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POLYLINE SIMPLIFICATION HAS CUBIC COMPLEXITY

Karl Bringmann∗and Bhaskar Ray Chaudhury†

Abstract. In the classic polyline simplification problem, given a polygonal curve P con-
sisting of n vertices and an error threshold δ ≥ 0, we want to replace P by a subsequence Q
of minimal size such that the distance between the polygonal curves P and Q is at most δ.
The distance between curves is usually measured using the Hausdorff or continuous Fréchet
distance. These distance measures can be applied globally, i.e., to the whole curves P and
Q, or locally, i.e., to each simplified subcurve and the line segment that it was replaced
with separately (and then taking the maximum). This gives rise to four problem variants:
Global-Hausdorff simplification (known to be NP-hard), Local-Hausdorff simplification (can
be solved in time O(n3)), Global-Fréchet simplification (can be solved in time O(kn5), where
k is the size of the optimum simplification), and Local-Fréchet simplification (can be solved
in time O(n3)).

Our contribution is as follows:

• Cubic time for all variants: For Global-Fréchet simplification, we design an algorithm
running in time O(n3). This shows that all three problems (Local-Hausdorff, Local-
Fréchet, and Global-Fréchet) can be solved in cubic time. All these algorithms work
over a general metric space such as (Rd, Lp), but the hidden constant depends on p
and (linearly) on d.

• Cubic conditional lower bound: We provide evidence that in high dimensions, cubic
time is essentially optimal for all three problems (Local-Hausdorff, Local-Fréchet, and
Global-Fréchet). Specifically, improving the cubic time to O(n3−εpoly(d)) for polyline
simplification over (Rd, Lp) for p = 1 would violate plausible conjectures. We obtain
similar results for all p ∈ [1,∞), p 6= 2.

In total, in high dimensions and over general Lp-norms we resolve the complexity of
polyline simplification with respect to Local-Hausdorff, Local-Fréchet, and Global-Fréchet,
by a providing new algorithm and conditional lower bounds.
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1 Introduction

We revisit the classic problem of polygonal line simplification, which is fundamental to
computational geometry, computer graphics, and geographic information systems. The most
frequently implemented and cited algorithms for curve simplification go back to the 70s
(Douglas and Peucker [13]) and 80s (Imai and Iri [20]). These algorithms use the following
standard1 formalization of curve simplification. A polygonal curve or polyline is given by a
sequence P = 〈v0, v1, . . . , vn〉 of points vi ∈ Rd, and represents the continuous curve walking
along the line sequences vivi+1 in order.

Given a polyline P = 〈v0, v1, . . . , vn〉 and a value δ > 0, we want to compute a
subsequence Q = 〈vi0 , . . . , vik−1

〉, with 0 = i0 < . . . < ik−1 = n, of minimum length k such
that P and Q have a “distance” at most δ.

Several distance measures have been used for the curve simplification problem. The
most generic distance measure on two point sets A,B is the Hausdorff distance δH . The
(directed) Hausdorff distance from A to B is the maximum over all a ∈ A of the distance
from a to its closest point in B. This is used on curves P,Q by applying it to the images of
the curves in the ambient space, i.e., to the union of all line segments vivi+1.

However, the most popular distance measure for curves in computational geometry is
the Fréchet distance δF . This is the minimal length of a leash connecting a dog to its owner
as they continuously walk along the two polylines without backtracking. In comparison to
the Hausdorff distance, it takes the ordering of the vertices along the curves into account,
and thus better captures an intuitive notion of distance among curves.

For both of these distance measures δ∗ ∈ {δH , δF }, we can apply them locally or
globally in order to measure the distance between the original curve P and its simplifi-
cation Q. In the global variant, we simply consider the distance δ∗(P,Q), i.e., we use
the Hausdorff or Fréchet distance of P and Q. In the local variant, we consider the dis-
tance max1≤`<k δ∗(P [i`−1 . . . i`], vi`−1

vi`), i.e., for each simplified subcurve P [i`−1 . . . i`] =
〈vi`−1

, . . . , vi`〉 of P we compute the distance to the line segment vi`−1
vi` that we simpli-

fied the subcurve to, and we take the maximum over these distances. This gives rise to
four problem variants, depending on the distance measure: Local-Hausdorff, Local-Fréchet,
Global-Hausdorff, and Global-Fréchet. See Section 2 for details.

Among these variants, Global-Hausdorff is unreasonable in that it essentially does
not take the ordering of vertices along the curve into account. Moreover, it was recently
shown that curve simplification under Global-Hausdorff is NP-hard [23]. For these reasons,
we do not consider this measure in this paper.

The classic algorithm by Imai and Iri [20] was designed for Local-Hausdorff simplifi-
cation and solves this problem in time2 O(n3). By exchanging the distance computation in

1The problem was also studied without the restriction that vertices of the simplification belong to the
original curve [18]. The choice whether the start- and endpoints of P and Q must coincide or not is typically
irrelevant in this area; in this paper we assert that they coincide, but all results could also be proved without
this assumption. Moreover, sometimes δ is given and k should be minimized, sometimes k is given and δ
should be minimized; we focus on the former variant in this paper.

2Throughout this paper, in O-notation we hide any polynomial factors in d, but we make exponential
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Q

(a) The simplification Q does not resemble P
closely.

P
Q

(b) The simplification Q resembles P closely.

Figure 1: Illustration of a good simplification. The simplifications in (a) and (b) have the
same size. However the one in (b) represents P much more closely than the one in (a).

this algorithm for the Fréchet distance, one can obtain an O(n3)-time algorithm for Local-
Fréchet [17]. Several papers obtained improvements for Local-Hausdorff simplification in
small dimension d [22, 10, 7]; the fastest known running times are 2O(d)n2 for L1-norm,
O(n2) for L∞-norm, and O(n3−Ω(1/d)) for L2-norm [7].

The remaining variant, Global-Fréchet, has only been studied very recently [23],
although it is a reasonable measure: The local constraints (i.e., matching each vi` to itself)
are not necessary to enforce ordering along the curve, since Fréchet distance already takes the
ordering of the vertices into account – in contrast to Hausdorff distance, for which the Local
constraints are necessary to enforce any ordering. Therefore, Global-Fréchet simplification
is also very natural and well motivated as Fréchet distance is a popular distance measure
between curves in computational geometry. Van Kreveld et al. [23] presented an algorithm
for Global-Fréchet simplification in time O(k∗n5), where k∗ is the output size, i.e., the size
of the optimal simplification.

1.1 Contribution 1: Algorithm for Global-Fréchet

From the state of the art, one could get the impression that Global-Fréchet is a well-
motivated, but computationally expensive curve simplification problem, in comparison to
Local-Hausdorff and Local-Fréchet. We show that the latter intuition is wrong, by design-
ing an O(n3)-time algorithm for Global-Fréchet simplification. This is an improvement by
a factor Θ(k∗n2) over the previous best algorithm by van Kreveld et al. [23].

Theorem 1.1 (Section 3). Global-Fréchet simplification can be solved in time O(n3).

This shows that all three problem variants (Local-Hausdorff, Local-Fréchet, and
Global-Fréchet) can be solved in time O(n3), and thus the choice of which problem variant
to apply should not be made for computational reasons, at least in high dimensions.

factors in d explicit.

http://jocg.org/


JoCG 11(2), 94–130, 2020 97

Journal of Computational Geometry jocg.org

Our algorithm (as well as the algorithms for Local-Hausdorff and Local-Fréchet [20,
17]) works over a general metric space such as Rd with Lp-norm. The hidden constant
depends on p, and has linear dependence on d (throughout this paper in O-notation we
hide polynomial factors in d). We assume the Real RAM model of computation, which
allows us to perform exact distance computations, and to exactly solve equations of the
form ‖x− a‖p = r for given a ∈ Rd, r ≥ 0. See Section 3 for an overview of the algorithm.

1.2 Contribution 2: Conditional Lower Bound

Since all three variants can be solved in time O(n3), the question arises whether any of them
can be solved in time O(n3−ε). Tools to (conditionally) rule out such algorithms have been
developed in recent years in the area of fine-grained complexity, see, e.g., the survey [24].
One of the most widely used fine-grained hypotheses is the following.

k-OV Hypothesis: Problem: Given sets A1, . . . , Ak ⊆ {0, 1}d of size n, determine whether
there exist vectors a1 ∈ A1, . . . , ak ∈ Ak that are orthogonal, i.e., for each dimension j ∈ [d]
there is a vector i ∈ [k] with ai[j] = 0.
Hypothesis: For any k ≥ 2 and ε > 0, the problem cannot be solved in time O(nk−ε).

Naively, k-OV can be solved in time O(nk), and the hypothesis asserts that no
polynomial improvement is possible, at least not with polynomial dependence on d. See [2]
for the fastest known algorithms for k-OV.

Buchin et al. [8] used the 2-OV hypothesis to rule out O(n2−ε)-time algorithms for
Local-Hausdorff3 in the L1, L2, and L∞ norm. This yields a tight bound for L∞, since
an O(n2)-time algorithm is known [7]. However, for all other Lp-norms (p ∈ [1,∞)), the
question remained open whether O(n3−ε)-time algorithms exist. To answer this question,
one could try to generalize the conditional lower bound by Buchin et al. [8] to start from
3-OV. However, there is a barrier to such a reduction: As we show in Section 5, polyline
simplification has fast nondeterministic and co-nondeterministic algorithms, while 3-OV is
conjectured not to have both of these [9]. For similar reasons, Abboud et al. [3] introduced
the Hitting Set hypothesis, in which they essentially consider a variant of 2-OV where we
have a universal quantifier over the first set of vectors and an existential quantifier over the
second one (∀∃-OV). From their hypothesis, however, it is not known how to prove higher
lower bounds than quadratic. We therefore consider the following natural extension of their
hypothesis. This problem was studied in a more general context by Gao et al. [16].

∀∀∃-OV Hypothesis: Problem: Given sets A,B,C ⊆ {0, 1}d of size n, determine whether
for all a ∈ A, b ∈ B there exists c ∈ C such that a, b, c, are orthogonal.
Hypothesis: For any ε > 0 the problem cannot be solved in time4 O(n3−ε).

No algorithm violating this hypothesis is known, and even for much stronger hy-
potheses on variants of k-OV and Satisfiability, no such algorithms are known, see Section 6

3Their proof can be adapted to also work for Local-Fréchet and Global-Fréchet.
4Recall that in O-notation we hide any polynomial dependence on d.
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for details. This shows that the hypothesis is plausible, in addition to being a natural gener-
alization of the hypothesis of Abboud et al. [3]. We establish a ∀∀∃-OV-based lower bound
for curve simplification.

Theorem 1.2 (Section 4). Over (Rd, Lp) for any p ∈ [1,∞) with p 6= 2, Local-Hausdorff,
Local-Fréchet, and Global-Fréchet simplification have no O(n3−ε)-time algorithm for any
ε > 0, unless the ∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding
whether the optimal simplification has size ≤ 4 or ≥ 5.

In particular, this rules out improving the 2O(d)n2-time algorithm for Local-Hausdorff
over L1 [7] to a polynomial dependence on d. Note that the theorem statement excludes two
interesting values for p, namely ∞ and 2. For p = ∞, an O(n2)-time algorithm is known
for Local-Hausdorff [7], so proving the above theorem also for p = ∞ would immediately
yield an algorithm breaking the ∀∀∃-OV Hypothesis. For p = 2, we do not have such a
strong reason why it is excluded, however, we argue in Section 4 that at least a significantly
different proof would be necessary in this case. This leaves open the possibility of a faster
curve simplification algorithm for L2, but such a result would need to exploit the Euclidean
norm very heavily.

1.3 Further Related Work

Curve simplification has been studied in a variety of different formulations and settings,
and it is well beyond the scope of this paper to give an overview. To list some exam-
ples, it was shown that the classic heuristic algorithm by Douglas and Peucker [13] can be
implemented in time O(n log n) [19], and that the classic O(n3)-time algorithm for Local-
Hausdorff simplification by Imai and Iri [20] can be implemented in time O(n2) in two di-
mensions [10, 22]. Further topics include curve simplification without self-intersections [12],
Local-Hausdorff simplification with additional constraints on the angles between consecutive
line segments [11], approximation algorithms [4], streaming algorithms [1], and the use of
curve simplification in subdivision algorithms [18, 14, 15].

1.4 Organization

In Section 2 we formally define the problems studied in this paper. In Section 3 we present
our new algorithm for Global-Fréchet simplification, and in Section 4 we show our conditional
lower bounds. In Section 5, we provide an argument why the more common hypothesis,
SETH, cannot be used (assuming NSETH) for showing our lower bounds in Section 4. We
further discuss the used hypothesis in Section 6. Finally, in Section 7 we summarize the
main results of the paper and mention some open problems for future research.

2 Preliminaries

Our ambient space is the metric space (Rd, Lp), where the distance between points x, y ∈ Rd

is the Lp-norm of their difference, i.e., ‖x− y‖p =
(∑d

i=1(x[i]− y[i])p
)1/p. A polyline P of
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size n is given by a sequence of points 〈v0, v1, . . . , vn〉, where each vi lies in the ambient space.
We associate with P the continuous curve that starts in v0, walks along the line segments
vivi+1 for i = 0, . . . , n − 1 in order, and ends in vn. We also interpret P as a function
P : [0, n]→ Rd where P [i+ λ] = (1− λ)vi + λvi+1 for any λ ∈ [0, 1] and i ∈ {0, . . . , n− 1}.
We use the notation P [t1 . . . t2] to represent the sub-polyline of P between P [t1] and P [t2].
Formally for any integers 0 ≤ i ≤ j ≤ n and reals λ1 ∈ [0, 1) and λ2 ∈ (0, 1],

P [i+ λ1 . . . j + λ2] = 〈(1− λ1)vi + λ1vi+1, vi+1, . . . , vj , (1− λ2)vj + λ2vj+1〉

A simplification of P is a curve Q = 〈vi0 , vi1 , . . . , vim〉 with 0 = i0 < i1 < . . . < im =
n. The size of the simplification Q is m + 1. Our goal is to determine a simplification of
small size that “closely” represents P (see Figure 1). To this end we define two popular
measures of similarity between the curves, namely the Fréchet and Hausdorff distances.

Definition 2.1 (Fréchet distance). The (continuous) Fréchet distance δF (P1, P2) between
two curves P1 and P2 of size n and m respectively is

δF (P1, P2) = inf
f

max
t∈[0,n]

‖P1[t]− P2[f(t)]‖p

where f : [0, n]→ [0,m] is continuous and monotone with f(0) = 0 and f(n) = m.

Alt and Godau [6] gave the characterization of the Fréchet distance in terms of the
so-called free-space diagram.

Definition 2.2 (Free-Space). Given two curves P1, P2 and δ ≥ 0, the free-space FS δ(P1, P2)
⊆ R2 is the set {(x, y) ∈ ([0,m]× [0, n]) | ‖P2[x]− P1[y]‖p ≤ δ}.

Consider the following decision problem. Given two curves P1, P2 of size n and m,
respectively, and given δ ≥ 0, decide whether δF (P1, P2) ≤ δ. The answer to this question is
yes if and only if (m,n) is reachable from (0, 0) by a monotone path through FS δ(P1, P2).
This “reachability” problem is known to be solvable by a dynamic programming algorithm in
timeO(nm), and the standard algorithm for computing the Fréchet distance is an adaptation
of this decision algorithm [6]. In particular, if either P1 or P2 is a line segment, then the
decision problem can be solved in linear time. Throughout the paper, whenever we construct
a free space diagram between curves P1 and P2, we will have P2 to be a line segment, i.e.,
m = 1. Therefore, we will always have the FS δ(P1, P2) ⊆ [0, 1] × [0, n] where n is the size
of the polyline P1.

The Hausdorff distance between curves ignores the ordering of the points along the
curve. Intuitively, if we remove the continuity and monotonicity condition from function f
in Definition 2.1 we obtain the directed Hausdorff distance between the curves. Formally, it
is defined as follows.

Definition 2.3 (Directed Hausdorff distance). The (directed) Hausdorff distance δH(P1, P2)
between curves P1 and P2 of size n and m, respectively, is

δH(P1, P2) = max
t1∈[0,n]

min
t2∈[0,m]

‖P1[t1]− P2[t2]‖p.
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In order to measure the “closeness” between a curve and its simplification, these above
similarity measures can be applied either globally to the whole curve and its simplification,
or locally to each simplified subcurve P [i` . . . i`+1] and the segment vi` , vi`+1

to which it was
simplified (taking the maximum over all `). This gives rise to the following measures for
curve simplification.

Definition 2.4 (Similarity for Curve Simplification). Given a curve P = 〈v0, v1, . . . , vn〉
and a simplification Q = 〈vi0 , vi1 . . . , vim〉 of P , we define their

• Global-Hausdorff distance as δH(P,Q),

• Global-Fréchet distance as δF (P,Q),

• Local-Hausdorff distance5 as max
0≤`≤m−1

δH(P [i` . . . i`+1], vi`vi`+1
), and

• Local-Fréchet distance as max
0≤`≤m−1

δF (P [i` . . . i`+1], vi`vi`+1
).

3 Algorithms for Global-Fréchet simplification

In this section we present an O(n3) time algorithm for curve simplification under Global-
Fréchet distance, i.e., we prove Theorem 1.1. We first give a brief overview of all the
techniques and concepts used in this section.

Overview of the Algorithm. We first sketch the algorithm by Imai and Iri [20] for Local-
Hausdorff simplification. Given a polyline P = 〈v0, . . . , vn〉 and a distance threshold δ, for
all i < i′ we compute the Hausdorff distance between the subpolyline P [i . . . i′] and the line
segment vivi′ . This takes a total time of O(n3), since the Hausdorff distance between a
polyline and a line segment can be computed in linear time. We build a directed graph on
vertices {0, 1, . . . , n}, with a directed edge from i to i′ if and only if the Hausdorff distance
between the subpolyline P [i . . . i′] and the line segment vivi′ is at most δ. We then determine
the shortest path from 0 to n in this graph. This yields the simplification Q of smallest size,
with Local-Hausdorff distance at most δ. The running time is dominated by the first step,
and is thus O(n3) time. Replacing the Hausdorff distance by Fréchet distance yields an
O(n3)-time algorithm for Local-Fréchet simplification.

Note that these algorithms (mentioned in the paragraph above) are simple dynamic
programming solutions. For Global-Fréchet, our cubic time algorithm also uses dynamic
programming, but is significantly more non-trivial and involved.

In our algorithm, we compute the same dynamic programming table as the previously
best algorithm [23]. This is a table of size O(k∗n2), where k∗ is the output size. The table
entry DP(k, i, j) stores the earliest reachable point on the line segment vjvj+1 with a size-k

5It can be checked that in this expression directed and undirected Hausdorff distance have the same
value, and so for Local-Hausdorff we can without loss of generality use the directed Hausdorff distance.
For Global-Hausdorff this choice makes a difference, but simplification under both directed and undirected
Global-Hausdorff is NP-hard [23] and therefore we do not consider this problem in this paper.
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simplification of P [0 . . . i]. More precisely, DP(k, i, j) is the minimal t, with j ≤ t ≤ j + 1,
such that there is a size-k simplification Q of P [0 . . . i] with δF (Q,P [0 . . . t]) ≤ δ. If such a
point does not exist, we set DP(k, i, j) =∞.

A relatively simple algorithm computes a table entry in time O(n3): We iterate over
all possible second-to-last points vi′ of the simplification Q, and over all possible previous
line segments vj′vj′+1, and check whether from i′ on Q and DP(k − 1, i′, j′) on P we can
“walk” to i on Q and some j ≤ t ≤ j + 1 on P , always staying within the required distance.
Moreover, we compute the earliest such t (or equivalently the minimum such t). This can
be done in time O(n3), which in total yields time O(k∗n5). This is the algorithm from [23].

In order to obtain a speedup, we split the above procedure into two types: j′ = j,
i.e., the walks “coming from the left in the free-space diagram FS δ(P, vi′vi)” (see Figure 3),
and j′ < j, i.e., the walk “coming from the bottom the free-space diagram FS δ(P, vi′vi)”
(see Figure 4). We maintain the table entry DP1 to correctly handle the walks of the first
kind. It can be seen that the simple algorithm computes their contribution to the output
in time O(n). Moreover, it is easy to bring down this running time to O(1) per table entry,
by maintaining a certain minimum.

We maintain table entries DP2 to handle the walks of the second kind in total time
O(n3). This is the bulk of effort going into our new algorithm. Here, the main observation
is that the particular values of DP(k−1, i′, j′) are irrelevant, and in particular we only need
to store for each i′, j′ the smallest k′ such that DP(k′, i′, j′) 6= ∞. Using this observation,
and further massaging the problem, we arrive at the following subproblem that we call Cell
Reachability : We are given n squares (or cells) numbered 1, . . . , n and stacked on top of
each other. Between cell j and cell j + 1 there is a passage, which is an interval on their
common boundary through which we can pass from j to j + 1. Finally, we are given an
integral entry-cost λj for each cell j. The goal is to compute, for each cell j, its exit-cost
µj , defined as the minimal entry-cost λj′ , j′ < j, such that we can walk from cell j′ to cell j
through the contiguous passages in a monotone fashion (i.e., the points at which we cross a
passage are monotonically non-decreasing). See Figure 5 for an illustration of this problem.

To solve the Cell Reachability, we determine for each cell j and cost k the leftmost
point tj(k) on the passage from cell j−1 to cell j at which we can arrive from some cell j′ < j
with entry-cost at most k (using a monotone path). Among the sequence tj(1), tj(2), . . . we
only need to store the break-points, with tj(k) < tj(k − 1), and we design an algorithm to
maintain these break-points in amortized time O(1) per cell j. This yields an O(n)-time
solution to Cell Reachability, which translates to an O(n3)-time solution for Global-Fréchet
simplification.

We will now sketch the O(kn5)-time algorithm in [23], so that the reader is familiar
with how we update the table DP. Thereafter, we present our O(n3)-time algorithm, where
we show how to do update the table DP faster by the novel update procedure mentioned
above.
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si,j
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ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
vik

si,j
t

ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
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Figure 2: Illustration of the proof of Lemma 3.2. There exists a monotone path from
(0, t′) to (1, t) in FS δ(P, vik−1

vik) (left). Since DP(k − 1, ik−1, j
′) ≤ t′ ≤ t, there is a

monotone path in FS δ(P, vik−1
vik) from (0,DP(k − 1, ik−1, j

′)) (right) to (1, t) by moving
from (0,DP(k − 1, ik−1, j

′)) to (0, t′) and then following the existing monotone path from
(0, t′) to (1, t).

3.1 An O(kn5) algorithm for Global Fréchet simplification

We start by describing the previously best algorithm by [23]. Let P be the polyline
〈v0, v1, . . . vn〉. Let DP(k, i, j) represent the earliest reachable point on vjvj+1 with a size-k
simplification of the polyline P [0 . . . i], i.e., DP(k, i, j) represents the smallest t such that
P [t] lies on the line-segment vjvj+1 (i.e. j ≤ t ≤ j + 1) and there is a simplification Q̃ of
the polyline P [0 . . . i] of size at most k such that δF (Q̃, P [0 . . . t]) ≤ δ. If such a point does
not exist then we set DP(k, i, j) = ∞. To solve Global-Fréchet simplification, we need to
return the minimum k such that DP(k, n, n − 1) 6= ∞. Let P [ti,j ] and P [si,j ] be the first
point and the last point respectively on the line segment vjvj+1 such that ‖vi−P [ti,j ]‖p ≤ δ
and ‖vi − P [si,j ]‖p ≤ δ. Observe that if DP(k, i, j) 6=∞ then ti,j ≤ DP(k, i, j) ≤ si,j for all
k. Before moving on to the algorithm we make some simple observations,

Observation 3.1. If DP(k, i, j) =∞ then DP(k′, i, j) =∞ for all k′ < k. If DP(k, i, j) =
ti,j then DP(k′, i, j) = ti,j for all k′ ≥ k.

Proof. If k′ < k, then the minimization in DP(k, i, j) is over a superset compared to
DP(k′, i, j). Thus, DP(k′, i, j) ≥ DP(k, i, j) = ∞. Thus, DP(k, i, j) = ∞. Similarly when
k′ ≥ k then the minimization in DP(k′, i, j) is over a superset compared to DP(k, i, j). Thus,
we have ti,j ≤ DP(k′, i, j) ≤ DP(k, i, j). Thus, DP(k, i, j) = ti,j implies DP(k′, i, j) = ti,j
for all k′ ≥ k.

We will crucially make use of the following characterization of the DP table entries.

http://jocg.org/


JoCG 11(2), 94–130, 2020 103

Journal of Computational Geometry jocg.org

Lemma 3.2. DP(k, i, j) is the minimal t ∈ [ti,j , si,j ], such that for some i′ < i and j′ ≤ j,
we have DP(k − 1, i′, j′) 6=∞ and δF (P [DP(k − 1, i′, j′) . . . t], vi′vi) ≤ δ. If no such t exists
then DP(k, i, j) =∞.

Proof. Let t be minimal in [ti,j , si,j ] such that DP(k − 1, i′, j′) 6= ∞ and δF (P [DP(k −
1, i′, j′) . . . t], vi′vi) ≤ δ for some i′ < i and j′ ≤ j. Since in particular DP(k − 1, i′, j′) 6=∞,
for one direction we note that there exists a simplification Q̂ of the polyline P [0 . . . i′] of size
k−1 such that δF (Q̂, P [0 . . .DP(k−1, i′, j′)]) ≤ δ. By appending vj to Q̂ we obtain a simpli-
fication Q̃ of the polyline P [0 . . . i] such that δF (Q̃, P [0 . . . t̂]) ≤ max(δF (Q̂, P [0 . . .DP(k −
1, i′, j′)]), δF (P [DP(k−1, i′, j′) . . . t], vi′vi)) ≤ δ. It follows that DP(k, i, j) ≤ t. In particular
if DP(k, i, j) =∞ then no such t exists.

For the other direction, let t′ be such that DP(k, i, j) = t′. Assume t′ 6= ∞. Then,
there exists a simplification Q̃ = 〈vi0 , vi1 , . . . vik−1

, vik〉 of the polyline P [0 . . . i] such that
δF (Q̃, P [0 . . . t′]) ≤ ∞. Such a Q̃ exists if and only if there is a simplification Q̂ of size k− 1
of the polyline P̂ = P [0 . . . ik−1] and a value t̂ ≤ t′ such that,

(1) δF (Q̂, P [0 . . . t̂]) ≤ δ and

(2) δF (P [t̂ . . . t′], vik−1
vik) ≤ δ.

Let ĵ ≤ t̂ ≤ ĵ + 1. Observe that (1) implies that DP(k − 1, ik−1, ĵ) 6= ∞. Also
tik−1,ĵ

≤ DP(k − 1, ik−1, ĵ) ≤ t̂ ≤ sik−1,ĵ
. Now we show that δF (P [t̂ . . . t′], vik−1

vik) ≤ δ

implies that δF (P [DP(k − 1, ik−1, ĵ) . . . t
′], vik−1

vik) ≤ δ. This is obvious from inspecting
FS δ(P, vik−1

vik) (see Figure 2). There exists a monotone path in FS δ(P, vik−1
vik) that

starts from (0,DP(k− 1, ik−1, ĵ)), moves to (0, t̂) and then follows the monotone path from
(0, t̂) to (1, t′) that exists. Therefore, t ≤ t′ = DP(k, i, j). Combining the two inequalities
we have that DP(k, i, j) = t.

A dynamic programming algorithm follows more or less directly from Lemma 3.2.
Note that for fixed i′ < i and j′ ≤ j such that DP(k − 1, i′, j′) 6= ∞ we can determine
the minimal t such that (1, t) is reachable from (0,DP(k − 1, i′, j′)) by a monotone path in
FS δ(P, vi′vi) in O(n) time. This follows from the standard algorithm for the decision version
of the Fréchet distance between two polygonal curves of length at most n (in particular here
one of the curves is of length 1). To determine DP(k, i, j) we enumerate over all i′ < i and
j′ ≤ j such that DP(k − 1, i′, j′) 6=∞ and determine the minimum t that is reachable. The
running time to determine DP(k, i, j) is thus O(n3) by the loops for i′, j′ and the Fréchet
distance check. Since there are O(kn2) DP-cells to fill, the algorithm runs in total time
O(kn5) and uses space O(kn2).

3.2 An O(n3) algorithm for Global-Fréchet simplification

Now we improve the running time by a more careful understanding of the monotone paths
through FS δ(P, vi′vi) to (1,DP(k, i, j)) for fixed i, j and i′. Let fbox j denote the intersection
of the free-space FS δ(P, vi′vi) with the square with corner vertices (0, j) and (1, j+ 1). The
following fact will be useful later.
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DP (k − 1, î, j)
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Figure 3: Illustration of the proof of Observation 3.4. For some î < i, t ∈ [ti,j , si,j ] is
minimal such that (1, t) is reachable from (0,DP(k − 1, î, j)) by a monotone path in fbox j .
If DP(k − 1, î, j) > si,j (left) then no such t exists. If ti,j ≤ DP(k − 1, î, j) ≤ si,j (middle)
then t = DP(k − 1, î, j). If DP(k − 1, î, j) < ti,j (right) then t = ti,j .

Fact 3.3. fbox j is convex for all j ∈ [n− 1].

Proof. Alt and Godau [6] showed that fbox j is an affine transformation of the unit ball,
and this is convex for any Lp norm.

Furthermore let ver j denote the free space along vertical line segment with endpoints
(0, j) and (0, j+1) and let hor j denote the free space along the horizontal line segment (0, j)
to (1, j) in the free space FS δ(P, vi′vi). We consider the point (0, j) to belong to ver j , but
not hor j , to avoid certain corner cases. We split the monotone paths from (0,DP(k −
1, i′, j′)) for i′ < i and j′ ≤ j to (1,DP(k, i, j)) in FS δ(P, vi′vi) into two categories : the
ones that intersect ver j and the ones that intersect hor j . We first look at the monotone
paths that intersect ver j . Observe that if the monotone path intersects ver j then j′ = j.
Let DP1(k, i, j) = min

i′<i
DP(k − 1, i′, j). We now define,

DP1(k, i, j) =

{
max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j
∞ otherwise (1)

We show a characterization of DP1 similar to the characterization of DP in Lemma
3.2 and thus establishing that DP1 correctly handles all paths intersecting ver j .

Observation 3.4. DP1(k, i, j) is the minimal t ∈ [ti,j , si,j ] such that DP(k−1, i′, j) 6=∞ and
δF (P [DP(k − 1, i′, j) . . . t], vi′vi) ≤ δ for some i′ < i. If no such t exists then DP1(k, i, j) =
∞.

Proof. Fix î < i. First note that if there is a monotone path connecting (0,DP(k − 1, î, j))
to (1, t) then t ≥ DP(k − 1, î, j). Now consider fbox j in the free-space FS δ(P, vîvi). As
illustrated in Figure 3 there are three cases,

• If DP(k − 1, î, j) > si,j then there is no monotone path from (0,DP(k − 1, î, j)) to
(1, t) for all t ∈ [ti,j , si,j ].

• If ti,j ≤ DP(k − 1, î, j) ≤ si,j . As mentioned at the beginning of the proof, t ≥
DP(k − 1, î, j). Since fbox j is convex, the line segment connecting (0,DP(k − 1, î, j)

and (1,DP(k − 1, î, j)) lies inside fbox j and hence lies inside FS δ(P, vîvi). Thus, the
smallest t ∈ [ti,j , si,j ] such that there is a monotone path from (0,DP(k − 1, î, j)) to
(1, t) in FS δ(P, vîvi) is DP(k − 1, î, j).
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• If DP(k − 1, î, j) ≤ ti,j . Again since fbox j is convex the line segment connecting
(0,DP(k−1, î, j)) and (1, ti,j) lies inside fbox j and thus lies inside FS δ(P, vîvi). Thus,
the smallest t ∈ [ti,j , si,j ] such that there is a monotone path from (0,DP(k − 1, î, j))
to (1, t) in FS δ(P, vîvi) is ti,j .

Therefore, for any î < i if DP(k−1, î, j) > si,j then there exists no t ∈ [ti,j , si,j ] such
that δF (P [DP(k−1, î, j) . . . t], vîvi) ≤ δ. Similarly, if DP(k−1, î, j) ≤ si,j , then the minimal
t ∈ [ti,j , si,j ] such that δF (P [DP(k − 1, î, j) . . . t], vîvi) ≤ δ is max(DP(k − 1, î, j), ti,j).
Now let t ∈ [ti,j , si,j ] be minimal such that DP(k−1, i′, j) 6=∞ and δF (P [DP(k−1, i′, j) . . . t],
vi′vi) ≤ δ for some i′ < i. It follows that if min

i′<i
DP(k−1, i′, j) ≤ si,j , then t = max(min

i′<i
DP(k−

1, i′, j), ti,j) and if min
i′<i

DP(k−1, i′, j) > si,j , then no such t exists. Since min
i′<i

DP(k−1, i′, j) =

DP1(k, i, j) and DP1(k, i, j) = max(DP1(k, i, j), ti,j) when DP 1(k, i, j) ≤ si,j (by defi-
nition), we have that when DP1(k, i, j) ≤ si,j , DP1(k, i, j) = max(DP1(k, i, j), ti,j) =
max(min

i′<i
DP(k − 1, i′, j), ti,j) = t. Similarly when DP1(k, i, j) > si,j , then DP (k, i, j) = ∞

and t does not exist.

We now look at the monotone paths that intersect hor j . Observe that if the mono-
tone path intersects hor j then j′ < j. Along this line, we define DP2(k, i, j) = 1 if there
exists some i′ < i and j′ < j, such that DP(k − 1, i′, j′) 6= ∞ and there exists a monotone
path from (0,DP(k−1, i′, j′)) to (1, ti,j) in the free-space FS δ(P, vi′vi) and otherwise we set
DP2(k, i, j) = 0. Hereafter we define,

DP2(k, i, j) =

{
ti,j if DP2(k, i, j) = 1
∞ otherwise

We show a characterization of DP2, similar to our characterization of DP in Lemma
3.2, thus establishing that DP2 correctly handles all paths intersecting hor j .

Observation 3.5. DP2(k, i, j) is the minimal t ∈ [ti,j , si,j ] such that DP(k − 1, i′, j′) 6= ∞
and δF (P [DP(k− 1, i′, j′) . . . t], vi′vi) ≤ δ for some i′ < i and j′ < j. If no such t exists then
DP2(k, i, j) =∞.

Proof. Let t ∈ [ti,j , si,j ] be minimal such that DP(k − 1, i′, j′) 6= ∞ and δF (P [DP(k −
1, i′, j′) . . . t], vi′vi) ≤ δ for some i′ < i and j′ < j. If such t exists then DP 2(k, i, j) = 1.
Observe that for any i′ < i and j′ < j, if there is a monotone path from (0,DP(k− 1, i′, j′))
to (1, t) in FS δ(P, vi′vi), then the path intersects hor j (at say z). Since fbox j is convex, the
line segment connecting z and (1, ti,j) lies inside fbox j and hence inside FS δ(P, vi′vi). Thus,
there is a monotone path from (0,DP(k − 1, i′, j′)) to (1, ti,j) in FS δ(P, vi′vi) following the
monotone path from (0,DP(k − 1, i′, j′)) to z and then from z to (1, ti,j) (see Figure 4).
Since t ≥ ti,j and is minimal, we have t = ti,j = DP2(k, i, j). Similarly if such t does not
exist, then DP2(k, i, j) = 0 and DP2(k, i, j) =∞.

Lemma 3.6. DP(k, i, j) = min(DP1(k, i, j),DP2(k, i, j)).

Proof. Follows directly from Lemma 3.2, 3.4, and 3.5.
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Figure 4: Illustration of the proof of Observation 3.5. For ti,j ≤ t ≤ si,j , there is a monotone
path from (0,DP(k−1, i′, j′)) to (1, t) in the free-space FS δ(P, vi′vi) (left) for some i′ < i and
j′ < j that intersect hor j at z. Then, there is also a monotone path from (0,DP(k−1, i′, j′))
to (1, ti,j) (right) in the free-space FS δ(P, vi′vi) following the same monotone path from
(0,DP(k − 1, i′, j′) to z and then from z to (1, ti,j).

In particular this yields a dynamic programming formulation for DP(k, i, j), since
both DP1(k, i, j) and DP2(k, i, j) depend on values of DP(k′, i′, j′) with k′ < k, i′ < i and
j′ ≤ j.

We define κ(i, j) as the minimal k such that DP(k, i, j) 6= ∞. Similarly we define
κ1(i, j) and κ2(i, j) as the minimal k such that DP1(k, i, j) 6= ∞ and DP2(k, i, j) 6= ∞
respectively. Note that κ(i, j) = min(κ1(i, j), κ2(i, j)) (by Lemma 3.6). Also note that both
κ1(i, j), and κ2(i, j) depends only on the values of DP(k′, i′, j′) with k′ < k, i′ < i and
j′ ≤ j.

With these preparations, we can now present our dynamic programming algorithm,
except for one subroutine κ2-subroutine(i) that we describe in Section 3.3. In particular, for
any i, κ2-subroutine(i) determines κ2(i, j) for all j ∈ [n] in time T (n) only using the values
of κ(i′, j) for all i′ < i and all 0 ≤ j ≤ n − 1. Now we show how to compute DP1(k, i, j).
Observe that for any i, j and k we can compute DP1(k, i, j) from DP1(k, i − 1, j) and
DP(k − 1, i− 1, j) as DP1(k, i, j) = min(DP1(k, i− 1, j),DP(k − 1, i− 1, j)). Then, we can
compute DP1(k, i, j) using the formulation in 1 and set κ1(i, j) to the minimal k such that
DP1(k, i, j) 6=∞. This shows that we determine DP1(k, i, j) and κ1(i, j) in O(1) and O(n)
time, respectively. Now we show how to compute DP2(k, i, j). Notice that DP2(k, i, j) = ti,j
if and only if k ≥ κ2(i, j) and DP2(k, i, j) = ∞ otherwise. Also, we can set κ(i, j) as
min(κ1(i, j), κ2(i, j)). Hence, we can determine DP2(k, i, j) and κ(i, j) in O(1) time. After
that, we can also compute DP(k, i, j) by the formulation in Lemma 3.6 in O(1) time.
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Algorithm 1 Solving curve simplification under Global-Fréchet distance
1: Determine ti,j and si,j for all 0 ≤ i ≤ n and 0 ≤ j ≤ n− 1
2: Determine the largest j0 such that ‖v0 − vj‖p ≤ δ for all j ≤ j0
3: Set DP1(k, 0, j),DP(k, 0, j) to 0 for all j ≤ j0 and to ∞ otherwise (for all k ∈ [n+ 1])
4: Set κ(0, j) to 1 for all j ≤ j0 and to ∞ otherwise
5: Set DP(0, i, j) to ∞ for all i, j ∈ [n]
6: for all i = 1 to n do
7: Determine κ2(i, j) for all 0 ≤ j ≤ n− 1 using κ2-subroutine(i)
8: for j = 0 to n− 1 do
9: for k = 1 to n+ 1 do

10: Set DP1(k, i, j) to min(DP1(k, i− 1, j),DP(k − 1, i− 1, j))
11: Set DP1(k, i, j) to max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j and to∞ otherwise
12: Set κ1(i, j) to the smallest k such that DP1(k, i, j) 6=∞
13: Set κ(i, j) = min(κ1(i, j), κ2(i, j))
14: for k = 1 to n+ 1 do
15: Set DP2(k, i, j) to ti,j if k ≥ κ2(i, j) and to ∞ otherwise
16: Set DP(k, i, j) to min(DP1(k, i, j),DP2(k, i, j))

17: Return κ(n, n− 1)

Algorithm 1 takes O(n·T (n)) time for determining κ2(i, j) for all i, j ∈ [n]. The time
taken to compute κ1(i, j) and κ(i, j) is O(n) and O(1) respectively. All the DP cells are
updated in O(1) time. Since there are O(n2) κ cells and O(n3) DP cells, the total running
time of our algorithm is O(n3 + n · T (n)).

3.3 Implementing the κ2-subroutine(i)

In this subsection we show how to implement step 7 of Algorithm 1 in time T (n) = O(n2).
Then, in total we have O(n3) for solving Global-Fréchet simplification.

3.3.1 Cell Reachability

We introduce an auxiliary problem that we call Cell Reachability. We shall see later that an
O(n) time solution to this problem ensures that the κ2-subroutine(i) can be implemented
in time T (n) = O(n2).

Definition 3.7. In an instance of the Cell Reachability problem, we are given

• A set of n cells. Each cell j with 1 ≤ j ≤ n is a unit square with corner points (0, j)
and (1, j + 1). We say that cells j and j + 1 are consecutive.

• An integral entry-cost λj > 0 for every cell j.

• A set of n− 1 passages between consecutive cells. The passage pj is the horizontal line
segment with endpoints (j, aj) and (j, bj) where bj > aj.
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Figure 5: Illustrating an instance of Cell Reachability. The red horizontal line segments
between the cells indicate the passages. Note that cell 4 is only reachable from cells 2 and
3. therefore µ4 = min(λ2, λ3) = min(4, 8) = 4.

We say that cell j is reachable from cell j′ with j′ < j if and only if there exists
xj′+1 ≤ xj′+2 . . . ≤ xj such that xk ∈ [ak, bk] for every j′ < k ≤ j. Intuitively, cell j is
reachable from cell j′ if and only if there is a monotone path through the passages from cell
j′ to cell j. We define the exit-cost µj of cell j as the minimal λj′ such that j is reachable
from cell j′, j′ < j. The goal of the problem is to determine the sequence 〈µ1, µ2, . . . , µn〉.
See Figure 5 for an illustration.

We make a more refined notion of reachability. For any cells j and j′ < j we define
the first reachable point frp(j, j′) on cell j from cell j′ as the minimal t such that there exists
xj′+1 ≤ xj′+2 ≤ . . . ≤ xj such that each xk ∈ [ak, bk] for every j′ < k ≤ j and xj = t and
we set frp(j, j′) =∞ if there exists no such t. Let tj(k) be the first reachable point on cell
j from any cell j′ with entry-cost at most k i.e. tj(k) = min

{
frp(j, j′)

∣∣ j′ < j, λj′ ≤ k
}
.

In particular we have tj(0) = ∞, since λj′ > 0 for all j′ < j. We now make some simple
observations about tj(k).

Observation 3.8. µj is the minimal k such that tj(k) 6=∞.

Proof. We have tj(k) 6=∞ if and only if cell j is reachable from some cell j′ < j with entry-
cost λj′ ≤ k. Therefore, the minimal such λj′ is the minimal k at which tj(k) 6=∞.

Thus, it suffices to show how to determine tj(·) and µj from tj(·) for all j ∈ [n] in
O(n) time. Our solution is similar to an algorithm by Alt et al. [5, Lemma 2.3].

Observation 3.9. We have tj(k + 1) ≤ tj(k) for any j ∈ [n] and k ≥ 0.

http://jocg.org/


JoCG 11(2), 94–130, 2020 109

Journal of Computational Geometry jocg.org

8 = λj−1
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tj−1(9) tj−1(8) tj−1(4) tj−1(2) tj−1(1)

tj(8) tj(4) tj(2)

aj bj

Figure 6: Illustration of the proof of Lemma 3.10. Determining the function tj(·) from
aj ,bj ,tj−1(·), and λj−1. For all k ≥ λj−1 = 8 we have tj(k) = aj . For k = 2 and k = 4
we have k < λj−1 and tj−1(k) ≤ bj , implying tj(k) = tj(k − 1). Lastly for k = 1 we have
tj−1(k) > bj , implying tj(k) =∞.

Proof. The minimum in the definition of tj(k + 1) is taken over a superset compared to
tj(k).

Lemma 3.10. For any j ∈ [n] and k ≥ 0 we have

tj(k) =


aj if k ≥ λj−1

aj if k < λj−1 and tj−1(k) ≤ aj
tj−1(k) if k < λj−1 and tj−1(k) ∈ (aj , bj ]
∞ if k < λj−1 and tj−1(k) > bj

Proof. See Figure 6 for an illustration. Note that frp(j, j − 1) = aj . Therefore, if λj−1 ≤ k,
then tj(k) = min

j′<j,λj′≤k
frp(j, j′) ≤ frp(j, j − 1) = aj . Since tj(k) ≥ aj , we conclude that

tj(k) = aj . Now we discuss the cases when k < λj−1. Let tj(k) = frp(j, j′). Since λj−1 > k
we have j′ < j − 1. Therefore, there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj−1 ≤ xj such that
xk ∈ [ak, bk] for every j′ < k ≤ j with xj = tj(k). Note that tj−1(k) ≤ xj−1 ≤ xj = tj(k).
Thus, tj(k) ≥ max(tj−1(k), aj). In particular, if tj−1(k) > bj , then tj(k) =∞. Now we look
into the case when tj−1(k) ≤ bj . Observe that if tj−1(k) ≤ bj then there exists ĵ < j − 1
and there exists xĵ+1 ≤ xĵ+2 ≤ . . . ≤ xj−1 = tj−1(k) such that xk ∈ [ak, bk] for every
ĵ < k ≤ j−1. Setting xj = max(aj , tj−1(k)) and there exists xĵ+1 ≤ xĵ+2 ≤ . . . ≤ xj−1 ≤ xj
such that xk ∈ [ak, bk] for every ĵ ≤ k ≤ j and hence tj(k) ≤ max(aj , tj−1(k)). Combining
the two inequalities we get that tj(k) = max(aj , tj−1(k)) when tj−1(k) ≤ bj .

Lemma 3.10 yields a recursive definition for tj(·). To ensure that we can solve an
instance of cell reachability in O(n) time, if suffices to determine tj(·) from tj−1(·) and µj
from tj(·) in O(1) amortized time. To this end, let Sj = {k ≥ 0 | tj(k) < tj(k − 1)} and let
Lj be the doubly linked list storing the pairs (k, tj(k)) for every k ∈ Sj , sorted in descending
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order of k (or equivalently in increasing order of tj(k)). To develop some intuition, note
that for any k and j, if we have tj(k) = tj(k − 1), then this means that every cell j′ ≥ j
that is reachable from a cell ĵ ≤ j with entry-cost at most k is also reachable from some
cell j̃ ≤ j with entry-cost at most k − 1. Since we are only interested in reachability from a
cell of minimum entry-cost, we can ignore reachability from all cells below cell j with entry
costs k. Therefore, it suffices to focus on the set Sj and the corresponding µj . In particular
we can determine µj from Sj as following,

Lemma 3.11. The minimal positive k in Sj is equal to µj.

Proof. Since tj(0) =∞, the minimal positive k in Sj is the minimal k such that tj(k) 6=∞.
By Observation 3.8 this is equal to µj .

We now outline a simple algorithm to determine Lj from Lj−1. Again see Figure 6
for illustration. The algorithm first determines kleft , the minimal k such that tj(k) = aj ,
by moving the head of the list Lj−1 to the right as long as k ≥ λj−1 or tj−1(k) ≤ aj
(correctness follows directly from Lemma 3.10). Observe that tj(k) = tj(kleft) = aj for all
k ≥ kleft . Next it determines kright , the minimal k such that tj(k) ≤ bj by moving the tail
of Lj−1 to the minimal k such that tj−1(k) ≤ bj . Note that at this point we have already
inserted (kleft , aj) so kright is guaranteed to exits (again correctness follows from Lemma
3.10). Observe that tj(k) = tj(0) = ∞ for all k < kright . Thus, we have µj = kright . Now
we are left with updating Lj for pairs with k ∈ (kleft , kright). Note that for k ∈ (kleft , kright),
we have tj(k) = tj−1(k) (by Lemma 3.10) and therefore tj(k) = tj(k − 1) if and only if
tj−1(k) = tj−1(k−1). Thus, the sublist of Lj corresponding to the values of k ∈ (kleft , kright)
is same as the sublist of Lj−1 corresponding to the values of k ∈ (kleft , kright). Finally, the
algorithm appends a new node to Lj storing (0,∞) (since tj(0) =∞).

Algorithm 2 Determining Lj from Lj−1

1: L← Lj−1

2: kleft ← λj
3: while k ≥ λj or t ≤ aj , where (k, t) = L.front() do
4: kleft ← min(kleft , k)
5: L.popfront()

6: L.pushfront((kleft , aj)
7: while t > bj , where (k, t) = L.back() do
8: L.popback()

9: Set µj = k, where (k, t) = L.back().
10: L.pushback((0,∞))
11: Lj ← L

The number of operations performed to determine Lj from Lj−1 and determining µj
from Lj is O(1 + d) where d is the number of pairs deleted from Lj−1. Since every deleted
pair was previously inserted, we can pay for the deletions by paying an extra token per
insertion. Note that there are two insertions per update. Hence, the total time taken to
determine Lj and µj for all j ∈ [n] is O(n).
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Theorem 3.12. Cell Reachability can be solved in O(n) time.

3.3.2 Implementing κ2-subroutine(i) using Cell Reachability

Recall the definition of κ2(·, ·) and what our goal is now : For a fixed i′ < i, let κ(i, j, i′) be
the minimal k such that for some j′ < j, we have DP(k − 1, i′, j′) 6= ∞ and δF (P [DP(k −
1, i′, j′) . . . ti,j ], vi′vi) ≤ δ. Note that κ2(i, j) = min

i′<i
κ(i, j, i′). In order to show that the

κ2-subroutine(i) can be implemented in O(n2), it suffices to show that for fixed i′ < i we
can determine κ(i, j, i′) for all j ∈ [n− 1] in O(n) time.

Observation 3.13. Let the line segment with endpoints (aj , j) and (bj , j) denote the free-
space on hor j in FS δ(P, vi′vi) where i′ < i. Then, for any j′ < j there is a monotone path
from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FS δ(P, vi′vi) if and only if there exist
xj′+1 ≤ xj′+2 ≤ . . . xj with each xk ∈ [ak, bk] for all j′ < k ≤ j.

Proof. The “only if” direction is straightforward. Note that the monotone path from (0,DP
(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FS δ(P, vi′vi) intersects hork for all j′ < k ≤ j.
Let xk be the intersection of the path with hork for j′ < k ≤ j. Since the path lies inside
the free-space FS δ(P, vi′vi) we have xk ∈ [ak, bk] for every j′ < k ≤ j. Since the path is
monotone we have xj′+1 ≤ xj′+2 ≤ . . . ≤ xj .
Now we show the “if” direction. Assume there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj and xk ∈ [ak, bk]
for every j′ < k ≤ j. Since every fboxk is convex for every j′ < k < j, the line segment with
endpoints as (xk, k) and (xk+1, k + 1) lies inside fboxk. By the same convexity argument
it follows that the line segment with endpoints (0,DP(κ(i′, j′), i′, j′) and (xj′+1, j

′ + 1) lies
inside fbox j′ and the line segment with endpoints (xj , j) and (1, ti,j) also lies inside fbox j .
Therefore, we have a monotone path namely 〈(0,DP(κ(i′, j′), i′, j′), (xj′+1, j

′+1), (xj′+2, j
′+

2) . . . (xj , j)(1, ti,j)〉 inside the free-space FS δ(P, vi′vi) from (0,DP(κ(i′, j′), i′, j′) to (1, ti,j).

Observation 3.14. Fix any i and j. Consider any k > 0 and any i′ < i and j′ < j.
If there is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j) in the free-space FS δ(P, vi′vi)
intersecting hor j, then there is also a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j)
in the free-space FS δ(P, vi′vi) intersecting hor j.

Proof. This is obvious by inspecting the free-space FS δ(P, vi′vi) as follows. Since the
monotone path intersects hor j , we have j′ < j. Observe that both DP(k, i′ , j′) and
DP(κ(i′, j′), i′, j′) lie in the interval [ti′,j′ , si′,j′ ]. Also let z be the point at which the mono-
tone path intersects hor j′+1. Then, there is a monotone path in FS δ(P, vi′ , vi) from z to
(1, ti,j). Since fbox j′ is convex (By Fact 3.3) the line segment joining (0,DP(κ(i′, j′), i′, j′))
and z is contained in fbox j′ . Therefore, there is a monotone path from (0,DP(κ(i′, j′), i′, j′))
to (1, ti,j) by walking from (0,DP(κ(i′, j′), i′, j′)) to z and then following the monotone path
from z to (1, ti,j).

Observations 3.13 and 3.14 imply that κ(i, j, i′) is the minimal value of 1 + κ(i′, j′)
over all j′ < j such that there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj with every xk ∈ [ak, bk] for all
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vi′ vi

DP(k, i′, j′)

DP(κ(i′, j′), i′, j′)

ti,j

si,j

z

vi′ vi

DP(k, i′, j′)

DP(κ(i′, j′), i′, j′)

ti,j

si,j

z

Figure 7: Illustration of the proof of Observation 3.14. For any i′ < i, j′ < j and any k, there
is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j) in FS δ(P, vi′vi) (left) that intersects hor j
at z. Then, there is a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in FS δ(P, vi′vi)
(right) by walking from (0,DP(κ(i′, j′), i′, j′) to z and then following the existing monotone
path from z to (1, ti,j).
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Q

(a) |Q| = 5
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C̃

P

simplify
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(b) Incorrect choice of ã and b̃
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C̃

P

simplify

Ã B̃
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Q

(c) Correct choice of ã and b̃

Figure 8: Illustration of the reduction. P is the given polyline that visits vertices in Ã, C̃
and B̃ in the exact same order. Note that a simplification Q of size five is always possible
as shown in (a). However a simplification of size four exists if and only if there exists ã ∈ A
and b̃ ∈ B such that all vertices in C̃ are close to ãb̃ as illustrated in (b) and (c).

j′ < k ≤ j.
Note that now we are “almost” in an instance of the Cell Reachability problem where

the passage pj corresponds to the free space on hor j and each λj = 1 + κ(i′, j). The only
difference is that the free space on some hor j could be empty (while in the Cell Reachability
problem we never had empty passages). However if the free space on any hor j is empty then
there exists no monotone path in the free-space FS δ(P, vi′vi) from any point below hor j to
any point above hor j . Thus, we can split the instance into two disjoint instances of Cell
Reachability. Thus, for any fixed i′ we can determine κ(i, j, i′) in O(n) time, and therefore
we can implement κ2-subroutine(i) for any i ∈ [n] in T (n) = O(n2).

4 Conditional Lower Bound for Curve Simplification

In this section we show that an6 O(n3−ε) time algorithm for Global-Fréchet, Local-Fréchet,
or Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2, would yield an
O(n3−ε) algorithm for ∀∀∃-OV.

We first briefly present the ideas behind our conditional lower bounds. For better
exposition, we will mention the previous conditional lower bounds known for polyline sim-
plification and then highlight the novelty in our conditional lower bound. Then we move on
to the details of our reduction.

Ideas behind the conditional lower bound. Let us first briefly sketch the previous con-
ditional lower bound by Buchin et al. [8]. See Figure 8 for an illustration. Given a 2-OV

6Recall that throughout the paper in O-notation we hide polynomial factors in d.
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instance on vectors A,B ⊆ {0, 1}d, they construct corresponding point sets Ã, B̃ ⊂ Rd′ (for
some d′ = O(d)), forming two clusters that are very far apart from each other. They also
add a start- and an endpoint, which can be chosen far away from these clusters (in a new
direction). Near the midpoint between Ã and B̃, another set of points C̃ is constructed.
The final curve then starts in the startpoint, walks through all points in Ã, then through
all points in C̃, then through all points in B̃, and ends in the endpoint. This setup ensures
that any reasonable size-4 simplification must consist of the startpoint, one point ã ∈ Ã, one
point b̃ ∈ B̃, and the endpoint. All points in Ã are close to ã, so they are immediately close
to the simplification, similarly for B̃. Thus, the constraints are in the points C̃. Buchin et
al. [8] construct C̃ such that it contains one point for each dimension ` ∈ [d], which “checks”
that the vectors corresponding to the chosen points ã, b̃ are orthogonal in dimension `, i.e.,
one of a or b has a 0 in dimension `.

We instead want to reduce from ∀∀∃-OV, so we are given an instance A,B,C and
want to know whether for all a ∈ A, b ∈ B there exists c ∈ C such that a, b, c are orthogonal.
In our adapted setup, the set C̃ is in one-to-one correspondence to the set of vectors C (the
global picture is still as in Figure 8). That is, choosing a size-4 simplification implements
an existential quantifier over a ∈ A, b ∈ B. The constraints that all c̃ ∈ C̃ are close to the
line segment from ã to b̃ implements a universal quantifier over c ∈ C (see Figure 8 for an
illustration). Naturally, we want the distance from c̃ to the line segment ãb̃ to be large if
a, b, c are orthogonal, and to be small otherwise. This simulates the negation of ∀∀∃-OV, so
any curve simplification algorithm can be turned into an algorithm for ∀∀∃-OV.

The restriction p ∈ [1,∞) with p 6= 2 in Theorem 1.2 already is a hint that the specific
construction of points is subtle. Indeed, let us sketch one critical issue in the following. We
want the points C̃ to lie in the middle between Ã and B̃, which essentially means that we
want to consider the distance from (ã + b̃)/2 to c̃. Now consider just a single dimension
of ∀∀∃-OV. Then, our task boils down to constructing points a0, a1 and b0, b1 and c0, c1,
corresponding to the bits in this dimension, such that ‖(ai+bj)/2−ck‖p = β1 if i = j = k = 1
and β0 otherwise, with β1 < β0. Writing a′i = ai/2 and b′j = bj/2 for simplicity, in the case
p = 2 we can simplify

‖a′i + b′j − ck‖22 =
d′∑
`=1

(a′i[`] + b′j [`]− ck[`])2

=
d′∑
`=1

(
(a′i[`] + b′j [`])

2 + (a′i[`]− ck[`])2 + (b′j [`]− ck[`])2 − a′i[`]2 − b′j [`]2 − ck[`]2
)

= ‖a′i + b′j‖22 + ‖a′i − ck‖22 + ‖b′j − ck‖22 − ‖a′i‖22 − ‖b′j‖22 − ‖ck‖22
= f1(i, j) + f2(j, k) + f3(i, k), (2)

for some functions7 f1, f2, f3 : {0, 1}× {0, 1} → R. Note that by assumption this is equal to
β2

1 if i = j = k = 1 and β2
0 otherwise, with β1 < β0. After a linear transformation, we thus

obtain a representation of the form (2) for the function f(i, j, k) = i · j · k for i, j, k ∈ {0, 1}.
However, it can be checked that such a representation is impossible8. Therefore, for p = 2

7This holds for f1(i, j) := ‖a′i+b′j‖22−‖a′i‖22, f2(j, k) := ‖b′j−ck‖22−‖b′j‖22, and f3(i, k) := ‖a′i−ck‖22−‖ck‖22.
8For instance, we can express this situation by a linear system of equations in 12 variables (the 4 image
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our outlined reduction cannot work - provably!

We nevertheless make this reduction work in the cases p ∈ [1,∞), p 6= 2. The above
argument shows that the construction is necessarily subtle. Indeed, constructing the right
points requires some technical effort, which we now elaborate.

4.1 Overview of the Reduction

We now give an overview of the reduction. Consider any instance (A,B,C) of ∀∀∃-OV
where A,B,C ⊆ {0, 1}d have size n. We write A = {a1, a2, . . . an}, B = {b1, b2, . . . bn}, and
C = {c1, c2, . . . cn}. We will efficiently construct 3n+ 1 points in RD with D ∈ O(d) namely
the sets of points Ã = {ã1, ã2, . . . ãn}, B̃ =

{
b̃1, b̃2, . . . b̃n

}
, and C̃ = {c̃1, c̃2, . . . c̃n}, and one

more point s. We also determine δ ≥ 0, such that the following properties are satisfied.

(P1) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, there is a point x on the line segment ãb̃ with ‖x− c̃‖p ≤ δ
if and only if ‖ ã+b̃

2 − c̃‖p ≤ δ.

(P2) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, we have ‖ ã+b̃
2 − c̃‖p ≤ δ if and only if

∑
`∈[d]

a[`]·b[`]·c[`] 6= 0.

(P3) ‖x− y‖p ≤ δ holds for all x, y ∈ Ã, and for all x, y ∈ B̃, and for all x, y ∈ C̃.

(P4) For any y1, y2 ∈ {s} ∪ B̃ ∪ C̃ and any point x on the line segment y1y2 we have
‖x− ã‖p > δ for all ã ∈ Ã.

(P5) For any y1, y2 ∈ {s} ∪ Ã ∪ C̃ and any point x on the line segment y1y2 we have
‖x− b̃‖p > δ for all b̃ ∈ B̃.

(P6) For any y ∈ B̃ ∪ Ã and any point x on the line segment sy we have ‖x − c̃‖p > δ for
all c̃ ∈ C̃.

We postpone the exact construction of these points. Our hard instance for curve
simplification will be Q = 〈s, ã1, ã2, . . . , ãn, c̃1, c̃2, . . . , c̃n, b̃1, b̃2, . . . , b̃n, s〉.

Lemma 4.1. Let Q̂ = 〈s, ãi, b̃j , s〉 for some ãi ∈ Ã and b̃j ∈ B̃. If ‖ ãi+b̃j2 − c̃‖p ≤ δ for all
c̃ ∈ C̃ then the Local-Frechet distance between Q and Q̂ is at most δ.

Proof. Both Q and Q̂ have the same starting point s. By property P3 we have ‖ã− ãi‖p ≤ δ
for all ã ∈ Ã, and ‖b̃− b̃j‖p ≤ δ for all b̃ ∈ B̃. Thus, it follows that δF (〈s, ã1, . . . , ãi〉, sãi) ≤ δ
and δF (〈b̃j , . . . , b̃n, s〉, b̃js) ≤ δ. It remains to show that δF (Qij , ãib̃j) ≤ δ where Qij =

〈ãi, . . . , ãn, c̃1, . . . , c̃n, b̃1, . . . , b̃j〉. To this end, first note that both polylines Qij and ãib̃j

have the same endpoints. We now outline monotone walks on both Qij and ãib̃j .

values for each function fi) and 8 equations (for the values of f on i, j, k ∈ {0, 1}) and verify that it has no
solution.
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(1) Walk on Qij from ãi to ãn and remain at ãi on ãib̃j .

(2) Walk uniformly on both polylines, up to ãi+b̃j
2 on ãib̃j and up to c̃1 on Qij .

(3) Walk on Qij from c̃1 to c̃n and remain at ãi+b̃j
2 on ãib̃j .

(4) Walk uniformly on both curves up to b̃j on ãib̃j and up to b̃1 on Qij .

(5) Walk on Qij until b̃j and remain at b̃j on ã1b̃j .

We now argue that we always stay within distance δ throughout the walks. For (1) and
(5) this follows due to property P3. For (2) and (4) it follows due to the fact that we
always remain within distance δ while walking with uniform speed on two line segments,
as long as their startpoints and their endpoints are within distance δ. By the assumption
‖ ãi+b̃j2 − c̃‖p ≤ δ for all c̃ ∈ C̃, we always stay within distance δ also for (3).

Observe that property P3 implies that there is a simplification of size five namely
Q̂ = 〈s, ã, c̃, b̃, s〉 for any ã ∈ Ã, b̃ ∈ B̃, and c̃ ∈ C̃, such that the distance between Q̂ and
Q is at most δ under Local-Fréchet, Global-Fréchet and Local-Hausdorff distance. We now
show that a smaller simplification is only possible if there exist a ∈ A, b ∈ B such that for
all c ∈ C we have

∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

Lemma 4.2. Let Q̂ be a simplification of the polyline Q of size 4. Then, the following
statements are equivalent :

(1) The Global-Fréchet distance between Q and Q̂ is at most δ.

(2) The Local-Fréchet distance between Q and Q̂ is at most δ.

(3) The Local-Hausdorff distance between Q and Q̂ is at most δ.

(4) There exist some ã ∈ Ã, b̃ ∈ B̃, such that Q̂ = 〈s, ã, b̃, s〉, and ‖ ã+b̃
2 − c̃‖p ≤ δ for every

c̃ ∈ C̃.

(5) There exist a ∈ A, b ∈ B such that for all c ∈ C we have
∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

Proof. We first show that (1), (2), and (3) are equivalent to (4). To this end, we first show
that each of (1), (2), and (3) imply (4). Since for any y1, y2 ∈ s∪ B̃ ∪ C̃ there is no point on
the line segment y1y2 that has distance at most δ to any ã ∈ Ã (by property P4), Q̂ must
contain at least one point from Ã. A symmetric argument can be made for the fact that
Q̂ must contain at least one point from B̃ (property P5). Since the size of Q̂ is 4, we have
Q̂ = 〈s, ã, b̃, s〉 for some ã ∈ Ã and b̃ ∈ B̃. By property P6 there is no point on the line
segments sã, and b̃s that has distance at most δ to any c̃ ∈ C. Therefore, the Global-Fréchet
distance or the Local-Fréchet distance, or the Local-Hausdorff distance between Q, and Q̂
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is at most δ only if for all c̃ ∈ C̃ there is a point on the line segment ãb̃ that has distance at
most δ to c̃. By property P1, this implies that ‖ ã+b̃

2 − c̃‖p ≤ δ for all c̃ ∈ C̃.

Now we show that (4) implies (1), (2), and (3). First observe that (2) implies (1)
and (3), since the Local-Fréchet distance between a curve and its simplification is at least
the Global-Fréchet distance, and at least the Local-Hausdorff distance between the same.
Thus, it suffices to show that (4) implies (2). This directly follows from Lemma 4.1. Finally,
(4) and (5) are equivalent due to property P2.

Observing that we can construct Q and determine δ in O(nd) time, the above lemma
directly yields the following theorem.

Theorem 4.3. For any ε > 0, there is no O(n3−ε) algorithm for Global-Fréchet, Local-
Fréchet, and Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2 unless
∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding whether the optimal
simplification has size ≤ 4 or ≥ 5.

Proof. Given an instance A,B,C of ∀∀∃-OV, we can construct the curve Q and determine
δ in O(nd). By Lemma 4.2, the simplification problem on (Q, δ) is equivalent to ∀∀∃-OV
on A,B,C. Thus, any O(n3−ε) time algorithm for the curve simplification problem would
yield an O(n3−ε) algorithm for ∀∀∃-OV.

It remains to construct the point s, the sets Ã, B̃ and C̃ and determine δ. We
first introduce some notation. For vectors x and y and α ∈ [−1

2 ,
1
2 ], we define Pxy(α) as

(1
2 − α)x + (1

2 + α)y. Moreover let ui ∈ Rd. We write v =
[
u1u2 . . . um

]
for the vector

v ∈ Rmd with v[(j − 1)d+ k] = uj [k] for any j ∈ [m] and k ∈ [d].

Fact 4.4. Let u1, u2, . . . , um ∈ Rd and v =
[
u1u2 . . . um

]
. Then, we have ‖v‖pp =

∑
i∈[m]

‖ui‖pp.

4.2 Coordinate gadgets

In this section, our aim is to construct points Ai, Bi, Ci for i ∈ {0, 1} such that the distance
‖Ci − PAjBk(0)‖p only depends on whether the bits i, j, k ∈ {0, 1} seen as coordinates of
vectors are orthogonal. In other words, the points Ai, Bi, Ci form a coordinate gadget.
Formally we will prove the following lemma.

Lemma 4.5. For any p 6= 2

‖Ci − PAjBk(0)‖pp =

{
β1 if i = 1, j = 1, k = 1
β2 otherwise

where β1 < β2.

In Section 4.3 we will use this lemma to construct the final point sets Ã, B̃ and C̃.
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Let θ1, θ2, θ3, θ4 and θ5 be positive constants. We construct the points A1, B1, C1

and A0, B0, C0 in R9 as follows :

A0 =
[

−θ1, 0, −θ2, 0, θ3, 2θ3, θ4, −2θ4, 0
]

A1 =
[

θ1, 2θ1, θ2, −2θ2, −θ3, 0, −θ4, 0, 0
]

B0 =
[

−θ1, 0, θ2, 2θ2, θ3, −2θ3, −θ4, 0, 0
]

B1 =
[

θ1, −2θ1, −θ2, 0, −θ3, 0, θ4, 2θ4, 0
]

C0 =
[

0, 0, 0, 0, 0, 0, 0, 0, θ5

]
C1 =

[
−θ1, 0, −θ2, 0, −θ3, 0, −θ4, 0, 0

]
From these points we can compute the points PAiBj (0) for all i, j ∈ {0, 1}.

PA0B0(0) =
[
−θ1, 0, 0, θ2, θ3, 0, 0, −θ4, 0

]
PA1B0(0) =

[
0, θ1, θ2, 0, 0, −θ3, −θ4, 0, 0

]
PA1B1(0) =

[
θ1, 0, 0, −θ2, −θ3, 0, 0, θ4, 0

]
PA0B1(0) =

[
0, −θ1, −θ2, 0, 0, θ3, θ4, 0, 0

]
Observe that ‖C0 − PAiBj (0)‖pp =

∑
r∈[5]

θpr for all i, j ∈ {0, 1}. Thus, all the points

PAiBj(0) are equidistant from C0 irrespective of the exact values of θr for r ∈ [5]. Note
that when θr = θ for all r ∈ [5], then ‖C1 − PAiBj (0)‖pp = 4θp + 2pθp for all i, j ∈ {0, 1}.
Thus, all the points PAiBj (0) are equidistant from C1 when all the θr are the same. We
now determine θr for r ∈ [5] such that all but one point in

{
PAiBj (0)|i, j ∈ {0, 1}

}
are

equidistant and far from C1. More precisely,

‖C1 − PAiBj (0)‖pp =

{
β1 if i = 1, j = 1
β2 otherwise

and β1 < β2. We first quantify the distances from {C0,C1} to each of the points in{
PAjBk(0) | j, k ∈ {0, 1}

}
.

Lemma 4.6. We have

‖Ci − PAjBk(0)‖pp =



∑
r∈[5] θ

p
r if i = 0

2θp2 + 2pθp3 + 2θp4 if i = 1, j = 0, k = 0
2θp1 + 2pθp2 + 2θp3 if i = 1, j = 1, k = 0
2θp1 + 2θp3 + 2pθp4 if i = 1, j = 0, k = 1
2pθp1 + 2θp2 + 2θp4 if i = 1, j = 1, k = 1

We now set the exact values of θr for r ∈ [5]. We define values depending on p.
When 1 ≤ p < 2 we set

θ1 = (2p−1 − 1)
1
p , θ2 = 0, θ3 = 1, θ4 = 0, θ5 = 2

p−1
p

Now we make the following observation,
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Observation 4.7. When 1 ≤ p < 2, then

‖Ci − PAjBk(0)‖pp =

{
2p(2p−1 − 1) if i = 1, j = 1, k = 1
2p otherwise

Proof. Substituting the values of θk for every k ∈ [4] in Lemma 4.6 we have that

‖C0 − PAjBk(0)‖pp = 2p−1 − 1 + 0p + 1p + 0p + 2p−1 =2p

‖C1 − PA0B0(0)‖pp = 2 · 0p + 2p · 1p + 2 · 0p =2p

‖C1 − PA1B0(0)‖pp = 2 · (2p−1 − 1) + 2p · 0p + 2 · 1p =2p

‖C1 − PA0B1(0)‖pp = 2 · (2p−1 − 1) + 2 · 1p + 2p · 0p =2p

‖C1 − PA1B1(0)‖pp = 2p · (2p−1 − 1) + 2 · 0p + 2p · 0p =2p(2p−1 − 1)

In case p > 2. Then, we set

θ1 = 0, θ2 = (2p − 2)
1
p , θ3 = (2p − 4)

1
p , θ4 = (2p − 2)

1
p , θ5 = (22p − 3 · 2p)

1
p

We make a similar observation,

Observation 4.8. When p > 2, then

‖Ci − PAjBk(0)‖pp =

{
2p+2 − 8 if i = 1, j = 1, k = 1
22p − 8 otherwise

Proof. Substituting the values of θk for every k ∈ [4] in Lemma 4.6 we have that

‖C0 − PAjBk(0)‖pp = 0p + (2p − 2) + (2p − 4) + (2p − 2) + (22p − 3 · 2p) =22p − 8

‖C1 − PA0B0(0)‖pp = 2 · (2p − 2) + 2p · (2p − 4) + 2 · (2p − 2) =22p − 8

‖C1 − PA1B0(0)‖pp = 2 · 0p + 2p · (2p − 2) + 2 · (2p − 4) =22p − 8

‖C1 − PA0B1(0)‖pp = 2 · 0p + 2 · (2p − 4) + 2p · (2p − 2) =22p − 8

‖C1 − PA1B1(0)‖pp = 2p · 0p + 2 · (2p − 2) + 2 · (2p − 2) =2p+2 − 8

Combining Observations 4.7 and 4.8 we arrive at Lemma 4.5.

4.3 Vector gadgets

For every a ∈ A, b ∈ B, and c ∈ C we introduce vectors a′, b′, c′, and a′′, b′′, c′′, and then
concatenate the respective vectors to form ã, b̃, and c̃ respectively. Intuitively, a′, b′, c′ pri-
marily help us to ensure properties P1, and P2, while a′′, b′′, c′′ help us ensure the remaining
properties.
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4.3.1 The vectors a′, b′, c′, and s′

We construct the vector s′, and the vectors a′, b′, and c′ for every a ∈ A, b ∈ B, and c ∈ C
respectively, in R9d as follows :

a′ =
[
Aa[1],Aa[2], . . .Aa[d]

]
(3)

b′ =
[
Bb[1],Bb[2], . . .Bb[d]

]
(4)

c′ =
[
Cc[1],Cc[2], . . .Cc[d]

]
(5)

s′ =
[
0, 0, . . . , 0

]
(6)

We also define the sets A′ = {a′ | a ∈ A}, B′ = {b′ | b ∈ B} and C ′ = {c′ | c ∈ C}.
We now make a technical observation about the vectors in A′, B′, and C ′, that will be useful
later. We set η1 = max

i∈[5]
θi.

Observation 4.9. For any x, y ∈ A′ ∪B′ ∪C ′, we have ‖x− y‖p ≤ η2 where η2 : = 36dη1.

Proof. Note that the absolute value of every coordinate of the vectors A1,B1,C1 and also
A0,B0,C0 is bounded by 2η1 (Since every coordinate is of the form ±θr or ±2θr or 0).
Also every coordinate of a′, b′, and c′, is a coordinate of one of A1,B1,C1,A0,B0 and C0.
Therefore, for any x, y ∈ A′ ∪ B′ ∪ C ′ we have max

`∈[9d]
|x[`] − y[`]| ≤ 4η1. Hence, we have

‖x− y‖p ≤
∑

`∈[9d]|x[`]− y[`]| ≤ 9d · 4η1 = 36dη1 = η2.

Note that a ∈ A, b ∈ B, and c ∈ C are non orthogonal if and only if #c,a,b
111 > 0

where #c,a,b
111 = |{i | i ∈ [d], a[i] = b[i] = c[i] = 1}|. The following lemma shows a connection

between non-orthogonality and small distance ‖c′ − Pa′b′(0)‖p.

Lemma 4.10. For any a ∈ A, b ∈ B, and c ∈ C we have ‖c′ − Pa′b′(0)‖pp = dβ2 − (β2 −
β1)#c,a,b

111 .

Proof. By Lemma 4.5, for any α ∈ [−1
2 ,

1
2 ]

‖Cc[`] − PAa[`]Bb[`](0)‖pp =

{
β1 if c[`] = a[`] = b[`] = 1
β2 otherwise

By Observation 4.4 we have

‖c′ − Pa′b′(0)‖pp =
∑
`∈[d]

‖Cc[`] − PAa[`]Bb[`](0)‖pp

= β2(d−#c,a,b
111 ) + β1#c,a,b

111

= dβ2 − (β2 − β1)#c,a,b
111 .
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4.3.2 The vectors a′′,b′′, c′′, and s′′

We construct the vector s′′ and the vectors a′′,b′′, and c′′ for every a ∈ A,b ∈ B, and c ∈ C,
respectively, in R3 as follows,

a′′ =
[
γ1, 0, 0

]
b′′ =

[
γ1, γ2, 0

]
c′′ =

[
0,
γ2

2
, 0
]

s′′ =
[
0,
γ2

2
, γ2]

where γ1, γ2 are positive constants. We are now ready to define the final points of our
construction, s and ã, b̃ and c̃ for any a ∈ A, b ∈ B and c ∈ C respectively.

ã =
[
a′, a′′

]
b̃ =

[
b′, b′′

]
c̃ =

[
c′, c′′

]
s =

[
s′, s′′

]
We set

γ1 = η1, δ = (γp1 + dβ2 − (β2 − β1))
1
p , γ2 = max

(
4δ, η2

(
1 +

(γp1 + dβ2)
1
p

(γp1 + dβ2)
1
p − δ

))

Note that we have constructed the point sets Ã, B̃, C̃, and the point s and determined
δ in total time O(nd). Therefore, now it suffices to show that our point set and δ satisfy
the properties P1, P2, P3, P4, P5, and P6. To this end we first show how the distance
‖c̃− Pãb̃(α)‖p is related with #c,a,b

111 (the non-orthogonality of the vectors a,b, and c) by the
following lemma.

Lemma 4.11. For any a ∈ A, b ∈ B, and c ∈ C we have,

• ‖c̃− Pãb̃(0)‖pp = γp1 + β2d− (β2 − β1)#c,a,b
111 .

• If #c,a,b
111 = 0 then ‖c̃− Pãb̃(α)‖pp > δ for all α ∈ [−1

2 ,
1
2 ].

Proof. Note that

c̃− Pãb̃(α) =
[
c′ − Pa′b′(α),−γ1,−γ2α, 0

]
=
[
c′ − Pa′b′(0),−γ1,−γ2α, 0

]
−
[
Pa′b′(α)− Pa′b′(0), 0, 0, 0

]
Thus, substituting α as 0,

‖c̃− Pãb̃(0)‖pp = ‖[c′ − Pa′b′(0),−γ1]‖pp
= γp1 + ‖c′ − Pa′b′(0)‖pp
= γp1 + dβ2 − (β2 − β1)#c,a,b

111 (by Lemma 4.10)
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Furthermore, by reverse triangle inequality we have

‖c̃− Pãb̃(α)‖p ≥ ‖
[
c′ − Pa′b′(0),−γ1,−γ2α, 0

]
‖p − ‖

[
Pa′b′(α)− Pa′b′(0), 0, 0, 0

]
‖p

= ‖
[
c′ − Pa′b′(0),−γ1,−γ2α

]
‖p − ‖

[
Pa′b′(α)− Pa′b′(0)

]
‖p.

We bound the two summands on the right hand side. Note that ‖
[
c′−Pa′b′(0),−γ1,−γ2α

]
‖p ≥

max((γp1 +dβ2−(β2−β1)#c,a,b
111 )

1
p , |α|γ2). We also have ‖

[
Pa′b′(α)−Pa′b′(0)

]
‖p = |α|‖b−a‖p ≤

|α|η2 (by Observation 4.9). Therefore, when #c,a,b
111 = 0, for any α ∈ [−1

2 ,
1
2 ] we have,

‖c̃− Pãb̃(α)‖p ≥ max((γp1 + dβ2)
1
p , |α|γ2)− |α|η2

Now we consider two cases. If |α| < 1
η2

((γp1 + dβ2)
1
p − δ), then

‖c̃− Pãb̃(α)‖p > (γp1 + dβ2)
1
p − ((γp1 + dβ2)

1
p − δ)

= δ

Similarly if |α| ≥ 1
η2

((γp1 + dβ2)
1
p − δ), we have

‖c̃− Pãb̃(α)‖p ≥ |α|γ2 − |α|η2

= |α|(γ2 − η2)

≥ 1

η2
(γp1 + dβ2)

1
p − δ) · η2

(
(γp1 + dβ2)

1
p

(γp1 + dβ2)
1
p − δ

)
( substituting γ2 and α)

= (γp1 + dβ2)
1
p

> δ.

Combining the two cases, we arrive at the second result of the lemma.

We now verify properties P1, P2, P3, P4, P5, and P6.

Lemma 4.12 (P2). For any a ∈ A, b ∈ B, and c ∈ C we have ‖c̃ − Pãb̃(0)‖p ≤ δ if and
only if #c,a,b

111 ≥ 1 or equivalently when
∑

`∈[d] a[`] · b[`] · c[`] 6= 0.

Proof. By Lemma 4.11 we have that ‖c̃−Pãb̃(0)‖p = (γp1 +dβ2−(β2−β1)#c,a,b
111 )

1
p . Therefore,

if #c,a,b
111 ≥ 1 then ‖c̃ − Pãb̃(0)‖p ≤ δ. Conversely if #c,a,b

111 = 0 then ‖c̃ − Pãb̃(0)‖p =

(γp1 + dβ2)
1
p > (γp1 + dβ2 − (β2 − β1))

1
p = δ.

Lemma 4.13 (P1). For any a ∈ A, b ∈ B, and c ∈ C we have ‖c̃ − Pãb̃(α)‖p ≤ δ for any
α ∈ [−1

2 ,
1
2 ], if and only if ‖c̃− Pãb̃(0)‖p ≤ δ.

Proof. The “if” statement is trivial as ‖c̃ − Pãb̃(α)‖p ≤ δ for α = 0. For the “only if” case,
since ‖c̃ − Pãb̃(0)‖p > δ, from Lemma 4.12 it follows that #c,a,b

111 = 0. By Lemma 4.11 we
obtain ‖c̃ − Pãb̃(α)‖pp > δ for all α ∈ [−1

2 ,
1
2 ]. Therefore, there exists no α ∈ [−1

2 ,
1
2 ] such

that ‖c̃− Pãb̃(α)‖p ≤ δ.
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Lemma 4.14 (P3). We have ‖x− y‖p ≤ δ for all x, y ∈ Ã, and for all x, y ∈ B̃, and for all
x, y ∈ C̃.

Proof. We prove the case of x, y ∈ Ã; the other cases are analogous. Consider any ã1, ã2 ∈ Ã.
Note that ‖ã1−ã2‖p = ‖a′1−a′2‖p. By Observation 4.9, we have ‖a′1−a′2‖p ≤ η2 < γ1 ≤ δ.

We now prove properties P4, P5 and P6.

Lemma 4.15 (P4,P5, and P6). For any a ∈ A, b ∈ B, and c ∈ C, and α ∈ [−1
2 ,

1
2 ], the

following properties hold.

1. For any y1, y2 ∈ {s} ∪ B̃ ∪ C̃, we have ‖ã− Py1y2(α)‖p > δ for all ã ∈ Ã.

2. For any y1, y2 ∈ {s} ∪ Ã ∪ C̃, we have ‖b̃− Py1y2(α)‖p > δ for all b̃ ∈ B̃.

3. For any y ∈ Ã ∪ B̃, we have ‖c̃− Psy(α)‖p > δ for all c̃ ∈ C̃.

Proof. Since we set γ2 to at least 4δ, we have γ2
2 > δ. We first prove (1). For any y1, y2 ∈

{s} ∪ B̃ ∪ C̃ we have y1[9d + 2] ≥ γ2
2 and y2[9d + 2] ≥ γ2

2 . Therefore, for any α ∈ [−1
2 ,

1
2 ]

we have Py1y2(α)[9d + 2] ≥ γ2
2 . For any ã ∈ Ã we have ã[9d + 2] = 0. Hence, we obtain

‖ã− Pỹ1ỹ2(α)‖p ≥ |ã[9d+ 2]− Py1y2(α)[9d+ 2]| ≥ γ2
2 > δ.

We now make a symmetric argument for (2). For any y1, y2 ∈ {s} ∪ Ã ∪ C̃ we have
y1[9d+2] ≤ γ2

2 and y2[9d+2] ≤ γ2
2 . Therefore, for any α ∈ [−1

2 ,
1
2 ] we have Py1y2(α)[9d+2] ≤

γ2
2 . For any b̃ ∈ B̃ we have b̃[9d + 2] = γ. Like earlier we obtain ‖b̃ − Pỹ1ỹ2(α)‖p ≥
|b̃[9d+ 2]− Py1y2(α)[9d+ 2]| ≥ γ2

2 > δ.

We now show (3). For this we state a simple observation.

Observation 4.16. For any α ∈ [−1
2 ,

1
2 ] we have,

• ‖c′′ − Pb′′s′′(α)‖p ≥ γ2
3 > δ.

• ‖c′′ − Pa′′s′′(α)‖p ≥ γ2
3 > δ.

Proof. Observe that

c′′ − Pb′′s′′(α) = [−(1
2 − α)γ1, (

α
2 −

1
4)γ2,−(1

2 + α)γ2]

c′′ − Pa′′s′′(α) = [−(1
2 − α)γ1,−(α2 −

1
4)γ2,−(1

2 + α)γ2]

It follows that for α ∈ [−1
2 ,

1
2 ] we have

‖c′′ − Pb′′s′′(α)‖p ≥ max
(
|(α2 −

1
4

)
γ2|, |(1

2 + α)γ2|) = γ2 ·max(|α2 −
1
4 |, |

1
2 + α|) = γ2

3

‖c′′ − Pa′′s′′(α)‖p ≥ max
(
|(α2 −

1
4)γ2|, |(1

2 + α)γ2|
)

= γ2 ·max(|α2 −
1
4 |, |

1
2 + α|) = γ2

3

Again since we set γ2 to at least 4δ, we have γ2
3 > δ.

For any y ∈ Ã ∪ B̃, we define y′′ = a′′ if y = ã ∈ Ã and y′′ = b′′ if y = b̃ ∈ B̃. Then,
by Observation 4.16 we have ‖c̃− Psy(α)‖p ≥ ‖c′′ − Py′′s′′(α)‖p > δ. This finishes the proof
of Lemma 4.15, and thus of Theorem 1.2.

http://jocg.org/


JoCG 11(2), 94–130, 2020 124

Journal of Computational Geometry jocg.org

5 Barriers to SETH-based lower bounds for Polyline Simplification (under Local-
Hausdorff)

In this section we highlight a barrier for reductions from SAT or 3-OV to polyline sim-
plification. Specifically, we will show that polyline simplification under Local Hausdorff
has nondeterministic and co-nondeterministic algorithms running in quadratic time. This
will rule out any superquadratic lower bound for polyline simplification based on SETH
or k-OV (under deterministic fine-grained reductions and assuming a hypothesis known as
Nondeterministic SETH [9]).

We start by introducing some basic terminology. Let P be a problem and T be a
time bound. We say that problem P is in NTIME[T ] if it admits an O(T )-time nondeter-
ministic algorithm. We say that P is in coNTIME[T ] (co-nondeterministic time T ) if its
complement P admits an O(T )-time nondeterministic algorithm.

Intuitively, a fine-grained reduction from a problem P1 at time T1 to a problem P2

at time T2 (denoted by (P1, T1) ≤FGR (P2, T2)) shows that any algorithm solving P2 in time
O((T2)1−ε) for ε > 0 can be transformed into an algorithm solving P1 in time O((T2)1−ε′)
for ε′ > 0. For a formal definition of fine-grained reductions we refer the reader to [9].
For the purpose of this paper we want the reduction not to use randomization, and we
highlight this by writing (P1, T1) ≤det

FGR (P2, T2). These reductions are known to transfer
running time savings not just in the deterministic setting, but also in nondeterministic and
co-nondeterminstic settings [9].

Carmosino et al. [9] posed and justified the following hypothesis.

Nondeterministic SETH (NSETH) [9] : For any ε > 0, there is a k such that k-SAT
does not have a O((2− ε)n) time co-nondeterministic algorithm.

Intuitively, since SAT may not have a faster co-nondeterministic algorithm (in com-
parison to its deterministic algorithm), it is unlikely that any problem P that is fine-grained
reducible from SAT admits faster nondeterministic and co-nondeterministic algorithms (in
comparison to its deterministic algorithm). This intuition is summarized by the following
lemma.

Lemma 5.1 ([9]). Let P ∈ (N ∩ coN)TIME[T ] and assume NSETH. Then, there exists no
reduction (SAT, 2n) ≤det

FGR (P, T 1+γ) for any γ > 0. Similarly, there exists no reduction
(k-OV, nk) ≤det

FGR (P, T 1+γ) for any k ≥ 2 and γ > 0.

We will next show O(n2)-time nondeterministic and co-nondeterministic algorithms
for polyline simplification under Local-Hausdorff. Thus, by Lemma 5.1 it follows that we
cannot show cubic time hardness via a deterministic fine-grained reduction from SAT or
3-OV. In particular, this shows why we introduce a new hypothesis in this paper instead of
working with the more standard SETH.

We will consider the decision variant of polyline simplification, where we are given
as input a polyline P , a distance δ ≥ 0, and a number k ≥ 1, and we want to decide whether
there exists a simplification Q of P of size at most k and Local-Hausdorff distance at most
δ to P . We denote by Gδ the simplification graph defined on vertex set [n], which contains
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a directed edge from i to j if and only if δH(vivj , P [i . . . j]) ≤ δ, for any i < j. Moreover,
by dG(i, j) we denote the length of the shortest path from vertex i to vertex j in graph G.
Now we state a well know result in polyline simplification under local measures.

Lemma 5.2 ([20]). There exists a simplification Q of size at most k of P that has Local-
Hausdorff distance at most δ to P if and only if dGδ(1, n) ≤ k.

Lemma 5.2 will be crucial for us to outline quadratic-time nondeterministic and co-
nondeterministic algorithms for polyline simplification under Local-Hausdorff. We briefly
sketch the two algorithms: For the nondeterministic algorithm, we nondeterministically
guess a simplification Q of size at most k of P . Then, we can verify that the Local-Hausdorff
distance between P and Q is at most δ in O(n)-time. For the co-nondeterminstic algorithm,
we non-deterministically guess the edges E that are not in Gδ and for each such edge (i, j),
we can non-deterministically guess a certificate (an integer w(i, j) ∈ {i, . . . , j}) such that
we can verify in O(n)-time that the edges in E are not in Gδ. Then, in O(n2)-time we can
verify that the length of the shortest path in Gδ (even if Gδ contains all the edges other
than E) is larger than k. We will now elaborate the two algorithms.

The following observation will help us in designing appropriate “certificates” to be
guessed by the nondeterministic and co-nondeterministic algorithms.

Observation 5.3. For P = 〈v0, v1, . . . , vn〉 and any i < j we have δH(vivj , P [i . . . j]) > δ
if and only if there exists an integer k ∈ {i, . . . , j} such that the distance from vk to vivj is
larger than δ.

Proof. The “if” direction follows immediately since there is a point, namely P [k] ∈ P [i . . . j],
that has distance larger than δ to vivj .

We now show the “only if” direction. Assume that all vertices vk such that i ≤ k ≤ j
have distance at most δ to vivj . Now consider any integer k ∈ {i, . . . , j}. Since both vk and
vk+1 have distance at most δ to vivj , we obtain that all points on vkvk+1 have distance at
most δ to vivj (this follows from convexity of the free-space). Thus, all points in the sub-
polyline P [i . . . j] have distance at most δ to vivj . Therefore, δH(vivj , P [i . . . j]) ≤ δ.

We need some more notation. Let
−→
Kn denote the complete directed graph on the

vertex set [n] where there is a directed edge from i to j if i < j. Also we will use the
notation

−→
Kn \E to denote the graph that we are left with following the removal of the edges

in E from
−→
Kn.

With Lemma 5.2 and Observation 5.3 we are ready to establish that polyline sim-
plification under Local-Hausdorff has faster nondeterministic and co-nondeterministic algo-
rithms.

Theorem 5.4. The decision problem of polyline simplification under Local-Hausdorff belongs
to (N ∩ coN)TIME[n2].

Proof. We first outline an O(n)-time nondeterministic algorithm. We guess nondeterminis-
tically a simplification Q of size at most k of P . We then check whether the Local-Hausdorff
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distance between P and Q is at most δ. This check takes time O(n) as checking whether
δH(P [i . . . j], vivj) ≤ δ can be done in time O(j − i), and adding up over all edges vivj of Q
yields total time O(n). If the answer to the checks is “yes”, we accept otherwise we reject.

For the co-nondeterministic algorithm, we first nondeterministically guess a subset
E ⊆ E(

−→
Kn). Moreover, for any (i, j) ∈ E we guess an integer w(i, j) ∈ {i, . . . , j}. We

perform two checks:

(C1) Check for all (i, j) ∈ E whether the distance from vw(i,j) to vivj is larger than δ, and

(C2) Check whether d−→
Kn\E

(1, n) > k.

If the answer to both the checks are “yes”, then we accept and otherwise we reject. We will
now show that for any “yes” instance we always reject and for any “no” instance there is a
particular good guess for which we accept.

Consider a “yes” instance. Suppose that some guessed edge (i, j) ∈ E belongs to Gδ.
Then, by Observation 5.3 there is no w(i, j) ∈ {i, . . . , j} such that the distance from vw(i,j)

to vivj is larger than δ. Thus, the check (C1) fails and we reject. Otherwise, if every edge
in E does not belong to Gδ, then we have that the edge set of Gδ belong to

−→
Kn \ E and

thus d−→
Kn\E

(1, n) ≤ dGδ(1, n). Since we consider a “yes” instance, by Lemma 5.2 we have
that dGδ(1, n) ≤ k. It follows that check (C2) fails. Hence, every “yes” instance is rejected.

Now consider a “no” instance. Suppose that our guessed subset E ⊆ E(
−→
Kn) is such

that
−→
Kn \ E = Gδ. Note that for every (i, j) ∈ E we have δH(vivj , P [i . . . j]) > δ and thus

by Observation 5.3 there exists a w(i, j) ∈ {i, . . . , j} such that the distance of vw(i,j) to vivj
is larger than δ. Suppose that we guessed such vertices w(i, j). Then, check (C1) clearly
passes. Moreover, we have d−→

Kn\E
(1, n) = dGδ(1, δ), and since we consider a “no” instance,

by Lemma 5.2 we have dGδ(1, n) > k. Thus, check (C2) also passes. Hence, for any “no”
instance there exists a guess for which we accept.

Now combining Theorem 5.4 and Lemma 5.1 we have the following theorem for
polyline simplification under Local-Hausdorff distance.

Theorem 5.5. There exists no reduction (SAT, 2n) ≤det
FGR (Polyline Simplification, n3) or

(3-OV, n3) ≤det
FGR (Polyline Simplification, n3) unless NSETH fails.

6 Discussion of the ∀∀∃-OV Hypothesis

The ∀∀∃-OV Hypothesis, that we introduced in this paper, is a special case of the following
more general hypothesis (by setting k = 3 and Q1 = Q2 = ∀).

Quantified-k-OV Hypothesis: Problem: Fix quantifiers Q1, . . . , Qk−1 ∈ {∀, ∃}. Given
sets A1, . . . , Ak ⊆ {0, 1}d of size n, determine whether Q1a1 ∈ A1 : . . . Qk−1ak−1 ∈ Ak−1 :
∃ak ∈ Ak such that a1, . . . , ak are orthogonal.
Hypothesis: For any k ≥ 1, any Q1, . . . , Qk−1, and any ε > 0, the problem cannot be solved
in time O(nk−ε).
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These problems were studied by Gao et al. [16], who showed that (even for every
fixed k and Q1, . . . , Qk−1) the Quantified-k-OV hypothesis implies the 2-OV hypothesis.
Unfortunately, there is no reduction known in the opposite direction. In fact, Carmosino et
al. [9] established barriers for a reduction in the other direction, see also the discussion of
the Hitting Set9 hypothesis in [3]. Hence, we cannot base the hardness of Quantified-k-OV
on the more standard k-OV hypothesis.

It is well-known that the following Strong Exponential Time Hypothesis implies the
k-OV hypothesis [25].

Strong Exponential Time Hypothesis (SETH) [21]: Problem: Given a q-CNF formula
φ over variables x1, . . . , xn, determine whether there exist x1, . . . , xn such that φ evaluates
to true.
Hypothesis: For any ε > 0, there exists q ≥ 3, such that the problem cannot be solved in
time O(2(1−ε)n).

Similarly, we can pose a hypothesis for Quantified Satisfiability, that implies the
Quantified-k-OV hypothesis (by essentially the same proof as in [25]).

Quantified-SETH: Problem: Given a q-CNF formula φ over variables x1, . . . , xn, deter-
mine whether for all x1, . . . , xα(1)n there exist xα(1)n+1, . . . , xα(2)n such that ... such that for
all xα(2s)n+1, . . . , xα(2s+1)n there exist xα(2s+1)n+1, . . . , xn such that φ evaluates to true.
Hypothesis: For any s ≥ 0, any 0 ≤ α(1) < . . . < α(2s+ 1) < 1, and any ε > 0, there exists
q ≥ 3, such that the problem cannot be solved in time O(2(1−ε)n).

Although Quantified Satisfiability is one of the fundamental problems studied in
complexity theory (known to be PSPACE-complete), no algorithm violating Quantified-
SETH is known.

Hence, Quantified-SETH and the Quantified-k-OV hypothesis are two hypotheses
that are even stronger than the ∀∀∃-OV Hypothesis that we used in this paper to prove a
conditional lower bound. The fact that even these stronger hypotheses have not been falsified
in decades of studying these problems, we view as evidence that the ∀∀∃-OV Hypothesis is
a plausible conjecture.

7 Conclusion

In this paper, we studied the complexity of three variants of the classical polyline simpli-
fication problem, namely, Local-Hausdorff simplification, Local-Fréchet simplification and
Global-Fréchet simplification. We showed an O(n3)-time algorithm for the Global-Fréchet
simplification, substantially improving the previous best algorithm. Although, the dynamic
programming algorithms for the Local-Hausdorff simplification and Local-Fréchet simplifi-
cation are significantly simpler than the dynamic programming algorithm for the Global-
Fréchet simplification, we show that both the all the three variant (including the local
variants) cannot be solved substantially faster unless ∀∀∃-OV Hypothesis is false. However,

9The Hitting Set problem considered in [3] is equivalent to ∀∃-OV.
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our lower bound does not apply when our underlying metric space is the Euclidean space.
However, any subcubic algorithm needs to exploit the Euclidean distance heavily! Thus,
settling the complexity of polyline simplification when the ambient space is the Euclidean
space is a very interesting open problem.

Our lower bounds are applicable only in higher dimensions (when d ∈ O(log(n))).
For small values of d, there are faster algorithms known for Local-Hausdorff simplification,
however, to the best of our knowledge, there are no faster (sub-cubic) algorithms known
for both Local-Fréchet and Global-Fréchet simplification (even when d = 2). We believe
that faster algorithms should be possible in smaller dimensions and leave this as another
tractable venue for future research.
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