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CALDERÓN-ZYGMUND OPERATORS WITH KERNELS OF

DINI’S TYPE AND THEIR MULTILINEAR COMMUTATORS

ON GENERALIZED VARIABLE EXPONENT MORREY

SPACES

VAGIF S. GULIYEV AND AFAG F. ISMAYILOVA

Abstract. Let T be a Calderón-Zygmund operator of type ω with ω(t)
being nondecreasing and satisfying a kind of Dini’s type condition and
let T~b be the multilinear commutators of T with BMOm functions. In
this paper, we study the boundedness of the operators T and T~b on gen-

eralized variable exponent Morrey spaces Mp(·),ϕ. We find the sufficient

conditions on the pair (ϕ1, ϕ2) with ~b ∈ BMOm(Rn) which ensures the
boundedness of the operators T and T~b from Mp(·),ϕ1 to Mp(·),ϕ2 .

1. Introduction

The theory of Calderón-Zygmund operators has played very important roles in
modern harmonic analysis with lots of extensive applications in the others fields
of mathematics, which has been extensively studied (see [3, 4, 6, 29, 30, 39]).
In particular, Yabuta introduced certain ω-type Calderón-Zygmund operators to
facilitate his study of certain classes of pseudodifferential operators (see [43]). Let
ω be a non-negative and non-decreasing function on R+ = (0,∞). We say that
ω satisfies the Dini condition and write ω ∈ Dini, if∫ ∞

0

ω(t)

t
dt <∞. (1.1)

A measurable functionK(·, ·) on Rn×Rn is said to be a ω-type Calderón-Zygmund
kernel if it satisfies

|K(x, y)| ≤ C |x− y|−n

and for all distinct x, y ∈ Rn, and all z with 2|x−z| < |x−y|, there exist positive
constants C and γ such that

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ Cω
( |x− z|
|x− y|

)
|x− y|−n.

Definition 1.1. Let T be a linear operator from S(Rn) into its dual S ′(Rn),
where S(Rn) denotes the Schwartz class. One can say that T is a ω-type Calderón-
Zygmund operator if it satisfies the following conditions:
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i) T can be extended to be a bounded linear operator on L2(Rn);
ii) there is a ω-type Calderón-Zygmund kernel K(·, ·) such that

Tf(x) =

∫
Rn
K(x, y)f(y)dy, as f ∈ C∞c and x /∈ suppf. (1.2)

It is easy to see that the classical Calderón-Zygmund operator with standard
kernel is a special case of ω-type operator T as ω(t) = tε with 0 < ε ≤ 1. Given
a locally integrable function b, the commutator generated by T and b is defined
by

[b, T ]f(x) := b(x)Tf(x)− T (bf)(x) =

∫
Rn

(b(x)− b(y))K(x, y)f(y)dy.

Let ~b = (b1, ..., bm) and bj , 1 ≤ j ≤ m be locally integrable functions when we
consider multilinear commutators as defined by

T~bf(x) =

∫
Rn

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dy.

Furthermore, if we take bi = b, , i = 1, . . . ,m, then we define the following
integral equation

T~bf(x) =

∫
Rn

(b(x)− b(y))mK(x, y)f(y)dy = [b, T ]mf(x).

Integral operators of Calderón-Zygmund kind appear in the representation
formulas of the solutions of various PDEs. Thus the continuity of the Calderón-
Zygmund integral in certain functional space permit to study the regularity of
the solutions of boundary value problems for linear PDEs in the corresponding
space, see, for example, [5, 14, 12, 35].

The classical Morrey spaces were introduced by Morrey [35] to study the local
behavior of solutions to second-order elliptic partial differential equations. More-
over, various Morrey spaces are defined in the process of study. The first author,
Mizuhara and Nakai [15, 33, 36] introduced generalized Morrey spaces Mp,ϕ(Rn)
(see, also [16, 38]).

Variable exponent function spaces (see [8]) received considerable attentions
in recent decades. They are important not only in theory as generalizations
of classical function spaces, but also for their wide applications in the fields of
fluid dynamics, elasticity dynamics, the differential equations with nonstandard
growth. The rich development can be found in many research works of the theory
of variable exponent function spaces. We refer to [2, 8, 10, 23, 26, 42] for the
details. For example, Lebesgue spaces with variable exponent were studied in
[7, 9, 24, 27, 40], Morrey spaces with variable exponent were studied in [2, 13, 34]
and generalized Morrey spaces with variable exponent were studied in [1, 11, 19,
20, 21].

The main purpose of this paper is to establish a number of results concern-
ing variable exponent Morrey boundedness of Calderón-Zygmund operators with
kernels of mild regularity. Let T be a linear Calderón-Zygmund operator of type
ω(t) with ω being nondecreasing and ω ∈ Dini, but without assuming to be
concave. We show that the ω-type Calderón-Zygmund operators T and their
multilinear commutators T~b are bounded from one generalized variable exponent
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Morrey space Mp(·),ϕ1 to another Mp(·),ϕ2 . We find the sufficient conditions on

the pair (ϕ1, ϕ2) with ~b ∈ BMOm(Rn) which ensures the boundedness of the

operators T and T~b from Mp(·),ϕ1 to Mp(·),ϕ2 .
By A . B we mean that A ≤ CB with some positive constant C independent

of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Some definitions and auxiliary results

Let Rn be the n−dimensional Euclidean space of points x = (x1, ..., xn) with

norm |x| = (
∑n

i=1 x
2
i )

1/2. For x ∈ Rn and r > 0, denote B(x, r) the open ball

centered at x of radius r. Let
{
B(x, r) be the complement of the ball B(x, r), and

|B(x, r)| be the Lebesgue measure of B(x, r). For a measurable set E, we define
the Lebesgue measure of E by |E|, and the characteristic function of E by χE .

Given an open set E ⊂ Rn, and a measurable function p(·) : E → [1,∞), p′(·)
is the conjugate exponent defined by p′(·) = p(·)/(p(·) − 1). For a measurable
subset E ⊂ Rn, we denote p−(E) = ess inf{p(x) : x ∈ E}, p+(E) = ess sup{p(x) :
x ∈ E}. Especially, we denote p− = p−(Rn) and p+ = p+(Rn). The set P(E)
consists of all p(·) : E → [1,∞) satisfying p−(E) > 1, p+(E) < ∞. Similarly
we denote by P(Rn) the set of all measurable functions p(·) : Rn → (1,∞) such
that 1 < p− ≤ p(x) ≤ p+ < ∞. Denote by P0(Rn) the set of all measurable
functions p(·) : Rn → (0,∞) such that 0 < p− ≤ p(x) ≤ p+ < ∞, x ∈ Rn.
Let P1(Rn) be the set of all measurable functions p(·) : Rn → [1,∞) such that
1 ≤ p− ≤ p(x) ≤ p+ <∞.

We define the variable exponent Lebesgue space Lp(·)(E) as the set of real-

valued measurable functions f on E such that, for some ε > 0,
∫
E

(
ε|f(x)|

)p(x)
dx <

∞. This is a Banach function space with respect to the Luxemburg-Nakano norm,

‖f‖Lp(·)(E) = inf
{
λ > 0 :

∫
E

(f(x)|
λ

)p(x)
dx ≤ 1

}
.

The space L
p(·)
loc (E) is defined by

L
p(·)
loc (Ω) :=

{
f is measurable : f ∈ Lp(·)(E) for all compact subsets E ⊂ Ω

}
.

Next we define some classes of variable exponent functions. The set B(Rn)
consists of all measurable functions p(·) ∈ P(Rn) satisfying that the Hardy-

Littlewood maximal operator M is bounded on Lp(·)(Rn).
An important subset of B(Rn) is the class of globally log-Hölder continuous

functions p(·) ∈ LH(Rn), with p(·) ∈ P(Rn). Recall that p(·) ∈ LH(Rn), if p(·)
satisfies

|p(x)− p(y)| ≤ C

− log(|x− y|)
, |x− y| ≤ 1/2 and

|p(x)− p(y)| ≤ C

log(e+ |x|)
, |y| ≥ |x|.

We will also make use of the estimate provided by the following inequality (see
[20, Lemma 2.2], [21, Theorem 3.2]).
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‖χB(x,r)(·)‖Lp(·)(Rn) ≤ Cr
θp(x,r), x ∈ Rn, p ∈ LH(Rn) ∩ P(Rn), (2.1)

where θp(x, r) =

{
n
p(x) , r ≤ 1,
n

p(∞) , r ≥ 1
.

Lemma 2.1. Let q(·), q1(·) . . . , qm(·) ∈ P0(Rn) so that 1/q(·) = 1/q1(·) + · · · +
1/qm(·). Then, the inequality

‖f1 · · · fm‖Lq(·)(Rn) . ‖f1‖Lq1(·)(Rn) · · · ‖fm‖Lqm(·)(Rn)

holds for any fj ∈ Lqj(·)(Rn), j = 1, . . . ,m.

We define the generalized variable exponent Morrey spaces as follows.

Definition 2.1. Let p ∈ P1(Rn), ϕ be a positive measurable function on Rn ×
(0,∞). We denote by Mp(·),ϕ ≡ Mp(·),ϕ(Rn) the generalized variable exponent

Morrey space, the space of all functions f ∈ Lp(·)loc (Rn) with finite norm

‖f‖Mp(·),ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 r−θp(x,r) ‖f‖Lp(·)(B(x,r)),

where ‖f‖Lp(·)(B(x,r)) ≡ ‖fχB(x,r)
‖Lp(·)(Rn).

Remark 2.1. Generalized variable exponent Morrey space Mp(·),ϕ was introduced
and studied by Guliyev, Hasanov and Samko in [19], see also [20].

(1) If ϕ(x, r) = r
λ−n
p(x) with 0 < λ < n, then Mp(·),ϕ = Lp(·),λ(Rn) is the variable

exponent Morrey space introduced by Almeida, Hasanov and Samko in [2].

(2) If ϕ(x, r) ≡ r−θp(x,r), then Mp(·),ϕ = Lp(·)(Rn) is the variable exponent
Lebesgue space.

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=

∫ ∞
t

g(s)w(s) ds, H∗wg(t) :=

∫ ∞
t

(
1+ln

s

t

)m
g(s)w(s) ds, 0 < t <∞,

where w is a weight. The following theorem was proved in [18].

Theorem 2.1. [18] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t) g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞
t

w(s) ds

sups<τ<∞ v1(τ)
<∞.

Theorem 2.2. [17] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t) g(t)
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holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞
t

(
1 + ln

s

t

)m w(s) ds

sups<τ<∞ v1(τ)
<∞.

3. ω-type Calderón-Zygmund operators in the spaces Mp(·),ϕ

The following theorem was proved in [32].

Theorem 3.1. [32] Let p ∈ LH(Rn) ∩ P(Rn) and T be an ω-type Calderón-
Zygmund operator defined by (1.2) with ω satisfying (1.1). Then, the operator T

is bounded on Lp(·)(Rn).

The following local estimates are valid (see [16, 20]).

Theorem 3.2. Let p ∈ LH(Rn)∩P(Rn) and T be an ω-type Calderón-Zygmund
operator defined by (1.2) with ω satisfying (1.1). Then the inequality

‖Tf‖Lp(·)(B) . r
θp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
(3.1)

holds for any ball B = B(x0, r) and for all f ∈ Lp(·)loc (Rn).

Proof. Let p ∈ LH(Rn)∩P(Rn). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the
ball centered at x0 and of radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y), r > 0. (3.2)

For all f ∈ Lp(·)loc (Rn) we define

Tf(x) := T0f1(x) +

∫
Rn
K(x, y)f2(y)dy,

here T0 denotes a bounded linear operator on Lp(·) with p ∈ LH(Rn) ∩ P(Rn)
(see [32, 44]). It is easy to check that the definition of Tf(x) does not depend
on the choice of the ball B. First we show that Tf(x) is well-defined a.e. x

and independent of the choice B containing x. As T0 is bounded on Lp(·)(Rn)

provided by Theorem 3.1 and f1 ∈ Lp(·)(Rn), T0f1 is well-defined. Next, we show
that the second-term of the right-hand side defining Tf(x) converges absolutely

for any f ∈ Lp(·)loc (Rn) and almost every x ∈ Rn.
We have

‖Tf‖Lp(·)(B) ≤ ‖Tf1‖Lp(·)(B) + ‖Tf2‖Lp(·)(B).

Since f1 ∈ Lp(·)(Rn), Tf1 ∈ Lp(·)(Rn) and from the boundedness of T in Lp(·)(Rn)
(see Theorem 3.1) it follows that

‖Tf1‖Lp(·)(B) ≤ ‖Tf1‖Lp(·) ≤ C‖f1‖Lp(·) = C‖f‖Lp(·)(2B),

where constant C > 0 is independent of f .
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On the other hand,

‖f‖Lp(·)(2B) . |B|
∫ ∞

2r
‖f‖Lp(·)(B(x0,t))

dt

tn+1

≤ rθp(x0,r)‖1‖Lp′ (B)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

dt

tn+1
(3.3)

≤ rθp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

‖1‖Lp′ (B(x0,t))

dt

tn+1

≤ rθp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

It is clear that x ∈ B, y ∈ {
(2B) implies 1

2 |x0 − y| ≤ |x − y| ≤ 3
2 |x0 − y|. We

have

|Tf2(x)| ≤ 2nc0

∫
{(2B)

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1
.

Applying Hölder’s inequality and from (2.1), we get∫
{(2B)

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
. (3.4)

Moreover, for all p ∈ LH(Rn) ∩ P(Rn) the inequality

‖Tf2‖Lp(·)(B) . r
θp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t

is valid. Thus from (3.3) we have

‖Tf‖Lp(·)(B) . ‖f‖Lp(·)(2B) + rθp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t

. rθp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

Then we get the inequality (3.1). �

Theorem 3.3. Let p ∈ LH(Rn) ∩ P(Rn), T be an ω-type Calderón-Zygmund
operator defined by (1.2) with ω satisfying (1.1), and (ϕ1, ϕ2) satisfy the condition∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)sθp(x,s)

tθp(x,t)

dt

t
≤ Cϕ2(x, r),

where C does not depend on x and r. Then the operator T is bounded from
Mp(·),ϕ1 to Mp(·),ϕ2.

Proof. For p ∈ LH(Rn) ∩ P(Rn) from Theorem 2.1 and Theorem 3.2 we get

‖Tf‖Mp(·),ϕ2 . sup
x∈Rn,r>0

ϕ2(x, r)−1

∫ ∞
r
‖f‖Lp(·)(B(x,t)) t

−θp(x,t) dt

t

. sup
x∈Rn,r>0

ϕ1(x, r)−1r−θp(x,r) ‖f‖Lp(·)(B) = ‖f‖Mp(·),ϕ1 .

�

In the case p(x) ≡ const from Theorem 3.3 we get the following corollary,
which was proved in [25].
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Corollary 3.1. [25] Let T be an ω-type Calderón-Zygmund operator defined by
(1.2) with ω satisfying (1.1). Let also 1 < p <∞ and (ϕ1, ϕ2) satisfy the condi-
tion ∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)s
n
p

t
n
p

dt

t
≤ Cϕ2(x, r),

where C does not depend on x and r. Then the operator T is bounded from Mp,ϕ1

to Mp,ϕ2.

Remark 3.1. Let 0 ≤ κ < 1. Assume that ψ is a positive increasing function
defined in (0,∞) and satisfies the following Dκ condition :

ψ(t2)

tκ2
≤ Cψ(t1)

tκ1
, for any 0 < t1 < t2 <∞,

where C > 0 is a constant independent of t1 and t2. If p(x) ≡ const, ϕ1(x, r) =
ϕ2(x, r) = ψ(w(x, r)) and ψ satisfy the Dκ condition, Theorems 3.2 and 3.3 were
proved in [41]. Also, in the case ω(t) = tε with 0 < ε ≤ 1, Theorems 3.2 and 3.3
were proved in [19].

4. Commutators of ω-type Calderón-Zygmund operators in the
spaces Mp(·),ϕ

We recall the definition of the space of BMO(Rn).

Definition 4.1. Suppose that b ∈ Lloc
1 (Rn), and let

‖b‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,

where bB(x,r) = 1
|B(x,r)|

∫
B(x,r) b(y)dy. Define

BMO(Rn) = {b ∈ Lloc
1 (Rn) : ‖b‖∗ <∞}.

Modulo constants, the space BMO(Rn) is a Banach space with respect to the
norm ‖ · ‖∗.

By the generalized Hölder’s inequality in Orlicz spaces (see [37, page 58]) and
John-Nirenberg’s inequality, we get (see also [28, (2.14)])

1

|B|

∫
B

∣∣b1(x)−
(
b1
)
B

∣∣ . . . ∣∣bm(x)−
(
bm
)
B

∣∣|g(x)|dx .
m∏
j=1

‖bj‖BMO ‖g‖L(logL)m,B.

(4.1)

Definition 4.2. The BMOp(·)(Rn) space is the set of all locally integrable func-
tions f with finite norm

‖b‖BMOp(·) = sup
B

‖(b(·)− bB)χB‖Lp(·)
‖χB‖Lp(·)

.

Theorem 4.1. [23] Let p ∈ LH(Rn)∩P(Rn). Then, the norms ‖ · ‖BMOp(·) and

‖ · ‖BMO are mutually equivalent.
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Since linear commutator has a greater degree of singularity than the corre-
sponding ω-type Calderón-Zygmund operator, we need a slightly stronger version
of condition ∫ 1

0

ω(t)

t

(
1 + log

1

t

)m
dt <∞. (4.2)

The following weighted endpoint estimate for commutator T~b of the ω-type
Calderón-Zygmund operator was established in [44] under a stronger version of

condition (4.2) imposed on ω, if ~b ∈ BMOm(Rn) (for the unweighted case, see
[31]).

The following theorem was proved in [40, 44].

Theorem 4.2. [40, 44] Let T be a linear ω-CZO and ~b ∈ BMOm(Rn). If ω
satisfies condition (4.2) and p ∈ LH(Rn) ∩ P(Rn), then there exists a constant
C > 0 such that

‖T~bf‖Lp(·) ≤ C ‖~b‖∗ ‖f‖Lp(·) ,

where ‖~b‖∗ =
∏m
j=1 ‖bj‖∗.

The following local estimates are valid (see [17]).

Theorem 4.3. Let T be a linear ω-CZO and ~b ∈ BMOm(Rn). Let also ω
satisfying condition (4.2) and p ∈ LH(Rn) ∩ P(Rn). Then

‖T~bf‖Lp(·)(B) ≤ C ‖~b‖∗ r
θp(x0,r)

∫ ∞
2r

lnm
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t

holds for any ball B = B(x0, r) and for all f ∈ L
p(·)
loc (Rn), where C does not

depend on f , x0 ∈ Rn and r > 0.

Proof. Let p ∈ LH(Rn) ∩ P(Rn). For arbitrary x0 ∈ Rn and r > 0, set B =
B(x0, r). Write f = f1 + f2 with f1 = fχ2B and f2 = fχ {(2B)

. For all f ∈

L
p(·)
loc (Rn) we define

T~bf(x) := T~b,0f1(x) +

∫
Rn

m∏
j=1

(bj(x)− bj(y))K(x, y)f2(y)dy,

here T~b,0 denotes the commutator as a bounded linear operator on Lp(·) with

p ∈ LH(Rn) ∩ P(Rn) (see [44]). It is easy to check that the definition of T~bf(x)
does not depend on the choice of the ball B. First we show that T~bf(x) is
well-defined a.e. x and independent of the choice B containing x. As T~b,0 is

bounded on Lp(·)(Rn) provided by Theorem 4.2 and f1 ∈ Lp(·)(Rn), T~b,0f1 is

well-defined. Next, we show that the second-term of the right-hand side defining

Tf(x) converges absolutely for any f ∈ Lp(·)loc (Rn) and almost every x ∈ Rn.
Hence

‖T~bf‖Lp(·)(B) ≤ ‖T~bf1‖Lp(·)(B) + ‖T~bf2‖Lp(·)(B).

From the boundedness of T~b in Lp(·)(Rn) ( see Theorem 4.2) it follows that:

‖T~bf1‖Lp(·)(B) ≤ ‖T~bf1‖Lp(·) . ‖~b‖∗ ‖f1‖Lp(·) = ‖~b‖∗ ‖f‖Lp(·)(2B).
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For the term ‖T~bf2‖Lp(·)(B), without loss of generality, we can assume m = 2.

Thus, the operator T~bf2 can be divided into four parts

T~bf2(x) =
(
b1(x)−

(
b1
)
B

)(
b2(x)−

(
b2
)
B

) ∫
Rn
K(x, y)f2(y)dy

+

∫
Rn
K(x, y)

(
b1(y)−

(
b1
)
B

)(
b2(y)−

(
b2
)
B

)
f2(y)dy

−
(
b1(x)−

(
b1
)
B

) ∫
Rn
K(x, y)

(
b2(y)−

(
b2
)
B

)
f2(y)dy

−
(
b2(x)−

(
b2
)
B

) ∫
Rn
K(x, y)

(
b1(y)−

(
b1
)
B

)
f2(y)dy

= I1(x) + I2(x) + I3(x) + I4(x).

For x ∈ B we have

|T~bf2(x)| ≤ |I1(x) + |I2(x)|+ |I3(x)|+ |I4(x)|

.
∣∣b1(x)−

(
b1
)
B

∣∣∣∣b2(x)−
(
b2
)
B

∣∣ ∫
{(2B)

|f(y)|
|x0 − y|n

dy

+

∫
{(2B)

∣∣b1(y)−
(
b1
)
B

∣∣∣∣b2(y)−
(
b2
)
B

∣∣ |f(y)|
|x0 − y|n

dy

+
∣∣b1(x)−

(
b1
)
B

∣∣ ∫
{(2B)

∣∣b2(y)−
(
b2
)
B

∣∣ |f(y)|
|x0 − y|n

dy

+
∣∣b2(x)−

(
b2
)
B

∣∣ ∫
{(2B)

∣∣b1(y)−
(
b1
)
B

∣∣ |f(y)|
|x0 − y|n

dy.

Then

‖T~bf2‖Lp(·)(B) .
∥∥∥∫

{(2B)

2∏
j=1

∣∣bi(y)−
(
bi
)
B

∣∣
|x0 − y|n

|f(y)|dy
∥∥∥
Lp(·)(B)

+
∥∥∥∣∣b1(x)−

(
b1
)
B

∣∣ ∫
{(2B)

∣∣b2(y)−
(
b2
)
B

∣∣
|x0 − y|n

|f(y)|dy
∥∥∥
Lp(·)(B)

+
∥∥∥∣∣b2(x)−

(
b2
)
B

∣∣ ∫
{(2B)

∣∣b1(y)−
(
b1
)
B

∣∣
|x0 − y|n

|f(y)|dy
∥∥∥
Lp(·)(B)

+
∥∥∥∫

{
(2B)

2∏
j=1

∣∣bi(x)−
(
bi
)
B

∣∣
|x0 − y|n

|f(y)|dy
∥∥∥
Lp(·)(B)

= I1 + I2 + I3 + I4.

Let us estimate I1.
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I1 = rθp(x0,r)

∫
{(2B)

2∏
j=1

∣∣bi(y)−
(
bi
)
B

∣∣
|x0 − y|n

|f(y)|dy

≈ rθp(x0,r)

∫
{(2B)

2∏
j=1

∣∣bi(y)−
(
bi
)
B

∣∣ |f(y)|
∫ ∞
|x0−y|

dt

tn+1
dy

≈ rθp(x0,r)

∫ ∞
2r

∫
2r≤|x0−y|≤t

2∏
j=1

∣∣bi(y)−
(
bi
)
B

∣∣ |f(y)|dy dt

tn+1

. rθp(x0,r)

∫ ∞
2r

∫
B(x0,t)

2∏
j=1

∣∣bi(y)−
(
bi
)
B

∣∣ |f(y)|dy dt

tn+1
.

Applying Hölder’s inequality (4.1), by Lemma 2.1 and Theorem 4.1, we get

I1 . r
θp(x0,r)

∫ ∞
2r

∥∥∥ 2∏
j=1

∣∣bi(·)− (bi)B∣∣∥∥∥Lp′(·)(B(x0,t))
‖f‖Lp(·)(B(x0,t))

dt

tn+1

. rθp(x0,r)
(∫ ∞

2r

∥∥∥ 2∏
j=1

∣∣bi(·)− (bi)B(x0,t)

∣∣∥∥∥
Lp
′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

+

∫ ∞
2r

∣∣∣(b1)B(x0,t)
−
(
b1
)
B

∣∣∣∥∥∥b2(·)−
(
b2
)
B(x0,t)

∥∥∥
Lp
′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

+

∫ ∞
2r

∣∣∣(b2)B(x0,t)
−
(
b2
)
B

∣∣∣∥∥∥b1(·)−
(
b1
)
B(x0,t)

∥∥∥
Lp
′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

+

∫ ∞
2r

2∏
j=1

∣∣∣(bi)B(x0,t)
−
(
bi
)
B

∣∣∣‖1‖Lp′(·)(B(x0,t))
‖f‖Lp(·)(B(x0,t))

dt

tn+1

)

. rθp(x0,r)

∫ ∞
2r

2∏
j=1

∥∥∥bi(·)− (bi)B(x0,t)

∥∥∥
L2p′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

+ ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

ln
t

r
‖1‖L2p′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

+ rθp(x0,r)

∫ ∞
2r

2∏
j=1

∣∣∣(bi)B(x0,t)
−
(
bi
)
B

∣∣∣‖1‖Lp′(·)(B(x0,t))
‖f‖Lp(·)(B(x0,t))

dt

tn+1

. ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

ln2
(
e+

t

r

)
‖1‖Lp′ (B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

. ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

ln2
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

Let us estimate I2.
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I2 =
∥∥∥b1(·)−

(
b1
)
B

∥∥∥
Lp(·)(B(x0,t))

∫
{(2B)

∣∣b2(y)−
(
b2
)
B

∣∣
|x0 − y|n

|f(y)|dy

. ‖b1‖∗ rθp(x0,r)

∫
{(2B)

∣∣b2(y)−
(
b2
)
B

∣∣ |f(y)|
∫ ∞
|x0−y|

dt

tn+1
dy

≈ ‖b1‖∗ rθp(x0,r)

∫ ∞
2r

∫
2r≤|x0−y|≤t

∣∣b2(y)−
(
b2
)
B

∣∣ |f(y)|dy dt

tn+1

. ‖b1‖∗ rθp(x0,r)

∫ ∞
2r

∫
B(x0,t)

∣∣b2(y)−
(
b2
)
B

∣∣ |f(y)|dy dt

tn+1
.

Applying Hölder’s inequality (4.1) and by Theorem 4.1, we get

I2 . ‖b1‖∗ rθp(x0,r)

∞∫
2r

∥∥∥b2(·)−
(
b2
)
B

∥∥∥
Lp
′(·)(B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

.
2∏
j=1

‖bj‖∗ rθp(x0,r)

∫ ∞
2r

(
1 + ln

t

r

)
‖1‖Lp′ (B(x0,t))

‖f‖Lp(·)(B(x0,t))

dt

tn+1

. ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

ln2
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

In the same way, we shall get the result of I3

I3 . ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

ln2
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

In order to estimate I4 we note that

I4 =
∥∥∥ 2∏
j=1

∣∣bi(x)−
(
bi
)
B

∥∥∥
Lp(·)(B(x0,t))

∫
{(2B)

|f(y)|
|x0 − y|n

dy

≤
2∏
j=1

∥∥∥bi(x)−
(
bi
)
B

∥∥∥
L2p(·)(B(x0,t))

∫
{(2B)

|f(y)|
|x0 − y|n

dy.

By Theorem 4.1, we get

I4 . ‖~b‖∗ rθp(x0,r)

∫
{(2B)

|f(y)|
|x0 − y|n

dy.

Thus, by (3.4)

I4 . ‖~b‖∗ rθp(x0,r)

∫ ∞
2r
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.

Summing up I1 and I4, for all p ∈ LH(Rn) ∩ P(Rn) we get

‖T~bf2‖Lp(·)(B) . ‖~b‖∗ r
θp(x0,r)

∫ ∞
2r

ln2
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
.
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Finally,

‖T~bf‖Lp(·)(B) . ‖~b‖∗ ‖f‖Lp(·)(2B)

+ ‖~b‖∗ rθp(x0,r)

∫ ∞
2r

lnm
(
e+

t

r

)
‖f‖Lp(·)(B(x0,t))

t−θp(x0,t) dt

t
,

and the statement of Theorem 4.3 follows by (3.3). �

Theorem 4.4. Let T be a linear ω-CZO and ~b ∈ BMOm(Rn). Let also ω
satisfying condition (4.2), p ∈ LH(Rn)∩P(Rn) and (ϕ1, ϕ2) satisfy the condition∫ ∞

r
lnm

(
e+

t

r

) ess inf
t<s<∞

ϕ1(x, s)sθp(x,s)

tθp(x,t)

dt

t
≤ Cϕ2(x, r),

where C does not depend on x and r. Then the operator T~b is bounded from

Mp(·),ϕ1 to Mp(·),ϕ2. Moreover,

‖T~bf‖Mp(·),ϕ2 . ‖~b‖∗ ‖f‖Mp(·),ϕ1 .

Proof. Using Theorem 2.2 and Theorem 4.3 we have

‖T~bf‖Mp(·),ϕ2 = sup
x∈Rn,r>0

ϕ2(x, r)−1r−θp(x,r)‖T~bf‖Lp(·)B(x,r)

. ‖~b‖∗ sup
x∈Rn,r>0

ϕ2(x, r)−1

∫ ∞
r

lnm
(
e+

t

r

)
‖f‖Lp(·)(B(x,t)) t

−θp(x,t) dt

t

. ‖~b‖∗ sup
x∈Rn,r>0

ϕ1(x, r)−1r−θp(x,r)‖f‖Lp(·)(B(x,r)) = ‖~b‖∗ ‖f‖Mp(·),ϕ1 .

�

In the case p(x) ≡ const from Theorem 4.4 we get the following corollary,
which was proved in [25].

Corollary 4.1. [25] Let T be a linear ω-CZO and ~b ∈ BMOm(Rn). Let also ω
satisfy condition (4.2), 1 < p <∞ and (ϕ1, ϕ2) satisfy the condition∫ ∞

r
lnm

(
e+

t

r

) ess inf
t<s<∞

ϕ1(x, s)s
n
p

t
n
p

dt

t
≤ Cϕ2(x, r),

where C does not depend on x and r. Then the operator T~b is bounded from Mp,ϕ1

to Mp,ϕ2.

Remark 4.1. Note that, if p(x) ≡ const, ϕ1(x, r) = ϕ2(x, r) = ψ(w(x, r)) and
ψ satisfy the Dκ condition, Corollary 4.1 were proved in [41]. Also, in the case
ω(t) = tε with 0 < ε ≤ 1, Theorems 4.3 and 4.4 were proved in [11], and in the
case m = 1 in [22].
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