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Abstract

Manually labelling point cloud scenes for use as training data in machine learning applications is a time- and
labour-intensive task. In this paper, we aim to reduce the effort associated with learning semantic segmentation tasks
by introducing a semi-supervised method that operates on scenes with only a small number of labelled points. For this
task, we advocate the use of pseudo-labelling in combination with PointNet, a neural network architecture for point
cloud classification and segmentation. We also introduce a method for incorporating information derived from spatial
relationships to aid in the pseudo-labelling process. This approach has practical advantages over current methods by
working directly on point clouds and not being reliant on predefined features. Moreover, we demonstrate competitive
performance on scenes from three publicly available datasets and provide studies on parameter sensitivity.
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1 Introduction
Processing of point cloud data, such as scans acquired
by LiDAR systems, is a topic of interest in the fields
of machine vision and robotics [1]. For a machine to
understand the contents of a scanned scene, it is often
necessary to semantically segment the scene by labelling
each point. Most current approaches to semantic seg-
mentation tasks on point clouds use supervised machine
learning methods which rely on abundant and accurately
labelled training data. However, suitable training data is
relatively scarce and expensive to generate because the
task of manually annotating every point in a scene is labo-
rious and time consuming. It is therefore advantageous to
develop semantic segmentation methods that are effective
when only a small amount of annotated data is available.
Semi-supervised learning techniques have been used to
effectively handle scarcity of labelled data by incorporat-
ing unlabelled data in training. However, only a few works
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have addressed this issue with specific regard to semantic
segmentation of point clouds.
We propose to integrate pseudo-labelling with PointNet

[2] to form a technique which can semantically label a
point cloud scene given only a few labelled points. Point-
Net is a deep neural network architecture designed to
work directly with point clouds which allows us to pro-
cess the scene without explicitly defining pre-set features.
Pseudo-labelling is a form of semi-supervised learning
where a classifier trained, used to make predictions, and
then retrained by taking select predictions as ground
truth. We use this method to include initially unlabelled
data in training. To aid in the selection of accurate pseudo-
labels, we prioritize pseudo-label assignment to points
close to already labelled points. Since spatially near points
have an increased likelihood of sharing a label, this has the
effect of prioritizing predictions which are more likely to
be correct.
In this paper, we describe our approach and evaluate the

performance of our technique on three publicly available
datasets, comparing results to our own baselines as well as
state of the art methods. Our contributions are as follows:
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• We integrate pseudo-labelling with a state of the art
architecture for deep learning on point clouds to
semantically label a sparsely annotated scene.

• We introduce a method for generating high quality
pseudo-labelled training data by leveraging the
assumption that spatially near points tend to be
semantically similar.

• We demonstrate improved labelling accuracy
compared to learning on sparsely annotated data
without the aid of pseudo-labelling. The unweighted
average F-score across classes was increased by 18.3%
for the Oakland dataset [3], 14.8% for the Semantic3D
dataset [4] , and 20.1% for the S3DIS dataset [5].

• We provide parameter sensitivity investigation on
our method by varying key parameters (the size of
local neighbourhood, the label selection thresholds,
the number of labelled points, and the stopping point
of the process).

An earlier version of this study was presented in Inter-
national Conference on 3D Vision (3DV) 2019 [6]. In
comparison to [6], which focused on handling outdoor
datasets with no RGB information, we extend the method
to utilize colour information of point cloud data, and to
show the generality of our method by providing the exper-
iment result with an indoor dataset. Additionally, we for-
mulate the method in simpler way to reduce the number
of hyperparameters while maintaining performance.

2 Related work
2.1 Semantic segmentation of point clouds
Feature-based pointwise classification such as [1, 7, 8]
has traditionally been the method of choice semantic seg-
mentation tasks [9]. Descriptive pointwise features are
computed based on a local neighbourhood and used to
train a classifier such as a random forest or a support vec-
tor machine. The usefulness of this approach is limited by
its reliance on predefined features.
To overcome the limitations of traditional approaches,

many recent works make use of deep neural net-
works. Examples include 2D convolutional neural net-
works (CNN) [10] that operate on rendered views of
the data, 3D CNNs [11] that operate on voxel rep-
resentations of 3D data, and networks that operate
directly on point cloud data [2, 12]. These methods
are much more versatile than traditional approaches
because neural networks are able to represent the data
without predefined features. Superpoint graph [13] has
achieved state of the art performance in multiple datasets
for semantic segmentation. Superpoint graph combines
PointNet [2] with graphical methods to encode local
features and contextual information. In our work, we
also use PointNet as the base on which our method
is built.

The works described above focus on training with
densely labelled point clouds. However, we are interested
in learning based on a reduced number of labelled points.
Interactive segmentation methods such as [14–16] can be
used to label groups of points by making a binary fore-
ground/background classification based on sparse anno-
tations. However, to obtain a full semantic labelling of
the scene, it would be necessary to manually identify and
classify every object instance. This can prove to be a
time consuming task if there are many distinct objects
scattered throughout the scene. In [9], unsupervised pre-
segmentation is used to generate examples of objects first
before annotation by a human operator. Labelled exam-
ples are then used along with pairwise constraints to train
a classifier in a semi-supervised fashion. This method
operates on a range image representation of the scene and
uses a CNN for classification. The range image represen-
tation restricts the applicability of this technique, as indi-
vidual data frames are often not available. Segmentation-
aided classification [17] also uses pre-segmentation to
work with sparse annotation; segments are classified ini-
tially based on the output of a pointwise classifier and
further processed by a conditional random field (CRF).
Their use of weak supervision (by the pointwise classifier
output) overcomes the need for manual classification of
object instances. An important drawback of this method,
however, is reliance on carefully engineered features to
capture geometry. Nonetheless, this method is, to the best
of our knowledge, the state of the art for this application.

2.2 Semi-supervised learning
Semi-supervised learning refers to the use of both labelled
and unlabelled data in machine learning. It is often used
to enhance performance when limited amounts of labelled
training data are available. In some cases, results com-
petitive with fully supervised learning have been achieved
using substantially less labelled data [18]. Pseudo-labelling
[19] is an approach to semi-supervised learning which
takes some of the model’s own predictions as ground
truth for training. The process is iterative in nature and
alternates between training and pseudo-label generation.
A number of variations on pseudo-labelling exist; for
example, Iscen et al. [20] recently proposed transduc-
tive label propagation as a way of generating pseudo-
labels. Pseudo-labelling itself is a variation of self-training,
adapted for use with deep neural networks. Self-training,
sometimes known as bootstrapping, is one of the earliest
approaches to semi-supervised learning [21]. Self-training
and pseudo-labelling share the commonality of using an
existing model to automatically generate additional train-
ing data. However, label selection and retention proce-
dures differ. In this work, we present our own variation
of pseudo-labelling specifically targeted towards point
cloud processing. Pseudo-labelling was chosen over other
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semi-supervised learning methods for its simplicity and
adaptability. It is a wrapper algorithm which can be used
around almost any base classifier, and its basic concept
is not inherently reliant on assumptions typically used in
semi-supervised learning (cluster, smoothness, low den-
sity separation, and manifold assumptions) [21]. Rather,
assumptions are imposed by choices in base classifier and
label selection criteria.

3 Problem statement
In this paper, we consider the task of semantically labelling
a point cloud scene given only a small number of anno-
tated points. Point labels are drawn from a set of known,
mutually exclusive semantic classes. Point cloud scenes of
interest typically contain over several hundred thousand
points. For annotations to be manually producible within
a short amount of time, we set the number of labelled
points to be a few tens per class (Fig. 1a). We believe such
a small amount of scattered initial points can be manually
selected in practical situations.

4 Method
Our method is based on pseudo-labelling, a semi-
supervised learning technique described by Lee [19]. It
operates by alternating between training of a classification
network and label propagation (Fig. 1). The classification
network is used to predict point labels based on its local
neighbourhood of points. It is trained in a supervised fash-
ion using originally labelled and pseudo-labelled points.
Pseudo-labelled points are points which were originally
unlabelled but have been assigned a pseudo-label. Pseudo-
labels are assigned during the label propagation step in
each iteration by selecting “good” predictions based on
its confidence and spatial relationship to already labelled
points. Once assigned, pseudo-labels continue to be used
as ground truth in all subsequent training steps. The
process continues until all unlabelled points have been
assigned a pseudo-label; at the end, pseudo-labels are
taken as the final semantic labelling. This stands in con-
trast to pseudo-labelling as described by Lee [19] where

pseudo-labels are discarded every iteration rather than
accumulating as we have done. We choose to accumulate
pseudo-labels because, as we demonstrate in Section 5.5.2,
labels assigned early in the process are highly accurate.
Thus, we avoid overwriting this useful information. In
practice, due to label selection criterion and the decreas-
ing number of unlabelled points, the number of pseudo-
labels assigned decreases exponentially every iteration.
Thus, continuing to iterate until no unlabelled points
remain is not feasible in a reasonable amount of time. For
this reason, we end the process by assigning labels to all
remaining points once more than 95% of the scene has
been labelled.We study the effect of changing the 95% cut-
off in Section 5.6.4. In the next two sections, we describe
the network training and label propagation steps in more
detail.

4.1 Network and training
Traditional classification methods are limited by the need
for predefined features. For this reason, we choose to use
a neural network for feature learning and point classifi-
cation. Specifically, we select the PointNet architecture
[2] because it is simple and is not subject to the com-
putational expense and loss of information associated
with conversions to voxel and image representations. We
use their implementation of the classification network
as described in [2] with similar parameters and training
schedule. Details on the network architecture and training
parameters are given in Appendix A.
To facilitate feature extraction, each point i is repre-

sented by its local neighbourhood in the local coordinate
frame. We define the neighbourhood as the collection
of points within a radius r of i. Using this as input to
the network, the model is trained as described above.
This is equivalent to PointNet++ with single scale group-
ing and a single set abstraction layer [12], and we use
their implementation of ball query to compute the local
neighbourhood. The output of the network is a softmax
normalized score which represents the probabilistic clas-
sification of the point. The predicted class is the class

Fig. 1 Illustration of our method. Colours indicate the class of points, which are red: foliage, yellow: wire, green: pole, light blue: ground, and blue:
façade. a Small number of initial annotation to point cloud is given. b Our method performs learning and propagation sequentially. c In the end, all
points are labelled. See that our method does not only propagate, but also labels points without initially labelled points in its neighbourhood
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corresponding to the highest probability, and probability
itself is the confidence of the prediction c.
Every iteration, the model is trained until convergence

using a modified version of the cross entropy loss used in
[2]. Convergence is determined by keeping a moving aver-
age of training accuracy. If this value changes by less than
0.2% for five consecutive updates, training is said to have
converged and pseudo-labels are assigned after the end of
the epoch. Cross-entropy loss weighted by the proportion
of pseudo-labelled data to originally labelled data is used
to account for the increasing quantity of pseudo-labelled
points compared to originally labelled points.
For discrete distributions with mutually exclusive

classes, cross-entropy loss is given by

L = −
∑

l,p∈S
lT logp (1)

= −
⎛

⎝
∑

l,p∈Sa
lT logp +

∑

l,p∈Sp
lT logp

⎞

⎠ , (2)

where l is a training class of a point as a one-hot vector,
p is the probabilistic prediction made by the network, S is
the set of pairs of l and p for all labelled points, Sa is the set
of pairs of l and p for initially annotated points, and Sp is
the set of pairs of l and p for pseudo-labelled points. Note
Sa

⋃
Sp = S and Sa

⋂
Sp = ∅.

As pseudo-labelling progresses, cardinality |Sp|
becomes much greater than |Sa|, causing the model to
increasingly favour fidelity with pseudo-labelled data over
the originally labelled data. This is undesirable for two
reasons: (i) the originally labelled data is guaranteed to
be correct whereas the pseudo-labelled data may contain
errors and (ii) the quantity of pseudo-labelled data may
be highly imbalanced across classes, which is known to
adversely impact learning. The originally labelled data, on
the other hand, can be selected to be well balanced. We
compensate for these effects by scaling the first term by
the proportion of pseudo-labelled data relative to orig-
inally labelled data. The modified loss L′ thus becomes

L′ = −
⎛

⎝ |Sp|
|Sa|

∑

l,p∈Sa
lT logp +

∑

l,p∈Sp
lT logp

⎞

⎠ (3)

In practice, this effect is achieved by repeatedly sampling
from the original labelled data. In the event that not all
pseudo-labelled points are used in training, Sp is a set of
pairs of l and p for only points actually used in training in
one epoch.

4.2 Label propagation
In the label propagation step, the model is evaluated to
generate predictions for all unlabelled points which have
not yet been assigned a pseudo-label. Predictions made
with confidence (or modified confidence) values above a

threshold tconf are selected as pseudo-labels. The confi-
dence c of a prediction is defined as themaximum element
of the softmax normalized probability of the model out-
put.

c = maxp (4)

Our observations confirm that c is strongly correlated
with accuracy, even on data not used in training. Addi-
tionally, we experiment with using modified confidence
values c′ and c′′ for label selection instead of c alone. c′
incorporates awareness of spatial relationships by apply-
ing a multiplier kdist which reduces the confidence of a
prediction if it is far away from already labelled points
of the predicted class. This encourages spatially smooth
labelling, which is desirable because point cloud represen-
tations of reality generally display some degree of spatial
regularity. Formally,

c′ = kdist × c (5)

where kdist is defined as follows, by assuming that the
probability of two points sharing a label follows a normal
distribution based on the distance between them.

kdist = exp
(

− d2

σ 2

)
(6)

Here, d is Euclidean distance between the two points and
σ is the standard deviation of the distribution. For a given
prediction, d is computed as the distance to the near-
est point of the predicted class. σ is selected so that kdist
slightly less than tconf when d = r, where r is the radius
of the local neighbourhood described in Section 4.1. This
has the effect of restricting label selection to points that
are within a distance of r of existing labelled points.
When RGB data is available, we can extend this idea to

RGB-space by defining krgb based on drgb, the distance
in RGB space, rather than the physical distance. krgb is
applied to c in addition to kdist as follows

c′′ = krgb × kdist × c (7)

With krgb defined as

krgb = exp
(

−
d2rgb
σ 2
rgb

)
(8)

σrgb is the standard deviation of this distribution and it is
selected in a similar way to σ .
Since kdist decreases, approaching zero as distance

increases, the maximum confidence of predictions far
away from already labelled points are reduced below the
selection threshold and have no chance of being selected
as pseudo-labels. This is problematic because it prevents
instances of a class which are not near the originally
labelled points from being labelled. As a provision for such
a situation, we temporarily ignore kdist or krgb when the
number of pseudo-labels assigned in an iteration drops
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below 1000 as followings. When krgb is used, we first
ignore krgb. If the number of predictions selected remains
still less than 1000 with ignoring krgb then kdist is also
ignored. Finally, if less than 1000 predictions are selected
despite ignoring kdist and krgb, then all remaining unla-
belled points are labelled and the process is stopped.

5 Experiments
5.1 Competing methods
To demonstrate the performance of our method com-
pared to the state of the art, we evaluate against
segmentation-aided classification (seg-aided) [17] as well
as their baselines, CRF-regularization (CRF-reg) [22], and
pointwise classification with a random forest [1]. We use
their implementations of CRF-regularization [23–27] and
segmentation-aided classification [17, 28] with our own
implementation of a random forest classifier using their
geometric features. Neighbourhood selection was per-
formed following the procedure described by Weinmann
et al. [1]. Details are given in Appendix B.
In their original work, Guinard and Landrieu [17]

describe four local descriptors (linearity, planarity, scatter,
and verticality) and two global descriptors (elevation and
position with respect to the road). All descriptors were
used for initial pointwise classification and only the local
descriptors were used for segmentation. However, we only
implement the local descriptors which are used for both
initial classification and segmentation. We do not include
the global descriptors because they are not applicable to
indoor scenes, which we also consider.

5.2 Data
We test our method on scenes from two publicly datasets:
the Oakland 3D point cloud dataset [3], the Semantic3D
large scale point cloud classification benchmark [17],
and the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS) [5]. For each scene, we choose a small number of
points to use as labelled data. The remaining points are
used as unlabelled training data and for evaluation. For the
Oakland and Semantic3D datasets, we deliberately choose
a data setup similar to [17] to help the readers refer their
evaluations along with ours.
The Oakland dataset is a labelled 3D point cloud cap-

tured by mobile laser scanners near the CMU campus in
Pittsburgh, Pennsylvania. The scene is divided into five
classes: foliage, wire, pole, ground, and façade. Specifi-
cally, we take the urban portion of the test set consisting
of 655,273 points. For training, 15 labelled points are
randomly selected from each class for a total of 75 points.
The Semantic3D dataset consists of several outdoor

scenes captured by stationary 3D scanners. We consider
one of the urban scenes (domfountain1). The full dataset
consists of 8 classes, man-made terrain, natural terrain,
high vegetation, low vegetation, buildings, hard scape,

scanning artefacts, and cars; however, our chosen scene
does not contain any natural terrain. This dataset also
includes unlabelled points. As with the Oakland dataset,
we prepare this dataset similarly to Guinard and Lan-
drieu [17]. We start by subsampling the scene to 3.5
million points. High vegetation and low vegetation are
then combined into a single class and all unlabelled points
are removed. 1,982,375 points remain, divided between 6
classes: terrain, vegetation, buildings, hardscape, scanning
artefacts, and cars. For training, we randomly select 30
points per class for a total of 180 points.
The S3DIS dataset is a large scale dataset comprised

of coloured scans of indoor areas. The full dataset con-
sists of 6 areas from 3 buildings. Each area is divided
into sections such as offices, auditoriums, and hallways.
For our experiments, we choose to work with a single
room consisting of 759,861 points (area 3, office 1). This
dataset has 13 classes; however, only 11 of these appear
in our section of choice. These classes are ceiling, floor,
wall, beam, window, door, table, chair, bookcase, board,
and clutter. The two classes that do not appear are sofa
and column. Just as with the Oakland dataset, we ran-
domly select 15 labelled points per class for a total of 165
points.

5.3 Evaluation metric
Following Guinard and Landrieu [17], we evaluate our
results using the unweighted average of F-scores across
classes. This metric compensates for class imbalance
because it is not influenced by class cardinality and
tends to favour balanced performance across classes.
That is to say, exceptionally poor performance in a given
class is not easily compensated by exceptionally good
performance in another. The evaluation metric is com-
puted based on pseudo-labels assignments at the end
of the process. It is sometimes the case that the F-
score for a class is undefined. This happens when either
no instances of the class are predicted correctly, or no
instances of the class are predicted at all. When tak-
ing the average, undefined F-scores are treated as 0.
In our results, we note also the overall accuracy and
per-class F-scores.

5.4 Experiment conditions
Unless otherwise specified, r = 1 is used for experiments
on the Oakland and Semantic3D datasets and r = 0.25 for
the S3DIS dataset.When kdist is used, σ is specified so that
kdist = tconf − 0.01 when d = r. When krgb is used, σrgb
is selected in the same way except with rrgb = 15 is used
instead of r. In Section 5.6, we further explore the effect of
changing r and tconf using the Oakland dataset.
To evaluate the performance of our method on the Oak-

land and Semantic3D datasets, we perform the following
experiments:
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i) Pointwise RF—classification based on local
geometric features using a random forest classifier
trained on only the labelled data

ii) CRF-reg—CRF-regularization applied to the random
forest initial classification

iii) Seg-aided—segmentation-aided classification with
segmentation based on local geometric features
applied to the random forest initial classification

iv) Supervised baseline—PointNet trained on only the
labelled data

v) Ours no kdist—pseudo-labelling with kdist not
applied. Label selection based only on the confidence
of the prediction (tconf = 0.98)

vi) Ours with kdist—pseudo-labelling with kdist
(σ = 4.02 and tconf = 0.95)

For the S3DIS dataset, we perform the same experi-
ments described for the Oakland dataset; however, train-
ing data was sampled from pseudo-labelled points so
that the number of points taken from each class was the
same (2,272 points/class). Furthermore, RGB information
is available for this dataset; however, existing methods
are not designed to handle RGB information. Therefore,
we run these experiments once without RGB informa-
tion and once using RGB information. For conditions i
through iii, we include RGB information by using RGB
values as features used to train the random forest; RGB
values are not used for segmentation as we found this to
be less effective than using geometry alone. For conditions
iv through vi, we append RGB values to point features
after the input transform in PointNet. For condition vi,
following aforementioned derivation of σ in this section,
we select σ = 1.005. When RGB information is used, we
include an additional test condition where kdist and krgb
are both used:

vii) Ours with kdist and krgb—pseudo-labelling with kdist
and krgb (σ = 1.005, tconf = 0.95, and σrgb = 60.30)

5.5 Results
5.5.1 Overall performance
Table 1 lists our results for the Oakland dataset. Our
method at its best outperforms segmentation-aided

classification [17] due to significant improvement in the
pole class. However, their method achieves slightly bet-
ter performance in other classes. Additionally, ourmethod
with kdist demonstrates substantial improvement over the
fully supervised baseline, especially in the pole and wire
classes. From our observations, this is due largely to an
improvement in precision as fewer points are mislabelled
as poles and wires.
For the Semantic3D dataset, results are shown in

Table 2. Again, our method with kdist achieves the best
results overall, demonstrating significant improvements
over both the state of the art and the fully supervised
baseline. We notice, however, that performance of the
competing methods is notably worse on the Semanitic3D
dataset compared to Oakland, yet in their original paper,
the authors report better performance on the Seman-
tic3D dataset. This difference can be attributed to several
factors:

• We did not implement their global descriptors which
may have been important for this dataset.

• We selected training data randomly rather than
manually choosing representative points based on the
geometric features.

• In all cases, we use the same hyperparameters for
both datasets. This may also explain why our own
method also fares worse on the Semantic3D dataset
compared to Oakland. However, we believe this
result shows that our method is less dependent on
hyperparameter settings than the alternative.

For the S3DIS dataset, results are shown in Table 3 (no
RGB) and in Table 4 (with RGB). We can observe that
incorporating RGB information is effective to improve
the performance for both competing methods and our
method. Among all, our method with kdist and krgb (con-
dition vii in Section 5.4) achieved the best result. Notably,
segmentation-aided classification [17] failed to correctly
classify the clutter and the wall classes on this dataset
with RGB. Although their pointwise prediction gave some
correct results, the points were mis-labeled after the seg-
mentation aided smoothing.We believe this is because the
correctly predicted points were segmented together with

Table 1 Semantic segmentation results on the Oakland dataset

Method Overall accuracy (%) Average F-score (%) Per-class F-scores(%)

Foliage Wire Pole Ground Façade

Pointwise [1] 79.8 49.9 82.2 4.3 4.3 91.4 67.5

CRF-reg [22] 96.0 66.2 93.6 32.0 11.9 99.0 94.5

Seg-aided [17] 96.6 68.4 93.7 46.5 8.7 99.5 93.9

Supervised baseline 88.1 55.9 75.7 7.9 16.5 98.3 81.3

Ours no kdist 91.2 62.7 82.2 10.3 36.8 98.4 85.9

Ours with kdist 96.6 74.2 92.0 40.2 46.2 99.3 93.3
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Table 2 Semantic segmentation results on the Semantic3D dataset

Method Overall accuracy (%) Average F-score (%) Per-class F-scores(%)

Terrain Vegetation Building Hardscape Artefacts Cars

Pointwise [1] 49.5 29.3 87.2 13.6 59.0 12.9 2.2 1.0

CRF-reg [22] 65.0 42.8 96.2 32.0 73.5 28.4 24.8 1.8

Seg-aided [17] 74.4 43.1 95.7 28.1 83.0 24.7 22.9 4.0

Supervised baseline 86.2 51.9 97.1 36.5 91.7 66.3 6.7 13.0

Ours no kdist 88.1 56.9 97.7 51.8 92.7 54.9 4.8 39.2

Ours with kdist 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3

a larger number of points from another class. On the other
hand, our method stably predicted correct classes for all
types of objects.
Figure 2 shows the visualized results of semantic seg-

mentation described in this section. We notice that for
the Oakland and Semantic3D datasets, the kdist variation
results in better performance, particularly in areas with
low point densities.We believe this occurs because no kdist
variations tend to wrongly label sparse scatter early in the
process as a result of overfitting to the initial training data.
On the other hand, applying kdist does not allow labelling
of faraway points; as a result, most scatter is not labelled
until the model has developed better generalization abili-
ties by training on data with greater variation. The ability
to perform well in low density regions presents an impor-
tant advantage when working with real world data, which
often contains large variations in point density.

5.5.2 Intermediate results
Our method labels the scene gradually by accepting con-
fident predictions every iteration. In this section, we dis-
cuss the intermediate stages of the process for the case
when kdist is hard. Figure 3 visualizes label assignments
at three points in the process alongside error cases for
each. Intermediate F-scores shown below the images are
calculated by evaluating on the accepted pseudo-labels at

each stage. Figure 4 plots intermediate F-scores against
the percentage of points labelled. From these figures, we
make two important observations. First, pseudo-labelled
points selected early on are highly accurate. Thus, they
provide the model with additional high quality train-
ing data. This is why our method was able to achieve
improvements over the supervised baseline. Second, we
observe that pseudo-labels remain quite accurate until
most points had been labelled and that there is a rather
sudden drop in performance when approximately 85% of
the scene has been labelled. Interestingly, we note that
this occurred when kdist was not applied (as described
in Section 4.2, we do this when the number of pseudo-
labels assigned in an iteration drops below 1000). This
confirms our initial assumption that spatially near points
tend to be semantically similar. Additionally, based on
these results, we suggest that it may be possible to
improve performance by incorporating user interaction
into our process. This can be accomplished, for exam-
ple, by having the programme ask the user for additional
annotations rather than ignoring kdist when progress
slows.

5.6 Parameter studies
In this section, we investigate the effect of varying key
process and data preparation parameters. Specifically, we

Table 3 Semantic segmentation results on the S3DIS dataset (no RGB)

Method OA (%) AF (%) Per-class I-scores(%)

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi)

Pointwise [1] 18.8 16.8 15.3 0.1 18.0 27.5 7.5 8.4 49.9 18.3 18.4 21.0 0.9

CRF-reg [22] 35.6 25.6 −∗1 −∗2 48.9 53.3 2.6 −∗1 94.9 11.3 39.2 31.2 0.2

Seg-aided [17] 42.1 34.0 52.6 −∗2 72.4 47.1 −∗2 −∗2 94.1 26.6 49.5 31.0 1.1

Supervised baseline 34.8 30.5 27.5 47.9 23.5 26.7 19.2 34.2 60.2 25.9 29.1 24.7 16.1

Ours no kdist 31.7 28.5 32.2 46.2 31.8 31.8 22.9 36.5 28.4 32.5 29.2 4.2 18.0

Ours with kdist 49.8 44.3 31.7 73.8 35.3 38.1 31.1 59.2 74.1 40.9 46.7 20.9 29.0

*1 no instances of class are predicted correctly; precision=0, recall=0 - F-score undefined, taken to be 0 for the average

*2 no instances of class are predicted at all; precision undefined, recall=0 - F-score undefined, taken to be 0 for average

OA overall accuracy, AF average F-score. Classes are as follows: (i) door, (ii) floor, (iii) table, (iv) window, (v) beam, (vi) book-case, (vii) ceiling, (viii) clutter, (ix) chair, (x) board, (xi)
wall
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Table 4 Semantic segmentation results on the S3DIS dataset (with RGB)

Method OA (%) AF (%) Per-class F-scores(%)

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi)

Pointwise [1] 42.7 39.0 33.7 67.2 52.6 42.4 16.1 27.5 67.0 14.7 40.4 37.5 29.7

CRF-reg [22] 62.2 61.4 74.4 93.3 85.5 62.9 46.4 83.3 86.3 22.2 52.0 43.6 25.1

Seg-aided [17] 62.2 61.7 82.7 93.8 80.1 67.9 72.4 98.1 98.5 −∗1 59.2 25.7 −∗2

Supervised baseline 56.1 55.0 59.1 54.9 59.9 45.3 43.6 67.6 82.2 47.5 45.3 68.5 30.7

Ours no kdist nor krgb 54.1 52.3 50.5 53.1 54.6 48.0 46.6 56.7 85.6 37.6 50.5 68.1 24.1

Ours with kdist no krgb 71.9 72.2 79.4 82.1 73.6 77.3 54.0 86.9 87.4 61.4 66.4 78.0 47.5

Ours with kdist and krgb 74.5 75.1 74.2 82.3 75.7 77.6 69.2 84.2 89.7 59.0 67.5 89.8 56.6

*1 no instances of class are predicted correctly; precision=0, recall=0 - F-score undefined, taken to be 0 for the average

*2 no instances of class are predicted at all; precision undefined, recall=0 - F-score undefined, taken to be 0 for average

OA overall accuracy, AF average F-score. Classes are as follows: (i) door, (ii) floor, (iii) table, (iv) window, (v) beam, (vi) book-case, (vii) ceiling, (viii) clutter, (ix) chair, (x) board, (xi)
wall

experiment with changing the size of the local neighbour-
hood (r), the label selection thresholds (tconf and tdist), the
number of labelled points (|Sa|), and the stopping point of
the process.
5.6.1 Neighbourhood size
Table 5 shows the effect of changing the neighbourhood
radius r. We observe that there exists an optimal radius

for this particular dataset around 1 to 1.5. We also observe
that away from the optimum, a larger radius yields bet-
ter results than a smaller radius. This is consistent with
observations made by Qi et al. in [12]. Furthermore, we
note that performance does not deteriorate rapidly as we
stray from optimal values and remains competitive with
segmentation-aided classification in most cases tested.

Fig. 2 Semantic segmentation results. From the left to right, the results for the Oakland, Semantic3D, and S3DIS (with RGB) datasets are shown. a
The ground truth, b predictions made using Seg-aided [17], c predictions made by our supervised baseline, d prediction results made by our
method without kdist or krgb, e predictions made by our methods with kdist (for the Oakland and Semantic3D datasets) or with kdist and krgb (for
S3DIS dataset). Colours correspond to semantic classes. White dots indicate initially annotated points
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Fig. 3 Gradual semantic labelling of the scene with kdist. The top row shows accepted pseudo-labels after a 8, b 80, and c 105 iterations. The
unweighted average F-scores at the iterations are a 95.0%, b 91.1%, and c 74.2%. The rightmost image shows the final semantic labelling. Colours
correspond to semantic classes. White dots indicate initially annotated points. The bottom row highlights errors in red while correct labels are
shown in white. In both the top and the bottom images, unlabelled points are shown in grey

5.6.2 Label selection thresholds
Table 6 shows the effect of varying the label selection
thresholds. For these experiments, we restrict the search
space by setting tdist = tconf − 0.01. These results show
that a highly restrictive threshold is detrimental to perfor-
mance while a more relaxed threshold yields favourable
results. Furthermore, with the exception of highly restric-
tive selection thresholds, performance is not heavily influ-
enced by small changes and remains competitive with
segmentation-aided classification.

5.6.3 Number of labels
Table 7 shows the effect of changing the number
of labelled points. We tested both our method and

segmentation-aided classification. We observe that our
method cannot outperform the segmentation-aided clas-
sification when very few points are labelled. Furthermore,
neither method benefits significantly from increased data.
In fact, our method performs better with 15 labels per
class than 30 or 100. This indicates sensitivity to the
specific choice of initially labelled data. Thus, it would
be beneficial to develop a suitable strategy for selecting
annotations.

5.6.4 Process cutoff
In Section 4.2 we specify that, for practicality reasons, the
process ends by assigning labels to all unlabelled points
when more than 95% of the scene has been labelled. Here,

Fig. 4 F-scores calculated on accepted pseudo-labels at intermediate stages in the process. Our method outperforms segmentation-aided
classification by a large margin until roughly 85% of the scene has been labelled
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Table 5 Parameter studies on varying the neighbourhood radius, tested on the Oakland dataset

Radius Overall accuracy (%) Average F-score (%) Per-class F-scores(%)

Foliage Wire Pole Ground Façade

0.5 92.8 63.2 81.9 20.3 28.5 98.7 86.4

1.0 96.6 74.2 92.0 40.2 46.2 99.3 93.3

1.5 96.1 75.0 90.3 45.4 47.7 98.9 92.7

2.0 93.2 73.1 84.1 48.1 44.3 96.7 92.4

3.0 91.3 71.2 80.7 50.5 38.8 95.5 90.8

Seg-aided [17] 96.6 68.4 93.7 46.5 8.7 99.5 93.9

The segmentation-aided classification result is reproduced in the last row for reference

Table 6 Parameter studies on varying the label selection thresholds, tested on the Oakland dataset

tconf Overall accuracy (%) Average F-score (%) Per-class F-scores(%)

Foliage Wire Pole Ground Façade

0.99 92.4 58.3 82.4 19.1 8.9 98.9 82.5

0.97 94.6 73.5 87.3 43.6 45.5 97.7 93.5

0.95 96.6 74.2 92.0 40.2 46.2 99.3 93.3

0.90 94.4 73.3 87.0 40.1 48.3 97.5 93.8

0.85 94.7 74.4 87.4 41.1 52.3 97.8 93.6

0.80 96.6 75.6 91.9 41.7 48.9 99.2 93.6

0.70 94.5 74.2 86.9 39.2 53.4 97.6 93.6

0.60 94.3 76.0 86.3 48.4 54.5 97.4 93.4

Seg-aided [17] 96.6 68.4 93.7 46.5 8.7 99.5 93.9

The segmentation-aided classification result is reproduced in the last row for reference

Table 7 Parameter studies on varying the number of initially annotated points, tested on the Oakland dataset

Method Overall accuracy (%) Average F-score (%) Per-class F-scores(%)

Foliage Wire Pole Ground Façade

5 labels/class

Seg-aided [17] 95.1 58.9 95.1 4.1 14.3 93.9 87.1

Ours with kdist 80.6 45.2 0.0 33.9 32.7 99.4 60.2

15 labels/class

Seg-aided [17] 96.6 68.4 93.7 46.5 8.7 99.5 93.9

Ours with kdist 96.6 74.2 92.0 40.2 46.2 99.3 93.3

30 labels/class

Seg-aided [17] 96.2 67.8 94.8 33.6 19.3 98.9 92.2

Ours with kdist 95.9 70.2 90.5 34.1 35.5 99.3 91.4

100 labels/class

Seg-aided [17] 96.2 68.0 95.5 32.2 20.7 98.8 92.4

Ours with kdist 96.2 72.6 91.4 38.3 41.4 99.4 92.4

Experiments were performed using our method and segmentation-aided classification
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Fig. 5 Parameter studies on varying the stopping point of the process, tested on the Oakland dataset. F-scores are calculated after each iteration by
evaluating on accepted pseudo-labels and predictions made on unlabelled points

we show the effect of changing the cut-off point. In Fig. 5
we plot, against the percentage of pseudo-labels assigned,
the F-score if the process was stopped at that point. The
F-score was calculated after each iteration by evaluat-
ing on current pseudo-label assignments and predictions
made on unlabelled points. We observe that in general,
delaying the end of the process improves performance and
thus stopping point selection becomes a trade-off between
processing time and accuracy.

6 Conclusions
We have introduced a method for semantically labelling
a point cloud scene given a small number of anno-
tated examples. Our proposed method implements a
pseudo-labelling training procedure using PointNet as a
base classifier. In addition, we include spatial awareness
by favouring points near existing labelled points when
selecting pseudo-labels. We have demonstrated compet-
itive performance over baseline and state of the art
methods for this task. Moreover, our method has sev-
eral advantages over current approaches. Most signifi-
cantly, we are able to work directly with point clouds
and do not rely on predefined features. Our method
with kdist in particular was observed to perform well
in regions with low point density, where other vari-
ants had failed. Additionally, we have shown that our
method is fairly robust to changes in hyperparameter
settings.
In the future, it is worthwhile to investigate methods

to select favourable initial labels. It may also be possible
to improve results by incorporating user interaction to

avoid deteriorating performance during later stages of the
process.
In addition, our experiments implicitly assume that

the distributions of the labelled and unlabelled data are
the same by selecting initial points randomly. We did
not evaluate if this assumption is practical or how our
method performs under the case this assumption did
not hold. Regarding this, actual user study with man-
ually created initials, along with user guidance, is a
future work.

Appendix A: Network and training details
In this work, we used the classification network described
in the original PointNet paper [2] and a very similar train-
ing procedure (differences are highlighted in bold). The
architecture is summarized as follows, with layer sizes of
multilayer perceptron (mlp) networks shown in parenthe-
ses.
3×3 spatial transform → shared pointwise mlp (64, 64)

→ 64×64 feature transform → shared pointwise mlp (64,
128, 1024)→max pool across points→mlp (512, 256, K)
Here, K is the number of classes in the dataset (K

= 5 for Oakland, K = 6 for Semantic3D, and K =
11 for S3DIS). The network takes in a list of points
as input and outputs a score for each class. Scores
are normalized using the softmax function to obtain
a probabilistic classification. The Adam optimizer is
used to train the network, with an initial learning rate
of 0.001 and batch size of 128. The learning rate
decays by 0.7 every 200,000 updates. Data is shuffled
every epoch and data augmentation is performed during
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training by applying random jitter and rotation about the
vertical (z) axis.

Appendix B: Competingmethods implementation
B.1 Pointwise random forest
MATLAB’s built in TreeBagger was used to implement a
random forest for pointwise classification. Geometric fea-
tures described in [17] are calculated based on the neigh-
bourhood of k-nearest neighbours. We iterate through
k =[ 1, 100] with a step size of 1 to select the optimal
neighbourhood size for each point by maximizing the
energy described in [1].

B.2 CRF-regularization
For CRF-regularization, we use the code and framework
introduced by Landrieu et al. in [23] on top of the initial
classification described previously. The alpha expansion
minimizing algorithm [24–27] was used on a cost function
with log-linear fidelity and Potts penalty regularization.

B.3 Segmentation-aided classification
To compute the segment graph, we use the l0-cut pur-
suit algorithmwith quadratic fidelity defined by [28] based
on the geometric features specified in [17]. We then
apply CRF-regularization as described above on top of the
segment graph. The initial classification for the segment-
based CRF is obtained by taking the average score in each
segment from the random forest classification described
previously.
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