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Amphibian declines and species extinctions are worrying 
conservationists around the globe, and the emerging infec-
tious disease chytridiomycosis is suggested to play a key 
role in these processes (Fisher et al. 2009). The disease’s 
etiological agent, the chytridiomycete fungus Batracho
chytrium dendrobatidis (Bd), has been reported to be 
present on all continents inhabited by amphibians (Fisher 
et al. 2009). Amphibian mass mortalities, however, seem to 
be geographically restricted, and it has recently been sug-
gested that one particular currently emerging, globalised 
and highly virulent strain of Bd is responsible for the most 
dramatic consequences of the disease (Farrer et al. 2011). 
Besides the strain, the specific susceptibility of host spe-
cies or populations as well as host-environment interac-
tions might play a role in the outcome of an infection (e.g., 
Woodhams et al. 2007a, Tobler & Schmidt 2010, Savage 
& Zamudio 2011, Searle et al. 2011). 

Bd is known to infect more than 400 amphibian species 
of both anurans and salamanders, and the most dramatic 
mass mortalities have occurred in mountainous areas of 
the Americas, Australia, and southern Europe (Berger et 
al. 1998, Bosch & Martinez-Solano 2006). The patho-
gen spreads through motile infectious zoospores released 
from zoosporangia growing on keratinised parts of the am-
phibian skin. Despite this aquatic transmission stage, Bd is 
known also to infect purely terrestrial amphibian species 
(Weinstein 2009). If an individual is infected and devel-

ops symptoms of chytridiomycosis, it may eventually die 
from a breakdown of neurological functions (Voyles et al. 
2009). 

To better understand possible consequences of Bd 
spread, it is important to know which species are suscep-
tible to Bd infection and chytridiomycosis. Bielby et al. 
(2008) provided evidence that, at least in anuran amphibi-
ans, Bd susceptibility is related to life history. They found 
that species from high altitudes within a geographically ‘re-
stricted’ range and having an aquatic life stage accompa-
nied by low fecundity suffer from higher risk of Bd-related 
decline. Woodhams et al. (2007a, b) provided evidence 
that susceptibility can also depend on species-specific skin 
peptides or skin bacteria. Bd susceptibility may further-
more be related to the environment in which amphibians 
live. Based on the pathogen’s temperature sensitivity, Röd-
der et al. (2009) identified worldwide regions in which 
climatic conditions are most suitable to Bd and concluded 
that at lower latitudes higher elevations and at higher lati-
tudes lower elevations would provide the best environment 
for the survival of Bd.

Bd infection is widespread among European amphibi-
ans including those occurring in the Alps (Garner et al. 
2005, Sztatecsny & Glaser 2011). While it has caused 
mortality and population extinctions in some mountain 
ranges (Bosch & Martinez-Solano 2006, Bielby et al. 
2009, Walker et al. 2010), Bd apparently leaves many Eu-
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ropean species and populations unaffected. Here, we re-
port the results of a study on Bd infection in the viviparous 
and entirely terrestrial Alpine salamander, Salamandra 
atra Laurenti, 1768 (Fig. 1). This caudate is endemic to the 
Alps and the Dinaric Alps (Griffiths 1996).

We suggest that there is reason for concern that this spe-
cies may be at risk of Bd infection because (i) it has a low 
fecundity (Bielby et al. 2008, by implication), (ii) it occurs 
under climatic conditions where outbreaks of chytridio-

mycosis may occur (see Walker et al. 2010), (iii) it inhab-
its mountain ranges climatically suitable to Bd (Rödder 
et al. 2009) and where this fungus occurs (Sztatecsny & 
Glaser 2011), and (iv) Bd-associated mass mortality has 
been observed in the congeneric Salamandra salamandra 
(Bosch & Martinez-Solano 2006).

We tested for Bd infection 310 Alpine salamanders liv-
ing at different altitudes in nine separated populations well 
spaced over the species’ geographic range (Table 1, Fig. 2). 
For sampling, we used sterile cotton swabs (Copan Italia 
S.p.A., Brescia, Italy; Medical Wire & Equipment, Wilt-
shire, England) to swab ventral surfaces of body, hands 
and feet of salamanders. To avoid that the same individu-
als would be tested twice, one site within a population was 
only sampled once and specimens were released only after 
all specimens had been swabbed. Afterwards, swabs were 
frozen as quickly as possible upon return from the field trip 
(Hyatt et al. 2007). For Bd screening, we used quantita-
tive real-time PCR (polymerase chain reaction) of the ITS-
1/5.8S ribosomal DNA region of Bd (Boyle et al. 2004) 
with internal positive control (Hyatt et al. 2007). Bd data 
has been made available to the global Bd mapping project 
at http://www.bd-maps.net/maps/. 

Bd was detected in none of our samples (Table 1), indi-
cating that none of the S. atra specimens sampled were in-
fected. To obtain a Bayesian 95% credible interval for prev-
alence, we used WinBUGS to estimate the posterior distri-
bution of prevalence (Kéry 2010, see Appendix). Poste rior 
distributions were left-skewed towards zero and all 95% 
credible intervals included a prevalence of zero. 

Figure 1. Alpine salamander from the Hinterstein Valley, Bavari-
an Alps, Germany (not collected). Photo: U. Schulte

Country State, locality,  
altitudinal range

Approximate 
coordinates

Number 
of indi-
viduals

Observed prevalence 
(Bayesian 95%  

Credible Interval)

Date Additional species  
sampled (n)

Austria Salzburg, Hagengebirge 
(Schlumsee), 490–1,200 m

13.1 E, 47.5 N 35 0% (0.00, 0.10) 7 July 2009

Austria Salzburg, Krimmler Achental 
(NP Hohe Tauern),  
1,622 m

12.19 E, 47.14 N 20 0% (0.00, 0.16) 14 June 2009

Austria Steiermark, Wörschach  
(Totes Gebirge), 1,715 m

14.13 E, 47.60 N 8 0% (0.00, 0.35) 11-12 June 2009

Austria Tirol, Imst (Lechtaler  
Alpen), 1,700–1,800 m

10.6 E, 47.26 N 10 0% (0.00, 0.28) 30 July 2009

Austria Vorarlberg: Schoppenau 
(Bregenzer Wald),  
915–1,000 m

10.03 E, 47.31 N 8 0% (0.00, 0.35) 31 July 2009

Germany Bayern, Hintersteiner Tal 
(Allgäu), 850–1,825 m

10.4 E, 47.4 N 120 0% (0.00, 0.03) 9-12 July 2009 Bufo bufo (13), Ichthyo
saura alpestris (59)

Switzerland Nidwalden, near  
Wolfen schiessen,  
550–1,705 m

8.38 E, 46.9 N 53 0% (0.00, 0.07) 24-25 July,  
10 August 2009

Bufo bufo (2), Ichthyo
saura alpestris (3), Sala
mandra salamandra (2)

Switzerland St. Gallen, Murgtal,  
1,160–1,604 m

9.11 E, 47.03 N 41 0% (0.00, 0.09) 2 August 2009 Bufo bufo (1), Ichthyo
saura alpestris (4)

Switzerland Glarus, near Braunwald, 
1,500 m

8.98 E, 46.93 N 15 0% (0.00, 0.20) 8 August 2008

Table 1. Details of Alpine salamander and accompanying amphibian species sampling (see Fig. 2). Altitude in metres above sea level.
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How can we explain the apparent absence of Bd infec-
tion in the Alpine salamander? We here discuss four pos-
sible explanations. 

(1) The simplest explanation would be that we failed 
to detect Bd when it was in fact present. Given our sam-
ple sizes, we may have missed Bd in some localities (Di-
Giacomo & Koepsell 1986, Marti & Koella 1993). The 
range of possible prevalences is given by the 95% credible 
intervals (Table 1). However, because all 95% credible in-
tervals included zero and because total sample size was 310 
(Table 1), our results suggest an absence or at least a very 
low prevalence of Bd in the populations studied (DiGia-
como & Koepsell 1986, Marti & Koella 1993). Peyer 
(2010) tested 52 museum specimens of S. atra for Bd and 
none tested positive (one specimen collected in 1972 gave 
an equivocal result, but this also occurred in other species 
that were tested by Peyer [2010]). Although it is clear that 
Bd may occur in very low prevalence in nature, our data 
support that Bd was most likely truly absent rather than 
not detected. 

(2) One might also argue that Bd was simply not present 
in the general area of our tested salamander populations. 
This, however, seems unlikely, as Bd is known to occur at 
high elevations and in cold climates (Seimon et al. 2007, 
Knapp et al. 2001, Muths et al. 2008) including the Swiss 
and Austrian Alps (Peyer 2010, Sztatecsny & Glaser 
2011). We note, however, that at some localities we tested 

syntopic amphibian species (Table 1) for Bd and they all 
tested negative either. 

(3) Another explanation could be that the risk of Bd in-
fection is minimized in this species as a result of its strict-
ly terrestrial life cycle. Under this assumption, the Alpine 
sala mander might be susceptible to Bd, but in practice does 
not, or rarely becomes, infected and/or has a low intraspe-
cific transmission rate. Several studies of life history traits 
and Bd susceptibility suggest that it is more likely to af-
fect species linked to permanent water bodies (Bielby et 
al. 2008, Bancroft et al. 2011). However, experimental in-
fection trials conducted on strictly terrestrial salamanders 
clearly demonstrated susceptibility to both Bd infection 
and clinical chytridiomycosis (Chinnadurai et al. 2009, 
Vasquez et al. 2009, Weinstein 2009). Moreover, a wealth 
of studies have provided field records of Bd-infected terres-
trial salamanders and anurans both in temperate and trop-
ical zones (Bell et al. 2004, Cummer et al. 2005, Kolby et 
al. 2009, Weinstein 2009, Becker & Harris 2010, Longo 
& Burrowes 2010). Thus, a strictly terrestrial life history 
does not per se exclude or reduce the likelihood of infec-
tion by Bd. 

(4) We favour an alternative explanation. We suggest 
that it is plausible that S. atra is resistant to Bd because of 
innate immunity caused by skin peptides or skin micro-
biota in the manner observed in a number of other am-
phibians (Woodhams et al. 2007a, b). This hypothesis 

Figure 2. Distribution of the Alpine salamander (solid red line, taken from www.iucn.org) and populations sampled (red squares, 
Table 1).
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should be tested through experimental infection trials on 
S. atra involving infection of salamanders under natural 
environmental conditions with and without suppressed 
immune function. In principle, a species that is immune 
because of skin peptides or microbiota should become sus-
ceptible by a combination of disinfection using antimicro-
bials and mechanical or chemical depletion of skin peptide 
reservoirs. Additionally, it could be studied in vitro wheth-
er the salamander’s skin peptides and bacteria inhibit the 
growth of Bd. If such anti-Bd properties were found, they 
might be used as part of a strategy to mitigate the effects of 
Bd on wild amphibians (Woodhams et al. 2011). 
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Appendix
WinBUGS code to compute Bayesian 95% credible intervals  

for prevalence

We assume that the reader will access WinBUGS from the statis-
tical software R (see Kéry 2010 for an introduction to both R and 
WinBUGS). In R, if there are, say, 20 individuals that tested nega-
tive for Bd, data could be entered using the command 

data < c(rep(0,20)) 

The code for the WinBUGS model is 

prevalence ~ dunif(0,1) # uniform, non-informative prior 
for (i in 1:n.ind) {# n.ind is the number of individuals in the data set 
data[i] ~ dbern(prevalence)} 

We ran three parallel Markov chains with 2,000 iterations each 
and discarded the first 1,000 iterations as burn-in; we did not thin 
the chains. 


