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Abstract

Motivated by the question of computing the probability of successful power domination by placing k
monitors uniformly at random, in this paper we give a recursive formula to count the number of power
domination sets of size k in a labeled complete m-ary tree. As a corollary we show that the desired
probability can be computed in exponential with linear exponent time.

1 Introduction

The study of power domination sets arises from the monitoring of electrical network using Phase Measurement
Units (PMUs or monitors). This problem was first studied in terms of graphs in [4] in 2002 and has been
a topic of much interest since then (see e.g. [1–3, 6, 7]). A PMU placed at a network node measures the
voltage at the node and all current phasors at the node [1], and subsequently measures the voltage at some
neighboring nodes using the propagation rules described in Definition 1. Since PMUs are expensive, it is
desirable to find the minimum number of PMUs needed to monitor a network. This problem is known to
be NP-complete even for planar bipartite graphs ([3]). Since the cost of technology typically decreases but
the cost of employment increases, it is feasible that the cost of placing extra PMUs is preferred to the cost
of determining the minimum number of PMUs and an optimal placement. Thus, in this paper, we begin
to investigate how probable it is that a randomly placed set of k PMUs will monitor a network. Our main
result is an exact formula for the number of power dominating sets of size k for the complete m-ary tree of
height h. As a consequence we can compute the probability that placing PMUs on k ≥ 0 network nodes
chosen uniformly at random will monitor a network shaped as a complete m-ary tree of height h.

1.1 Terminology

Let T be a tree. A rooted tree is a tree in which one vertex has been designated the root, and denoted r(T ),
or simply r when T is clear from context. In a rooted tree, the parent of a vertex v is the vertex adjacent
to v on the path to the root. Since every vertex has a unique path to the root, every vertex other than the
root has a unique parent. The root has no parent. A child of a vertex v is any vertex w for which v is the
parent of w. A descendant of a vertex v is any vertex which is either the child of v or is, recursively, the
descendant of any of the children of v.

The length of a path corresponds to the number of edges in the path. The height of a vertex, v, in a
rooted tree is the length of the longest descending path to a leaf from that vertex, denoted h(v). The height
of the tree is the height of the root.

The complete m-ary tree of height h is the tree of height h satisfying that each internal vertex has m
children. Throughout the literature this tree is also referred to as a full m-ary tree or a perfect m-ary tree.
We denote by Tm,h the complete m-ary of height h rooted at the center-most vertex, r.

For the purpose of counting power domination sets in a complete m-ary tree we will introduce a new
concept. The m-ary extended tree of height h, denoted T+

m,h, is formed by adding an additional vertex, r′,

and edge {r, r′} to the root to the tree Tm,h. That is, T+
m,h has vertex set V = V (Tm,h) ∪ {r′} and edge set

E = E(Tm,h) ∪ {{r, r′}}. We refer to the added vertex r′ as the stem of the tree.
Suppose G is a complete m-ary tree or an m-ary extended tree. If ri is a child of the root r we let Vi be

the descendants of ri and let Gi be the induced subgraph of G on Vi ∪ {ri, r}, that is Gi = G[Vi ∪ {ri, r}].
Observe that Gi is an m-ary extended tree of height h − 1 with root ri and stem r. In our proofs we will
label the children of r by r1, r2, . . . , rm and refer to Gi as the ith extended subtree of G.

For any positive integer n, we will use [n] to denote the set {1, 2, . . . , n}, and for any non-negative integers
q, n with q ≤ n, we will use [q, n] to denote the set {q, q + 1, . . . , n}.

1.2 Power Domination

Definition 1 (Graph Power Domination). Let G = (V,E) and S ⊆ V . Set P0(S) = N [S] (the closed
neighborhood of S) and for k ≥ 1 we let Pk(S) = Pk−1(S) ∪N∗

(
Pk−1(S)

)
where

N∗
(
Pk−1(S)

)
=

⋃
v∈Pk−1(S)

{
x ∈ V : NG(v) \ Pk−1(S) = {x}

}

1
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Figure 1: T+
2,3: Binary extended tree of height 3 with highlighted 1st extended subtree of T2,3

That is, x ∈ N∗(A) if there exists some a ∈ A such that x is the only neighbor of a not in A. For a finite
graph we see that eventually Pk(S) = Pk+1(S) and we denote this by P∞(S). If P∞(S) = V then we say
that S is a power dominating set for G. The minimum cardinality of a power dominating set for G is referred
to as the power dominating number of G and is denoted by γP (G).

Definition 2 (Forcing Pairs). Let G = (V,E) and S ⊆ V be given. A pair (x, y) is a forcing pair for S in

G if for some k ≥ 0, x ∈ Pk(S) and NG(x) \ Pk(S) = {y}. We denote this by x
G,S−−→ y, or simply by x −→ y

when G and S are clear from context. We also say x forces y. The ordered set (x1, x2, . . . , xk) is a forcing

chain for S in G if xi
G,S−−→ xi+1 for all i ∈ [k − 1]. This may be denoted by x1

G,S−−→ x2
G,S−−→ · · · G,S−−→ xk,

dropping the superscripts when clear by context.

Remark 1. Note that it is possible for a vertex to be forced by more than one vertex. Let G be the graph
with three vertices, x, x′, and y, and two edges, namely {x, y} and {x′, y}. If S = {x, x′}, then we have both

x
G,S−−→ y and x′

G,S−−→ y.

2 Power Domination in Complete m-ary Trees

The following terminology will be central to our counting argument.

Definition 3. Let m ≥ 2, h ≥ 0 and G = T+
m,h. We say S ⊆ V (G) \ {r′} is

• Type I if S is a power dominating set for G;

• Type II if S is not a power dominating set for G, but S ∪ {r′} is a power dominating set for G;

• Type 0 otherwise.

We let F km,h denote the number of Type I sets of size k that exist for T+
m,h and Hk

m,h denote the number of

Type II sets of size k that exist for T+
m,h.

2
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The letter H (with super-/sub-scripts) is used to remind us that the set in question needs help from r′

to successfully power-dominate and the letter F (with super-/sub-scripts) is used to remind us that the set
in question will successfully power-dominate G− r′ then exit to force or assist in forcing r′.

Notation 1. Let G be an m-ary extended tree, with root r, stem r′, and extended subtrees {Gi}i∈[d], and let
S ⊆ V (G) \ {r′}. We let Obs(G,S) denote the set of vertices observed in the (attempted) power domination
of G by S, that is Obs(G,S) = P∞(S) in the graph G. We note that this notation is needed as we will later
make arguments about Obs(G,S) by first appealing to Obs(G′, S) for some subgraph G′ of G.

Proposition 1. Let G be an m-ary extended tree and let S ⊆ V (G) \ {r′}. If S+ = S ∪ {r′} is a power
dominating set for G then S+

i = (S ∩ V (Gi)) ∪ {r} is a power dominating set for Gi for all i ∈ [m].

Proof. Choose and fix S ⊆ V (G) \ {r′} and i ∈ [m]. Since the neighborhoods of the sets {r} and {r, r′} are
the same, it follows that Obs(G,S ∪ {r, r′}) = Obs(G,S ∪ {r}).

Assume, by way of contradiction, that Obs(G,S+) = V (G) but Obs(Gi, S
+
i ) 6= V (Gi). Choose and fix

x ∈ V (Gi) \Obs(Gi, S
+
i ) such that the distance from x to r is minimized. In particular the internal vertices

of the path from r to x are all contained within Obs(Gi, S
+
i ). Since x ∈ Obs(G,S+) there is some y ∈ V (G)

such that y
G,S+

−−−→ x. Now x /∈ {r, ri} since r ∈ S+
i and ri ∈ NGi

(r). It follows that y ∈ V (Gi) \ {r}.
It must be the case that y is either a child or the parent of x. We will show that y is the parent of x.

Assume to the contrary that y is a child of x. Note that in Gi, with initial set S+
i , the vertex y doesn’t

force x. However, we do have that y
G,S+

−−−→ x, and so there is a forcing chain C = (v1, v2, . . . , vj , y) that

starts outside of V (Gi) and ends at y that allows y
G,S+

−−−→ x. Since each of these paths must go through x

we have that vi = x for some i ≤ j and therefore x
G,S+

−−−→ y. This would contradict that y
G,S+

−−−→ x so we
must proceed under the assumption that y is the parent of x.

By assumption, all of the ancestors of x in Gi are contained within Obs(Gi, S
+
i ). Since x /∈ Obs(Gi, S

+
i ),

it follows that y must have a second child, x′, satisfying x′ ∈ V (Gi) \Obs(Gi, S
+
i ). Hence y

G,S+

−−−→ x only
after x′ is observed. The only way this can occur is if a child of x′ forces x′; however, the argument that x
must be forced by a parent and not a child could also be made for x′. This is a contradiction.

Lemma 1. Let h, `, k,m ∈ Z, where m ≥ 2, h ≥ 0, and G = T+
m,h+1. Then

∑
i1≤i2≤···≤i`

i`+1≤i`+2≤···≤im
i1+i2+···+im=k

(
m

`

)(
`

s0, s1, . . . , sk

)(
m− `

t0, t1, . . . , tk

) ∏
1≤j≤`

H
ij
m,h

 ∏
`<j≤m

F
ij
m,h



where sα = |{j ∈ [`] : ij = α}| and tβ = |{j ∈ [`+ 1,m] : ij = β}| counts the number of ways to select a set
S ⊆ V (G) \ {r, r′} of size k so that S ∩Gi is Type II for exactly ` of the indices i ∈ [m] and S ∩Gi is Type
I for the other m− ` the indices.

Proof. Let h, `, k,m ∈ Z, where m ≥ 2, h ≥ 0, and G = T+
m,h+1. Observe that when ` /∈ [0,m] the sum will

equal zero, leaving nothing to be shown. We will proceed assuming 0 ≤ ` ≤ m. Choose and fix non-negative
integers i1, i2, . . . , im so that we have i1 ≤ i2 ≤ · · · ≤ i`, i`+1 ≤ i`+2 · · · ≤ im, and

∑
j∈[m] ij = k.

Let M = {G1, G2, . . . , Gm} be the set of extended subtrees of G. Choose a subset of A ⊆ M so that
|A| = ` and let B =M\A and observe that |B| = m− `. This selection can be done in

(
m
`

)
ways. Make a

function f from A ∪ B into multiset {i1, i2, . . . , im} so that f maps A into the multisets {i1, . . . , i`} and B
into the multiset {i`+1, . . . , im}, this function can be created in(

`

s0, s1, . . . , sk

)
·
(

m− `
t0, t1, . . . , tk

)
ways where sα = |{j ∈ [`] : ij = α}| and tβ = |{j ∈ [`+ 1,m] : ij = β}|. Let {A1, A2, . . . , A`} = A and

{B`+1, . . . , Bm} = B so that f(Aj) = ij and f(Bj′) = ij′ for each j ∈ [`] and j′ ∈ [` + 1,m]. Then H
ij
m,h

counts the number of ways to select ij vertices from Aj so that the ij vertices are of Type II in Aj . Similarly,

3
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F
ij
m,h counts the number of ways to select ij vertices from Bj so that the ij vertices are of Type I in Bj .

Hence, for the fixed selection of A and B, and for the fixed function f , ∏
1≤j≤`

H
ij
m,h

 ∏
`<j≤m

F
ij
m,h


counts the number of ways that a set S of k vertices can be selected from V (G) \ {r, r′} so that S ∩ V (Aj)
is Type II and S ∩ V (Bj′) is Type I for each j ∈ [`] and j′ ∈ [` + 1,m]. Hence, when we account for the
number of options we had for selecting A (and hence B), and for the possible assignments of function f , the
number of choices is(

m

`

)(
`

s0, s1, . . . , sk

)(
m− `

t0, t1, . . . , tk

) ∏
1≤j≤`

H
ij
m,h

 ∏
`<j≤m

F
ij
m,h

 .

Thus by summing over all choices of (i1, i2, . . . , im) restricted to i1 ≤ i2 ≤ · · · ≤ i`, i`+1 ≤ i`+2 · · · ≤ im,
and

∑
j∈[m] ij = k we count the number of ways to select a set S ⊆ V (G) \ {r, r′} of size k so that S ∩Gi is

Type II for exactly ` of the indices i ∈ [m] and S ∩Gi is Type I for the other m− ` the indices. This yields
the desired result.

Notation 2. We use the expression from Lemma 1 repeated throughout the remainder of the paper so we
set 〈H` ⊕Fm−`〉km,h =

∑
i1≤i2≤···≤i`

i`+1≤i`+2≤···≤im
i1+i2+···+im=k

(
m

`

)(
`

s0, s1, . . . , sk

)(
m− `

t0, t1, . . . , tk

) ∏
1≤j≤`

H
ij
m,h

 ∏
`<j≤m

F
ij
m,h



where sα = |{j ∈ [`] : ij = α}| and tβ = |{j ∈ [`+ 1,m] : ij = β}|.

Observation 1. For all m ≥ 2:

Hk
m,0 =

{
1, k = 0

0, otherwise
and F km,0 =

{
1, k = 1

0, otherwise.

Proof. Let G = T+
m,0. Since V (G) \ {r′} = {r} we only have two sets to consider: S1 = {r} and S2 = ∅. For

S1, we have k = 1, and Obs(G,S1) = V (G), yielding the values F 1
m,0 = 1 and H1

m,0 = 0. For S2, we have
k = 0, Obs(G,S2) = ∅, and Obs(G,S2 ∪ {r′}) = V (G), yielding the values H0

m,0 = 1 and F 0
m,0 = 0.

Lemma 2. For all m ≥ 2:

Hk
m,1 =

{
m, k = m− 1

0, otherwise
and F km,1 =

{
m+ 1, k = m(
m
k−1
)
, otherwise.

Proof. Let G = T+
m,1. Label the vertices so that the parent of r is r′ and the children of r are {r1, . . . , rm}.

Then G = ({r′, r, r1, . . . , rm}, {rr′, rr1, . . . , rrm}). Fix k ∈ Z. Observe that if k /∈ [0,m + 1] then Hk
m,1 =

F km,1 = 0 since it would be an impossible selection. As this agrees with our claim, we will proceed under

the assumption that k ∈ [0,m+ 1]. Let S ⊆ V (G) \ {r′} of size k. Assume first that r ∈ S; there are
(
m
k−1
)

such sets. Since N [S] ⊇ N [{r}] = V (G) we may conclude that S is a Type I set. If instead, we have r /∈ S,
then necessarily k ∈ [0,m]. If 0 ≤ k ≤ m − 2 then at least two children of r are not in S; call them ri and
rj . Then N [S] ⊆ N [S ∪ {r′}] ⊆ V (G) \ {ri, rj} and therefore r cannot force either vertex even if {r′} is
added to S. So in this case S is Type 0. If k = m − 1 then S = {r1, r2, . . . , rm} \ {ri} for some i; there
are

(
m
m−1

)
= m such sets. Here, N [S] = V (G) \ {r′, ri} and therefore r cannot force either vertex. However,

N [S ∪ {r′}] = V (G) \ {ri} so r
G,S∪{r′}−−−−−−→ ri and therefore S is Type II. Finally, if k = m (and r /∈ S) then

there is only
(
m
m

)
= 1 choice for S, namely S = V (G) \ {r′, r}. In this case N [S] = V (G) \ {r′} and r forces

r′ so it is a Type I set. The result follows.
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Corollary 1. Let m ≥ 2 and G = T+
m,1. If S is a Type II set then

NG[r] \Obs(G,S) = {r′, ri} for some i ∈ [m].

Furthermore,

Hk
m,1 =

〈
H1 ⊕Fm−1

〉k
m,0

and

F km,1 =
〈
H0 ⊕Fm

〉k
m,0

+

m∑
`=0

〈
H` ⊕Fm−`

〉k−1
m,0

.

Proof. The only case where S is Type II is when S = {r1, r2, . . . , rm} \ {ri} for some i ∈ [m]. It follows from
the proof that if S is a Type II set then

NG[r] \Obs(G,S) = {r′, ri} for some i ∈ [m].

Observe that V (G) \ {r, r′} = {r1, r2, . . . , rm}. Now
〈
H` ⊕Fm−`

〉X
m,0

counts the number of ways to select a

set S ⊆ V (G) \ {r, r′} of size X so that S ∩Gi is Type II for exactly ` of the indices i ∈ [m] and S ∩Gi is
Type I for the other m− ` the indices.

In this context
〈
H` ⊕Fm−`

〉X
m,0

counts the number of ways to exactly ` of the children of r to be in the

set S and therefore
〈
H` ⊕Fm−`

〉X
m,0

= 0 unless X = m− ` in which case
〈
H` ⊕Fm−`

〉X
m,0

=
(
m
m−`

)
.

It follows that 〈
H1 ⊕Fm−1

〉k
m,0

=

{(
m
m−1

)
, k = m− 1

0, otherwise

〈
H0 ⊕Fm

〉k
m,0

=

{(
m
m

)
, k = m

0, otherwise

m∑
`=0

〈
H` ⊕Fm−`

〉k−1
m,0

=
〈
H` ⊕Fk−1

〉k−1
m,0

=

(
m

k − 1

)
.

Lemma 3. For all m ≥ 2,

Hk
m,2 =

〈
Hm ⊕F0

〉k
m,1

and F km,2 =

m−1∑
`=0

〈
H` ⊕Fm−`

〉k
m,1

+

m∑
`=0

〈
H` ⊕Fm−`

〉k−1
m,1

.

Proof. Let G = T+
m,2 with root r and stem r′. Label the children of r by r1, . . . , rm and for i ∈ [m] label the

children of ri by qi1 , . . . , qim . The ith extended subtree of G is Gi with vertex set {r, ri, qi1 , . . . , qim} (see
figure below). Let S ⊆ V (G) \ {r′} and for each i ∈ [m] let Si = (S ∩ V (Gi)) \ {r}. By Proposition 1 if Si is
Type 0 for any i then S does not contribute to Hk

m,2 or F km,2, thus we only consider the cases where all the
Si’s are Type I or Type II.

r′

r

r1 ri rm

q11 q12 · · · q1m qi1 qi2 · · · qim qm1
qm2 · · · qmm
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Case 1: Suppose r /∈ S and Si is Type II for Gi for each i ∈ [m]. By Lemma 1, with ` = m and h = 1,

there are
〈
Hm ⊕F0

〉k
m,1

ways to choose S. It follows from the proof of Lemma 2 that for each i ∈ [m],

Si = {qi1 , qi2 , . . . , qim} \ {qij(i)} for some j(i) ∈ [m]. Therefore

S =
⋃
i∈[m]

(
{qi1 , qi2 , . . . , qim} \ {qij(i)}

)
which in turn implies that r /∈ Obs(G,S) since for any i ∈ [m], ri cannot force both qij and r. On the other

hand, since {r, r′} ⊆ NG[r] = {r′, r, r1, . . . , rm} we have that ri
G,S∪{r}−−−−−−→ qij(i) for each i ∈ [m] so that S∪{r}

is a dominating set for G. We conclude that whenever r 6∈ S and Si is Type II for Si for each i ∈ [m], then
S is Type II. Moreover, there are 〈Hm ⊕F0〉km,1 such sets, S.

Case 2: Suppose r /∈ S and for some ` ∈ [0,m−1], we have Si is Type II for the corresponding Gi for ` of
the sets Gi and the remaining m− ` sets Si are Type I for their corresponding Gi. Observe that by Lemma

1 there are
∑m−1
`=0

〈
H` ⊕Fm−`

〉k
m,1

such ways to choose S. The restriction of S to the extended subtrees of

G results in ` Type II sets and m− ` > 0 Type I sets. Without loss of generality, we may assume Si is Type
II for Gi for all i ∈ [`] and Sj is Type I for Gj for all j ∈ [`+ 1,m]. Appealing to the proof of Lemma 2 (as
we did in Case 1) we may conclude that

Obs(G,S) ⊇
⋃
i∈[m]

Obs(G,Si)

=

⋃
i∈[`]

Obs(G,Si)

 ∪
 ⋃
i∈[`+1,m]

Obs(G,Si)


=

⋃
i∈[`]

{ri, qi1 , qi2 , . . . , qim} \ {qij(i)}

 ∪
 ⋃
i∈[`+1,m]

V (Gi)

 .

It then follows that rm
G,S−−→ r

G,S−−→ r′ and then for i ∈ [`], ri
G,S−−→ qij(i) . Thus, these

∑m−1
`=0 〈H` ⊕Fm−`〉km,1

sets are all Type I.
Case 3: Suppose r ∈ S and for some ` ∈ [0,m], we have Si is Type II for Gi for ` of the sets Gi and the

remaining m − ` sets Si are Type I for their corresponding Gi. Without loss of generality, we may assume
Si is Type II for Gi for all i ∈ [`] and Sj is Type I for Gj for all j ∈ [` + 1,m]. By Lemma 1, and noting

that there are k − 1 vertices in S other than r, there are
∑m
`=0

〈
H` ⊕Fm−`

〉k−1
m,1

ways to choose S. Again

by appealing to the proof of Lemma 2 we have that

Obs(G,S) ⊇ NG[r] ∪

 ⋃
i∈[m]

Obs(G,Si)


⊇ NG[r] ∪

 ⋃
i∈[m]

{qi1 , qi2 , . . . , qim} \ {qij(i)}


= V (G) \

 ⋃
i∈[m]

{qij(i)}

 .

It then follows that ri
G,S−−→ qij(i) for each i ∈ [m]. We conclude that these

∑m
`=0

〈
H` ⊕Fm−`

〉k−1
m,1

sets are

all Type I.

Corollary 2. Let m ≥ 2 and G = T+
m,2. If S is a Type II set then NG[r] \Obs(G,S) = {r′, r}.

In the proof of Lemma 3, we twice claimed that without loss of generality we may assume that if ` of the
subtrees of T+ are Type II then we may assume they are the first ` trees. We will use this claim in the rest
paper; in particular in the proofs of Lemma 4 and Theorem 1.
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Lemma 4. Let m ≥ 2, h ≥ 1, and G = T+
m,h. If S is a Type II set then

NG[r] \Obs(G,S) =

{
{r′, ri} for some i ∈ [m], if h is odd

{r′, r}, if h is even
.

Furthermore,

Hk
m,h =

{〈
H1 ⊕Fm−1

〉k
m,h−1 , if h is odd〈

Hm ⊕F0
〉k
m,h−1 , if h is even

and

F km,h =


〈
H0 ⊕Fm

〉k
m,h−1 +

m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 , if h is odd

m−1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 +

m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 , if h is even

.

Proof. The statement is true when h ∈ {1, 2} by the corollaries to Lemma 2 and 3. We proceed by strong
induction on h by assuming that the claim is true for h ∈ [n]. Let G = T+

m,h and let S ⊆ V (G) \ {r′} be a
Type II set.

Case 1: Suppose h = n+ 1 is odd. By Proposition 1, if for any i ∈ [m] it is the case that Si is Type 0 for
Gi, then S is Type 0 for G. Since S is presumed to be a Type II set, we may proceed under the assumption
Si is Type II for the first ` extended subtrees and Type I for the latter m−` extended subtrees. By inductive
hypothesis NG[ri] \Obs(Gi, Si) = {r, ri} for each i ∈ [`].

Subcase 1: Let ` = 0 and suppose r /∈ S. Since Si is Type I for each i ∈ [m] we have

Obs(G,S) ⊇
⋃
i∈[m]

Obs(Gi, Si) =
⋃
i∈[m]

V (Gi) = V (G) \ {r′}.

However r
G,S−−→ r′ so the

〈
H0 ⊕Fm

〉k
m,h−1 sets in question are Type I. This gives the first summand for

F km,h in the case that h is odd.
Subcase 2: Let ` = 1 and suppose r /∈ S. By inductive hypothesis r, r1 /∈ Obs(G1, S1) and therefore

r′, r1 /∈
⋃
i∈[m] Obs(Gi, Si). Since r cannot force both r′ and r1, it follows that S is not Type I. Observe

that NG[r] \ Obs(G,S) = {r′, r1} which agrees with the first claim in the case where h is odd. We show
that the sets S in this case are Type II. Assume, by way of contradiction, that there is some vertex v ∈
V (G) with v /∈ Obs(G,S ∪ {r′}). Since S2, . . . , Sm are Type I then v ∈ V (G) \

⋃
i∈[2,m] V (Gi). Clearly

r′ ∈ Obs(G,S ∪ {r′}) so v ∈ V (G1). Now r′
G,S∪{r′}−−−−−−→ r

G,S∪{r′}−−−−−−→ r1 so v ∈ V (G1) \ {r, r1}. However, S1 is

a Type II set so r
G1,S1−−−−→ r1

G1,S1−−−−→ · · · G1,S1−−−−→ v. But then r
G,S∪{r′}−−−−−−→ r1

G,S∪{r′}−−−−−−→ · · · G,S∪{r
′}−−−−−−→ v as well. It

follows that the
〈
H1 ⊕Fm−1

〉k
m,h−1 sets in question are Type II. This gives the result for Hk

m,h when h is

odd.
Subcase 3: Let 2 ≤ ` ≤ m and suppose r /∈ S. By inductive hypothesis ri /∈ Obs(Gi, Si) for all i ∈ [`]

and, since ` ≥ 2, r cannot force all of the vertices ri with i ∈ [`]. Thus Obs(G,S) ⊆ V (G) \ {r′, r, r1, . . . , r`}
so S is not Type I. Assume, by way of contradiction, that S is Type II. Then for each v ∈ V (G) there is a
chain

r′
G,S∪{r′}−−−−−−→ r

G,S∪{r′}−−−−−−→ ri
G,S∪{r′}−−−−−−→ · · · G,S∪{r

′}−−−−−−→ v.

However, this is impossible since r can only force a child once all of the other children have been observed.
The sets in question are Type 0.

Subcase 4: Let 0 ≤ ` ≤ m and suppose r ∈ S. Note that

Obs(G,S) ⊇ NG[r] ∪
⋃
i∈[m]

Obs(Gi, Si ∪ {r}) = NG[r] ∪
⋃
i∈[m]

V (Gi) = V (G).

It follows that the
m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 sets in question are Type I. This gives the second summand for

F km,h in the case where h is odd.
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Case 2: Suppose h = n + 1 is even. By Proposition 1, if for any i ∈ [m] it is the case that Si is Type 0
(for Gi), then S is Type 0 for G. Assuming this is not the case, we may proceed under the assumption Si
is Type II for the first ` extended subtrees and Type I for the latter m− ` extended subtrees. By inductive
hypothesis, for each i ∈ [`], there is some j(i) ∈ [m] such that NG[ri] \ Obs(Gi, Si) = {r, qij(i)}. Without
loss of generality we will assume that NG[ri] \Obs(Gi, Si) = {r, qi1} for each i ∈ [`].

Subcase 1: Let ` = m and suppose r /∈ S. Since Si is Type II for each i ∈ [m] we have r, qi1 /∈
Obs(Gi, Si). Observe that this implies that r /∈ Obs(G,S) since otherwise ri

G,S−−→ r implies ri
Gi,Si−−−→ r for

some i ∈ [m]. Thus the sets in question are not Type I. Observe that NG[r] \ Obs(G,S) = {r, r′} which
agrees with the first claim in the case where h is even. For each i ∈ [m], Obs(Gi, Si∪{r}) = V (Gi); however,
NG[r] \

(
∪i∈[m]Obs(Gi, Si)

)
= {r′, r} since by inductive hypothesis NGi [r] \Obs(Gi, Si) = {r}. It follows

that V (Gi) = Obs(Gi, Si ∪ {r}) = Obs(Gi, Si ∪ {r′}) and therefore

Obs(G,S ∪ {r′}) ⊇ NG[r′] ∪

 ⋃
i∈[m]

Obs(Gi, Si ∪ {r′})


= NG[r] ∪

 ⋃
i∈[m]

V (Gi)


= V (G).

It follows that the
〈
Hm ⊕F0

〉k
m,h−1 sets in question are Type II. This gives the result for Hk

m,h in the case

that h is even.
Subcase 2: Let 0 ≤ ` ≤ m−1 and suppose r /∈ S. By inductive hypothesis NGi(ri)\Obs(Gi, Si) = {r, qi1}

for each i ∈ [`]. Importantly {r1, r2, . . . , rm} ⊂ Obs(G,S) and since Sm is Type I, then rm
Gm,Sm−−−−−→ r.

Therefore rm
G,S−−→ r

G,S−−→ r′ and subsequently, for each i ∈ [`], ri
G,S−−→ qi1 initiates a forcing chain equivalent

to the one in Subcase 1. It follows that the
m−1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 sets in question are Type I. This gives

the first summand for F km,h in the case that h is even.
Subcase 3: Let 0 ≤ ` ≤ m and suppose r ∈ S. For each i ∈ [`], Si is Type II for Gi and therefore

Obs(Gi, Si ∪ {r}) = V (Gi). It then follows that

Obs(G,S) = Obs(G,S ∪ {r})

= NG[r] ∪

 ⋃
i∈[m]

Obs(Gi, Si ∪ {r})


= NG[r] ∪

 ⋃
i∈[m]

V (Gi)


= V (G).

It follows that the
m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 sets in question are Type I. This gives the second summand for

F km,h in the case that h is even.

Theorem 1. Let m ≥ 2 and h ≥ 2. The number of power dominating sets of size k for G = Tm,h is:

N(m,h, k) =


m−1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 +

m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 , h is even

1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 +

m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1 , h is odd.
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Proof. Let G = Tm,h with root r and root children r1, r2, . . . , rm. For each i ∈ [m], let Gi be the extended
subtree with stem r, root ri and containing all the descendants of ri. For each i ∈ [r] let the children of ri
be {qij}j∈[m]. Choose S ⊆ V (G) and let Si = S ∩ (V (Gi) \ {r}). By Proposition 1 we need only consider
cases where, for each i ∈ [m], Si is a Type I or Type II set for Gi. Thus we will assume, without loss of
generality, that the first ` sets are Type II and the remaining m− ` sets are Type I.

Case 1: Suppose r ∈ S. Note that Obs(G,S) ⊇
⋃
i∈[m] Obs(Gi, Si ∪ {r}) = V (G). It follows that

for any 0 ≤ ` ≤ m, the set S will be a power dominating set and the number of sets in question is
m∑̀
=0

〈
H` ⊕Fm−`

〉k−1
m,h−1. This gives the second summand in both instances: where h is even or h is odd.

Case 2: Suppose h is even and r /∈ S. Observe that for each i ∈ [`], we have Si is a Type II set for
Gi, and consequently r, qij /∈ Obs(Gi, Si) for some j ∈ [m]. Thus, if all the sets are Type II then no child

of r can force r and S is not a power dominating set. On the other hand, if ` < m then rm
G,S−−→ r and

for each i ∈ [`], ri
G,S−−→ qij initiates the same forcing chain that begins with ri

Gi,Si∪{r}−−−−−−−→ qij . Hence, the
m−1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 sets in question are power dominating sets.

Case 3: Suppose h is odd and r /∈ S. Observe that for each Type II set r, ri /∈ Obs(Gi, Si). Thus, if
` ≥ 2, the vertex r cannot force both r1 and r2 and S is not a power dominating set. On the other hand, if

0 ≤ ` ≤ 1 then rm
G,S−−→ r

G,S−−→ ri for i ∈ [`], initiating the same forcing chain that begins with r
Gi,Si∪{r}−−−−−−−→ ri.

Hence, the
1∑̀
=0

〈
H` ⊕Fm−`

〉k
m,h−1 sets in question are power dominating sets.

Corollary 3. Let G = Tm,h with m,h ≥ 2. The probability that a uniformly at random selected subset of
V (G) of size k is a power dominating set is

p(m,h, k) =
N(m,h, k)(|V (G)|

k

)
where |V (G)| = mh+1−1

m−1 .

Example 1. We will show that N(2, 2, 4) = 33. Using Theorem 1 yields

N(2, 2, 4) =

1∑
`=0

〈
H` ⊕F2−`〉4

2,2−1 +

2∑
`=0

〈
H` ⊕F2−`〉3

2,2−1

=
〈
H0 ⊕F2−0〉4

2,2−1 +
〈
H1 ⊕F2−1〉4

2,2−1 +
〈
H0 ⊕F2−0〉3

2,2−1 +
〈
H1 ⊕F2−1〉3

2,2−1 +
〈
H2 ⊕F2−2〉3

2,2−1 .

Computing the first summand is done as follows:

〈
H0 ⊕F2

〉4
2,1

=
∑
i1≤i2
i1+i2=4

(
2

0

)(
0

s0, s1, . . . , s4

)(
2

t0, t1, . . . , t4

) ∏
1≤j≤0

H
ij
2,1

 ∏
0<j≤2

F
ij
2,1



=
∑
i1≤i2
i1+i2=4

(
2

t0, t1, . . . , t4

) ∏
0<j≤2

F
ij
2,1



=

(
2

1, 0, 0, 0, 1

) ∏
0<j≤2

F
ij
2,1

+

(
2

0, 1, 0, 1, 0

) ∏
0<j≤2

F
ij
2,1

+

(
2

0, 0, 2, 0, 0

) ∏
0<j≤2

F
ij
2,1


= 2

(
F 0
2,1F

4
2,1

)
+ 2

(
F 1
2,1F

3
2,1

)
+ 1

(
F 2
2,1F

2
2,1

)
= 2 · 0 · 0 + 2 · 1 · 1 + 1 · 3 · 3 = 11.
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By similar computations we obtain the other four summands:〈
H1 ⊕F1

〉4
2,1

= 2
(
H0

2,1

) (
F 4
2,1

)
+ 2

(
H1

2,1

) (
F 3
2,1

)
+ 2

(
H2

2,1

) (
F 2
2,1

)
+ 2

(
H3

2,1

) (
F 1
2,1

)
+ 2

(
H4

2,1

) (
F 0
2,1

)
= 2 · 0 · 0 + 2 · 2 · 1 + 2 · 0 · 3 + 2 · 0 · 1 + 2 · 0 · 0 = 4,〈

H0 ⊕F2
〉3
2,1

= 2
(
F 0
2,1F

3
2,1

)
+ 2

(
F 1
2,1F

2
2,1

)
= 2 · 0 · 1 + 2 · 1 · 3 = 6,〈

H1 ⊕F1
〉3
2,1

= 2
(
H0

2,1

) (
F 3
2,1

)
+ 2

(
H1

2,1

) (
F 2
2,1

)
+ 2

(
H2

2,1

) (
F 1
2,1

)
+ 2

(
H3

2,1

) (
F 0
2,1

)
= 2 · 0 · 1 + 2 · 2 · 3 + 2 · 0 · 1 + 2 · 0 · 0 = 12, and〈

H2 ⊕F0
〉3
2,1

= 2
(
H0

2,1H
3
2,1

)
+ 2

(
H1

2,1H
2
2,1

)
= 2 · 0 · 0 + 2 · 2 · 0 = 0.

Hence,
N(2, 2, 4) = 11 + 4 + 6 + 12 + 0 = 33.

Since the inputs are relatively small, we verified N(2, 2, 4) = 33 using Theorem 1; however, it is simpler
in this case to observe that

(
7
4

)
= 35 and exactly two subsets of size 4 fail to be power dominating sets, as

illustrated in Figure 2.

Figure 2: These two subsets of size 4 are the only ones that fail to be power dominating sets.

r

r1 r2

q11 q12 q21 q22

r

r1 r2

q11 q12 q21 q22

The previous computation can be a bit cumbersome when done by hand and therefore it is desirable to
use a computer. Assuming constant time for arithmetic operations,

(
m

`

)(
`

s0, s1, . . . , sk

)(
m− `

t0, t1, . . . , tk

) ∏
1≤j≤`

H
ij
m,h

 ∏
`<j≤m

F
ij
m,h


is computed in linear time relative to k (since m < k). The complexity of computing

〈
H` ⊕Fm−`

〉k
m,h

is

increased by the complexity of listing the partitions of k and keeping the ones that are the concatenation
of two non-increasing sequences. This can be accomplished by first constructing a tree of all non-decreasing
partitions of k − i (0 ≤ i ≤ k) into j ≤ m parts by using the constructive recurrence p(k,m) = p(k − 1,m−
1) + p(k −m,m) which uses less than 2k+1 iterations since the complete binary tree has 2k+1 − 1 vertices.

It follows that the computational complexity to determine
〈
H` ⊕Fm−`

〉k
m,h

is O(m) · (2k+1) = 2O(k).

Since N(m,h, k) requires only 2m+1 computations equivalent to
〈
H` ⊕Fm−`

〉k
m,h

(and some constant time

arithmetic operations) we have that N(m,h, k) is computed in 2O(k) time (exponential with linear exponent).

3 Future Directions

Power domination in graphs arose from the phase measurement unit problem where it is desirable to place
the least number of monitors in an electrical power system. The desire for minimality of monitors in this
problem is motivated by the expense of purchasing and placing such monitors in the grid. The work on this
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paper was motivated by considering the additional time cost of determining the minimum number of monitors
needed as well as an optimal placement of those monitors. This problem is known to be NP-complete even
for planar bipartite graphs ([3]). This inspires the following questions.

Question 1. For fixed m,h ≥ 2, what is the minimum value of kα such that p(m,h, kα) ≥ α? For fixed
m ≥ 2 do the following limits exist

lim
h→∞

{
min
k≥1

{
k

n

}∣∣∣∣ p(m,h, k) = 1

}
where n is the number of vertices in the m-ary tree?

Question 2. Is it possible to compute N(m,h, k) in polynomial time? If so, is there a pattern to optimal
select the N(m,h, k) vertices in the power-dominating set?

Determining a closed-form formula forN(m,h, k) (or at least its asymptotic behaviors) would be beneficial

in answering the previous questions. The sequence

{∑
k

N(2, h, k)

}
h≥1

= {1, 7, 94, 19192, . . .} does not

appear in the Online Encyclopedia of Integer Sequences ([5]).

Question 3. Does

{∑
k

N(m,h, k)

}
h≥1

count anything other than power domination sets of any size for a

complete m-ary tree of height h (when m ≥ 2)?
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