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Abstract— When it comes to pandemics, such as the one
caused by the Coronavirus disease COVID-19, various issues
and problems have arisen for the healthcare infrastructure and
institutions. With increasing number of patients in need of
urgent medical care and hospitalizations, the healthcare systems
and regional hospitals may approach their maximum service
capacity and may face shortage of various parameters, such
as supplies including PPE, medications, therapeutic devices,
ventilators, beds, and many more. The article at hand describes
the development and framework of a simulation model that
enables the modeling and evaluation of the COVID-19 pandemic
progress. To achieve this, the model dynamically mimics and
simulates the developments and time-dependent behavior of
various crucial parameters of the pandemic, among others, the
daily infection numbers and death rate. In addition, the model
enables the simulation of single events and scenarios that occur
outside of the regular pandemic developments as anomalies, such
as holidays. Unlike traditional models, the proposed framework
is based on factors and parameters closely derived from reality,
such as the contact rate of individuals, which allows for a much
more realistic representation. In addition, the real connection
enables the assessment of effects of various influences regarding
the development and progress of the pandemic, such as hospi-
talization numbers over time. All the aforementioned points are
possible within the simulation framework and do not require
awaiting the unfolding of the effects in reality. Thus, the model
is capable of dynamically predicting how different scenarios turn
out. The abilities of the model are demonstrated, illustrated,
and proven in a specific case study that shows the impact of
holidays, such as Passover and Easter in New York City when
quarantine measures might have been ignored, and an increase
in extended family gatherings temporarily occurred. As a result,
the simulation showed significant impacts and disproportionate
number of patients in need of medical care that could be
potentially detrimental in reality. For example, compared to the
previous trajectory of the pandemic, for a temporary increase of
50% in the contact rate of individuals, the model showed that the
total number of cases would increase by 461 090, the maximum
number of required hospitalizations would rise to 79 733, and the
total number of fatalities would climb by 19 125 over 90 days.
In addition to its function and proven capabilities, the model
can and is furthermore planned to be adapted to other areas,
not necessarily only metropolitan regions in order to expand
the utilization of its predictive power. Such predictions could be
used to derive regulatory measures and to test various policies
for COVID-19 containment.

Index Terms— Adaptability, complex system modeling, contact
rate, COVID-19, dynamic simulation, hospitalization, pandemic,
SARS-CoV-2.
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I. INTRODUCTION, SITUATION, AND PROBLEM

“A PANDEMIC is the worldwide spread of a new
disease” [1]. This definition by the WHO describes

the current global situation of COVID-19 [2] that emerged
worldwide in early 2020. The virus is confirmed to be trans-
missible from human to human [3], [4] and has constantly
been spreading due to contact between individuals.

Although it may appear as if the spread of COVID-19
is following a simple exponential mathematical model, it is
dynamic, complex, and nonlinear. Therefore, predictions can
be difficult and the actual behavior of the system and the
outcome, such as fatalities and healthcare infrastructure strain,
can be hard to evaluate. One way to enable evaluations is to
design a representative system dynamics model that simulates
the real-world phenomena as precisely as possible. With such
a model, certain parameters and influences can be assessed
by changing input parameters and observing the results and
model reactions, which is what this article addresses.

Due to the importance of transmission from human to
human and the involved contact, the research presented focuses
on the actual contact rate between humans in a dynamic
simulation using New York City as an example, in order to
determine which factors play a critical role and how certain
influences interact. Therefore, various scenarios were assessed
in order to observe different behaviors and discover potential
emergent phenomena of the system and model.

Section II describes the current state of the research and
other relevant approaches, in relation to the work at hand.
Section III describes the research methodology, the model
utilized for the simulations, and how the specific simula-
tions were conducted. Subsequently, Section IV provides the
assumptions that were made in order to design and set up the
model as well as the involved parameter. Sections V and VI
demonstrate scenarios that are possible and likely to occur
in order to show the behavior of the system and discovered
emergent phenomena. Section VII summarizes and discusses
the outcomes and last, Section VIII gives a comprehensive
conclusion for the presented work.

II. CURRENT STATE OF THE RESEARCH AND LITERATURE

Since the onset of the pandemic at the beginning of the
year 2020, there have been several articles and publications
that address and scientifically approach the spread of the
COVID-19 disease. In order to define the state of the research
and current work, literature research was conducted. The
results of this review are summarized hereinafter.

In order to simplify the overview, groups of similar research
publications and approaches have been conflated and are listed
below.

The first group comprises approaches that utilize machine
learning and artificial intelligence to model and predict the
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spread of the disease [5]–[8]. These approaches are based
on underlying algorithms, such as adaptive network-based
inference systems, and can yield predictions for various time
periods due to a low dependence on sample data as input. Yet,
the utilized algorithms and types, thereof, critically define and
shape the progress and in the case of the machine learning
approaches, accuracy can also increase with longer application
duration. Such approaches provide a flexible way to predict
and / or analyze the progress of a pandemic. However, they
are strongly dependent on the specific methodologies and / or
algorithms utilized, since these components shape the results
and behavior.

The second group of models relies solely on statistical
measures and the respective mathematical tools to predict and
evaluate the progress of the pandemic on an iterative basis
without reliance on simulation [9]–[12]. Due to the mathemat-
ical foundations underlying these approaches, such as average
and trend evaluation, monitoring is enabled and even allows
for a continuous evaluation as new data can be included right
away for iterative predictions. Yet, such methods are difficult
to use without data to rely on or scenarios to evaluate.

The third group utilizes simulations of various types, also
partially in combination with the previous group based on
mathematical tools. The publications describing simulations
[13]–[15] show the possibility to evaluate scenarios, but due to
their underlying equations and foundations, they also deviate
from reality as they simulate the progress iteratively and
sequentially instead of mirroring real parameters.

Last, there are other research efforts regarding passive
influencing factors that are environmental in nature, such as
seasonal influences and measures that affect the disease spread
[16], [17]. These publications provide a similar predictive
power compared to the work at hand, but they differ as
their assessments are mostly focusing on the progress of the
pandemic in a general sense and implement the mentioned
influences as modulating factors for the transmission, rather
than forming causal connections that can be or become non-
linear and or dynamic.

The next section outlines the developed model based on the
direct representation and inclusion of real parameters, such as
the contact rate. Subsequently, the application of the model
is described for various scenarios including the results and
implications thereof.

III. MODEL AND METHODOLOGY

When looking at various models for the spread of diseases,
SIR models present a simple and easy to adapt starting point
for such situations. SIR stands for “susceptible–infective-
removed” and was first proposed by Kermack and McKendrick
in 1927 [18]. The model is described as a differential system
in which multiple factors depend on each other to determine
the behavior of the three stocks S, I , and R. In such a
setup, simulated individuals process through the model from
“susceptible” to “infective” and then to “removed,” without
the option to return to a previous stage at any point. The
rates at which individuals are transferred from one stage
to the other are defined by the transition parameters. The

parameter β, which defines the transition from S to I , depends
on the ratio of infected to susceptible people, as well as an
infection probability parameter of the disease. The parameter
γ , describing the transitions from I to R, is defined by the
likelihood of an individual recovering and thus being removed
from the infectious stock. The total number of individuals in
the simulation does, herein, not change over time and is equal
to N , which therefore forms the sum of all stocks at all times.

Thus, the equations of an SIR model are as follows [19]:
Susceptible Population:

Ṡ = −βS with S(0) = So ≥ 0 (1)

Infectious Population:

İ = βS − γ I with I (0) = Io ≥ 0 (2)

Removed Population:

Ṙ = γ I with R(0) = Ro ≥ 0 (3)

so that S(t) + I (t) + R(t) = N and Ṡ + İ + Ṙ = 0.
With these equations, a simulation system was derived that

models the situation of the COVID-19 pandemic and spread.
Since the healthcare infrastructure, resources, and personnel
are of importance for the COVID-19 management and miti-
gation, the model includes time delays due to incubation and
a portion of the infected people that do not go directly from
“infected” to “removed,” but rather move to hospitalization.
From hospitalization then, there are two possible paths, either
a delayed demise of the individual, or a delayed recovery,
which adds the individual to the stock of R. The stock of
R is final, which means that for the framework presented,
individuals cannot return to the susceptible stock and are thus
assumed to be immune to COVID-19 for the duration of the
simulation.

The mentioned delays were implemented as timed delays,
meaning that a certain amount of time had to pass before the
transition of an individual would occur. This was implemented
by dividing the respective transition rate by the delay in
time steps. All delays were deduced from official reports
and guidelines at the time of the creation [20]–[25] and can
be updated as well as adapted to different surroundings and
circumstances.

All of the above described additions modify the equations
as follows and amend (7) and (8):
Susceptible Population:

with S(0) = So ≥ 0 (4)

Infectious Population:

with I (0) = Io ≥ 0 (5)

Removed Population (delayed recovery [20], [21], [25]):

with R(0) = Ro ≥ 0 (6)

Hospitalized Population (incubation delay [20], [22]–[24]):

with R(0) = Ro ≥ 0 (7)

Deceased Population (delayed by mortality [20], [24]):

with R(0) = Ro ≥ 0 (8)
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Fig. 1. Simulation Flowchart (∗ marks delay impacts). The full simulation
model and structure can be provided upon request.

so that S(t) + I (t) + R(t) + H (t) + D(t) = N and Ṡ + İ +
Ṙ + Ḣ + Ḋ = 0.

A flowchart of the implementation is shown in Fig. 1 on
the right as a direct representation of (4)–(8). The rates and
parameters are each implemented and color-coded accordingly
in the equations.

The actual simulation based on these parameters was setup
in Vensim [26] with time and calculation steps of one day.
Vensim [26] is a simulation software developed and distributed
by Ventana Systems. The software allows for the creation
of continuous simulation models that enable, amongst other
aspects, the assessment of dynamic system behaviors. The
base parameter of a Vensim simulation framework, besides the
flows and stocks described below in more detail, is the step
and progress of the simulation. Based on the defined steps,
the simulation progresses dynamically within a set time frame.
These steps were set as one day in the presented framework
and were simulated for time periods of 90 days. Thus, the
simulation completes the transitions and process steps once
“per day” for 90 days iteratively, using the previous step as
input and creating a new step as output.

In addition to the time-related framework, Vensim allows
for the modeling of stocks that represent and visualize the
behavior and changes of certain groups in the simulation.
These stocks were defined and created in accordance
with (4)–(8). Thus, the changes and dynamics of all stocks
could be evaluated over the given time period for various
simulation runs and scenarios.

Based on the equations and the structure shown in
Fig. 1, the model was created, which is further described in
Section IV. A complete schematic overview of the Vensim
simulation model structure and the respective source files can
be provided upon request. The model was designed in order
to allow for a flexible adjustment of the parameters, which
is described in Section IV (see Fig. 1). The chosen research
methodology was applied as described by Maria [27]. Herein,
after the problem definition in the first step, the parameters
of the model were set to yield an adequate and verifiable
outcome. This verification was conducted by comparing the
model results to real-world data that was reported and recorded
during the pandemic.

With the set parameters (also see Section IV), mul-
tiple scenarios were simulated and examined based on

various conditions that were chosen, derived from real
and current circumstances. These scenarios are described in
Sections V and VI.

The scenarios were then assessed for the phenomenon the
authors called the “Pandemic Holiday Blip” (Section VI).
Based on the results, predictions of possible behaviors of
the current pandemic were deduced to potentially support
governing and regulating decisions, in order to avoid and
mitigate unwanted situations, such as high fatality numbers
or the collapse of medical support.

Section IV describes the assumptions made for the model
to allow for simulations that mimic the current real-world
behavior as far as possible.

IV. ASSUMPTIONS AND PARAMETER

In order to design a model that could mimic and simulate the
COVID-19 pandemic, the factors described in (4)–(8) had to be
set so that the simulation results would be in accordance with
real-world situations and data. Therefore, this section outlines
the assumptions that were made in order to achieve the
accordance. Hence, the following subsections describe each
parameter individually based on New York City (NYC) in
2020, with a total population of 8.4 million people [28].

A. Parameter β-Infection Rate

The infection rate of the model, which describes at what rate
the susceptible population is infected, was defined depending
on two factors: infectivity i and contact rate c. These two
factors, together with the infectious population (I ) and the
susceptible population (S), allow for the calculation of the
infection rate according to the following formula:

β · S = c · S(t) · I (t)

N − D(t)
· i.

The infectivity i was defined as a constant based on the
likelihood of infection when people interact and hence was
derived from various sources and set to 5% [29], [30], due
to the higher population density of NYC compared to the
locations of the source data. The constant infectivity allowed
a modulation and adjustment of the infection rate based on the
second component: the contact rate. This rate was furthermore
used to model and simulate policies such as social distancing
and their impact on the contact rate of the population. For the
general magnitude of the contact rate, the number of average
contacts of people per day in NYC was researched in order to
enable a realistic starting point without any measures.

Based on the literature sources, the researched contact rate
in NYC ranged from five for people who do not use the
subway, up to at least ten for people who do utilize the subway
[31]. Since these data were obtained and measured in 2003 and
the population of NYC increased by 5% since then, today’s
contact rates are 5.25 and 12.5, respectively. Given that the
number of subway users in NYC is higher than in any other
city in the United States [32], it was assumed that 70% of the
NYC population take the subway on a daily basis and thus
effectively have more contacts, including indirect exposures
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through surfaces and objects. Together with the number of con-
tacts for nonsubway users, this yields an average contact rate
without restrictions or social distancing of 10.325 for NYC.

With these factors, the infection rate was defined by the
following equation:

β · S = c(t) · S(t) · I (t)

N − D(t)
· i

with

c0 = 10.325.

B. Parameters γ and λ—Recovery and Hospitalization Rate

The parameters for the hospitalization and recovery rate
were assumed to be directly connected as an infected person
would either recover or be hospitalized (see Fig. 1). Hence, the
recovery rate is the opposite portion of the hospitalization rate

γ + λ = 1.

Since the numbers of hospitalizations vary by age group and
therefore depend on demographics, an average hospitalization
rate was calculated based on official data by the City of New
York [33] in combination with demographics to allow for
the use of a constant. The resulting probability was 0.27 for
hospitalization and 0.73 for recovery

γ = 0.27 and λ = 0.73.

C. Parameters α and δ—Hospital Recovery and Mortality

Similar to the last subsection, the parameters for the hospital
recovery and death rate were also assumed directly connected,
as a hospitalized person would either recover or decease.
Therefore, the hospital recovery rate was the opposite portion
of the death rate, yielding

α + δ = 1.

Since the death rate for people hospitalized is much higher
than the death rate caused by the virus in general, the death
rate after hospitalization was calculated based on the number
of confirmed deaths and hospitalizations provided by the City
of New York [33], which resulted in a death rate of 0.223 and
a hospital recovery rate of 0.777

α = 0.777 and δ = 0.223.

D. Final Assumptions and Unknown Numbers

The first positive COVID-19 case was reported in New York
City on March 1. Unfortunately, this is only the first confirmed
positive case and not necessarily or likely the first case of
the city in general. Throughout the spread of the virus, only
cases tested positive were reported which causes a lack of
statistics on silent carriers/transmitters of the COVID-19 virus
[34]. Thus, the number of COVID-19 cases resulting from
a simulation will be higher than what the official positive
COVID-19 test data represent. Actual numbers and estimation
for the unknown numbers are hard to find and estimates range
from over 70% unknown cases [35] to ten times the confirmed
number or more [36]. Therefore, the number of unknown cases

in the model was adjusted so that the model aligned from
March 1 to 20 with the reported real time data. In order to
achieve this, the model was set to 15 infections at the time
of the first reported case. This leads to a realistic outcome
of the simulation and serves as verification of the design, as
the fatality rate and the case numbers correlate with the data
when taking into consideration the unknown case numbers (see
Scenarios I and II for verification).

As mentioned above, the total population of this case study
in NYC region was utilized as a single constant number. In
reality, such a number can fluctuate due to births, natural
deaths, migration, and other factors. Thus, these factors would
have to be included in the simulation and they could potentially
affect the outcome. Yet, these factors were omitted for this
simulation and the assessed scenarios due to two reasons. The
first reason is the short time frame of the simulation, which
is limited to 90 days only. In such a short time span, the
effect of deaths not related to COVID-19 can be seen as a
negligible amount that would not even exceed 0.25% of the
population of the NYC area [37]. Furthermore, if births are
taken into account, the fluctuation for a 90-day period can
be considered entirely negligible since it is under 0.1% [38].
The second reason is the fact that during the evaluated time,
various migration inhibiting measures were put in place, such
as border closures. Due to these measures, in combination with
assessed mobility data [39], the effect of migration during the
evaluated time was deemed negligible as well.

With these settings and parameters, the scenarios for the
simulation could be run and evaluated by modulating the con-
tact rate based on various possible changes and adjustments.
Since the measures and regulations that were put into place are
hard to quantify, the first scenarios address the effects of such
measures and show how they could have affected the numbers.
Then, the ensuing scenarios evaluate possible occurrences and
events. Section V covers these scenarios and discusses the
general effects of the variable in the simulation: the contact
rate. Section VII discusses the results further and shows a
possible phenomenon.

V. BASELINE SCENARIOS AND GENERAL EFFECTS

As described above, the purpose of the first baseline sce-
nario was to create the trajectory of COVID-19 cases over
the period of three months that follows the reported data.
As mentioned, the variable utilized to modulate and therefore
manipulate the simulation is the contact rate which directly
affects the infection rate. This connection stems from the fact
that the infection rate is driven by the infectivity, which is
assumed constant for the virus, in multiplication with the
contact rate (see parameter β).

A. Scenario 1—Immediate Social Distancing and Closure of
Offices and Businesses

The first measure put in place in NYC was social distancing,
and the immediate closure of certain institutions, businesses,
and stores. This was accompanied by companies transitioning
employees to work from home or stopping work all together.
Official orders went into place on March 16 and March 21,
after national emergency was declared on March 13 [40].
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Fig. 2. Scenario 1: Infection rate over time—baseline assessment and
verification. Three simulation runs shown with different reduction steps of the
contact rate that drives the infections. The varying peaks of the simulation
runs result from the slower disease spread, which also lowers the peak
infection rate.

Fig. 3. Scenario 1: Fatalities over time–baseline assessment and verification.
Three scenarios shown with different reduction steps of the contact rate
that drives the infections. Reduction steps were introduced on day 16, and
subsequently on day 21, respectively.

Hence, the scenario below was constructed to evaluate these
two policies’ effects. In a first run, the two dates were utilized
to introduce contact rate reduction steps. Figs. 2 and 3 show
the results for a period of 90 days, corresponding March 1
through the end of May.

Since there is a direct connection between the contact rate
and the infection rate, as per the parameter β described above,
the contact rate steps simulated in Scenario 1 directly drive the
different infection rates. Contact and exposure reductions are
caused by measures and restrictions put into place or even
people losing their jobs entirely in some cases. Then, due to
the reduction in contacts, the average contact rate decreases,
which in conjunction with the infectivity and the levels of

Fig. 4. Scenario 2: Infection rate over time—baseline assessment and
verification. Four simulation runs shown with gradual contact rate reductions.

the susceptible stock, defines the infection rate at each time
step/day. In addition, behavioral changes are another factor that
affects and lowers the number of contacts that people have.
For instance, if people try to consciously stay away from each
other and avoid crowds, the average contact rate drops as well.

Figs. 2 and 3 show that the run of Scenario 1 “Contact Rate
Step 2 then 2” does not result in a lasting reduction of the
infection rate over time, and the fatalities still keep increasing
constantly, despite the implemented measures. Hence, the
measures of 2 steps of 2 do not show an impact significant
enough to flatten the curve. Compared to the run “Contact
Rate Step 4 then 4” for example, the total fatalities at the end
of the simulation run is over 1300% higher for the run with
steps of three and over 2200% higher for the run with steps
of two. These effects are due to the fact that the reductions
are not significant enough to have a helpful impact, and thus
ultimately result in devastating fatality numbers.

B. Scenario 2—Gradual Social Distancing and Closures

Scenario 2 evaluates the effects of gradually reduced contact
rates over several days. The rates decrease over time until they
reach a limit, which is more realistic since people adjust to
new circumstances and in this case, to regulations, gradually
over time. Thus, the starting point of the previous scenario
was used to introduce gradual contact rate reductions.

The blue line in Fig. 4 shows the impact and resulting
infection rate per day, for a reduction of one for the contact rate
after day 16, for nine consecutive days until the rate reaches
1.325. Such reductions were cross-referenced with available
mobility data [39] and showed that the parameters represent
recorded behavior.

The resulting data show that the run with the steps of
0.5 down to 1.325 is closest to reality and approaches the
fatality number reported [33], therefore verifying the model.
The gradual reduction of the contact rate leads to a peak in the
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Fig. 5. Scenario 3: Isolated increases in contact rate—infection rate showing
the two peaks for the contact rate increases on day 40 and 42 with the latter
ones being higher and amplified by the first one. Day 43 and later show the
infection rates which are permanently increased, caused by the prior spike.

infection rate, which introduces a downswing and successive
upswing with a lower gradient. Hence, the gradual reduction
of the contact rate is effective in controlling the epidemic and
can hedge the upswing (Fig. 4).

VI. EASTER AND PASSOVER HOLIDAY BLIP

The assessed baseline scenarios show changes that are linear
or follow a gradient. This is not the case in reality because
even a singular or short-term relaxation in rules or temporary
exemptions can cause devastating results and major changes
to the contact rate for a brief period [41].

At the time of the first simulations (April 2020), Easter
and other religious holidays were happening. During such
holidays, people tend to congregate, attend religious gatherings
such as masses, and visit family members. After a prolonged
period of solitude, the perceived need and yearning for such
close contacts increases understandably and there have already
been reports of planned gatherings [42]. In addition, signifi-
cantly increased mobility was measured in Germany [39], [43],
and people (including two of the authors) have witnessed Good
Friday gatherings in New Jersey and New York, for example.

These phenomena suggest scenarios involving relaxation
or defiance of the recommended measures. Hence, this
section looks at possibilities in two scenarios to estimate the
implications of such defiance in order to enable a prediction
regarding the outcome. Scenario 3 assesses the possibility
of increased contact rates on single-event occasions, and
Scenario 4 evaluates short periods of increases. As a basis for
the scenarios, the trajectory closest to reality of Scenario 2 is
utilized.

A. Scenario 3—Isolated Increases in Contact Rate

To utilize a real-life example, the run from Scenario 2 was
simulated with the steps of 0.5 down to 1.325, and two short
increases in contact rate for Good Friday and Easter Sunday
implemented. To simulate various magnitude of increases, four
runs were conducted with increments of 25% contact rate

Fig. 6. Scenario 3: Isolated increases in contact rate—total cases showing the
effects of the two peaks on day 40 and 42 and the impact of the permanently
increased infection rates in form of higher gradients for the simulated runs.

Fig. 7. Scenario 3: Isolated increases in contact rate—hospitalizations
showing how many people require hospitalization for Scenario 3 each day
after the delay of the incubation. This represents the required hospitalizations,
which may exceed the real capacities of the hospitals, and therefore cause
shortage and possibly even triage situations as described. The predicted
hospitalization numbers allow for estimation of necessary resources for the
simulated area.

increase, yielding the last run as a return back to the contact
rate c0 of 10.325. The results are depicted in Figs. 5–8.

The figures show that a return to the contact rates of a
“normal” state can increase the infection rates temporarily by
980% as the first day with increased contact rates amplifies
the second one. This amplification is due to the time between
those two dates being too short for the measures to fight back
the upswing. Therefore, the two increases yield hundreds of
thousands of new infections and also double the number of
hospitalized patients. In addition, in the long run, these short
increases in contact rates have detrimental impacts when it
comes to the fatality numbers. In the worst case run, the
fatality numbers increase by 60% after 90 days, not taking
into consideration that hospitals may be overloaded and forced
into triage procedure where limited resources have to be
allocated and decisions made concerning which patients can
be admitted.
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Fig. 8. Scenario 3: Isolated increases in contact rate—fatalities that show the
increasing deaths over time, with the different gradients based on the height
of the peaks shown in the infection rates.

Fig. 9. Scenario 4: Temporarily sustained increase in contact rate—infection
rate per day showing the constantly increasing rates from day 40 through
42. The first two days each amplify the subsequent one, which exacerbates
the effect after the subsidence, since the reaming infection rate is even more
elevated than the one in Scenario 3.

Overall, this scenario shows that singular increases already
can have detrimental impacts and make the difference between
healthcare infrastructure being overloaded or able to handle the
demand. In addition, the simulation provides the numbers and
results right away, whereas in reality incubation time may lead
to a delay, and thus the individuals infected over Easter could
affect the medical infrastructure one to two weeks later.

With these aspects in mind, the last scenario assesses the
worst possible option, a temporarily sustained increase that is
not isolated, but sustained for a certain period of time.

B. Scenario 4—Temporarily Sustained Increase
in Contact Rate

The above scenario assessed and illustrated short singular
increases, which may repeatedly happen for future holidays.
The last scenario assesses a constant increase over Easter
weekend, for example, if people would spend multiple days
with family or at other gatherings, which is not uncommon.

Fig. 10. Scenario 4: Temporarily sustained increase in contact rate—total
cases showing the effects of the rapidly increasing infections from day 40
through 43 and the impact of the permanently increased infection rates over
time, in form of higher gradients for the simulated runs.

Fig. 11. Scenario 4: Temporarily sustained increase in contact rate—
hospitalizations showing even higher numbers of people requiring hospital-
ization after the delay of the incubation compared to Scenario 3. This results
in even higher stress and loads for the hospitals and other infrastructure, and
presents an increased threat of collapse.

For instance, if a family visit were combined with a stay at
someone else’s home, a sustained exposure and contact rate
increase is the result.

In order to simulate various magnitudes of contact rate
increases, four runs were conducted with differences of 25%
yielding the past run as a return all the way to c0of 10.325 for
three days (Good Friday through Easter Sunday). The results
are depicted in Figs. 9–12, and discussed thereinafter. Fig. 13
shows the hospitalizations over 180 days for demonstration
and reference purposes.

The figures resulting from the last scenario show that the
effects are partially as to be expected based on Scenario 3
since the infection rate steadily rises with every day the
increase persists. Thus, the impact that the measures have
when they are back in effect is also reduced. For example, for
the infection rate on the first day after the increased period,
the numbers are between 10% and 40% higher than they
were in the respective runs of Scenario 3. This means that
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Fig. 12. Scenario 4: Temporarily sustained increase in contact rate—fatalities
over time showing the even higher numbers and gradients compared to
Scenario 3 due to the sustained temporarily sustained increase in contact rates.

Fig. 13. Scenario 4: Temporarily sustained increase in contact rate—
hospitalizations over 180 days showing the continued decline in required
resources. This is dependent on a constant adherence to the measures and
cannot be achieved with further deviations.

each day the increase persists has permanent effects on the
infection rates even once the contact rate goes back down.
This permanent influence can have extreme ripple effects for
the hospitalization and fatality numbers as shown in Figs. 11
and 12: the hospitalization numbers are between 8.9% and
34.9% higher than the respective runs of Scenario 3, and
between 29% and 146% higher than the reference run; the
fatality numbers are between 6.8% and 28.6% higher than the
respective runs of Scenario 3, and between 21.4% and 106%
higher than the reference run over 90 days.

It can be observed that a temporarily sustained increase
in contact rate, not only increases the number of patients
and therefore causes effects over the time of its existence,
but it permanently increases the total spread and numbers of
patients. This allows for two conclusions: one, it is imperative
to prevent such increases at all costs and two, if they are
inevitable, they must be kept as low and short as possible,
in order to minimize the permanent impact they have, and
reduce their overall effects in the long run.

VII. DISCUSSION

The previous sections and simulation results show that the
spread of COVID-19 is dynamic and complex as emergent
phenomena, disproportionate effects, and nonlinear behaviors
have been discovered in the scenarios. Even with the social
distancing and isolation measures mandated in April 2020,
short increase and returns to “normal” contact rates can
have detrimental outcomes that cause irreversible increases
in the number of infections and patients, as the permanently
increased numbers in Scenarios 3 and 4 show (see different
runs depicted in Figs. 5 and 9, for example).

In numbers, the simulations have shown that even temporary
contact rate spikes permanently increase infection rates by
as much as 40% and even higher surges, such as a return
to “normal” and therefore 100% increase of the contact rate
would increase the infection rate temporarily by over 1800%
(Fig. 9). These effects ripple through the system and impact
hospitalizations and ultimately fatalities, increasing the former
by as much as 146% (Fig. 11) at the peak, and the latter by as
much as 106% (Fig. 12) in the worst case scenario compared
to the references run without any contact increases.

Given that increases of 25% in contact rate seem to be
most likely according to the data seen in Germany for the
Easter weekend [39], [43], the simulations show the following
increases after 90 days (compared to the realistic reference
run) for a temporary 25% surge in contact rate around the
holidays: the total number of infections grew by 215 880
(Fig. 10), the maximum of required hospitalizations increased
to 63 063 (Fig. 11), and the total climb in fatalities was 8844,
accumulated over the 90 days (Fig. 12). For the 50% surge,
the total number of cases increased by 461 090 (Fig. 10), the
maximum number of required hospitalizations increased to
79 733 (Fig. 11), and the total number of fatalities climbed
by 19 125 over 90 days in NYC (Fig. 12).

All in all, the numbers and scenarios demonstrate that
contact rate increases of any kind should be prevented at
all costs in order to not permanently impact the progress
of the pandemic and its containment. As the scenarios show
(see Fig. 12, for example) no matter how small the increase
is, and even if it is just temporary, it will have lasting
and irreversible effects in the long run, such as increased
total fatalities or respectively higher hospitalization number
peaks. Such effects can be detrimental and due to their
irreversible nature, the only way to address them effectively is
proactively.

If increases cannot be prevented, it is imperative to keep
them as short as feasible, and if necessary separate the peaks
as much as possible to allow for regulation and mitigation in
between, as the simulation scenarios have shown that sustained
increases have more grave effects than separated spikes. For
example, the worst case run of Scenario 4 shows an over 76%
higher fatality count increase at the end of the simulation
run, despite only adding one additional day with the same
contact rate spike to form three consecutive days instead of
two separated ones. Furthermore, other mitigation strategies
such as stricter regulations could be a possibility to mitigate
already occurred singular increases to compensate and address
the irreversible effects moving forward.
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Fig. 14. Confirmed cases in New York state based on official reports [37].

The simulations show the implications and results of
increased infection rates before they might occur. This allows
for the assessment of possible changes without having to
reactively await their development, which is important when
it comes to the hospitalization rates, for instance, as increased
infection rates for even short periods, such as the described
holiday blip, can significantly impact the hospitals and reduce
free capacity in reality. Capacity worst case scenarios could
force some hospitals into triage when they run out of beds.
For example, Scenario 4 shows a peak hospitalization count
increase of 146% for the most extreme simulation run (see
“100%” in Fig. 13) over the reference, which would exceed
all available hospital beds in NYC [44]. In addition, said beds
are for all patients, not only COVID-19 related ones. With such
numbers, local and even widespread problems seem likely.

Nevertheless, the analysis above was performed prior to
observing any outcomes of social distancing or the impact of
the mentioned holidays. Now that the actual data are available,
they can be compared to the stated predictions. Fig. 14 shows
the confirmed cases per day for the state of New York.

Fig. 14 shows an initial peak in infections 33 days after
March 1 (day 0 of the simulation), with 6333 new confirmed
infections. Comparing this first peak of Fig. 14 to the results
of the simulation (Fig. 4) shows that the initial peak of the
confirmed cases lies between the possibilities for different
social distancing scenario. Fig. 14 thus matches the pattern
of gradually increasing social distancing measures and further
confirms the structure of the simulation model.

Furthermore, there are three very noticeable spikes in
the confirmed cases after the first peak in Fig. 14: on
days 38–42, 45, and 54 with 55. The model allowed the
prediction of spikes between days 38 and 42 due to the Easter
and Passover holidays. Thus, it is possible that the second
spike in Fig. 14 is due to the holidays. If there was a
greater delay from initial contacts to confirmed infections than
modeled, the much higher spike on day 45 could be due to
the holidays as well.

It has to be noted nevertheless, that the data shown in
Fig. 14 do have a fair amount of noise, so even though there

appears to be spikes due to the holidays, it is possible that the
actual effects are drowned by that noise. Such noise is also
likely caused by reporting delays and the fact that it is difficult
to obtain correct numbers for every single day. It is, for exam-
ple, likely that numbers are not reported correctly over the
weekends due to some offices being closed. Numbers would
then be reported after the weekend, which could cause further
distortion and inflated numbers at the beginning of the week.

The final interesting detail about the confirmed numbers
in Fig. 14 is the oscillations in the spikes. These swings are
potentially created by one spike that causes more infections,
which results in another subsequent, and so forth. Such
a connection has been shown by the simulations (Fig. 9).
As described in the prior paragraphs of this discussion, con-
secutive days with increased contact rates result in dispropor-
tionately high increases in the respective numbers.

VIII. CONCLUSION

The presented framework and results show that the chosen
approach and developed framework can predict the results of
certain influences on the progress of the pandemic. Since the
model is built dynamically and shows complexity, it can show
the emergent behaviors that may not be visible by assessment
of linear connections of the formulas and underlying struc-
tures. As the case studies above show, some influences and
outcomes have already been seen that are disproportionate in
their effect.

The model allows for the testing of important and or
critical scenarios. Since emergence can occur at unexpected
times, and therefore inherits an element of surprise, testing
various scenarios for their stability can also be crucial for
regulatory measures. For instance, margin cases and extreme
capacity scenarios could be simulated in order to determine
the boundaries of the system and its behavior close to these
areas. Such testing can then support informed decisions that
regulate and guide the real entities and systems to prevent
critical developments entirely.

A framework and model, such as the one presented, provide
crucial opportunities and benefits, as it does not only copy and
try to reproduce progress, but instead dynamically simulates
it with high flexibility and immediate display of emergent
behaviors.

In addition, the model provides a unique adaptability as
it can implement and therefore respond to minute as well
as substantial changes on the input side. Many scenarios
can be evaluated and assessed regarding their effects. This
adaptability is also key when it comes to long-term predictions
as with increased durations, the opportunities and amount
of potential influencing factors increases. Thus, having the
possibility and capability to include and account for changes
in an adaptable way is an important advantage.

Overall, the designed model and simulations allow for a
realistic representation and predictive possibilities, as well as
future applications. Extensions and continued development of
the simulation and model are planned and being worked on in
order to achieve an even more accurate and realistic framework
that can help to understand, anticipate, and therefore poten-
tially reduce fear and uncertainty for pandemic times when
many people are questioning the fundamental necessities and
pillars of everyday life.
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