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High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on
humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation
and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex
polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% ac-
curacy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to
5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique mo-
lecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of tran-
scripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to
measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequen-
cing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to
100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal
expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with
an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hy-
permutation to build a logistic regression model for prediction of the immunological status of clones. The
model was able to predict clonal status with high confidence but only when using MAF error and bias corrected
Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in im-
munology and biotechnology.
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INTRODUCTION

Humoral immune response profiling has progressed greatly in recent
years owing to advancements in next-generation sequencing (NGS)
technology and bioinformatic analysis of antibody repertoires (1–4).
Unlike classical methods for antibody analysis (for example, serum
titers), Ig-Seq offers the potential to capture quantitative molecular
measurements of immunological phenomena related to clonal selec-
tion and expansion, such as clonal frequency, diversity, and somatic
hypermutation. Ig-seq has been used to address basic questions in B
cell development and differentiation (5–9), and also as an application-
focused tool for vaccine development (10–13), immunodiagnostic dis-
covery (10, 14–16), and monoclonal antibody engineering (17–23).
However, amajor challenge in advancing Ig-seq is the presence of errors
introduced during sample preparation and sequencing, which leads to
markedly inaccurate measurements of antibody diversity (24, 25). Fur-
ther complicating Ig-seq is that the most common library generation
methods use multiplex polymerase chain reaction (PCR) (5, 7, 8, 10,
11, 13, 15, 17–19, 26, 27), wherein large panels of forward primer sets
are used [for example, up to 148primers formouse variable heavy (VH)-
genes (28)] to compensate for the high diversity of variable germline
genes (V-genes). Differences in individual primer ratios, mispriming,
and annealing temperatures can result in large systematic biases, sub-
stantially influencing the distribution of antibody repertoire clones and
V-genes (28–30).Whereas the addition of a 5′ template switching primer
tomRNAoffers away to amplify V-geneswith a universal single primer
(29, 31), the length of 5′ untranslated regions (UTRs) makes it
challenging to recover full-length VDJ sequences (fig. S1). Additional
biases from this method may be present because of the poor efficiency
of template switching reactions, early termination due to RNA
secondary structure, and strand invasion (32–35).

Here, we first established an approach to quantitatively measure er-
rors and biases present in Ig-seq data by using a set of synthetic antibody
standards [complementary DNA (cDNA)] spiked into biological
samples (mouse splenic cDNA). Followingmultiplex PCR library prep-
aration and Illumina sequencing [2 × 300 base pairs (bp) paired-end],
we discovered that there was a drastic overestimation (500-fold) of clonal
variants (also referred to as clones); we define clonal variants as antibody
VH sequences with identical V- and J-genes and identical amino acid
complementarity determining regions 3 (CDR3s). Intraclonal variants,
defined here as antibody sequences with common amino acid CDR3s
but different nucleotide sequences in the rest of the V-gene (excluding
forward primer binding regions), were also overestimated by up to
5000-fold. We further identified that multiplex PCR introduced severe
amplification biases, resulting in only 42 to 62% accuracy of spike-in clo-
nal frequencies. This finding suggests that immunological interpretations
of clonal diversity, selection, and expansion would be largely masked by
errors and amplification biases.

To overcome the widespread inaccuracies in Ig-seq, we developed
molecular amplification fingerprinting (MAF), which consists of
stepwise incorporation of unique molecular identifiers (UIDs). MAF
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starts with single molecule tagging of first-strand cDNA during reverse
transcription with a reverse-UID (RID), providing a unique tag to each
transcript. Notably, MAF continues by tagging each DNA-RID mole-
cule during multiplex PCR amplification with a forward-UID (FID),
whereby overamplified molecules receive more FIDs than underampli-
fied molecules. This fingerprint of amplification for each molecule
allowed us to implement an algorithm to normalize multiplex ampli-
fication bias effects. With spike-in standards as a reference, MAF bias
correction resulted in up to 99% accuracy of antibody clonal frequen-
cies. A multistage MAF error correction pipeline resulted in absolute
(100%) or nearly absolute (98%) correction of clonal and intraclonal
variants, respectively. This led us to establish a metric for clonal ex-
pansion based on intraclonal diversity. To demonstrate the immuno-
logical significance of MAF correction, we performed Ig-seq on
hyperimmunized and untreated mice. Only with MAF-corrected data
was logistic regression modeling able to separate Ig-seq data based on
immune status, where prediction was dominated by clonotype (clonal
variants with at least 80% amino acid similarity) frequencies and the
intraclonal diversity index.
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RESULTS

Assessment of Ig-Seq errors and biases
RNA spike-in standards are becoming an essential tool to assess errors
and bias in sequencing data, the most notable example being the
establishment of the External RNA Controls Consortium (ERCC)
spike-in mix (36). We translated this concept to Ig-seq by designing
a set of synthetic (in vitro transcribed) RNA standards. It is im-
practical to generate a spike-in mix comprising the full diversity of
antibody repertoires at a clonal or V-gene level (>140 V-genes in
IGHV repertoire of BALB/c mice). However, fractional sample
spike-ins, like the ERCC spike-in mix (92 polyadenlyated transcripts),
have proven to be valuable and sufficient for evaluation of errors and
bias in sequencing data. We designed our synthetic spike-ins to consist
of 16 full-length antibody sequences on the basis of mouse VH regions.
Notable spike-in features were the incorporation of 16 unique CDR3
amino acid sequences, seven different V-genes, designed positions for
somatic hypermutation, a synthetic segment [for bioinformatic and
droplet digital PCR (ddPCR) separation from biological clones] (fig.
S2A), and a partial segment of the IgG constant region. All RNA
standards included a 5′ universal region allowing for PCR with a
single forward primer (singleplex PCR), providing a control for un-
biased amplification (fig. S2B). Similar to the ERCC standards, which
span a large concentration range, we also mixed our spike-ins over a
large concentration range to mimic the distribution of biological an-
tibody repertoires. Using the same biological IgG-specific primers, we
reverse-transcribed the standards into first-strand cDNA and made a
pooled master stock. We quantified our master pool of standards by
sequencing five independently prepared libraries generated by adapter
extension PCR, which incorporates Illumina adapters by PCR. This
characterization allowed us to determine the relative frequency of each
clone (fig. S2C and table S1).

To assess Ig-seq errors and biases, we mixed our master pool of
cDNA standards into mouse splenic IgG cDNA at ~10% (generated
with the same reverse transcription protocol as spike-in cDNA). This
was followed by a multiplex PCR step using a well-established forward
primer set specific for mouse VH framework region 1 (17), which con-
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
sisted of 19 degenerate (87 unique) primers mixed at a varied ratio
optimized on the basis of antibody V-gene usage (37). Library prep-
aration was concluded with a final step of adapter extension PCR. We
sequenced three independently prepared replicate libraries and anno-
tated sequences using a modified custom-VDJ annotation tool (13)
(tables S2 and S3). Analysis of our spike-in standards revealed that
despite starting with only 16 CDR3 clones, a total of 1468 ± 109
CDR3 clonal variants (CDR3s with unique amino acid sequences)
were observed. The number of clonal variants per spike-in correlated
with clonal abundance (Fig. 1A). Similarly, we also observed a drastic
increase in diversity of spike-in intraclonal variants (unique read se-
quences belonging to a single CDR3 clone, excluding primer binding
regions), which also correlated with clonal frequency (Fig. 1B). The
confounding factor of frequency with diversity decreases the signal-
to-noise ratio of multivariate clonal expansion analysis. To better un-
derstand the mechanisms generating errors and bias by multiplex
primer sets, we determined the number of primers identified for each
annotated V-gene in our biological data set (144 mouse V-genes iden-
tified) (Fig. 1C). The strong correlation between the number of unique
primers and read counts for each V-gene reveals the complexities of
efforts to reduce multiplex amplification bias by optimizing primer
ratios of large degenerate primer sets. This was further corroborated
by the high nucleotide diversity present in the primer binding regions
of sequence reads from spike-in clones, which also revealed that mis-
priming was systematic for V-genes (fig. S3). Some V-genes, such as
IGHV14-3, did not have an exact match in the primer set but were still
well represented in the data set because of a high level of mispriming,
suggesting that reduced primer sets may be designed that allow mis-
matches toward the 5′ end of primers. These findings also demonstrate
the need to exclude primer binding regions from full-VDJ diversity
analysis, as was done throughout this study. We also investigated the
role of V-gene–specific primer annealing temperature on amplification
bias, finding higher primer melting temperature also correlated with
increasing number of reads (Fig. 1D). To precisely quantify primer bias,
we compared the frequency of spike-ins generated by singleplex PCR
versus frequency by multiplex PCR. Disconcertingly, correlation be-
tween these two data sets produced an R2 = 0.56, suggesting that
multiplex PCR introduced a high degree of amplification bias (Fig. 1E).
Notably, amplification bias was systematic because variation across rep-
licates was extremely low and spike-ins sharing the same V-gene were
consistently under- or overamplified. The amount of PCR amplification
bias also correlates well with the number of erroneous intraclonal var-
iants, as demonstrated by the highly similar profiles (Fig. 1, B and E).

Ig-seq library preparation by MAF
To address the substantial inaccuracy of Ig-seq data, we developed a
library preparation protocol termedMAF. First, RNA is reverse-transcribed
into first-strand cDNA using an IgG gene-specific primer with an RID
tag and a partial lllumina adapter sequence. Next, a multiplex PCR step
is performed using a forward primer set, wherein each primer also con-
tains an FID region (and a partial Illumina adapter sequence; Fig. 2A).
We did not use a typical degenerate nucleotide design for UIDs (that is,
NNNN…) (25, 27), which can often result in various artifacts such as
nonspecific amplification, strand invasion, and primer-dimers (32, 38).
Instead, we aimed to minimize these effects by the incorporation of
spacer sequences and partial degeneracy while still maintaining a large
diversity, ~2 × 107 and ~7 × 105 for RID and FID, respectively.We used
ddPCR and qPCR for precise quantification and control of input
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material duringMAF library preparation (figs. S4 and S5) and observed
a high fidelity and expected degeneracy in RID and FID regions
following sequencing (Fig. 2B). Initial experiments revealed four critical
process parameters for Ig-seq library preparation and analysis: (i) the
quantity of input cDNA copies, (ii) the number of cycles in themultiplex
PCR step, (iii) the quantity of DNA copies input into the adapter
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
extension PCR step, and (iv) the number of preprocessed sequencing
reads analyzed by the MAF pipeline. Therefore, in the process of opti-
mizing MAF, we used a design of experiments response surface meth-
odology approach to better understand how these factors influenced
library preparation and the resulting Ig-seq data (see table S4, figs. S6
to S9, and Supplementary Materials and Methods). We also designed a
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Fig. 1. Assessment of errors and bias in Ig-seq using synthetic antibody spike-ins. Colored dots refer to V-genes represented by spike-in clones.
(A and B) Clonal (A) and intraclonal (B) diversity errors of spike-ins shown in relation to spike-in clonal frequency. (C) Mispriming of biological data during
multiplex PCR is shown by plotting the number of unique primers found to be associated with a V-gene and the number of read counts per V-gene. (D) A
statistically significant correlation (Pearson, two-tailed, P < 0.0001) is observed between the melting temperature (Tm) of primers in the multiplex PCR
primer set and read counts associated with primers in Ig-seq data. (E) A correlation of spike-in clonal frequencies from library preparation with multiplex
PCR versus singleplex PCR results in an R2 = 0.56. Amplification bias was systematic because error bars were very low across replicate sequencing runs.
Clones with the same V-gene were consistently under- or overamplified. Ig-seq data are from replicate library sample preparations (n = 3; data sets
consisted of 4 × 105 preprocessed full-length antibody reads) from mouse splenic cDNA with synthetic spike-ins [for (A), (B), (D), and (E), data are
presented as means ± SD and are from replicate data sets Reddy-PS-1, Reddy-PS-2, and Reddy-PS-3; data set Reddy-PS-1 was used for (C); see table
S2]. Relative spike-in frequencies are mean values obtained from replicate libraries (n = 5) generated by singleplex PCR (see fig. S2 and table S1).
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new forward primer set by incorporating deoxyinosine nucleotides,
which reduced the number of unique primers from 19 degenerate pri-
mers (87 unique sequences) to 15 primers (20 unique sequences) while
still enabling comprehensive coverage of mouse V-genes (table S5 and
fig. S10).

MAF error correction validation
To implement and validate our multi-staged error correction pipeline
on Ig-seq data, we performed MAF library preparation on mouse IgG
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
cDNA with ~10% spike-ins. We highlight below several critical stages
of our pipeline (for a full description of pipeline and processing sta-
tistics, see figs. S11 and S12 and tables S6 and S7). Typically, reads
with common UIDs are grouped together and consensus alignment
is performed to correct for errors (39). Recent studies have shown that
there are a substantial number of errors in the UID regions themselves
(40–42). A major advantage of MAF is that by tagging each DNA-RID
molecule during amplification with an FID, we were also able to group
similar FID-RID pairs and correct errors in these regions themselves.
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results in amplicons ready for Ig-seq. (B) Following Ig-seq, nucleotide sequence logos show FID and RID regions with predicted levels of variability and
nonvariability in degenerate and spacer regions, respectively. (C) Schematic shows the principle of MAF bias correction and its ability to provide improved
accuracy of clonal frequencies. The MAF % is based on the normalized RIDcount (NRID), which is equal to the RID clonal counts divided by the MAF bias
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Typically, we found that nearly 15% of RID sequences required error
correction. Additionally, because error correction relies on consensus
building, each UID sequence must have at least three reads. Given that
our library preparation protocol included precise quantification of
input cDNA-RID molecules by ddPCR, we were able to achieve a high
level of oversampling because ~95% of our RID groups had three or
more reads. We found after RID grouping and consensus building
that ~40% of antibody sequences required error correction (at least
one nucleotide). Using our spike-ins for reference, we found that con-
sensus building removed most of the erroneous intraclonal variants;
across all 16 spike-in clones, the error correction rate reached 98.4 ±
0.7% (Fig. 3, A and B, and table S6). However, this process did not fully
remove all erroneous sequences, likely due to PCR and sequencing hot-
spot errors (25) or reverse transcription errors. The use of additional
sequence filters may be able to remove such errors but would come at
the cost of greatly reducing the percent of usable Ig-seq reads. The corre-
lation of clonal frequency and erroneous intraclonal variants was still ob-
served after consensus building. Therefore, we established a new metric,
termed the “intraclonal diversity index,”wherein for each clone, the num-
ber of intraclonal variants is normalizedby the clonal count (read count or
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
RID count for uncorrected and MAF error corrected data, respectively;
see Materials and Methods). This process enabled us to remove the
confounding factor of clonal frequency and obtain a more accurate anal-
ysis of intraclonal diversity and clonal expansion (Fig. 3C), which has not
been previously possible with UID-based correction performed on partial-
length antibody variable regions (25, 27). After VDJ annotation, clonal
error filteringwas performed onCDR3 sequences. This consisted of read-
gain analysis (hotspot error identification) of CDR3s (25), RIDminimum
count/read filtering, and chimeric sequence filtering (see Materials and
Methods). After all error correction steps, we achieved 100%accuracy of
spike-in CDR3 clones; in all replicate data sets (and throughout this
study), we observed zero false-positive and zero false-negative
spike-in clones (Fig. 3, D and E).

MAF bias correction validation
Any multiplex PCR is subject to systematic amplification bias due to
variations in primer-template annealing temperatures and mispriming
(Figs. 1, C and D, and 2C). Even with our new reduced primer set, we
still observed significant amplification bias (Fig. 4A). When de-
termining clonal frequencies on the basis of FID counts or RID counts
 on O
ctober 5, 2020
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Fig. 3. MAF error correction validation with spike-ins shows the removal of nearly all erroneous clonal and intraclonal variants. (A) Phylogenetic
trees before and after MAF error correction of intraclonal variants for a single spike-in example clone. (B) Uncorrected and MAF error–corrected intraclonal
variant values compared with spike-in frequency through linear regression with a 95% prediction band. (C) Intraclonal diversity index (clonal read or RID
count, uncorrected and MAF error–corrected, respectively) showing reduced dependence on frequency plotted along with a slope = 0 line and 95%
prediction bands. (D) Phylogenetic trees before and after MAF error correction of clonal variants (CDR3 amino acid sequences) for a single spike-in
example clone. (E) Erroneous clonal variants (uncorrected) and accurate clonal identification (MAF error–corrected) plotted as a function of spike-in fre-
quency with linear regression fits and 95% prediction bands. The Ig-seq data sets used in this figure consisted of 1 × 106 preprocessed full-length antibody
reads and were obtained from replicate library sample preparations (n = 3) from mouse splenic cDNA with synthetic spike-ins [for (B), (C), and (E), data are
presented as means ± SD and are from replicate data sets IM_1a, IM_1b, and IM_1c; data set IM_1a was used for (A) and (D); see table S7]. Relative spike-in
frequencies are mean values obtained from replicate libraries (n = 5) generated by singleplex PCR (see fig. S2 and table S1).
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from MAF Ig-seq data, we observed correlations with singleplex PCR
of R2 = 0.46 or R2 = 0.83, respectively. FID-based spike-in frequencies
consistently yielded higher linear regression residuals than their
corresponding RID-based frequencies (Fig. 4B). During multiplex
PCR, overamplified clones received a higher FIDcount/RIDcount ratio
than the underamplified clones. This finding inspired the hypothesis
that clonal amplification during multiplex PCR can be described by a
modified form of the equation describing exponential amplification
efficiency in PCR

FIDn ¼ RID0ð1þ EclonalÞn ð1Þ
Here, RIDo represents the number of RIDs for each clone initially

present in the multiplex PCR reaction, n represents the number of
PCR cycles, Eclonal is the amplification efficiency for each clone in
the 5′-3′ direction (FID-tagging efficiency), and FIDn is the number
of FIDs tagged to each clone during the entire multiplex PCR reaction.
Rearranging the equation results in the scalar factor FIDn/RIDo, which
represents the level of clonal specific amplification. Because of sub-
sampling, in which only a fraction of the first-step multiplex PCR
product is transferred into second step adapter extension PCR and
finally observed in sequencing data, RIDo does not equal the measured
RIDclonal count, and likewise, FIDn does not equal FIDclonal count. How-
ever, because subsampling proportionally affects FIDn and RIDo, the
MAF bias factor can be expressed in terms of measured values, as
shown below

MAF bias factor ¼ FIDn

RID0
≈

FIDclonal count

RIDclonal count
ð2Þ

Thus, the measured RIDclonal count can be normalized, as shown
below

Normalized RIDclonal count ≈
RIDclonal count

MAF bias factor
¼ ðRIDclonal countÞ2

FIDclonal count
ð3Þ

Therefore, the normalizedRID clonal count can be expressed in terms
of RIDclonal count and FIDclonal count, which are the measured number of
unique RIDs and FIDs associated with a given clone. Thus, when we ap-
plied the MAF bias factor to determine multiplex PCR spike-in clonal
frequencies, correlation with singleplex PCR resulted in a substantial im-
provement, yielding an R2 = 0.98 (Fig. 4C). We also found in a direct
comparison that MAF accuracy of 98% was significantly better than
the current state of the art based on UID counting (38, 43) (RID counts
yielded 83% accuracy; fig. S13). Furthermore, we performed a detailed
comparative analysis of various bias correction methods and found that
our error and bias correction pipeline substantially improved the accura-
cy of countingmethods such as RID counting and nonparametric species
richness estimators (44) (figs. S13 and S14). Whereas all bias correction
counting methods benefited by unrestricted filtering, MAF bias correc-
tion resulted in the highest accuracy of 99% (fig. S13C). The possibility
exists that during themultiplex PCR step, there could be biased and pref-
erential amplification due to the FID regions themselves. Given the large
diversity of the FID tags and the degree of mispriming allowed distal to
the 3′ end of the primer, it would be highly unlikely to have sufficiently
similar FIDs incorporated thatwere not recognized by our bioinformatics
pipeline. Notably, our replicates throughout the study exhibited high ac-
curacy and low standard deviation of frequency measurements after
MAF bias correction (Fig. 4C), suggesting that any bias from preferential
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
FID amplification did not affect the final bias correction performance
of MAF.

It has recently been shown that different V-gene primer sets can
alter Ig-seq data (28–30); therefore, we evaluated the robustness of
MAF bias correction. Using the same starting material, mouse splenic
cDNA with ~10% spike-ins, we performed identical MAF library prep-
arations with our original Reddy-2010 primer set and our new re-
duced primer set. Following Ig-seq, we observed with uncorrected
reads that there was a very poor correlation of spike-in clonal frequen-
cies (R2 = 0.08, Fig. 4D). However, after applying MAF bias correction
to both data sets, the correlation of clonal frequencies markedly im-
proved to an R2 = 0.84, suggesting that MAF leads to consistent and
robust bias correction even with different primer sets (Fig. 4E). Opti-
mization of primer ratios has been shown to reduce bias in multiplex
PCR (30); we found that before bias correction, the optimized primer
ratio Reddy-2010 set was more accurate than our equal primer ratio
reduced set (62 and 48%, respectively). However, after MAF bias cor-
rection, both primer sets resulted in substantially better accuracy,
whereas the new reduced primer set with equal primer ratios per-
formed best with an accuracy of 98% (fig. S15). In summary, MAF
bias correction substantially improves both bioinformatics-based
(UID counting) and experimental-based (optimizing primer ratios)
bias correction methods.

MAF impact on biological antibody repertoires
After validating MAF error and bias correction with synthetic spike-
ins, we next evaluated its impact on biological antibody repertoires
derived from mouse splenic cDNA. We found substantial shifts in clo-
notype (length-matched CDR3 amino acid sequences with at least
80% similarity and matching V- and J-genes) frequencies, with corre-
lation before and after MAF bias correction producing an R2 = 0.52.
Furthermore, several hotspot error clones were present in uncorrected
data; these clones were identified and removed following MAF error
correction (Fig. 5A). It should also be noted that spike-in clonal fre-
quencies spanned a large range of the biological data, supporting that
MAF bias correction was valid within this range (Fig. 5B). As
expected, after MAF bias correction, we also found substantial shifts
in the V-gene distribution as correlation to precorrection data resulted
in an R2 = 0.42 (Fig. 5C and fig. S16). The MAF bias factor appeared
to group by V-genes, likely due to highly similar primer binding sites
during multiplex PCR (Fig. 5E); it also correlated well between
replicate samples prepared from the same starting material (figs.
S17 and S18). Similar to the spike-in analysis, we found that MAF
error correction resulted in intraclonotype diversity index values that
were significantly reduced and stratified over a larger range (Fig. 5D).

In addition to the MAF bias factor aiding in frequency correction,
the FID/RID value also provides numeric assessment for the relative
under- or overamplification of clones. We found that the range of
FID/RID values of our spike-ins corresponded very closely to the
range exhibited by biological clones (Fig. 5E and fig. S17A). With
our 16 spike-ins, we were able to obtain reasonable sampling of the
biological bias present in nearly the entire repertoire. This method of
comparing FID/RID range can also be used in the future to gauge and
compare other gene/primer systems in a universal manner.

MAF enables predictive profiling of antibody repertoires
Having establishing thatMAF error and bias correction results in great-
ly improved accuracy of Ig-seq data, we assessed whether predictive
6 of 15
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Fig. 4. MAF bias correction validation with spike-ins shows highly accurate clonal frequencies. (A) Correlation of uncorrected spike-in clonal fre-
quencies from multiplex PCR (with new reduced primer set) with singleplex PCR results in an R2 = 0.42. (B) Correlation of spike-in clonal frequencies based
on FID counting or clonal frequencies basedon RID countingwith singleplex PCR. Data show that FID residuals are always larger than RID residuals. (C) Correlation
of MAF bias corrected spike-in clonal frequencies from multiplex PCR with singleplex PCR results in a significantly improved R2 = 0.98. MAF bias–corrected
counts were based on normalized RIDcount and MAF bias factor (see Fig. 2C). (D) Correlation of uncorrected spike-in clonal frequencies using two different
multiplex PCR primer sets during library preparation results in an R2 = 0.08. (E) MAF-corrected spike-in clonal frequencies using two different multiplex PCR
primer sets result in a significantly improvedR2 = 0.84. The Ig-seqdata sets used in this figure consistedof 1×106 preprocessed full-length antibody reads and
were obtained from replicate library sample preparations (n= 3) frommouse splenic cDNAwith synthetic spike-ins [for (A) to (C), data are presented asmeans ±
SDand are from replicate data sets IM_1a, IM_1b, and IM_1c, see table S7; data sets Reddy-PS-Compare and TAK-PS-Comparewere used for (D) and (E); see table
S2]. Singleplex spike-in frequencies are mean values obtained from replicate libraries (n = 5) generated by singleplex PCR (see fig. S2 and table S1).
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antibody repertoire profiling could be performed. Specifically, we tested
our ability to distinguish antibody repertoires on the basis of the immune
status of their host. We compared Ig-seq data from hyperimmunized
mice (n = 3) and untreated mice (n = 3) on the basis of three highly rel-
evant immune profiling factors: (i) clonotype frequency, (ii) median
number of nonsilent somatic hypermutations (per clonotype), and
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
(iii) the intraclonotype diversity index.Althoughwewere using extremes
in immune status (hyperimmunized versus untreated mice), uncorrected
repertoire datawere unable to differentiate between immune statuses (Fig.
6A). However, after MAF error and bias correction, we observed a clear
separation of antibody repertoires based on immune status (Fig. 6B).
Next, we used these three parameters to build nominal logistic regression
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Fig. 5. MAF error and bias correction substantially alters Ig-seq data from mice. (A) Correlation of clonotype frequencies before and after MAF
correction results in an R2 = 0.52. Red dots indicate flagged hotspot error clonotypes present in uncorrected data but removed after MAF correction
in all replicate data sets. (B) The top 500 clonotypes ranked according to frequency are shifted after MAF correction. Spike-in frequencies cover most of the
biological frequency range. (C) Correlation of V-gene frequencies of uncorrected versus MAF-corrected data results in an R2 = 0.42. (D) The normalized
intraclonal variants are decreased substantially across clones after MAF correction. (E) The MAF bias factor shows grouping based on V-genes. The Ig-seq
data sets used in this figure consisted of 1 × 106 preprocessed full-length antibody reads and were obtained from replicate library sample preparations
(n = 3) from mouse splenic cDNA with synthetic spike-ins [for (A) and (C), data are presented as means ± SD and are from replicate data sets IM_1a,
IM_1b, and IM_1c; data set IM_1a was used for (B), (D), and (E); see table S7].
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Fig. 6. Immunological clonal prediction status improves significantly after MAF error and bias correction. (A and B) Comparison of the top 100
frequency-ranked clonotypes with their corresponding somatic hypermutation and intraclonotype diversity index values. Bubble size represents the
median number of nonsilent nucleotide somatic hypermutations per clonotype. Uncorrected data show poor separation based on immune status
(red, hyperimmunized; blue, untreated mice). MAF error and bias corrected clonotypes are clearly separated on the basis of these three parameters.
(C and D) Applying a stepwise nominal logistic regression, we determined the significant model parameters that describe the separation of clonotype
data based on immune status in a multivariate fashion (see Supplementary Materials and Methods). Using three combinations of four training data sets
(top 100 frequency-ranked clonotypes, n = 2 untreated, and n = 2 hyperimmunized) and two test data sets (top 100 frequency-ranked clonotypes, n =
1 untreated, and n = 1 hyperimmunized), we show the combined results from the test data sets (n = 3 untreated and n = 3 hyperimmunized). The y axis
represents the model prediction probability of whether a given clonotype belongs to the hyperimmunized group. The uncorrected data have a low
resolving power, whereas the MAF error and bias corrected data show significant separation. (E and F) Comparison of the sensitivity and specificity
of the nominal logistic regression models. The receiver operating characteristics and area under the curve (AUC) for nominal logistic regression models
are shown for the significant factors using uncorrected and MAF-corrected data (for model performance using all factors, see fig. S20). The Ig-seq data sets
used in this figure consisted of 1 × 106 preprocessed full-length antibody reads and were obtained from library sample preparations of splenic cDNA with
synthetic spike-ins from hyperimmunized mice (n = 3) and untreated mice (n = 3) (the data sets used for hyperimmunized are IM_1a, IM_2, and IM_3; the
data sets used for untreated are UM_1, UM_2, and UM_3; see table S7).
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models to predict whether a clonotype originated from a hyperimmu-
nized or untreated host (see Supplementary Materials and Methods).
Following model training with separate data sets, uncorrected test data
showed poor clonotype prediction based on immune status (Fig. 6C),
whereas across allmice theMAF-corrected test data clearly showed sepa-
ration of clonotypes based on the immune status (Fig. 6D). Notably, we
found that the regression model based on all uncorrected data had an
area under the receiver operating characteristic curve of 0.69, and the
most dominant parameter of themodel was based on somatic hypermu-
tations (Fig. 6E and figs. S19 to S21).However,withMAF-correcteddata,
the model produced a greatly improved value of 0.94 and was primarily
governed by the clonotype frequency and intraclonal diversity index
(Fig. 6F and figs. S19 to S21). Finally, we usedMAF-corrected data from
our hyperimmunized and untreated mice to evaluate several other im-
mune profilingmetrics, such as isotype and clonal polarization (fig. S22).
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DISCUSSION

Ig-seq offers a powerful tool to quantitatively measure antibody reper-
toires and gain greater insight into immunological phenomena. How-
ever, we found by using synthetic spike-in standards that Ig-seq data
were severely affected by errors and biases introduced during library
preparation and sequencing (Fig. 1). Thus, Ig-seq measurements of
the fundamental principles of humoral immunity—antibody clonal di-
versity and clonal frequencies—are largely inaccurate, leading to com-
promised immunological interpretations. The development of MAF
represents a novel approach for tracking and correcting errors and
biases introduced by multiplex PCR amplification. MAF error correc-
tion was able to eliminate nearly all false positives and provide highly
accurate measurements of clonal and intraclonal diversity (Fig. 3). By
sequencing full-length VDJ regions, MAF error correction provided
accurate intraclonal diversity information; such an analysis was not
possible with previously published methods that focused primarily
on error correction of clonal CDR3 regions (25, 27). Removing clonal
and intraclonal errors is critical for the construction of biologically rep-
resentative phylogenetic trees, which is valuable for studying antibody
evolution in vivo [for example, in the case of HIV and broadly neutra-
lizing antibodies (9, 45, 46)]. Previous methods of error correction in
Ig-seq consist only of UID tagging before amplification (first-strand
and/or second-strand cDNA) (25, 27). The addition of an FID during
amplification is invaluable for implementing a bias correction
algorithm (Fig. 2C). This enables the normalization and removal of
major amplification biases caused by multiplex PCR (Fig. 4). The ef-
fectiveness of MAF bias correction has been exemplified by the 99%
accuracies achieved with the approach, outperforming the current
state-of-the-art technology based on UID counting by nearly 20%
(Fig. 4 and fig. S13) (38, 43). Recently, exhaustive optimization of
primer ratios has been used to reduce bias in multiplex PCR (30).
However, given the tendency for a high degree of mispriming (Fig.
1C), complete bias removal using this approach would not be possible
when sequencing highly diverse templates such as the mouse VH locus.
However, with MAF bias correction, we were able to remove nearly all
bias with a simple equal molar primer ratio resulting in an accuracy of
98 to 99% (Fig. 4 and fig. S13). Therefore, we expect MAF library prep-
aration and correction to be generalizable and applicable to NGS of
other immune receptors such as variable light chains, T cell receptors
(47), and other species (for example, human). We also demonstrated
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
with mouse antibody repertoire data that several measurements such as
clonal frequencies, V-gene distribution, and intraclonal diversity were
substantially altered by MAF correction. This further highlights the im-
portance of controls and correction when using Ig-seq data to make
immunological statements (Fig. 5).

The highly accurate data generated by MAF allowed us to take ad-
vantage of the tremendous potential offered by Ig-seq. For example, by
establishing the “intraclonal diversity index,” we were able to better
measure recent clonal expansion. We then used this metric, along with
corrected clonal frequencies and somatic hypermutation information,
to build logistic regression models capable of accurately predicting the
immune status of repertoire clonotypes (Fig. 6). This was made evi-
dent in our study, where despite the extreme disparity between un-
treated and hyperimmunized mice, uncorrected data failed to show
a clear difference between repertoires. In contrast, MAF corrected data
allowed antibody clonotypes to be accurately predicted on the basis of
immune status. We found that our predictive model using MAF-
corrected data was primarily governed by the corrected clonotype fre-
quency and the new metric of intraclonal diversity index, followed by
somatic hypermutation. A high intraclonal diversity index value
appears to be representative of recent clonal expansion (for example,
due to booster immunization). However, a high somatic hypermutation
valuemay be the result of lingeringmemory B cells that underwent ear-
lier clonal expansion to a previously exposed antigen. The ability to per-
form multivariate analysis with accurate Ig-seq data shows remarkable
promise for immune response profiling.

Whereas global repertoire comparisons can be used to detect and pre-
dict a subject’s immune status, Ig-seq can also be used for fine analysis of
antibody clones. Previous work has shown the potential for sequence-
based discovery ofmonoclonal antibodies (17, 48), wherein antigen spec-
ificity was identified only on the basis of highly abundant sequences.
However, MAF Ig-seq opens the possibility of usingmultivariate analysis
for the prediction of a greater number of antigen-specific clones. Addi-
tionally, Ig-seq repertoires can be mined for intraclonal variants to dis-
cover antibodies with improved properties such as higher affinity,
specificity, and developability (49). Finally, other Ig-seq–related technol-
ogies, such as V-gene pairing (18, 26, 50–52) and antibody serumproteo-
mic analysis (12, 19, 22, 53), may greatly benefit by integrating MAF.
MATERIALS AND METHODS

Experimental design
The primary aim of this work was to assess and correct biases and
errors within Ig-seq data. This was necessary to improve the ability
to identify immunization responding clones and the overall immune
state of a subject. To quantitatively assess errors and biases, we used a
panel of synthetic antibody standards, which were spiked into murine
splenocyte cDNA before library preparation and Ig-seq. Sample prep-
aration conditions (cDNA amount, number of PCR cycles, primer
sets, and number of reads) were optimized to achieve highly accurate
data using MAF. The bioinformatically corrected MAF data were then
compared to uncorrected data to evaluate the ability to discern data
obtained from untreated and hyperimmunized mice.

Mouse experiments
All mouse experiments were performed under the guidelines and
protocols approved by the Basel-Stadt cantonal veterinary office
10 of 15
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(Protocol #2582). Female BALB/c mice (Charles River) were housed
under specific pathogen–free conditions. Untreated mice (n = 3) were
received at age 3 weeks and housed for 9 weeks before being sacrificed.
Hyperimmunized mice were received at age 6 weeks and were injected
a week later with 150 ml of a PBS-based solution consisting of the
following: (day 0) primary subcutaneous injection containing 200 mg
of ovalbumin (Sigma, A5503) and 20 mg of adjuvant monophosphoryl
lipid A (MPLA; Sigma, L6895), two booster injections at days 21 and
42 with 50 mg of ovalbumin and 20 mg of MPLA, and a final intra-
peritoneal booster injection at day 61 with 50 mg of ovalbumin (no
adjuvant). Mice were sacrificed 10 days after the final injection. At
the time of sacrifice, spleens were removed and placed directly in
1.5 ml of RNAlater (Sigma, R0901), stored overnight at 4°C, and
moved to −20°C and stored until further processing.

RNA isolation from spleens
Mouse spleens were removed from RNAlater solution, lightly blotted,
and transferred to Miltenyi M tubes containing 1.5 ml of Trizol (Life
Technologies, 15596). Spleens were dissociated using a gentleMACS
Octo Dissociator with Heaters using the RNA_01_01 preprogrammed
setting. One milliliter of solution was removed and stored at −80°C
until further processing. RNA extraction was performed using the
PureLink RNA Mini Kit (Life Technologies, 12183018A) following
the manufacturer’s guidelines.

MAF library preparation
All libraries described throughout this study used MAF primers. A
complete list of all primers, probes, and genes used throughout the
study can be found in tables S5 and S8.

cDNA synthesis. First-strand cDNA synthesis was performed by
using Maxima reverse transcriptase (Life Technologies, EP0742)
following the manufacturer’s instructions (with optional steps), using
5 mg of RNA with 20 pmol of IgG gene–specific primers (95% TAK_402
and 5% TAK_403) per 20 ml of reaction volume. TAK_402 binds a con-
served portion of mouse IgG1, IgG2a, IgG2b, and IgG2c. TAK_403
binds the less biologically present mouse IgG3. IgG3 sequences were
monitored for atypically frequency presence but were removed from
biological data before analysis to maintain the ability to accurately quan-
tify relative frequencies of IgG1/2 sequences. Moving toward the 5′ end
of the primers, a short nonbinding spacer was included before the
degenerate RID sequence, followed by another short spacer, and the
5′ portion of the Illumina RNA PCR Primer used in TruSeq Small
RNA Sample Prep Kits (fig. S5). The short spacer between the gene-spe-
cific position and the RID helps reduce biases from gene-specific RID
annealing, whereas the spacer and reduced degeneracy (H rather than
N) within the RID reduces secondary structure. All spacers were used
as bioinformatics masks to properly identify RIDs within NGS reads.
After cDNA synthesis, samples were subjected to a left-hand sided
SPRIselect bead (Beckman Coulter, B23318) cleanup at 0.8×,
incorporating an extra ethanol wash step, followed by elution into
tris-EDTA (TE) buffer, separation into aliquots, and stored at −80°C.

ddPCR quantification. Target-specific cDNA was quantified by a
custom ddPCR assay. Amplification was carried out by a deoxyinosine-
containing 5′ J region primer (TAK_530) and a 3′ Illumina adapter–
specific primer (TAK_522). Two separate LNA containing probes
(TAK_498 and TAK_499) were used to quantify biological and
spike-in copies, respectively (figs. S4 and S5). Final reaction mixtures
consisted of 1× ddPCR Supermix (Bio-Rad, 186–3010), 250 nM of
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
each probe, 900 nM of each amplifying primer, and a dilution of
cDNA. ddPCR was carried out as specified by the manufacturer with
the following cycling conditions (cycling done at 50% ramp rate): 95°C
for 10min; 45 cycles of 94°C for 30 s, 53°C for 30 s, 64°C for 1min; 98°C
for 10 min; and holding at 4°C indefinitely.

Multiplex PCR. Using the ddPCR target quantified cDNA mea-
surements, we incorporated 150,000 copies (unless otherwise speci-
fied) into 25 ml of first-step multiplex PCR reactions, including 10%
of the master pool synthetic spike-ins (see next section). Reaction mix-
tures consisted of cDNA, 500 nM multiplex primer mix (STR or
TAK), 500 nM 3′ Illumina adapter–specific primer (TAK_423), and
1× KAPA HIFI HotStart Uracil+ ReadyMix (KAPA Biosystems,
KK2802). The Uracil+ version enabled efficient high-fidelity
amplification of TAK multiplex primer set that had deoxyinosines.
Thermocycling was performed as follows: 95°C for 2 min; 9 cycles
(unless otherwise stated) of 98°C for 20 s, 60°C for 45 s, 72°C for
60 s; 72°C for 5 min; and 4°C indefinitely. PCR reactions were then
left-hand side SPRIselect bead cleaned and quantified using the same
ddPCR protocols described above.

Adapter extension PCR. To control the amount of final yield af-
ter the second-step adapter extension PCR (that is, sufficient material
needed for NGS, but overamplification results in PCR chimeras owing
to high template/primer ratios), we used the qPCR-based KAPA Real-
time PCR Library Amplification Kit (KAPA Biosystems, KK2702),
which visualized when reaction saturation occurs on the basis of
template amount and number of cycles. We then correlated these data
to our ddPCR assay using a synthetic minigene from IDT, which had
a full natural antibody gene and Illumina adapters (fig. S5). This cor-
relation allowed us to determine the proper number of cycles to use
for the second-step adapter extension PCR reaction on the basis of the
desired number of ddPCR quantified copies of first-step multiplex
PCR product. We then performed the second-step adapter extension
PCR reaction by including 8.0 × 105 ddPCR quantified copies in a 25-ml
reaction, along with 1× KAPAHiFi HotStart ReadyMix (KAPABiosys-
tems, KK2602), 1 mM5′ Illumina adapter extension primer (TAK_424),
and 1 mM 3′ Illumina adapter extension primer (index-specific; for ex-
ample, TAK_531). Thermocycling was performed as follows: 95°C
for 5 min; 23 cycles (unless otherwise stated) of 98°C for 20 s, 65°C
for 15 s, 72°C for 15 s; 72°C for 5 min; and 4°C indefinitely. Following
second-step adapter extension PCR, reactions were cleaned using a
double-sided SPRIselect bead cleanup process (0.5× to 0.8×), with an
additional ethanol wash and elution in TE buffer.

Synthetic antibody RNA spike-ins
Sixteen synthetic spike-in clones were designed to incorporate a 5′ con-
stant region (for singleplex PCR amplification), 7 different V-genes,
16 unique CDR3s (amino acid sequences), a J-gene, a partial IgG con-
stant region (with a synthetic portion for a separate ddPCR probe and
bioinformatic identification), a 3′ synthetic spacer (to make all clones
identical in RNA length), and a final 3′ Eco RV site (to enable efficient
run-off transcription) (fig. S2 and table S8). All synthetic clones were
ordered asminigenes in the pIDTBlue vector (IDT), which incorporates
a T7 promoter to allow for in vitro transcription. The minigenes were
linearizedwith EcoRV-HF (NEB), purified using a PCR cleanup protocol
with EconoSpin columns (Epoch Life Sciences), and in vitro transcribed
using a T7 High Yield RNA Synthesis Kit (NEB E2040S) according to
the manufacturer’s instructions, with subsequent deoxyribonuclease I
treatment. Following RNA purification using the PureLink RNA Mini
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Kit, RNAwas quantified by NanoDrop and using a Fragment Analyzer
(Advanced Analytical DNF-489 Standard Sensitivity RNA Analysis
Kit), mixed at varied concentrations, aliquoted, and stored at −80°C.
A master pool of spike-in cDNA mixture was generated by reverse
transcription (as described earlier), but with 500 ng of RNA mixture
input per 20 ml of reaction. From the master pool of cDNA mixture,
exact relative quantification of spike-in clones was done by replicate
sample library preparation (n = 5). Library preparation was carried
out as described earlier with the following modifications: the multiplex
primer set used in the first-step multiplex PCR was replaced with a
single primer (TAK_472) and 5.0 × 105 spike-in cDNA copies
(measured by ddPCR) were used in the first-step singleplex PCR reac-
tion (fig. S2B). CLC Genomics Workbench preprocessed sequences
(370,000) were randomly input from each of the five replicate data sets
and processed in our VDJ annotation and analysis pipeline (table S1).
The number of unique RIDs for each spike-in clone was counted and
converted into frequency (%) and then averaged to produce the single-
plex PCR (or relative) spike-in clonal frequency (fig. S2C). The spike-ins
used throughout the study were derived from aliquots from the same
initial master pool used for singleplex PCR replicate sequencing.

NGS with Illumina MiSeq (2 × 300 bp)
After library preparation, individual NGS libraries were characterized
for quality and quantified by capillary electrophoresis using a Fragment
Analyzer (Advanced Analytical DNF-473 Standard Sensitivity or DNF-
474 High Sensitivity NGS Fragment Analysis Kit). The libraries from
untreated mice did not produce the highly clean profiles exhibited in
the libraries from hyperimmunized mice, likely due to a higher ratio
of initial nonspecific/target transcripts. Samples were then pooled and
analyzed on the Fragment Analyzer with the high-sensitivity NGS kit to
confirm the target concentration of 4 nM. NGS was performed on the
Illumina MiSeq platform with a MiSeq Reagent Kit V32 × 300 bp
paired-end (Illumina MS-102-3003), using an input concentration of
16 pMwith 2 to 5% PhiX (better results were obtained using 5% PhiX).
Raw FASTQ data is publicly available at http://www.ncbi.nlm.nih.gov/
bioproject/311999.

MAF error and bias correction pipeline
A complete overview of bioinformatic processing and error correction
stages is shown in fig. S12. Steps 2 to 6 were integrated into a single
workflow; the overall processing time of this workflow scales directly
with the number of sequencing reads (fig. S23). The use of cluster
computing enables parallel processing of data sets; thus, it is possible to
process a typical MiSeq run (~16 to 18 Ig-seq data sets) at one time. The
complete code of our pipeline and CLC Genomics Workbench workflow
files are freely available (https://sissource.ethz.ch/sis/maf_scripts).

Bioinformatic preprocessing. Paired-end FASTQ files acquired
from Illumina MiSeq were imported into CLC Genomics Workbench
7on the ETHZurichEulerHighPerformanceComputing (HPC) cluster.
A preprocessingworkflowwas then run, which consisted of the following
steps: trimming of low-quality reads (default CLC quality trim process),
merging of paired-end reads, removal of sequences not aligning tomouse
IGH constant sequences, and length filtering. Following preprocessing,
sequences were batch-renamed to specify each sequence with a unique
sequence ID number.

Error correction on UIDs. A custom python script was used for
further work, which was configurable for the user to specify a number
of parameters, such as the number of preprocessed reads to be ran-
Khan et al. Sci. Adv. 2016; 2 : e1501371 11 March 2016
domly sampled (fig. S24). Data sets in Fig. 1 used 4 × 105 and those in
Figs. 3 to 6 used 1 × 106 preprocessed reads. FIDs and RIDs were
identified and corrected by first identifying the most abundant RID
and the most abundant FID belonging to the previously identified
RID. All other FID-RID pairs were then searched to identify those that
had up to two mismatches in both the FID and RID seeds. FID-RID
pairs that were identified were then corrected to that of the seed FID-
RID pair. A new seed FID-RID pair was then identified with the sec-
ond most abundant FID, belonging to the initial most abundant RID
and was corrected as above. This process continued until all FIDs
belonging to an RID were used as a seed, then repeating the process
with the second most abundant RID, and so on.

Error correction by consensus building. Consensus building
was performed on sequences, trimmed of their FID and primer-
binding region (CLC preprocessing). Here, the most abundant
sequence belonging to an RID was used as a seed, and all other se-
quences in the RID group were aligned to this sequence. Consensus
building was only triggered on sequences that were at least 95% similar
to the full-length seed sequence to enable potential double-tagged se-
quences to be independently processed. The most abundant nucleotide
at eachpositionwas deemed to be the correct sequence, andmismatches
were corrected to the most abundant nucleotide sequence.

VDJ annotation. VDJ annotation was performed on both the con-
sensus built and nonconsensus built sequences (trimmed of FID and
primer binding regions). The sequencing reads were annotated using a
self-written extension for the VDJ software package (https://github.
com/laserson/vdj) (13). The script takes a FASTA file with the input
sequences and three files with annotated reference sequences from the
V-, D-, and J-gene germline segments (Species Mouse, Locus IG) avail-
able at Immunogenetics Database (IMGT, www.imgt.org) (54). Then,
the input sequences are annotated and exported as IMGT compatible
TSV files (table S3).

Each sequence was globally aligned against the V-gene reference
set using the Needleman-Wunsch algorithm with an affine gap
scoring scheme to avoid the introduction of gaps through mutations
in the alignment. After removal of the leading and trailing gaps, the
alignment was scored. The alignment with the best score was then
used to derive mutation statistics at the nucleotide and amino acid
level. Subsequently, we cut the sequence at the second Cys residue
of the V-D-J-gene and aligned the rear part against the J-gene segment
reference set using the same strategy as used for the V-gene. Mutation
statistics were derived accordingly. The region between the second Cys
of the V-gene and the J-gene Trp (or J-gene Phe) was labeled as the
CDR3 and used as a template sequence to align against the D-gene
segment reference set using the Smith-Waterman algorithm. Sequences
with out-of-frame amino acid junctions or a stop codon in either the
amino acid junctionor theV-genewere labeled unproductive and produc-
tive otherwise. As a last step, information on the detected V-, D-, and
J-gene segments, amino acid and nucleotide sequences, and somatic
hypermutation statistics for each sequence were exported to an IMGT
compliant (TSV) format. The VDJ annotated TSV files were used to
generate a detailed TSV file with all relevant sequence information (for
example, sequence ID, FID, RID, V-gene, J-gene, CDR3, somatic hyper-
mutation statistics, isotype).

Clonal error correction and filtering. A new TSV file (CDR3_Tot_
Table) was generated where each unique CDR3 of the consensus
built data is given a row. We considered reads with matching V genes,
J genes, and identical CDR3 amino acid sequences to be a clone; clones
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with matching CDR3 amino acid lengths and >80% amino acid CDR3
identity to be clonotypes; and a readwas a given data acquired sequence.
This tablewas then populatedwith all basic data based on the annotation
(for example, number of reads, number of FIDs, number of RIDs, ma-
jority isotype, majority V-gene, majority J-gene, median somatic hyper-
mutation statistics). In addition, the clones were searched in the
previously generated nonconsensus built data tables to specify the num-
ber of reads for each clone without any error correction. The number of
reads before and after consensus building for a given clone were com-
pared; if the number of reads after consensus building was less than that
of before consensus building, the clone was flagged and removed as a
hotspot error [similar to the method of Shugay et al. (25)]. A user con-
figurable component was also included to filter for chimera sequences
that were present within a CDR3 clone that did not share the same V-
and J-genes as the most abundant ones for the clone.

Key clonal attributes. TheMAF bias corrected count was based on
two values: (i) the count to be corrected (RID or read count) and (ii) the
MAF factor (clonal or average V-gene FID/RID ratio).We termed the best
combination “MAF clonal,” which uses the number of RIDs for a given
clone and divides it by the MAF bias factor (FIDclonal count/RIDclonal count),
whichwas thenused to compute apercentage on thebasis of thenumber of
clones passing all filters for all data, unless otherwise specified. TheMAFV-
gene–based corrected values were obtained by computing themedian FID/
RID factor for all clones belonging to a V-gene (fig. S14). A given clone’s
RIDclonal count was then corrected using themedian V-gene ratio associated
with a given clone. A similar table was generated whereby each clone was
annotated with F1, F2, F3, etc., values. These Fn values are the number of
uniqueRIDs seenn times (for example, anF10valueof 20means10unique
RIDseachhave exactly 20 reads associatedwith them).Thevalues fromthis
table were then used to further compute values in the CDR3_Tot_Table.
For example, nonparametric species richness estimators (for example,
Chao1, ACEvar) use these values (see fig. S13 for more information). We
also evaluated the ability to performMAF library preparation on a sample
and apply theMAFV-gene to read counts fromother data sets (fig. S14). In
addition to hotspot clonal error identification (output in the CDR3_Tot_
Table), the scripts are configurable to use these parameters to perform ad-
ditional filters (for example, F3+ must be at least 3) to ensure reliable
detection and validationof clones using synthetic spike-in controls. Filtered
CDR3 clones were also assigned a clonotype group number (grouping
unique CDR3s with other CDR3s that share the same amino acid length,
with at least 80% amino acid similarity, and the sameV- and J-genes). The
CDR3swere also annotatedwith values such asmedian somatic hypermu-
tations, both uncorrected (median based on all reads) and corrected
(median value of themedianwithin RID groups). The intraclonal diversity
indexwas definedby taking the total number of variants (either uncorrected
built or corrected), dividing by the total number of reads (uncorrected) or
RID counts (corrected), and multiplying by 100.

Statistical analysis
Data analysis was performed either during the MAF pipeline proces-
sing, R, GraphPad Prism 6, JMP 11, or Microsoft Excel. More details
on statistical analysis can be found in the figure legends.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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Fig. S1. The 5′UTR lengths of mouse IGHV transcripts.
Fig. S2. Antibody synthetic spike-in genes.
Fig. S3. Nucleotide sequence logos of the primer-binding regions of selected spike-in clones.
Fig. S4. Precise library quantification by linking qPCR to ddPCR.
Fig. S5. Annotated example of biological sequence obtained from MAF library preparation.
Fig. S6. Design of experiments (DoE) for library preparation optimization.
Fig. S7. Response surface methodology analysis of clonal frequency bias with uncorrected data.
Fig. S8. Response surface methodology analysis of CDR3 diversity.
Fig. S9. Response surface methodology analysis of clonal frequency bias with MAF-corrected data.
Fig. S10. Comparison of V-gene coverage using new reduced primer set (TAK) and previously
published primer set (Reddy-2010).
Fig. S11. Schematic of multistage error correction pipeline.
Fig. S12. Flow chart of multistage error correction pipeline.
Fig. S13. Error correction effects on various bias correction methods.
Fig. S14. Bias correction using MAF V-gene bias factor.
Fig. S15. Comparison of bias correction with a new reduced primer set (TAK) and a previously
published primer set (Reddy-2010).
Fig. S16. Comparison of V-gene (germlines) before and after MAF correction.
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Fig. S18. Correlation of MAF bias correction factor across data sets.
Fig. S19. Nominal logistic regression modeling based on Ig-seq clonotype measurements.
Fig. S20. Comparison of the sensitivity and specificity of the nominal logistic regression models.
Fig. S21. Comparison of factor correlations with prediction probabilities of the nominal logistic
regression models.
Fig. S22. Various immune profiling metrics from MAF-corrected Ig-seq data.
Fig. S23. Processing time of reads for MAF error and bias correction pipeline.
Fig. S24. Effect of the number of reads analyzed using final MAF sample preparation conditions.
Table S1. Ig-seq read count statistics for spike-ins following replicate library preparation by
singleplex PCR (see fig. S2, B and C).
Table S2. Ig-seq read count statistics following MAF library preparation by multiplex PCR (see
Fig. 2A).
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