
ORIGINAL RESEARCH Open Access
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Abstract
Background: Small studies have recently suggested that there are specific plasma metabolic signatures in
chronic obstructive pulmonary disease (COPD), but there have been no large comprehensive study of metab-
olomic signatures in COPD that also integrate genetic variants.
Materials and Methods: Fresh frozen plasma from 957 non-Hispanic white subjects in COPDGene was
used to quantify 995 metabolites with Metabolon’s global metabolomics platform. Metabolite associations
with five COPD phenotypes (chronic bronchitis, exacerbation frequency, percent emphysema, post-
bronchodilator forced expiratory volume at one second [FEV1]/forced vital capacity [FVC], and FEV1 percent
predicted) were assessed. A metabolome-wide association study was performed to find genetic associations
with metabolite levels. Significantly associated single-nucleotide polymorphisms were tested for replication
with independent metabolomic platforms and independent cohorts. COPD phenotype-driven modules
were identified in network analysis integrated with genetic associations to assess gene-metabolite-
phenotype interactions.
Results: Of metabolites tested, 147 (14.8%) were significantly associated with at least 1 COPD phenotype. Asso-
ciations with airflow obstruction were enriched for diacylglycerols and branched chain amino acids. Genetic
associations were observed with 109 (11%) metabolites, 72 (66%) of which replicated in an independent cohort.
For 20 metabolites, more than 20% of variance was explained by genetics. A sparse network of COPD phenotype-
driven modules was identified, often containing metabolites missed in previous testing. Of the 26 COPD
phenotype-driven modules, 6 contained metabolites with significant met-QTLs, although little module variance
was explained by genetics.
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Conclusion: A dysregulation of systemic metabolism was predominantly found in COPD phenotypes character-
ized by airflow obstruction, where we identified robust heritable effects on individual metabolite abundances.
However, network analysis, which increased the statistical power to detect associations missed previously in clas-
sic regression analyses, revealed that the genetic influence on COPD phenotype-driven metabolomic modules
was modest when compared with clinical and environmental factors.

Keywords: metabolomics; chronic obstructive pulmonary disease; metabolomic quantitative trait analysis;
integrated omics; network analysis

Introduction
Metabolites are low molecular weight ( £ 1500 Daltons)
molecules, representing both endogenous and exoge-
nous (environmentally derived) compounds, which
play important roles in signaling, energy expenditure,
reproduction, and growth. Metabolites vary greatly
across individuals and can act as a unique identifier
of an individual through time.1 Metabolite expression
is thought to be the most proximal signature of health
and disease, when compared to other omics (e.g., geno-
mics, transcriptomics, and proteomics).2

Recently, there have been several reports suggesting
the presence of characteristic metabolic signatures in
the blood of individuals with lung diseases such as
chronic obstructive pulmonary disease (COPD)3–8;
however, these reports have typically included only
a small number of subjects or a limited annotation of
metabolic features ( < 500 metabolites). During the
past few years, substantial gains have been made in
metabolomics, using analytical chemistry techniques
and advanced computational methods to characterize
complex biological mixtures. The highly sensitive de-
tection techniques of liquid chromatography tandem
mass spectrometry (LC-MS/MS) quantify metabolites
from a broad range of classes and are now automated
to increase throughput, enabling large cohort-level ep-
idemiological metabolome studies.9,10 These strategies
have not yet been used on a large scale to study COPD.

COPD is characterized by progressive airflow limita-
tion due to airway and/or alveolar abnormalities and
is now the third most common cause of death world-
wide,11 and is one of the leading causes of medical hos-
pitalizations in the United States.12 Cigarette smoking
is the greatest environmental risk factor, yet most
smokers do not develop clinically important lung disease,
and COPD heritability is estimated to be *37%.13 Fur-
thermore, for those who do develop COPD, there are
heterogeneous phenotypes, including emphysema,
chronic bronchitis, and frequent COPD exacerbations
(Supplementary Fig. S1).14 While clinical variables

such as age, race, sex, and environmental factors like
smoking and body mass index (BMI) have been useful
in modeling disease severity, a large amount of unex-
plained variability in COPD severity remains.15 COPD
is also associated with increased risk of non-pulmonary
diseases independent of smoking history (e.g., cardiovas-
cular disease, osteoporosis, depression, and cancer out-
side of the lung), suggesting the presence of systemic
disturbances in metabolic pathways across comorbid-
ities.16 The availability of large longitudinal cohorts
for smokers with or at high risk for COPD, such as
COPDGene and SPIROMICS, combined with advances
in high-throughput metabolomics now permit the
large-scale interrogation of the metabolome in COPD.

A similar integrative approach to large-scale tran-
scriptomics17 and proteomics18 studies in COPDGene,
SPIROMICS, and other cohorts has revealed that a sig-
nificant amount of variation in many biomarkers is
explained by genetic variation, which may also impact
metabolome signatures, as recently reported.19 In addi-
tion, genome-wide association studies (GWASs) have
found multiple genetic loci associated with COPD.20

Thus, it is important to consider the role of genetic
background in assessing how the metabolome relates
to COPD; however, to our knowledge, comprehensive
studies integrating genetics with comprehensive metab-
olomic profiling in COPD are lacking. This study iden-
tifies plasma metabolites associated with COPD-related
phenotypes and addresses the impact of genetic varia-
tion on metabolomic profiles in COPD.

Materials and Methods
Study populations
Discovery. The NIH-sponsored multicenter Genetic
Epidemiology of COPD (COPDGene; ClinicalTrials
.gov Identifier: NCT01969344) study was approved
and reviewed by the institutional review board at all
participating centers.21 All study participants provided
written informed consent. This study enrolled 10,198
non-Hispanic white (NHW) and African American
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(AA) individuals from January 2008 until April 2011
(Phase 1), who were 45–80 years of age with ‡ 10 pack-
year smoking history and no exacerbation for > 30
days. In addition, 465 age- and gender-matched healthy
individuals with no history of smoking were enrolled as
controls (mostly at Phase 2). From July 2013 to July
2017, 5697 subjects returned for an in-person 5-year
visit. Each in-person visit included spirometry before
and after albuterol, quantitative computed tomography
(CT) imaging of the chest, and blood sampling.

From two clinical centers (National Jewish Health and
University of Iowa), 1136 subjects (1040 NHW, 96 AA)
participated in an ancillary study in which they provided
fresh frozen plasma collected using an 8.5 mL p100 tube
(Becton Dickinson) at Phase 2. After excluding AA sub-
jects due to small sample size and subjects lacking geno-
type data, to avoid confounding genetic associations due
to ancestry, 957 subjects comprised the Discovery cohort
(Supplementary Fig. S2).

COPDGene: Emory. From the Discovery cohort, 271
COPDGene NHW subjects who previously had their
metabolome quantified at Phase 2 on a separate plat-
form were used as a technical COPDGene—Emory
cohort. This cohort will be referred to as COPDGene—
Emory.

SPIROMICS: Metabolon/UC. Two cohorts from the
Subpopulations and Intermediate Outcome Measures
in COPD study (SPIROMICS) (ClinicalTrials.gov
Identifier: NCT01969344) were used for replication.22

The SPIROMICS—Metabolon and SPIROMICS—UC
subjects consisted of 445 and 76 NHW subjects, respec-
tively, who provided fresh frozen plasma using a 10 mL
EDTA tube (Becton Dickinson) before a research
bronchoscopy.23

Clinical data and definitions
COPD was defined using spirometric evidence of
airflow obstruction (post-bronchodilator forced expi-
ratory volume at one second [FEV1]/forced vital capac-
ity [FVC] < 0.70). PRISm subjects had an FEV1 percent
predicted (FEV1pp) < 80% with an FEV1/FVC ‡ 0.7.
PRISm subjects have recently been recognized as hav-
ing a higher prevalence of symptoms and worse out-
comes compared to traditionally defined controls,24

and were thus included in all cohorts. Chronic bronchi-
tis was defined as self-reported chronic cough and spu-
tum for at least 3 months in each of the 2 years before
Phase 2. Percent emphysema was quantified by percent

of lung voxels less than �950 Hounsfield Units (% low
attenuation areas) on the inspiratory CT scans. Visual
emphysema was assessed as previously described.25

Exacerbations were defined as acute worsening of
respiratory symptoms requiring treatment with oral
corticosteroids and/or antibiotics, emergency room
visit, or hospital admission.26

Metabolite profiling
Discovery platform. P100 plasma was profiled using
the Metabolon (Durham) global metabolomics plat-
form, as described.27–29 Briefly, samples were extracted
with methanol under vigorous shaking for 2 min (Glen
Mills GenoGrinder 2000) followed by centrifugation to
remove protein, dissociate small molecules bound to
protein or trapped in the precipitated protein ma-
trix, and recover chemically diverse metabolites. The
resulting extract was divided into five fractions: two
for analysis by two separate reverse-phase/ultrahigh-
performance liquid chromatography/tandem mass
spectrometry (RP/UPLC-MS/MS) methods with posi-
tive ion mode electrospray ionization (ESI), one for
analysis by RP/UPLC-MS/MS with negative ion mode
ESI, one for analysis by hydrophilic interaction liquid
chromatography (HILIC)/UPLC-MS/MS with negative
ion mode ESI, and one was reserved for backup.

Metabolon has developed peak detection and integra-
tion software to generate a list of (mass-to-charge) m/z
ratios, retention indices (RI), and area under the curve
values for each detected metabolite, as described in de-
tail.27–29 User-specified criteria for peak detection in-
cluded thresholds for signal to noise ratio, area, and
width. Relative standard deviations of peak area were de-
termined for internal and recovery standards to confirm
extraction efficiency, instrument performance, column
integrity, chromatography, and mass calibration.

The biological data sets, including quality control
samples, were chromatographically aligned based on
a retention index that utilized internal standards
assigned a fixed RI value. The RI of the experimental
peak was determined by assuming a linear fit between
flanking RI markers whose RI values are set. Peaks were
matched against an in-house library of authentic stan-
dards and routinely detected unknown compounds
specific to the respective method. Identifications were
based on retention index values, experimental precur-
sor mass match to the library authentic standard within
10 ppm, and quality of MS/MS match. All proposed
identifications were then manually reviewed and cu-
rated by an analyst who approved or rejected each
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identification based on the criteria above. The platform
reported 1392 features, including 1064 annotated fea-
tures, which were grouped by Metabolon into ‘‘super
pathways,’’ including 436 lipids, 261 xenobiotics, 207
amino acids, 40 peptides, 38 cofactors and enzymes,
35 nucleotides, 25 carbohydrates, 11 energy pathway
compounds, and 11 partially characterized molecules
(Supplementary Table S1). All compounds are further
annotated by ‘‘subpathway’’ (e.g., ‘‘sphingomyelins,’’
‘‘carnitine metabolism,’’ and ‘‘lysine metabolism’’).

COPDGene: Emory. Compounds from p100 fresh
frozen plasma were extracted using an untargeted LC-
MS-based metabolomic quantification protocol from the
laboratory of Dean Jones at Emory University as described
previously.30 In brief, eight stable isotope internal stan-
dards in 130 lL acetonitrile were mixed with 65 lL of
plasma. Samples were precipitated and chromatographic
separation of the supernatant was performed on a Dionex
Ultimate 3000 UHPLC with a dual column compartment
for column switching. Reverse phase (C18), anion ex-
change (AE), and HILIC preceded mass spectral detec-
tion using a Thermo Scientific Q-Exactive HF mass
spectrometer in continuous full scan mode at 70,000 res-
olution (scan range 85–1275 m/z for all analyses other
than AE, AE scan range was 100–1500 m/z).

Data were extracted using xMSanalyzer31 and anno-
tated using xMSannotator.32 There were 4474 features
identified among the 271 samples.

SPIROMICS: Metabolon. P100 plasma was profiled
using the Metabolon Global Metabolomics Platform, as
described for the Discovery cohort. The platform reported
1174 features (unannotated features were excluded) with
a super pathway breakdown of 435 lipids, 228 amino
acids, 318 xenobiotics, 43 cofactors and vitamins, 43 pep-
tides, 41 nucleotides, 30 partially characterized molecules,
25 carbohydrates, and 11 energy metabolites.

SPIROMICS: UC. Samples from p100 fresh frozen
plasma underwent LC-MS profiling in the laboratory
of Nichole Reisdorph at the University of Colorado
Anschutz Medical Campus as previously described.33,34

In brief, cold methanol was added to plasma sample
aliquots containing internal standards to precipitate
proteins. Supernatants were extracted using liquid-
liquid extraction with methyl tert-butyl ether to obtain
a lipid fraction and a small molecule aqueous fraction.
Samples were analyzed in positive mode using C18
and HILIC on an Agilent 6545 quadrupole time-of-

flight (QTOF) and 6520 QTOF, respectively. Spectral
peaks were extracted using MassHunter Profinder
B.08 (Agilent). Features were annotated using Mass
Profiler Professional (Agilent) using either an in-house
accurate mass and retention time (AMRT) database or
exact mass and isotope ratios for the compounds that
were not in the AMRT database. There were 10,561 fea-
tures detected among the 81 samples.

Genotyping
Discovery and COPDGene: Emory. Subjects were gen-
otyped using the HumanOmniExpress array (Illumina)
employing BeadStudio quality control, which included
reclustering on project samples following Illumina
guidelines, as previously described for COPDGene.
Genotype imputation was performed using the Michi-
gan Imputation Server and the HRC 1.1 reference
NHW and the 1000 Genome Phase 1 v3 for AAs.35

Ancestry-based principal components (PCs) were cal-
culated and used as previously described.36,37 Variants
were filtered to include only single-nucleotide polymor-
phisms (SNPs) with minor allele frequencies > 1% in
the sample population.

SPIROMICS. Subjects were genotyped using the
HumanOmniExpress array (Illumina) as previously
described.38 Around 683,998 directly genotyped SNPs
passed quality control after the removal of SNPs sig-
nificantly deviating from Hardy-Weinberg expecta-
tions ( p < 0.0001), missing allele data (any ‘‘0’’), and
with a genotype call rate < 90% and heterozygous hap-
loid genotypes. Genotype imputation was performed
using the Michigan imputation server and the HRC
1.1 reference NHW ancestry-based PCs were calculated
and used as previously described.36 Variants were fil-
tered to include only SNPs with minor allele frequen-
cies > 1% in the sample population.

Statistical analysis
Data sets and availability. Clinical data and geno-
type data can be found on dbGaP for COPDGene
(phs000179.v6.p2) and SPIROMICS (phs001119.v1.p1).
For COPDGene, the following dataset was used:
COPDGene_P1P2_All_Visit_29Sep2018. For SPIRO-
MICS, the CORE 5 data sets were used. Discovery
metabolomic data are available at the NIH Common
Fund’s National Metabolomics Data Repository web-
site, the Metabolomics Workbench, https://www.metab
olomicsworkbench.org where it has been assigned
project ID PR000907.
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Pre-analyses
Discovery and SPIROMICS: Metabolon. Unless other-
wise mentioned, all metabolite data processing and
analysis were performed in R (v3.5.1). A data normal-
ization step was performed to correct variation result-
ing from instrument interday tuning differences:
metabolite intensities were divided by the metabolite
run day median and then multiplied by the overall me-
tabolite median. It was determined that no further
normalization was necessary based on the reduction
in the significance of association between the top
metabolomics PCs (calculated using the R function
‘‘prcomp’’) and sample run day after normalization
(Supplementary Fig. S3). Metabolites were excluded
if > 20% of samples were missing values.39 For the 995
remaining metabolites, missing values were imputed
across metabolites with k-nearest neighbor imputation
(k = 10) using the R package ‘‘impute.’’40

To detect and remove outliers, median standard devia-
tion scores (z-scores) were calculated across metabolites
at the subject level. Subjects with aggregate metabolite me-
dian z-scores > 3.5 standard deviation from the mean
(N = 6) of the cohort were removed (Supplementary
Fig. S4). All measured metabolite relative abundances
were transformed using the normal quantile transforma-
tion, as this type of rank-based transformation can remove
possible bias due to outliers or skewed distribution.41

COPDGene: Emory. Metabolite data were prepro-
cessed using the MSPrep R package.42 Data were first
imported and summarized across three technical rep-
licates before filtering to include only compounds
with < 20% missingness over samples. This reduced
the data to 2891 compounds, 163 of which were anno-
tated with compound name. Bayesian principal com-
ponent analysis was employed for imputation43,44 of
missing values before ComBat batch correction and
quantile normal transformation.45

SPIROMICS. Metabolite data were pre-processed
using the MSPrep R package42 as described previous-
ly.33 Raw data were filtered to include only compounds
with < 20% missingness over samples. This reduced the
data to 7918 compounds, 3843 of which were anno-
tated by compound name. k-Nearest neighbor imputa-
tion (k = 5) was employed for imputation of missing
values before ComBat batch correction and quantile
normal transformation45

Exploring associations between COPD and metabolites
in Discovery cohort. Phenotype-metabolite associa-

tions were tested using various regression models and
covariates based on previous literature (Supplementary
Table S2)46 for five phenotypes. Significance was deter-
mined within each phenotype at a p-value < 5.03 ·
10�5 after employing a Bonferroni correction to ac-
count for multiple testing over 995 metabolites.

Metabolome-wide association study. First, the addi-
tive effects of SNPs on metabolite abundances were
assessed in the Discovery cohort with linear regression
using the R package ‘‘MatrixEQTL’’ (version 2.2).47 Models
were adjusted for clinical covariates (clinical center, sex,
age, BMI, smoking pack years, and current smoking sta-
tus) as well as ancestry-based PCs and as previously de-
scribed.36 Metabolite quantitative trait loci (met-QTLs)
were considered significant at p-value < 6.6 · 10�12 for
genome-wide significance after employing a Bonferroni
correction to account for multiple testing across 995 me-
tabolites and 7,641,295 genotyped and imputed SNPs.

Metabolome-wide association study replication across
metabolomic platforms and cohorts. Significant met-
QTL SNPs were tested for associations in the
COPDGene—Emory and SPIROMICS replication
platforms, using the same methods as previously de-
scribed for the Discovery cohort and the Bonferroni
correction for multiple testing.

Recursive conditioning. If K met-QTL-SNPs were as-
sociated with a metabolite with p-values smaller than
6.6 · 10�12, p-values were calculated for each of the
K�1 SNPs conditioning on the top SNP identified in
the met-QTL analysis and other covariates (age, sex,
BMI, smoking status, smoking pack-years, and clinical
center). The SNP with the smallest p-value was consid-
ered an independent met-QTL if p-value < 0.05/(K�1),
where 0.05/(K�1) was the p-value threshold by Bonfer-
roni correction. We applied this procedure iteratively
until the smallest p-value was larger than 0.05/T,
where T is the number of remaining SNPs.36

Exploring met-QTLs. Percent variance explained by
SNPs and clinical variables was calculated using the co-
efficient of determination (r2). met-QTL features were
characterized using the ‘‘—most_severe_variant’’ filter
and nearest genes were identified using the ‘‘—nearest
symbol’’ argument in the Ensembl Variant Effect Pre-
dictor (VEP) tool (V97).48

Enrichment analysis. Group enrichment (i.e., sub-
pathway for metabolites or variant class for SNPs)
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among significantly associated features was statistically
assessed against the entire feature set using a one-tailed
Fisher’s exact test.49 Results were adjusted using Benja-
mini and Hochberg50 (a.k.a. false discovery rate) with
an alpha of 0.05.

Network analysis of metabolic interaction. As metabolic
pathway annotations are arbitrarily defined and ignore
unannotated compounds,51,52 we sought to identify
COPD-affected pathways in a strictly data-driven man-
ner. This was performed in a two-step procedure. First,
we generated a Gaussian graphical model (GGM) of
metabolite co-abundance based on partial correlation
coefficients corrected for the effects of all other metab-
olites and potential confounders (age, sex, BMI, smok-
ing status, smoking pack-years, and clinical center).53

The use of partial coefficients in the GGM model
seeks to overcome a major drawback of other correla-
tion networks (e.g., Pearson’s) by conditioning against
correlations with all other variables. Edges between me-
tabolites were present if partial correlations were statis-
tically significant at an alpha of 0.05, after Bonferroni

correcting for
995

2

� �
tests, with a positive partial cor-

relation > 0.2 to declare whether an edge is ‘‘present’’ in
the network view.

Negative partial correlations likely represent spuri-
ous signals as detailed in previous publications,53,54

and thus were removed. To infer potential genetic ef-
fects, results from the metabolome-wide association
study (mWAS) were included in the network view by
introducing ‘‘SNP’’ nodes with edges present between
met-QTLs and associated metabolites.54 In summary,
the combined GGM and mWAS approach will provide
an unbiased map of metabolic pathways and their ge-
netic influences.53

The first step based on the GGM identifies partially
correlated metabolites, but does not consider pheno-
types. Therefore, in the second step, metabolomic mod-
ules associated with COPD phenotypes were identified
using a greedy search algorithm.55 Each phenotype was
tested separately. Briefly, each metabolite node was
regressed against the phenotype and scored using the
negative logarithmized p-value of the phenotype beta co-
efficient. Phenotypes were adjusted for the same covari-
ates as identified in previous literature (Supplementary
Table S2)46 by regressing the phenotype against those
covariates and using the residuals as the independent
variable in the model. Next, starting with a seed node,
each neighboring node is added iteratively to the candi-

date module by averaging metabolite intensities, and this
extended module is scored by linear regression as previ-
ously described. The neighbor is added only if the score
of the newly extended module is higher than the scores of
all the single components. Any overlapping optimal
module is combined in a final step into a single module
and scored by the scoring function, using the same rules
as before to determine inclusion.

In summary, this approach systematically identifies
phenotype-affected modules based on a GGM-derived
network of metabolic pathways. Both steps were per-
formed using the R package ‘‘MoDentify’’55 and visual-
ized using Cytoscape (v3.71).56

Results
Metabolome data substructure
Before reducing data by the exclusion criteria, we first
explored the metabolomic profiles of all COPDGene
subjects with metabolomes quantified by Metabolon
at Phase 2. These subjects were representative of all
COPDGene subjects who returned for the 5-year
follow-up (Supplementary Table S3). Pairwise correla-
tions among metabolites were assessed using Pearson’s
r for hierarchical clustering within Metabolon-defined
super pathways. Beyond a positively correlated cluster
of lipids, metabolites exhibited minor correlation
(Supplementary Fig. S5).

Univariate demographic associations were then assessed
with linear regression models. The demographic variables
most strongly associated with metabolites included age,
sex, race, and smoking status (Supplementary Table S4
and Supplementary Fig. S5). Of the 995 metabolites tested,
398 (40.2%) were significantly associated with age, 319
(32.1%) with sex, 355 (37.2%) with race, 250 with BMI
(25.1%), and 128 (12.9%) with smoking status. Enrich-
ment analysis found androgenic steroids, acylcarnitines,
and dicarboxylates to be enriched for associations with
age; sphingomyelin, androgenic steroids, and phosphati-
dylcholines with sex; xanthines and dicarboxylates with
race; and diacylglycerols and branched chain amino
acids (BCAAs) for BMI (Supplementary Table S5).

Study subjects
Demographic and clinical characteristics of the Discov-
ery cohort are shown in Table 1. There were significant
differences between PRISm subjects, current or former
smoker controls, and COPD across age, sex, BMI,
smoking status, and smoking pack-years. Among the
met-QTL replication cohorts, COPDGene—Emory
subjects were representative of the Discovery cohort,
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while the SPIROMICS subjects were slightly younger
and healthier, as evidenced by the higher FEV1pp
and lower percent emphysema (Table 2).

Metabolites associated with COPD phenotypes
in the Discovery cohort
Of the 995 metabolites tested for associations, 147
(14.8%) were significantly associated with at least 1 of
the 5 COPD phenotypes studied (Fig. 1A, full results
in Supplementary Tables S6–S10). There was no me-
tabolite significantly associated with chronic bronchi-
tis. For exacerbations and emphysema, only one
metabolite was identified in each. Higher abundance
of N,N,N-trimethyl-alanylproline betaine (TMAP)
was significantly associated with a decrease in exacer-
bation frequency ( p = 3.75 · 10�5), while increased
abundance in a tricarboxylic cycle metabolite (citrate)
was significantly associated with higher percent em-
physema ( p = 5.2 · 10�6).

For the COPD phenotypes characterized by airflow ob-
struction, 145 metabolites from 55 subpathways were sig-

nificantly associated with either FEV1pp or FEV1/FVC.
For FEV1/FVC, there were significant associations with
99 metabolites from 30 subclasses, 39 (39.4%) of which
were positively associated (Fig. 1B). Glycophosphatidyli-
nositol (Fig. 1C), propionylcarnitine (C3), and ergothio-
neine, a xenobiotic (Fig. 1E), were most strongly
associated ( p = 2.57 · 10�13, 4.8 · 10�13, and 4.1 · 10�11,
respectively). Enrichment analysis found metabolites in
the diacylglycerol and BCAA (leucine, isoleucine, and va-
line) subpathways to be enriched for associations with
FEV1/FVC (Supplementary Table S11). For FEV1pp, 79
metabolites from 23 subclasses were significantly associ-
ated, with lipid phosphocholine (Fig. 1D), ergothioneine,
and carbohydrate N6-carboxymethyllysine most signifi-
cantly associated ( p = 3.3 · 10�13, 3.28 · 10�12, and
1.4 · 10�11, respectively).

Identification of SNPs associated with metabolites
We next investigated the genetic contribution to metabolite
abundances by investigating the relationship between

Table 1. Demographics of Discovery cohort

Total PRISm Control COPD Missing p

No. of participants (%) 957 85 (8.9) 390 (40.8) 468 (48.9) 14 (1.4)
Agea 68.3 (8.4) 66.7 (7.3) 65.9 (8.5) 70.5 (8.0) 70.7 (5.8) < 0.0001
Male sex (%) 490 (51.2) 31 (36.5) 184 (47.2) 268 (57.3) 7 (50.0) 0.0002
BMI (%) 29.1 (6.2) 32.6 (7.7) 29.3 (5.6) 28.2 (6.1) 27.9 (5.3) < 0.0001
Current smoker (%) 204 (21.3) 24 (28.2) 78 (20.0) 98 (20.9) 4 (28.6) 0.1914
Smoking pack-yearsa 46.0 (24.9) 48.6 (24.3) 36.1 (19.5) 53.6 (26.2) 51.7 (22.2) < 0.001
FEV1pp_utaha 76.6 (26.5) 70.2 (7.4) 99.2 (11.5) 58.9 (23.5) NA NA
FEV1/FVCa 0.7 (0.2) 0.8 (0.0) 0.8 (0.0) 0.5 (0.1) NA NA
Percent emphysemaa 7.3 (10.2) 1.6 (2.5) 2.2 (2.6) 12.9 (12.2) 9.2 (11.7) < 0.0001

Chi-square tests were used to test for differences between groups in binary variables. One-way ANOVA tests were performed to test for differences
between groups in continuous variables.

PRISm, Preserved Ratio Impaired Spirometry23; COPD is defined by GOLD score ‡ 1; missing, 14 subjects were deemed ineligible for spirometry and
thus did not have a defined GOLD status. These subjects were still included in analyses with other COPD phenotypes and the met-QTL analysis.

BMI, body mass index (kg/m2); FEV1/FVC, post-bronchodilator forced expiratory volume at one second/forced vital capacity; FEV1pp, FEV1 percent
predicted.

aMean and standard deviations provided.
COPD, chronic obstructive pulmonary disease.

Table 2. Demographics of replication cohorts

COPDGene—Emory SPIROMICS—Metabolon SPIROMICS—UC p

No. of participants 271 445 76 NA
Agea 67.3 (8.4) 65.3 (8) 61.6 (8) < 0.001
Male sex (%) 127 (46.9) 244 (54.8) 40 (52.6) 0.1164
BMI (%) 28.7 (5.8) 28.1 (4.9) 28.3 (4.8) 0.3675
Current smoker (%) 57 (21.0) 116 (26.4) 19 (25.7) 0.2665
Smoking pack-yearsa 43.9 (23.3) 47.8 (31.6) 43.2 (24) 0.1362
FEV1pp_utaha 77.1 (25.3) 79.4 (23.5) 89.3 (20.8) 0.0004
FEV1/FVCa 0.7 (0.1) 0.6 (0.1) 0.7 (0.1) 0.0015
Percent emphysemaa 6.9 (9.7) 6.1 (8.2) 4 (4.8) 0.038

Chi-square tests were used to test for differences between groups in binary variables. One-way ANOVA tests were performed to test for differences
between groups in continuous variables.

aMean and standard deviation provided unless otherwise noted.

Gillenwater, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0009
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FIG. 1. Metabolite associations with COPD. (A) Heat map of signed p-values. Metabolites are organized by
super pathway. Red intensity indicates positive direction of effect, while blue intensity indicates negative. Only
select metabolites most significantly associated are labeled. (B) Scatter plot of 1-stearoyl-2-linoleoyl-GPI (18:0/
18:2) abundance by FEV1/FVC ratio. (C) Scatter plot of phosphocholine abundance by FEV1pp. (D) Bee swarm of
ergothioneine abundance by GOLD stage. Ergothioneine was one of the topmost associated metabolites with
all airflow obstruction phenotypes. Metabolites are color coded by Super Pathway designation. Metabolite
abundances are inverse normal transformed. *Indicates compounds that have not been officially confirmed
based on a standard, but Metabolon is confident in its identity. COPD, chronic obstructive pulmonary disease;
FEV1, forced expiratory volume at one second; FEV1pp, FEV1 percent predicted; FVC, forced vital capacity; GPI,
glycophosphatidylinositol.
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genotypes and metabolites. Of the*7.6 million genotyped
and imputed SNPs tested, we identified 4281 met-QTL
SNPs associated with 109 (10.95%) of metabolites tested
in the Discovery cohort (Fig. 2A and Supplementary
Table S12). An interactive plot displaying met-QTL SNP
association with metabolite subclass can be found at
https://plot.ly/*lagillenwater/7 Using recursive condi-
tioning, 79 independent SNPs were identified with an
additive relationship with the 109 metabolites (Supple-
mentary Table S13 and Fig. 2C, D). At least 15% of the
variance in 20 metabolites was explained by 1 or more
of these SNPs, often much more than observed in clinical
variables (Table 3 and Fig. 2E).

The strongest genetic link was between a missense
variant in the PYROXD2 region of chromosome 10,
rs2147896, which explained 50.48% of the variance of
N6-methyllysine; in contrast, the clinical variables
explained only 0.64% of the variance in this metabolite
(Fig. 2E). For 13 metabolites, 2 or more independent
met-QTL SNPs contribute to metabolite variance
(Table 3). For example, 58.90% of variance in N2-
acteyl, N6-methyllysine is explained by variants in
PYROXD2 (34.26%) and NAT8 (24.64%) regions.

Biologic significance of met-QTL SNPs
and associated metabolites
Next, we set out to determine if these met-QTL SNPs
have been previously associated with COPD, lung func-
tion, or metabolite levels. First, we cross-referenced the
4281 variants with 279 significant SNPs from a recent
lung function GWAS57 and164 reported primary and
secondary COPD GWAS SNPs58 for overlapping asso-
ciations. Next, we compared the met-QTL variants
with published associations in the NHGRI GWAS cat-
alog.59 Of the expanded variant set, 351 SNPs have
been previously reported, mostly in other metabolomic

analyses.54,60–63 There were seven met-QTL SNPs
that had previously been associated with smoking
habits (SNPs rs10254729, rs10469966, rs12825376,
rs13437771, rs2072113, rs2421667, and rs883403), al-
though no met-QTL SNP overlapped with lung func-
tion or COPD GWAS SNPs.

Using Ensembl VEP, we found intronic SNPs to be
the most represented met-QTL SNP class (64.5%), fol-
lowed by intergenic variants (12.6%) (Supplementary
Table S14 and Fig. 3A). Intronic variants were also
the most significantly enriched, followed by 3¢ untrans-
lated region and missense variants (q = 3.48 · 10�79,
3.99 · 10�33, and 2.68 · 10�25). At least 50% of metab-
olites in 13 subpathways had met-QTLs, with all 3 of
the metabolites in the hemoglobin and porphyrin
metabolism subpathway having significant genetic
associations (Supplementary Table S15 and
Fig. 3B). Although metabolites with met-QTLs were
not enriched for any subpathway, at the super-pathway
level, an enrichment of amino acids was found
(q = 0.048).

Replication of met-QTL SNPs
We used three strategies to test for replication of met-
QTL SNPs (see Materials and Methods section).
First, we used an independent high-resolution LC-MS
strategy in a different laboratory in the same cohort
(COPDGene—Emory) (Supplementary Table S16).
Second, we used an independent cohort with data
also quantified by Metabolon (SPIROMICS—
Metabolon) (Supplementary Table S17). Third, we
used an independent cohort with data from an inde-
pendent platform (SPIROMICS—UC) (Supplementary
Table S18). The cohort with the greatest replication was
SPIROMICS—Metabolon where 72 met-QTL associa-
tions replicated (Fig. 4, Table 4, and Supplementary

‰

FIG. 2. Genome-wide associations between SNPs and metabolites. (A) Discovery mWAS Manhattan plot showing
�log10 p-values from mWAS tests. The blue and red dashed lines indicate false discovery rate and Bonferroni
significance, respectively. Loci in which > 20% of the metabolite variance is explained by a single SNP are labeled
by nearest gene and metabolites affected. Metabolite text colors coded by Super Pathway. (B–D) Bee swarms of
inverse normal transformed metabolite abundances by genotype for metabolites of different subpathways with
the greatest variance explained by one SNP. Overlayed box plots represent the median and interquartile range of
transformed metabolite abundance. (E) Bar plot of the percent variation for metabolites explained by clinical
(green), top mQTL SNP (blue), the second independent mQTL SNP (orange), and any more independent mQTL
SNPs (red). The gray indicates unknown variance. Clinical factors include age, sex, BMI, smoking status, smoking
pack-years, and clinical center. BMI, body mass index; mWAS, metabolome-wide association study; SNPs, single-
nucleotide polymorphisms.

Gillenwater, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0009
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FIG. 3. mQTL SNP enrichment analyses. (A) A bar plot showing the percentage by variant annotation of
mQTL SNPs (black) and all SNPs tested (black). *Variant annotations significantly enriched in mQTLs. (B) A
circular bar plot showing the percentage of each subpathway with at least one independent mQTL. The bars
are colored by super pathway and labeled by subpathway, with the total number of metabolites in the
subpathway with an mQTL in parentheses. FAM, fatty acid metabolism; Met, metabolism.

FIG. 4. Scatter plot of metabolite variance explained by lead SNP in Discovery and SPIROMICS—Metabolon
cohorts. We calculated the variance explained (r2) for each lead mQTL SNP and metabolite by cohort.
Metabolite colors represent super pathway annotation and are labeled if variance explained by genotype was
> 0.15 in either cohort.
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Fig. S6), with similar metabolomic variance explained.
Replications were seen for several chromosomal re-
gions across Discovery, COPDGene—Emory, and
SPIROMICS—Metabolon, including lysine metabolites
with SNPs in PYROXD2 on chromosome 10, phospho-
cholines with SNPs in MYRF, THEM25B, and FADS1/2
regions on chromosome 11, cysteinylglycine disulfide
with SNPs in DPEP, and bilirubin/biliverdin with
SNPs in the UGT1A1/8 regions on chromosome 2,
with strong signals in the PYROXD2 of chromosome
10, as well as the FADS1/FADS2 region of chromosome
11 (Table 3 and Supplementary Fig. S5).

Integration of genes, metabolites,
and COPD phenotypes
The met-QTL analysis provides evidence of genetic-
metabolite abundance links, but not specific to COPD.
To identify affected genetic-metabolite-phenotype
pathways in a strictly data-driven manner, we first cre-
ated a GGM network of co-abundant metabolites and
then used those results to identify modules associ-
ated with disease phenotypes. This method has been
shown to enhance classical association analyses by
increasing statistical power through aggregating me-
tabolite abundance and recognizing disease-driven in-
terplay between pathways.55 To infer the relationship
between the genomics, metabolomics, and pheno-
typic data, the mWAS results were combined with
phenotype-driven modules by adding edges between
met-QTL SNPs and metabolites.

In the first step, given all 995 metabolites, a GGM
was created. Then, nodes representing independent
met-QTL SNPs were added, with edges linking to asso-
ciated metabolites. The final GGM network was sparse,
containing a combined 693 nodes (582 metabolite and
79 SNP nodes) and 505 significant, undirected edges
between any node (metabolites or genes).

Then, in the second step, we used the MoDentfy
module-identification algorithm with the COPD phe-
notypes to find phenotype-associated modules (i.e.,
subnetworks of the GGM associated with a specific
phenotype). Testing all 5 COPD phenotypes sepa-
rately, this resulted in 26 significant modules, some-
times associated with more than 1 phenotype, which
included metabolites missed in univariate analysis
(Fig. 5 and Supplementary Table S19). For example,
a module of three lactosylceramides was associated
with percent emphysema (adjusted p-value = 0.00018)
and a module of three hippurates was associated with
FEV1/FVC (adjusted p-value = 0.04), all of which had

not been significantly associated previously (although
the same direction of effect was observed between the
modules and independent metabolites; see Supple-
mentary Table S19). Other modules reconfirmed
previously identified associations, like the module
most associated with FEV1pp (Bonferroni ad-
justed p-value = 3 · 10�7) containing the amino acid
vanillylmandelate and two unannotated metabolites
(X - 12707 and X - 13553).

Of the 26 modules associated with COPD pheno-
types, 6 associated with airflow obstruction phenotypes
had edges to gene nodes (Table 5). For these modules,
we utilized the percent-variance-explained results to
determine the genetic effect on individual metabolite
abundances and the module, represented by the first
PC of the module. We further compared the variance
explained by genetic variance to the percent explained
by clinical and environmental variance, as represented
by the covariates used previously. While, as reported
earlier, significant variance in individual metabolites
was explained by genetic variance (ranging from 5%
to 18.9%), the opposite effect was observed in COPD
phenotype-associated modules, with the exception
of the module of dicarboxylate fatty acids containing
decadienedioic acid (C10:2-DC)** and tetradecadiene-
dioate (C14:2-DC)* where 13.2% of the module vari-
ance was explained by variation in SNPs rs11626972
and rs58231493 and only 3% was explained by clinical
and environmental variance.

Discussion
While COPD is a disease of the lungs, we find a strong
systemic metabolomic signature in the blood even after
adjusting for common risk factors such as smoking.
This is consistent with observations that COPD is asso-
ciated with extrapulmonary diseases such as cardiovas-
cular disease, osteoporosis, muscle wasting, and insulin
resistance. Many of the metabolomic signatures we
identified are similar to those found in these diseases
(e.g., sphingolipids in cardiovascular and metabolic
disorders64 or bone remodeling,65 acylcarnitines in
osteoporosis,66 and diacylglycerols in insulin resis-
tance67), suggesting common systemic pathways are
important in COPD pathogenesis.

The lone metabolite associated with exacerbation
frequency, of TMAP, further exemplifies the potential
systemic effects of COPD. Although the reported associ-
ation is novel in COPD, TMAP was recently identified as
a biomarker of chronic kidney disease,68 a comorbidity
of COPD,69 with a similar inverse association between

Gillenwater, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0009
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TMAP abundances and disease severity. Moreover,
while the biologic origin of TMAP has not yet been iden-
tified, it is suggested that myosin light-chain (MLC) pro-
tein degradation results in the release of TMAP.68

Disruption in MLC isoforms has been observed in
COPD subjects with reduced activity and low oxygen

supply, yet further work is needed to understand the
pathophysiology of TMAP in exacerbations.

Systemic mitochondrial dysfunction, heightened in
lungs with cigarette smoke-induced inflammatory-
oxidative stress, has been implicated in the pathology
of emphysema.7,70 We found further support of this

FIG. 5. Phenotype-driven modules. Cytoscape network representation of metabolite modules significantly
associated one or more COPD phenotypes. Circular nodes are nonsignificant, while triangular nodes were
significant in univariate analysis. ‘‘V’’ nodes mQTL SNPs. The color corresponds to the phenotype with which the
metabolites in the module are associated; red indicates airflow obstruction phenotypes (FEV1/FVC or FEV1pp),
purple indicates percent emphysema, green indicates both spirometric phenotypes and percent emphysema,
and blue are nonsignificant metabolites.

Gillenwater, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0009

173



Ta
b

le
5.

M
od

ul
e

va
ri

an
ce

ex
p

la
in

ed
b

y
g

en
et

ic
an

d
en

vi
ro

n
m

en
ta

l
va

ri
ab

le
s

Ph
en

ot
yp

e
M

et
ab

ol
it

e
M

od
ul

e
ID

M
od

ul
e

b
et

a
A

d
ju

st
ed

sc
or

e

M
os

t
si

g
ni

fic
an

t
in

d
ep

en
d

en
t

SN
P

C
on

se
q

ue
nc

e
C

lo
se

st
g

en
e

M
od

ul
e

fir
st

PC
va

ri
an

ce
ex

p
la

in
ed

b
y

g
en

et
ic

va
ri

an
ts

M
od

ul
e

fir
st

PC
va

ri
an

ce
ex

p
la

in
ed

b
y

co
va

ri
at

es

M
et

ab
ol

it
e

va
ri

an
ce

ex
p

la
in

ed
b

y
g

en
et

ic
va

ri
an

ts

M
et

ab
ol

it
e

va
ri

an
ce

ex
p

la
in

ed
b

y
co

va
ri

at
es

FE
V 1

pp
3-

A
m

in
o-

2-
pi

pe
rid

on
e

2
�

0.
00

5
0.

00
6

rs
37

36
9

M
is

se
ns

e
va

ria
nt

A
G

XT
2

0.
8

10
.8

18
.9

4
FE

V 1
pp

(S
)-

a-
A

m
in

o-
om

eg
a-

ca
pr

ol
ac

ta
m

2
�

0.
00

5
0.

00
6

N
A

N
A

N
A

0.
8

10
.8

N
A

N
A

FE
V 1

pp
Te

tr
ad

ec
ad

ie
ne

di
oa

te
(C

14
:2

-D
C

)*
19

�
0.

00
6

0.
00

1
rs

11
62

69
72

U
ps

tr
ea

m
ge

ne
va

ria
nt

A
CO

T2
13

.2
3

5.
5

2

FE
V 1

pp
D

ec
ad

ie
ne

di
oi

c
ac

id
(C

10
:2

-D
C

)*
*

19
�

0.
00

6
0.

00
1

rs
58

23
14

93
U

ps
tr

ea
m

ge
ne

va
ria

nt
A

CO
T2

13
.2

3
18

.6
3.

2

FE
V 1

/F
VC

1-
M

et
hy

ln
ic

ot
in

am
id

e
3

0.
73

4
0.

02
9

rs
14

95
74

1
In

te
rg

en
ic

va
ria

nt
N

A
T2

0.
2

2.
8

5.
8

7
FE

V 1
/F

VC
N

ic
ot

in
am

id
e

3
0.

73
4

0.
02

9
N

A
N

A
N

A
0.

2
2.

8
N

A
N

A
FE

V 1
/F

VC
N

1-
m

et
hy

l-2
-p

yr
id

on
e-

5-
ca

rb
ox

am
id

e
3

0.
73

4
0.

02
9

N
A

N
A

N
A

0.
2

2.
8

N
A

N
A

FE
V 1

/F
VC

2-
A

m
in

ob
ut

yr
at

e
4

1.
03

1
0.

00
2

rs
10

16
89

31
In

tr
on

va
ria

nt
N

A
T8

0.
1

1.
8

8.
5

2.
3

FE
V 1

/F
VC

G
am

m
a-

gl
ut

am
yl

-2
-a

m
in

ob
ut

yr
at

e
4

1.
03

1
0.

00
2

N
A

N
A

N
A

0.
1

1.
8

N
A

N
A

FE
V 1

/F
VC

A
sp

ar
ta

te
10

1.
29

9
0

rs
75

00
62

U
ps

tr
ea

m
ge

ne
va

ria
nt

A
SP

G
0.

3
17

6.
6

6.
5

FE
V 1

/F
VC

G
lu

ta
m

at
e

10
1.

29
9

0
N

A
N

A
N

A
0.

3
17

N
A

N
A

FE
V 1

/F
VC

Li
no

le
oy

l-a
ra

ch
id

on
oy

l-g
ly

ce
ro

l
(1

8:
2/

20
:4

)
[2

]*
18

0.
91

6
0.

01
5

N
A

N
A

N
A

3.
8

4.
6

N
A

N
A

FE
V 1

/F
VC

O
le

oy
l-a

ra
ch

id
on

oy
l-g

ly
ce

ro
l

(1
8:

1/
20

:4
)

[2
]*

18
0.

91
6

0.
01

5
rs

17
45

67
In

tr
on

va
ria

nt
FA

D
S2

3.
8

4.
6

5
3.

1

M
od

ul
eI

D
,m

od
ul

e
ID

w
ith

in
ph

en
ot

yp
e;

m
od

ul
e

be
ta

,b
et

a
es

tim
at

e
of

ch
an

ge
in

m
od

ul
es

ba
se

d
on

1
un

it
in

cr
ea

se
in

ph
en

ot
yp

e;
ad

ju
st

ed
sc

or
e,

sc
or

e
(p

-v
al

ue
)a

ft
er

m
ul

tip
le

te
st

in
g

co
rr

ec
tio

n;
m

os
t

si
gn

ifi
ca

nt
in

de
pe

nd
en

t
SN

P,
SN

P
m

os
t

si
gn

ifi
ca

nt
ly

as
so

ci
at

ed
w

ith
m

et
ab

ol
ite

.N
A

,n
o

SN
Ps

si
gn

ifi
ca

nt
ly

as
so

ci
at

ed
;c

on
se

qu
en

ce
,V

EP
an

no
ta

tio
n

of
va

ria
nt

;c
lo

se
st

ge
ne

,c
lo

se
st

ge
ne

to
SN

P
as

m
ap

pe
d

in
VE

P;
m

od
ul

e
fir

st
PC

va
ria

nc
e

ex
pl

ai
ne

d
by

ge
ne

tic
va

ria
nt

s,
ad

ju
st

ed
r2

of
lin

ea
r

re
gr

es
si

on
m

od
el

w
ith

th
e

fir
st

PC
of

th
e

m
od

ul
e

an
d

in
de

pe
nd

en
t

m
Q

TL
SN

Ps
.M

od
ul

e
fir

st
PC

va
ria

nc
e

ex
pl

ai
ne

d
by

co
va

ria
te

s,
ad

ju
st

ed
r2

of
lin

ea
rr

eg
re

ss
io

n
m

od
el

w
ith

th
e

fir
st

PC
of

th
e

m
od

ul
e

an
d

co
va

ria
te

s
(s

ee
M

at
er

ia
ls

an
d

M
et

ho
ds

se
ct

io
n)

.M
et

ab
ol

ite
va

ria
nc

e
ex

pl
ai

ne
d

by
ge

ne
tic

va
ria

nt
s,

ad
ju

st
ed

r2
of

lin
ea

r
re

gr
es

si
on

m
od

el
w

ith
m

et
ab

ol
ite

an
d

in
de

pe
nd

en
t

m
Q

TL
SN

Ps
.M

et
ab

ol
ite

va
ria

nc
e

ex
pl

ai
ne

d
by

co
va

ria
te

s,
ad

ju
st

ed
r2

of
lin

ea
r

re
gr

es
si

on
m

od
el

w
ith

m
et

ab
ol

ite
an

d
co

va
ria

te
s

(s
ee

M
at

er
ia

ls
an

d
M

et
ho

ds
se

ct
io

n)
.

*I
nd

ic
at

es
co

m
po

un
ds

th
at

ha
ve

no
t

be
en

of
fic

ia
lly

co
nfi

rm
ed

ba
se

d
on

a
st

an
da

rd
,b

ut
M

et
ab

ol
on

is
co

nfi
de

nt
in

its
id

en
tit

y;
**

in
di

ca
te

s
a

co
m

po
un

d
fo

r
w

hi
ch

a
st

an
da

rd
is

no
t

av
ai

la
bl

e,
bu

t
M

et
ab

ol
on

is
co

nfi
de

nt
in

its
id

en
tit

y
or

th
e

in
fo

rm
at

io
n

pr
ov

id
ed

;(
#)

or
[#

]
in

di
ca

te
s

a
co

m
po

un
d

th
at

is
a

st
ru

ct
ur

al
is

om
er

of
an

ot
he

r
co

m
po

un
d

in
th

e
M

et
ab

ol
on

sp
ec

tr
al

lib
ra

ry
.

PC
,p

rin
ci

pa
lc

om
po

ne
nt

.

174



as citrate was uniquely associated with the percent
emphysema phenotype in regression analyses, demon-
strating potential TCA cycle dysregulation. The in-
creased power of phenotype-driven GGM network
analysis positively associated three lactosylceramides
with percent emphysema.

Abnormalities in glycosphingolipid metabolism have
been noted to be associated with COPD phenotypes.
For example, there is evidence for correlation between
glycobiosyl ceramides and COPD exacerbations,6 and
that glucosyl ceramide synthase, which governs the first
step in the glycosphingolipid metabolism, is an impor-
tant determinant of cell fate of lung endothelial cells.71

Moreover, lactosylceramide accumulation was recently
identified as a common pathogenic mechanism that in-
duces apoptotic-inflammatory responses and aberrant-
autophagy leading to emphysema.72

Lactosylceramides can directly inhibit electron chain
complexes, which enhance the production of reactive ox-
idation species in the mitochondria, potentially leading to
lung inflammation and airway remodeling characteristic
of emphysema.72,73 As the initial products in the forma-
tion of glycosphingolipids (e.g., lactosylceramides) are
upregulated in insulin-resistant patients, increased lacto-
sylceramide abundance may demonstrate comorbid
mitochondrial dysregulation in COPD and metabolic
disorders.

Several other metabolites previously associated with
insulin resistance and other metabolic disorders were
concordantly associated with COPD phenotypes.
These included aromatic amino acids (phenylalanines)
and BCAAs with both percent emphysema and airflow
obstruction, as well as diacylglycerols, gamma-glutamyl
amino acids, sphingomyelins, and lipids involved in the
fatty acid and phospholipid metabolism, specifically
with airflow obstruction. Abnormal amino acid and
lipid metabolism may result from reduced dietary
intake, oxidative stress, and increased strain on respi-
ratory muscles with anoxia, leading to an active meta-
bolic COPD state in COPD patients.74,75 These results
confirm the findings of smaller studies that have shown
strong associations between phospholipid-derived
sphingolipids and COPD,6,76 and a recent two-cohort
population study (KORA and ARIC) with 4347 con-
trols and 393 COPD subjects that identified similar
associations with BCAAs, aromatic amino acids, and
glutamine/glutamate metabolites.8

However, our study differed from the KORA and
ARIC study, in that we found more associations with
FEV1/FVC than FEV1pp, indicating a metabolic signa-

ture of airflow obstruction. This may be because
COPDGene primarily enrolled current and former
smokers ( > 10 and > 20 pack-years, respectively), over-
sampled for COPD cases, was older, and included only
NHW subjects (ARIC had many AA subjects).
Although we adjusted for these variables in our analy-
ses, age and smoking have strong influences on metab-
olome, and thus the generalizability might be limited.

While lifestyle behaviors (e.g., smoking) are important
risk factors for COPD, there is evidence that as much as
37% of the variability in lung function is genetic.13 To ex-
plore this, we first sought to identify the genetic effect on
the metabolome, detecting significant SNP-metabolite as-
sociations in 109 (11%) of the metabolites tested (similar
to the 119 of 529 [22%] metabolites previously reported
by Shin et al).54 The strongest association was between
missense SNP rsrs2147896 in PYROXD2 and N6-
methyllysine ( p = 3.97 · 10�146). PYROXD2 has been
associated with lysine metabolites in other mWAS, in-
cluding N6-methyllysine, as well as trimethylamine in
urine and dimethylamine in plasma.77 Of the 79 indepen-
dent loci identified with recursive conditioning, 47 novel
SNPs were found, including rs58231493, an upstream
variant of ACOT2 (coding for Acyl-CoA Thioesterase
2) associated with decadienedioic acid (C10:2-DC)**.

One of the most promising met-QTLs, as it was
significant across replication cohorts, was in UGT1A
region and associated with bilirubin pathway metabo-
lites. In the Framingham Heart Study Offspring cohort,
those with higher bilirubin due to a genetic polymor-
phism affecting the UGT1A1 enzyme of bilirubin me-
tabolism (the enzyme defect that leads to Gilbert’s
syndrome) had one-third the risk of cardiovascular
events compared to wild-type carriers with normal
bilirubin concentrations.78 Higher levels of serum
bilirubin have been inversely associated with the risk
of COPD severity, progression, and mortality,79,80

and more recently, fewer COPD exacerbations.81 In
in vitro and animal studies, bilirubin prevents oxida-
tion of lipids, which may protect the COPD lung by
inhibiting lipid peroxidation.80,82 Variability in biliru-
bin concentration has been previously associated with
SNPs in UGT1A region.83,84 In our analysis, we
found both bilirubin and biliverdin nearing the conser-
vative Bonferroni significance threshold for associa-
tions with airflow obstruction phenotypes ( p = 3.02 ·
10�3 and 6.83 · 10�4 with FEV1/FVC, respectively).
Integrating the genetic associations suggests that the
observed associations between bilirubin/biliverdin and
COPD may be mediated through genetics.
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While there appears to be a strong genetic effect on
the metabolome overall, there is less evidence for the
genetic regulation of COPD-associated metabolites.
Only 10 of the metabolites associated with COPD phe-
notypes through regression or phenotype-driven net-
work analysis also had met-QTL SNP associations.
Moreover, it was only within the module containing
the fatty acids decadienedioic acid (C10:2-DC)** and
tetradecadienedioate (14:2-DC)* that more variance
was explained by an upstream variant of ACOT2 than
environmental variables.

The protein that ACOT2 codes for, Acyl-CoA
thioesterase-2, has been shown to facilitate mitochon-
drial fatty acid oxidation in mouse models and may
warrant further study.85 The lack of evidence for ge-
netic regulation in the COPD metabolome may impli-
cate other downstream regulation (e.g., methylation,
post-translational modification, and metabolism of ex-
ogenous metabolites) having a greater effect. Thus,
modifiable behaviors, like smoking, diet, and exercise,
may have a greater effect on the COPD metabolism
than genetic predisposition.

While this study was strengthened by the large num-
ber of subjects in a well-categorized cohort, there were
several limitations. First, this analysis was performed
using blood samples, as opposed to bronchial lavage
fluid, which may better represent COPD phenotypes.33

It is well documented that the blood metabolome,
across multiple metabolic pathways, is strongly affected
by demographic factors, including age and sex,51,86

which we replicated in our initial exploratory analyses.
COPD pathology begins in the lungs and then mani-
fests as systemic dysregulation across several biologic
tissues. However, the observed effects on the metabo-
lome may still not be as pronounced within blood as
the effects of age and sex.

Second, although this is one of the largest mWAS
studies reported, 957 subjects are still small compared
to clinical GWAS studies. The cohort was also re-
stricted to NHW subjects, which limits generalizability
over the entire population. Moreover, as many distinct
and independent met-QTL SNPs were identified for
many metabolites, there may be multiple mechanisms
along genetic and metabolic pathways that influence
observed metabolite intensities.

Another major challenge in metabolomics is cross-
platform replication. Although we had two indepen-
dent cohort metabolomics platforms available for
replication and we identified similar met-QTLs across
cohorts, the named metabolome features for these

met-QTL metabolites used three different annota-
tion techniques (Metabolon was proprietary annota-
tion; COPDGene—Emory used xMSannotator; and
CU used Agilent MassHunter and IDBrowser). These
annotation strategies are optimized to the platforms
and cross-annotation was challenging.

Despite these challenges, we were able to use the
presence of common met-QTLs as evidence to support
a specific annotation; however, since all the platforms
were untargeted, it was sometimes unclear which of
the three annotations was the correct annotation.
Finally, the sample sizes our COPDGene—Emory
and replication cohorts, as well as their limited meta-
bolite annotation, greatly limited our statistical power
to detect replicating met-QTLs. Further work with
targeted metabolomics studies could assist with these
met-QTL associations.

In conclusion, this study found evidence in the blood
metabolome for systemic dysregulation of metabolic
pathways affecting COPD phenotypes in a diseased
population. By further assessing the blood metabolome
for genetic regulation, we reproduced several known
associations and identified many novel met-QTL
SNPs. Furthermore, we expanded and contextualized
metabolite associations through COPD phenotype-
driven module identification, integrating the genetic
associations into the network view. While we found
nongenetic factors to explain more variance in COPD-
associated metabolites than genetic, further work is
needed, potentially integrating the metabolome with
other omics data types (e.g., epigenomics and proteo-
mics), to elucidate and characterize dysregulated path-
ways in COPD pathogenesis.
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Abbreviations Used
AA¼African American
AE¼ anion exchange

AMRT¼ accurate mass and retention time
BCAA¼ branched chain amino acid
COPD¼ chronic obstructive pulmonary disease

CT¼ computed tomography
ESI¼ electrospray ionization

FAM¼ fatty acid metabolism
FEV1¼ forced expiratory volume at one second

FEV1pp¼ FEV1 percent predicted
FVC¼ forced vital capacity

GGM¼Gaussian graphical model
GPI¼ glycophosphatidylinositol

GWAS¼ genome-wide association study
HILIC¼ hydrophilic interaction liquid chromatography

LC-MS/MS¼ liquid chromatography/tandem mass spectrometry
Met¼metabolism

MLC¼myosin light chain
mWAS¼metabolome-wide association study

NHW¼ non-Hispanic white
PC¼ principal component

QTOF¼ quadrupole time-of-flight
RI¼ retention indices

RP/UPLC-MS/MS¼ reverse-phase/ultrahigh-performance liquid
chromatography/tandem mass spectrometry

SNP¼ single-nucleotide polymorphism
TMAP¼N,N,N-trimethyl-alanylproline betaine

UTR¼ untranslated region
VEP¼ Variant Effect Predictor

Publish in Network and Systems Medicine

- Immediate, unrestricted online access
- Rigorous peer review
- Compliance with open access mandates
- Authors retain copyright
- Highly indexed
- Targeted email marketing

liebertpub.com/nsm

Gillenwater, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0009

181

http://www.liebertpub.com/sysm#utm_campaign=sysm&utm_medium=article&utm_source=advert

