
[136]. Interestingly, the PER-1 enzyme was plasmid-mediated
in several nosocomial strains of S. enterica Typhimurium,
which might suggest the spread and acquisition of the resis-
tance plasmid in the hospital setting [133]. Consequently,
PER-2 was characterized in another S. enterica Typhimurium
strain from Argentina with 86.4% homology with the orig-
inal PER-1 enzyme [137]. Since after, PER variants have
been reported in different species of Enterobacterales as well
as Aeromonas spp. and A. baumannii isolates. PER-1 and
PER-2 enzymes are the most common variants of the PER
group, they have been characterized by their susceptibility
to avibactam in comparison to other class A enzymes [138],
[139]. Noteworthy, a recent analysis has documented that A.
baumannii strains expressing PER variants can show increased
minimum inhibitory concentrations against the siderophore
cephalosporin, cefiderocol [140].
∗pI : isoelectric point, CAZ: ceftazidime, CTX: cefotaxime,
ATM: aztreonam.

VEB-1 is related to some extent to PER-1, the abbrevia-

Table 3. Classification and characteristics of selected groups
of β -lactamases (mainly ESBLs).

Enzyme pI∗ Closely related to: Preferentially hydrolyze∗: Ref.

VEB-1 5.35 PER-1, PER-2 CAZ, ATM 141

TLA-1 9 CME-1 CAZ, CTX, ATM 161

PER-2 5.4 PER-1 CAZ 96

GES-1 5.8 Penicillinase from P.mirabilis CAZ 147

SFO-1 7.3 AmpA from S. fonticola CTX 159

CME-1 > 9 VEB-1 CAZ 160

tion stands for Vietnamese Extended-spectrum β -lactamase
Table 2, it was firstly described in a local E. coli strain from
Vietnam [141]. Subsequently, this enzyme was described in a
local P. aeruginosa isolate from a Thai patient [142]. VEB-1
displayed high resistance to aztreonam and ceftazidime Ta-
ble 3, but only moderate susceptibility for cefotaxime and no
activity against imipenem. Additionally, it was susceptible
to clavulanic acid but not to avibactam [128], [143]. VEB
variants were identified in different bacterial species including
members of Enterobacterales, Achromobacter xylosoxidans,
Vibrio spp., A. baumannii, and P. aeruginosa [144], [145],
[146].

The Guiana Extended-Spectrum β -lactamases (abbrevi-
ated GES) are the most prevailing enzymes among the infre-
quently detected ESBLs. The GES-1 gene is not closely asso-
ciated with other plasmid-encoded enzymes, even so, it has
some homology (36%) with a carbenicillin-hydrolyzing en-
zyme identified in Proteus mirabilis Table 3 [7], [147]. These
enzymes are more commonly described in A. baumannii and
P. aeruginosa isolates. Noteworthy, they have been initially
reported among Enterobacterales species [66], [148], [149],
[150], [151]. Furthermore, these enzymes are known for
their acquisition of one or two substitutions in amino acid
sequences and expanding the substrate profiles to include
carbapenems [12], [112].

GES-1 enzyme was firstly identified in 1998 in a strain
of K. pneumoniae recovered from a French patient in French
Guiana [147]. Concurrently, the IBC-1 enzyme was described
in a strain of E. cloacae recovered in Greece [152]. Subse-
quently, the variants IBC-2 and GES-2 were characterized in
clinically isolated strains of P. aeruginosa [153], [154]. Later,
IBC-2 was renamed and given the designation GES-8 and
IBC-2, GES-7. Remarkably, GES-2 differed from GES-1 in
a single alteration in amino acid sequence (glycine for as-
paragine at position 170) and could hydrolyze carbapenems
to some extent [153]. Therefore, the subsequent character-
ized GES variants were grouped into two categories: those
with the ESBL phenotype, and those with modest activity
against carbapenems. The original GES variants hydrolyze
cephalosporins and penicillins, but not aztreonam [147]. They
are affected by tazobactam, clavulanic acid, and newer in-
hibitors like vaborbactam, relebactam, and avibactam [138],
[155]. Notably, GES-1 hydrolyzes ceftazidime more effi-
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ciently than cefotaxime. The following substitutions; glu-
tamine for lysine (position 104), or glycine for alanine or
serine (position 243) that noticed in the latterly characterized
GES enzymes have displayed a hydrolytic activity against
aztreonam and cephalosporins [14], [156].

Finally, numerous additional ESBLs enzymes were iden-
tified in the chromosomes of Enterobacteriaceae and other
non-fermentative bacteria in different countries including Iraq
[157], [158], [159], [160], [161], [162]. For instance, the
OXY enzymes in Klebsiella oxytoca strains are undoubtedly
the predominant resistance mechanism detected in this species
[163], [164]. Moreover, there are other infrequently detected
ESBLs have also been characterized in clinical bacterial iso-
lates, but their incidence is somehow limited. An example
of these enzymes is the SFO-1 variant, which was initially
identified in an isolate of Serratia fonticola. This enzyme
is a transferable variant, its production can be induced and
enhanced by imipenem [165]. The plasmid encoding the
gene blaSFO-1 also encodes ampR (regulatory gene) which
is essential for expression induction of class C β -lactamases.
Nevertheless, contrary to class C enzymes, SFO-1 is unable
to attack cephamycins and is easily affected by clavulanate
[164]. CME-1 is another related enzyme, that was identified
in an isolate of Chryseobacterium meningosepticum [166].
Additional examples are; the TLA-1 enzyme described in
an E. coli strain recovered from the Tlahuicas group (Mexi-
can indigenous people), TLA-2 which was identified in Ger-
many with 51% homology to TLA-1, BES-1 which was de-
scribed in Brazil, and BEL-1 in Belgium Table 3 [144], [167],
[168]. All of these enzymes display resistance to 3rd genera-
tion cephalosporins, particularly ceftazidime, cefotaxime, and
aztreonam. Additionally, they display limited resemblances
to the chromosomally-encoded cephalosporinases described
in Bacteroides spp. from which they might be originated [7],
[166].

6. Conclusions:
Undoubtedly, the ESBL-producing bacteria are of great

concern to the medical field as they are directly connected
with an elevated mortality and morbidity rates. Additionally, it
is time consuming to identify them, and subsequently their in-
fections are difficult to treat. It is documented that the overuse
and misuse of the broad-spectrum cephalosporins in the vet-
erinary and health settings participated in the development
and dissemination of ESBLs. Current therapy options for bac-
terial strains expressing the ESBLs enzymes is restricted to
the broad-spectrum antimicrobials such as carbapenems. Nev-
ertheless, there have already been therapeutic failure reports
of these drugs as well. Bacterial strains conferring ESBLs
would represent a serious challenge for clinicians and clini-
cal microbiologists as we are heading into the next quarter
of the 21st century. Taking into account the globally rising
prevalence rates of ESBLs-producing strains, and the lack of

alternative therapy, the future is extremely concerning. Thus
there is a crucial need for instant documentation and suitable
strategy to control and reduce the occurrence of ESBLs. Con-
trolling the use of broad-spectrum agents in different aspects
and inspecting the environmental contamination are essential.
Therefore, urgent and continuous works are mandatory to de-
velop reliable, quicker, and cost- effective diagnostic tools as
well as new active alternative antimicrobials for dealing with
such ESBLs producing bacterial strains.
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[73] M. Sabaté, R. Tarrago, F. Navarro, E. Miró, C. Vergés,
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