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Abstract

This chapter deals with representation theoretical issues of nonlinear image operators, mainly
based on the methodology of mathematical morphology, and more generally operators on lat-
tices. After a brief overview of developments in morphological image operators both chrono-
logically and thematically, the chapter provides a survey of some main concepts and results in
the theory of lattices and morphological operators, especially of the monotone type. It also
provides comparisons with linear operator theory. Then, it introduces a nonlinear signal space
called complete weighted lattice, which generalizes both mathematical morphology and minimax
algebra. Afterwards, it focuses on the representation of translation-invariant and/or increasing
operators either on Euclidean spaces (or their discretized versions) or on complete weighted
lattices by using a nonlinear basis. The results are operator representations as a supremum or
infimum of nonlinear convolutions that are either of the max-plus type or their generalizations
in weighted lattices. These representations have several potential applications in computation,
imaging and vision, and nonlinear functional analysis.

Keywords: image operators, representation, nonlinear basis, supremal convolution, mathe-
matical morphology, lattices, minimax algebra.

1 Introduction

1.1 Why a representation theory?

In general, we believe that, it helps conceptually and offers insight to know that a particular system
together with many others sharing a few common properties result from the combination of a few
simple generic systems.

Image representations are important both for computational processing of image data, inter-
mediate transformations and feature extraction as well as for higher-level cognitive tasks such as
building symbolic descriptions and ultimate image understanding (Marr, 1982). Nowadays, in the
digital era, the problems with analyzing and managing the information in big data, much of which is
visual, make the issue of more efficient image representations even more acute, where aspects of effi-
ciency may include compactness, sparseness, and integration of low-level (numeric) with high-level
(semantic) processing.

This chapter advances the thesis that, with the current availability in image/signal processing
and in computer vision of a large variety of image operator1 types, e.g. linear versus nonlinear,
continuous versus discrete, local versus global, single-scale or multi-scale, functional versus graphi-
cal, the need also arises to study the representation of operators. The field of linear operator theory
is already well studied, e.g. the field of linear vector spaces and corresponding functional analysis.
In this chapter we focus on representation theoretical issues of nonlinear image operators, mainly
of the morphological type, i.e. based on the methodology of mathematical morphology, and more
generally operators on lattices. From the viewpoint of serving as inputs to and outputs from the
operators, images will be represented as elements of collections of multidimensional sets or signals;
thus, by ‘image operators’ we shall also include the study of arbitrary signal operators but the

1Throughout this chapter, by ‘operator’ we shall mean a mapping, transformation, or general system processing
images or general multidimensional signals of finite or infinite extent.
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emphasis will be on images. We also provide comparisons with linear operator theory, both to
contrast differences and/or similarities but also to often draw inspiration for new developments in
morphological and lattice operators.

In algebra, ‘representation theory’ usually means a branch of mathematics where some abstract
algebraic structures are described using concepts of linear algebra; for example, elements of a group
are represented as linear operators on vector spaces and the group binary operation (addition or
multiplication) is represented as a matrix addition or multiplication. Representations of systems
with group of matrices is also important in physics; e.g. symmetry groups allowed the discovery
of new particles. In this chapter we broaden the term ‘representation’ and by ‘representation of
operators’ we shall mean their equivalent expression or realization as a combination of simpler
components. This combination may be serial, e.g. a composition, or parallel, i.e. a superposi-
tion of simpler operations. For example the spectral representation of linear operators in terms
of projections, or (as explained in this chapter) the representation of broad classes of nonlinear
operators in terms of elementary operators that are called dilations and erosions and play the role
of building blocks for more complex systems. Sometimes, by representation we may also mean
the alternative expression of the original operator based on some other well-known or more easily
understood operations. Examples include the representation of a linear shift-invariant operator
as a linear convolution, or the representation of a linear operator on finite-dimensional spaces as
the multiplication of input signal vectors by a matrix, or (as explained in this chapter) the rep-
resentation of some nonlinear operators as nonlinear convolutions of the max-plus type or in the
finite-dimensional case as nonlinear matrix operations.

As we shall summarize later in this introduction, morphological operators are not used only in
image processing and computer vision (Matheron, 1975; Serra, 1982; Maragos and Schafer, 1990;
Heijmans, 1994; Haralick and Shapiro, 1992; Maragos, 1998), but also in several diverse areas such
as neural nets (Davidson and Hummer, 1993; Yang and Maragos, 1995; Pessoa and Maragos, 2000;
Ritter et al., 1998; Ritter and Urcid, 2003), convex analysis and optimization (Rockafellar, 1970;
Lucet, 2010), mimimax algebra and its applications in scheduling, networks, and discrete events
dynamical systems (Cuninghame-Green, 1979; Cohen et al., 1989). Some of their attractive aspects
include their efficiency and their capability of parallel implementations of a large class of systems
using simple local operations that do not involve multiplications.

In the area of image computing, there have been specialized platforms whose main operations
are combinations of erosions and dilations. Early examples include cellular automata, parallel
architectures, VLSI, optical/electronic, and analog optical implementations of morphological and
rank filters whose special cases are the simple erosions and dilations (Preston et al., 1979; Sternberg,
1980; Harber et al., 1985; Ochoa et al., 1987; O’Neil and Rhodes, 1986; Hereford and Rhodes, 1988;
Barrera et al., 1994). Nowadays, the vast majority of many computer (hardware or software)
systems for digital image processing include among their main operations the basic morphological
operators such as erosions, dilations, openings and closings.

Therefore, from an computational theory viewpoint, a representation theory for morphological
and related lattice image operators establishes the capabilities and limitations of all these computer
architectures and implementations by finding the general class of signal operations that they can
perform. Three important issues are the following. Analysis: how to decompose existing complex
operators into simpler ones? Synthesis: what is the broadest class of high-level image computing
systems we can build from simple elementary operations. Language: if we use a formal language
whose words for processing binary (graylevel) images are morphological erosions and dilations and
the associated lattice operations of union (supremum), intersection (infimum) and complementa-
tion (negation), then this language is complete for set operators and expressive since most useful
operators can be described only with a few words (Barrera and Banon, 1992). Such issues have also
been used for the automatic programming of learning machines for binary image processing and
pattern recognition (Barrera and Salas, 1996; Barrera et al., 1997). But how expressive is the lan-
guage of morphological operators and their lattice generalizations for graylevel image processing?
This is one of the major themes addressed in this chapter.
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Further, from an applications viewpoint, the ever-increasing industrial need in automated visual
systems (e.g. mobile digital cameras or visual sensors) calls for low-cost machine vision modules
that can do a variety of complex image processing tasks based on a rather small set of available
simple image operations. Hence, given the wide and interdisciplinary applicability of the morpho-
logical operators, their parallellism, and their simple implementations, the representations in this
chapter theoretically support a computational module that can perform a minimal set of elementary
morphological operations, which can synthesize a large variety of more complex systems.

From a nonlinear functional analysis viewpoint, this chapter unifies the representation of pre-
viously totally unrelated operators, e.g., morphological filters used in image analysis, median (or
other order-statistic based) filters used in robust statistics, shape detection transformations, and
even digital linear FIR filters used in signal processing. It also provides a common mathematical
framework and analytic tools for a large class of linear and nonlinear operators; this may help the
analysis and design of hybrid linear/nonlinear systems, as for example in (Pessoa and Maragos,
1998). Another goal of this chapter is to shed more light into some analogies between morphological
versus linear operators. Figure 1 shows an original graylevel image, its linear filtering via a Gaus-
sian convolution and two types of morphological filterings. The linear filter obeys the well-known
linear superposition. Are there conceptually similar superpositions obeyed by some morphological
operators? The linear shift-invariant filter is represented as a linear convolution with its impulse
response, which is a 2D Gaussian function in this example. Are there such concepts and repre-
sentations for morphological filters? The linear filter has an approximate lowpass action, i.e. it
attenuates high frequencies. If it were an ideal-cutoff filter with unity gain, its subsequent iterations
would give the same result as its first pass on the input image. We call such an ideal linear filter
a projection, i.e. a linear idempotent operator. Are there such operators in morphological filters?
Actually, Figs. 1(c),(d) show two morphological projections, i.e. increasing and idempotent filters.
The above are some of the theoretical issues addressed in this chapter.

1.2 Overview of Developments in Morphological Operators and Related Areas

Before we outline our scope of coverage on morphological operator representation theory, we provide
a brief historic tour of developments in the corresponding field of morphological image analysis.
Classic mathematical morphology, as a field of nonlinear geometric image analysis, was developed
initially by Matheron (1975), Serra (1982) and their collaborators and was applied successfully to
geological and biomedical problems of image analysis. In this first period, i.e. the late 1960’s and
throughout the 1970’s, the basic morphological operators were developed first for binary images
based on set theory (Matheron, 1975; Serra, 1982) inspired by the work of Minkowski (1903)
and Hadwiger (1957), second for graylevel images based on local min/max operators and level sets
(Meyer, 1978; Serra, 1982) or on fuzzy sets (Nakagawa and Rosenfeld, 1978; Goetcherian, 1980), and
third for graylevel images but with weighted min/max operators using a geometric interpretation
based on the umbra approach of Sternberg (1980, 1986) which is algebraically equivalent to max-
plus convolutions. All these operators were translation-invariant (TI) and their set generators were
Minkowski set addition and subtraction; thus, we shall refer to them either as Minkowski operators
or as Euclidean morphological operators since their most common domain is the Euclidean plane
(R2) or its discretized version (Z2) and they commute with Euclidean translations.

In the 1980s, extensions of classic mathematical morphology and connections to other fields were
developed by several research groups worldwide along various directions including: applications to
pattern recognition and computer vision problems; unified analysis and representation of large
classes of nonlinear filters, including morphological, rank and stack filters (Maragos and Schafer,
1987a,b); multiscale image processing and shape and texture analysis; statistical analysis and op-
timal design of morphological filters. Accounts and references at varying degrees of detail can be
found in books by (Serra, 1982, 1988; Heijmans, 1994; Haralick and Shapiro, 1992; Dougherty and
Astola, 1994) or tutorial chapters and papers by (Sternberg, 1986; Haralick et al., 1987; Maragos
and Schafer, 1990; Serra and Vincent, 1992; Goutsias, 1992; Maragos, 1998, 2005a) that deal with
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(a) (b)

(c) (d)

Figure 1: Linear and morphological image simplification. (a) Original image f (256 × 256 pixels).
(b) Linear convolution of f with a Gaussian. (c) Morphological clos-opening of f by a discrete disk-like
structuring element. (d) Morphological reconstruction (of the leveling type) of f with respect to a
marker which was the Gaussian convolution in (b). Both the linear and the morphological filterings
were at the same scale. (The ‘scale’ parameter is defined as the variance of the Gaussian for the linear
convolution, as the radius of the structuring element for the clos-opening and as the scale of the marker
for the reconstruction filtering.)

mathematical morphology. Overall, during the first two decades (late 1960’s until late 1980’s),
this whole methodology was essentially a Euclidean morphology where the basic operators could
be understood geometrically as translation-invariant set operations based on Minkowski-type set
operations and implemented algebraically as nonlinear signal operations, i.e. Boolean or min/max
superpositions and max-plus convolutions. Its image analysis applications were mainly in denois-
ing, nonlinear multiscale filtering, feature extraction, simple object detection, shape and texture
analysis, and watershed-based segmentation.

In the late 1980’s and early 1990’s a new and more general formalization of morphological
operators was introduced: Lattice morphology. Specifically, the need to unify its analysis tools
for both binary and gray images as well as to use it for more abstract data types such as graphs
led researchers in mathematical morphology to extend its theory by generalizing the image space
to a complete lattice and viewing all image transformations as lattice operators. The theoretical
foundations of morphology on complete lattices were developed by Serra and Matheron, presented
as chapters in Serra (1988), and further extended by Heijmans and Ronse (1990); Ronse and
Heijmans (1991), Heijmans (1994), and Roerdink (1993). Later another algebraic approach to
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morphology was developed by Keshet (Keshet, 2000) based not on complete lattices but on a
related weaker algebraic structure, inf-semilattices. The basic advance of lattice morphology was
to develop more general operators that shared with the standard dilation, erosion, opening and
closing only a few algebraic properties. One such fundamental algebraic structure is a pair of
erosion and dilation operators that form an adjunction. This guarantees the formation of openings
and closings via composition of the adjunction constituents. Other new concepts include the group-
invariant operators (Heijmans and Ronse, 1990; Roerdink, 2000); connected operators (Serra and
Salembier, 1993; Salembier and Serra, 1995) and connectivity-based segmentation (Serra, 2000),
graph morphology (Vincent, 1989; Heijmans et al., 1992); and the slope transform (Dorst and
van den Boomgaard, 1994; Maragos, 1994) defined and studied in Maragos (1994, 1995, 1996)
and Heijmans and Maragos (1997) from the viewpoint of lattice morphology. Overall, the lattice
framework allows us to unify the concepts and analysis of large classes of operators that share a
few fundamental properties, independently of whether they are defined for sets (shapes), binary
signals (binary images), multilevel signals (graylevel images), or even more abstract image data
types such as graphs. The lattice operators have found many applications in important image
analysis computer vision tasks, such as segmentation, shape analysis, motion analysis, and object
detection. Figure 1 shows two morphological filters both of which can simplify an image without
the severe blurring caused by a linear smoothing filter; from these two morphological filters, the
reconstruction filter is based on lattice-theoretic concepts.

During the 1990’s, in parallel to the development of lattice morphology, another new develop-
ment was that of differential morphology (Maragos, 1996). This term contains two subareas, both
related to nonlinear dynamical systems: (1) The first subarea combined ideas from linear (Gaussian)
scale-space analysis in computer vision based on the linear isotropic heat diffusion partial differen-
tial equation (PDE) and from multiscale morphology (Maragos, 1989b) to develop nonlinear PDEs
that generate continuous-scale morphological filters (mainly Minkowski-type dilation and erosion).
The main three independent contributions in morphological PDEs are (Alvarez et al., 1993), Brock-
ett and Maragos (1994) and van den Boomgaard and Smeulders (1994). For overviews, we refer
the interested reader to two tutorial chapters of Guichard et al. (2005) and Maragos (2005c). Con-
nections between the morphological PDEs and the slope transform were developed in Dorst and
van den Boomgaard (1994) and Heijmans and Maragos (1997). (2) The second subarea deals with
2D difference equations modeling distance transforms and their analysis using slope transforms. In
this chapter we shall not pursue the analysis of these aspects of morphological operators.

The scientific field of convex analysis and optimization (Rockafellar, 1970; Lucet, 2010), was
initially unrelated to mathematical morphology, but it has been using extensively some of the main
mathematical tools that morphology has also been using such as max-plus convolution and its dual,
called supremal and infimal convolution respectively in convex analysis (Bellman and Karush, 1963;
Rockafellar, 1970), and the hypograph of a function which is called ‘umbra’ in morphology. At the
end of 1990’s the strong connections between convex analysis and lattice morphology were realized
and studied in (Heijmans and Maragos, 1997). Examples include (1) the distance transform, which
is expressed via infimal convolution in convex analysis and via max-plus difference equations in
digital image analysis Borgefors (1986), and (2) the Legendre-Fenchel conjugate (transform) of
convex analysis, which is very closely related to the lattice-based slope transform (Maragos, 1995,
1996; Heijmans and Maragos, 1997). Felzenszwalb and Huttenlocher (2004a) used the connection
between distance transform and slope transform to develop a fast distance transform that has
found application in computer vision problems such as distance computation and optimization
in belief networks (Felzenszwalb and Huttenlocher, 2004b). There is a recent detailed review
by Lucet (2010) of convex analysis, slope transforms and related optimization where the cross-
fertilization between these areas and mathematical morphology was explained from many different
aspects. Returning to the area of differential morphology (Maragos, 1996, 2001), this refers to
the intersection between image processing with max-plus convolutions, differential calculus, max-
min dynamical systems and convex analysis (distance and slope transforms). Another field that
combines ideas from mathematical morphology and convex analysis is digital geometry (Kiselman,
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2003). In this chapter we shall not pursue the analysis of these aspects of morphological operators.
In the 1980’s an effort started to unify all digital image operations under a common image

algebra amenable to computation. The term ‘image algebra’ was first coined by Sternberg (1980)
but it referred only to the algebraic structure of mathematical morphology. Obviously, classic
(Minkowski) erosions and dilations by finite structuring elements are insufficient by themselves to
represent all possible image operations. In parallel to the development of mathematical morphology,
there has been another independent effort in the 1980’s by Ritter and his collaborators (Ritter and
Gader, 1987; Ritter and Wilson, 1987) to develop a more complete image algebra that represents
all digital finite-extent image-to-image operations as a finite composition of a few basic operations,
which include Minkowski-type erosions and dilations; a subalgebra of their full image algebra covers
the classic part of mathematical morphology. The goal of the image algebra by Ritter and his co-
workers was to unify all digital image operations (linear and nonlinear) using traditional algebraic
structures,2 e.g. groups, rings, fields, vector spaces, monoids, semirings. A fusion of image algebra
and lattice structures was done in Davidson (1993). The culmination of all these efforts can be
found in the book by Ritter and Wilson (2001).

For problems in fields totally separate from image processing, e.g. scheduling and operations
research, Cuninghame-Green (1979, 1994) has developed a nonlinear matrix algebra called minimax
algebra, also known as max-plus algebra, where he has exploited the interaction of the max/min
idempotent algebraic structure with the group structure of real addition + and has developed
analogies with the product-of-sums structure of linear algebra. Minimax algebra was not originally
developed for image analysis. Its traditional applications areas were and still are in scheduling
(e.g. material flow in automated manufacturing, traffic flow in transportation or communication
networks) and operations research (Cuninghame-Green, 1979), shortest path problems in graphs
(Peteanu, 1967), as well as in algebraic modeling of discrete event control systems (DEDS) (Cohen
et al., 1989). The latter applications area (DEDS) shares some system theoretic aspects with the
operator representation issues discussed in this chapter. Minimax algebra is a nonlinear matrix-
oriented algebra, where the underlying archetypal structure for scalars is the set R = R∪{−∞,+∞}
of extended reals equipped with max or min operations and addition. Its basic operators are max-
plus or dual min-plus generalized products of matrices with vectors where the standard multipli-
cation of a row vector (from left) with a column vector (from right) is done via a max-of-additions
instead of the standard sum of products of linear algebra.

Thus, in addition to mathematical morphology (i.e. its Euclidean and lattice-based versions),
we have mentioned so far two other related algebraic systems, image algebra and minimax algebra.
All three systems have had some theoretical missing parts for completion. Both the image alge-
bra and the minimax algebra use min-max superpositions, max-plus arithmetic and some concepts
from lattice theory. A fusion of concepts from image algebra and minimax algebra was also done
by Davidson (1993). However, the above efforts have not exploited the complete lattice structure
to the level that mathematical morphology has done and have not focused on the concept of lattice
operators and especially adjunctions (Galois connections). Further, both they have remained in the
finite-dimensional case. Minimax algebra is a matrix algebra over finite-dimensional vector spaces.
Similarly, image algebra (Ritter and Wilson, 2001) deals with finite-extent digital images either by
processing them with finite templates in the spatial domain or via finite discrete transforms (e.g.
the discrete Fourier transform) in the frequency domain. From both approaches there seems to be
missing the case of working over infinite-dimensional spaces; e.g. morphological transformations
with infinite-extent structuring functions either on a continuous or a discrete domain. Missing also
is the complete lattice structure which allows infinite signal superpositions based on supremum
and infimum operations. From the other side, of importance for the weighted lattice operators
discussed in this chapter is to note that, both Euclidean and lattice-based mathematical mor-
phology have focused on and exploited mainly the standard lattice structure, i.e. supremum and
infimum (often abbreviated as sup/inf) superpositions which become maximum and minimum in
the finite case. Although some useful operations in mathematical morphology combine the sup/inf

2For definitions of the basic algebraic structures, a general reference is Lang (2005).
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with max-plus arithmetic (e.g., Minkowski operations with gray structuring elements, chamfer dis-
tance transforms), such cases have always remained a minority in mainstream morphological image
analysis.

Maragos (2005a) bridged the above gaps and fused lattice-based mathematical morphology with
minimax algebra, by allowing for both finite- as well as infinite-dimensional spaces and for sup/inf
superpositions over infinite signal collections. Toward this goal, a more general algebraic struc-
ture was introduced, called ‘clodum’ (complete lattice-ordered double monoid), that combines the
sup/inf lattice structure with a scalar semi-ring arithmetic that possesses generalized ‘additions’ and
⋆-‘multiplications’. This clodum structure enabled him to develop a unified analysis for: (i) repre-
sentations of translation-invariant operators compatible with these generalized algebraic structures
as nonlinear (sup/inf) convolutions, and (ii) representations of all increasing translation-invariant
operators as suprema of such nonlinear convolutions with functions from a special collection that
characterizes the operator. Special cases of this unification include generalized Minkowski operators
and lattice fuzzy image operators. Applications of this nonlinear signal algebra have appeared in
(Maragos and Tzafestas, 1999; Maragos et al., 2000) for max-plus nonlinear control and in (Maragos
et al., 2001, 2003) for image analysis based on fuzzy logic.

1.3 Summary of Representation Theory Topics covered

The field of morphological operator theory is a relatively new scientific field. It is our opinion that it
essentially started in 1994 with Heijmans’ monograph (Heijmans, 1994). Of course, there have been
many original theoretical developments by several researchers before this, like the highly inspiring
and more general books by Matheron (1975) and Serra (1982, 1988), but it is the first effort
to systematically collect in a book the definitions and properties of most known morphological
operators until 1994, both the classic and the advanced ones, and present them purely from a
functional analysis viewpoint using the theoretical framework of operators on complete lattices
(with the exception of a few elements from topology and metric spaces) without any focus on
particular applications.

The part of this chapter on lattice-based morphology (Section 3) is written in a similar style as
Heijman’s monograph, which was actually published in the same series of Academic Press: Advances
in Imaging and Electron Physics.

Section 2 summarizes some main concepts and results from linear operator theory, both from
an algebraic viewpoint (structure of linear vector spaces) as well as from a topological viewpoint
(normed spaces) and a geometric viewpoint (inner product spaces). It also gives examples of finite-
and infinite-dimensional linear spaces related to image and signal processing. This material is
classic and can be found in numerous books; our exposition follows mainly Naylor and Sell (1982)
and in some cases Royden (1968). A subtopic we emphasize is that about linear projections and the
projection theorem in Hilbert spaces. Another major topic is Riesz’s representation theorem where
we explain how it leads to the classic result of linear signal processing that every stable linear and
shift-invariant filter is a linear convolution with its impulse response. Another closely related topic
is the matrix representation of linear operators over finite-dimensional vector spaces. We conclude
this section with the spectral representation of linear operators over finite-dimensional spaces using
projections.

Section 3 begins with a synopsis of partially ordered sets (posets) and various aspects of complete
lattices from Birkhoff (1967), including sublattices, atoms, Boolean and function lattices. Then,
we provide examples of image lattices. Afterwards, we summarize the definitions and properties of
the main types of lattice operators (Serra, 1988; Heijmans and Ronse, 1990; Ronse and Heijmans,
1991), and talk about the monotone case especially about dilations as operators that distribute
over any suprema and erosions as operators that distribute over infima. Examples are given from
the classic (Euclidean) morphological operators to show compatibility with their lattice general-
izations. The main focus and details in this section are given to three subtopics: (1) the lattice
adjunctions, which are pairs of compatible lattice erosions and dilations generating openings and
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closings, (2) the spatially-varying lattice operations with a structuring element map which create
a variety of adaptive morphological operators, and (3) the lattice projections, which are increasing
and idempotent filters that include the classic openings, closings, their lattice generalizations (e.g.
radial, area, and reconstruction filters), and their non-(anti)-extensive combinations. Finally, as
an aside, we mention issues of convergence and continuity for lattice operators, mainly related to
their order structure.

Section 4 extends the lattice theory of mathematical morphology from the viewpoints of min-
imax algebra and translation-invariant systems by introducing a nonlinear signal space that has
both a complete lattice structure, i.e. partial order, and sup/inf superpositions of signals from
arbitrary (possibly infinite) collections, as well as two scalar ‘multiplication’-type operations (⋆
and its dual ⋆′) that distribute over any suprema and infima, respectively. The scalar arithmetic
in this nonlinear space of signals or vectors is based on the clodum structure. Thus, the linear
superposition of signals over a linear spaces is replaced now by a max-⋆ combination in the finite-
dimensional or sup-⋆ in the infinite-dimensional case and its dual inf-⋆′ variant. We propose that
the resulting nonlinear signal space is called a complete weighted lattice. The minimax vector spaces
in Cuninghame-Green (1979) are a special finite-dimensional case of complete weighted lattices. In
this chapter we introduce a set of axioms for defining their algebraic structure. Their role for
analyzing lattice operators is conceptually similar to the role played by linear (sum-product) vector
spaces for linear operators.

This generalized signal algebra unifies the following algebraic structures: (1) Max-Plus mathe-
matical morphology: classic Minkowski translation-invariant operators, i.e. max-plus convolutions.
(2) Max-Product mathematical morphology: Lattice extensions of Minkowski dilations and erosions
with multiplicative structuring elements. (3) Fuzzy image operations and convolutions, where ⋆
(⋆′) becomes a fuzzy intersection (union).

One of the consequences of this unified view, which is related to the central theme of this
chapter, is the ability to represent and analyze adaptive or translation-invariant operators that
are compatible with this generalized algebraic structure via generalized sup-⋆ convolutions. In the
adaptive case we have spatially-varying convolutions by instances of an impulse response map.
In the translation-invariant case we obtain operations whose computational structure is like that
of linear convolutions but the linear sum-of-products has been replaced by sup-of-⋆ or inf-of-⋆′

operations. In the finite-dimensional case, we show that any operator that distributes over the
main operations of this nonlinear space admits a matrix representation where the output vector is
the generalized max-⋆ (or its dual min-⋆′) ‘product’ of the operator matrix with the input vector.

Section 5 presents a unified representation theory to decompose an operator into a parallel
combination (sup/inf superposition) of elementary morphological operators. We classify below the
representations according to the required properties of the operators to be represented. (i) We
begin with the most well-studied class of lattice operators: increasing and translation-invariant
(TI) operators for sets or signals defined on a Euclidean domain Rm or its discrete version Zm. The
first major representation theorem (Matheron, 1975) concerns increasing and translation-invariant
(TI) set operators based on their kernel, a special collection of inputs which is capable of uniquely
synthesizing the operator as union of erosions by its kernel sets of as an intersection of dilations
by sets in the kernel of its dual operator. The second major step (Maragos, 1985) is to find a
minimal (irreducible) representation that uses only the basis of the operator, which is defined as
the collection of minimal kernel elements, by adding an extra constraint on the operator to be
semi-continuous. Then follows the extension to increasing TI signal operators based both on their
kernel as well as on their basis (Maragos, 1985, 1989a). The above were exact representations. We
also discuss approximate representations using a truncated basis. (ii) If we remove the operator
constraint/property of being increasing, we are left with a non-monotone TI operator, but it is
still possible to represent it as union of simpler non-monotone operations of the hit-miss type
by using the set intervals in the kernel or in a smaller (basis-like) collection consisting of the
maximal kernel intervals (Banon and Barrera, 1991). In practical applications of representations
of type (i) or (ii), of interest are also approximate representations by using a truncated basis
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and quantifying the relative error (Loce and Dougherty, 1992a,b, 1995). (iii) If we now remove
the TI property from the operator and leave only the increasingness, we have spatially-varying
operators for which similar representations have been developed as sup/inf combinations of adaptive
erosions/dilations (Bouaynaya et al., 2008; Bouaynaya and Schonfeld, 2008). In Section 5 we survey
the morphological presentations for all the above three cases of operators. In addition, we provide
many examples of applying the representation theorems to various classes of nonlinear systems
(morphological filters, rank/median filters, stack filters, window operators for shape detection) and
linear systems (digital linear FIR filters); references will be given in the corresponding subsections.
All the above representations assumed either the framework of Euclidean or lattice morphology.
(iv) Continuing in this section, we describe kernel representations for increasing and group-invariant
operators on complete weighted lattices based on initial ideas from (Maragos, 2005a). (v) We also
investigate a class of set operators that combines four major properties: TI, increasing, idempotent
and anti-extensive, i.e. general TI set openings. We connect their representation as union of
Minkowski openings (Matheron, 1975) by sets in a subcollection of their invariant sets with their
representation as union of erosions by their basis sets. Finally, references are also provided for
extensions of the above representations (i), (ii), (iii) and (v) in a more abstract form to general
lattice operators or general domains where the Euclidean group of translations is replaced by other
groups of automorphisms (Serra, 1988; Heijmans and Ronse, 1990; Ronse and Heijmans, 1991;
Banon and Barrera, 1993).

1.4 Notation

For linear operators, we denote with lowercase roman letters the elements (e.g. vectors or signals)
of linear spaces and the scalars, whereas linear spaces and linear operators are denoted by capital
roman letters.

For morphological operators, we use lowercase roman letters for points in sets, capital roman
letters for sets, calligraphic capital roman letters for collection of sets or nonlinear spaces, and greek
letters for operators.

We use boldface roman letters for vectors (lowercase) and matrices (capital) only when there is
a vector or matrix operation, or to denote a point in the multidimensional Euclidean space Rm or
discrete space Zm when this serves as an image domain on which we can define the standard vector
operations (vector addition, multiplication of a vector by a scalar, horizontal vector translations).

In general, for the morphological operators examined in this chapter, we follow the notation
of Sternberg (1986) and Maragos and Schafer (1990) for the classic (Minkowski-type, translation-
invariant) operators, whereas we follow the notation of Heijmans (1994) for the lattice operators.
So for the image operators we use a different notation than the one used in image algebra (Ritter
and Wilson, 2001). Also, for the complete weighted lattices and the related max-plus arithmetic
and matrix algebra we use a different notation than the one used in minimax algebra (Cuninghame-
Green, 1979); in this case our notation is more consistent with morphological symbols and lattice
operators.

2 Linear Spaces and Linear Image Operators

Most of the material in this section follows Naylor and Sell (1982); some discussion on linear spaces
is also influenced by Royden (1968).

2.1 Linear Spaces

We shall outline some basic ideas in linear spaces from three viewpoints:

• Only algebraic structure, common to all linear spaces.

• Combined topological and algebraic structure by having a norm, in Banach spaces.
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• Combined geometric and algebraic structure by having an inner-product, in Hilbert spaces.

2.1.1 Algebraic Structure

A nonempty set V of mathematical objects (usually called ‘vectors’) is called a linear space over
a field F of scalar numbers (e.g. the field of real or complex numbers) if we can define an addition
operation x+ y for elements (‘vectors’) x, y of the underlying set V and a scalar multiplication ax
of ‘vectors’ x by scalars a such that:
(1). V becomes a commutative group under vector addition, and
(2). The scalar multiplication of vectors in V distributes over the vector addition in a similar way
as in F the scalar field multiplication distributes over the scalar field addition.
In more details, V is a linea space if its operations satisfy the following axioms for all x, y, z ∈ V
and all a, b ∈ F :

(A1). x+ y ∈ V (Closure under vector addition)
(A2). x+ y = y + x (Commutativity of vector addition)
(A3). x+ (y + z) = (x+ y) + z (Associativity of vector addition)
(A4). ∃ 0 ∈ V such that x+ 0 = x (Existence of addition identity)
(A5). ∃ (−x) ∈ V such that x+ (−x) = 0 (Existence of addition inverse)
(SM1). ax ∈ V (Closure under scalar multiplication)
(SM2). a(bx) = (ab)x (Associativity of scalar multiplication)
(SM3). 1x = x, where 1 is the unit of F (Multiplication with scalar unit)
(SM4). 0x = 0, where 0 is the zero of F (Multiplication with scalar zero)
(A&SM1). a(x+ y) = ax+ ay (Distributivity 1)
(A&SM2). (a+ b)x = ax+ bx (Distributivity 2)

Not all the above axioms are logically independent.
Often, a linear space is also called a vector space and its set elements are called ‘vectors’.

However, linear spaces can be spaces of vectors, or signals, or functionals, or signal operators, or
other general objects. A linear space over the field of real or complex numbers is called a real or
complex linear space, respectively.

A subset S of a linear space V is called a linear subspace if it is itself a linear space over the
same scalar field F . This is equivalent to S being closed under addition and scalar multiplication.

Consider a (possibly infinite) subset A of a linear space V . A space element x ∈ V is called a
linear combination of points in A if there exists a finite set of elements {x1, x2, ..., xn} in A and
a finite set of scalars {r1, r2, ..., rn} such that

x = r1x1 + r2x2 + · · ·+ rnxn

The linear span of A, denoted by span(A), is the set of all linear combinations of elements in A. If
A = ∅, by convention we set span(A) = {0}. The linear span of any A ⊆ V is a linear subspace
of V , and actually the smallest subspace containing A.

A set S in a linear space X is called linearly independent if each point v ∈ S is not a linear
combination of points in S \ {v}. Equivalently, S is linearly independent if and only if (abrreviated
as ‘iff’) for each nonempty finite subset of S, e.g. {x1, x2, ..., xn}, the only scalars satisfying the
equation

a1x1 + a2x2 + · · ·+ anxn = 0

are a1 = · · · = an = 0. The set S is called linearly dependent if it contains at least one point v that
is a linear combination of points in S \ {v}.

Theorem 1 Let S be a nonempty subset of a linear space X. Then, for each v ̸= 0 that belongs
to the linear span of S, there is a unique n-tuple (x1, x2, ..., xn) of points in S and a unique n-tuple
of nonzero scalars (a1, ..., an) such that

v = a1x1 + a2x2 + · · ·+ anxn
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A Hamel basis of X is a set B ⊆ X that is linearly independent and its linear span makes
up all the space V . Every linear space X has a Hamel basis. However, all possible Hamel bases
of a space have the same cardinality. This common cardinality of any Hamel basis determines
the dimension of the space, denoted dim(X). If it has a finite basis, the space is called finite-
dimensional. Otherwise the linear space is called infinite-dimensional.

2.1.2 Topological Structure, Banach spaces

A real-valued function ∥ · ∥ defined on a linear space V over F is called a norm if for all x, y ∈ V
and a ∈ F :
(N1) ∥x∥ ≥ 0 and ∥0∥ = 0 (Positivity)
(N2) ∥x+ y∥ ≥ ∥x∥+ ∥y∥ (Triangle inequality)
(N3) ∥ax∥ = |a| ∥x∥ (Homogeneity)
(N4) ∥x∥ = 0 =⇒ x = 0 (Strict Positivity).
If the function satisfies only (N1), (N2) and (N3), it is called a seminorm (or pseudonorm).

A linear space equipped with a norm becomes a normed linear space. Each normed space is
a metric space, where the metric is defined in terms of the given norm by d(x, y) = ∥x − y∥. In
such spaces, the axioms for defining a linear space determine its algebraic structure, whereas the
norm endows it with topological and metrical properties. Thus, normed spaces possess some weak
geometric structure since, in addition to vector structure, they have distances and lengths.

Two norms ∥ · ∥a and ∥ · ∥b on a linear space X are called equivalent if they generate equivalent
metrics, i.e. create the same topology on X. It can be shown that the two norms are equivalent iff
there exist positive constants c1 and c2 such that for all x ∈ X

c1∥x∥a ≤ ∥x∥b ≤ c2∥x∥a

On a finite-dimensional linear space, two norms are always equivalent. A normed linear space
(X, ∥ · ∥) is finite-dimensional iff the unit ball {x ∈ X : ∥x∥ ≤ 1} is a compact set.

Let X be a normed linear space. A sequence (xn) in X is called convergent if there is x ∈ X
such that ∥xn−x∥ → 0 as n→ ∞; we write limxn = x. If this sequence limit exists, it is unique. A
sequence (xn) is called Cauchy sequence if ∥xn − xm∥ → 0 as n,m→ ∞. If each Cauchy sequence
in X converges to a point in X, then X is called complete. A complete normed linear space is
called a Banach space.

To analyze an infinite series
∑∞

n=1 xn in X, from its term sequence (xn) we form the sequence
of partial sums ym =

∑m
n=1 xn. If (ym) converges to a limit y ∈ X, we say that the infinite series

converges and write

y =
∞∑
n=1

xn

In a Banach space X, testing the convergence of the above series becomes simple via the Cauchy
test which checks whether the sequence of partial sums is a Cauchy sequence. Stronger types of
convergence for the infinite series are: (i) absolute convergence where the real series

∑∞
n=1 ∥xn∥

converges and (ii) unconditional convergence where all the series resulting by all possible permuta-
tions of the series terms converge and have the same limit. Obviously, unconditional convergence
implies simple convergence. In a Banach space X, if a series is absolutely convergent, then it is
also unconditionally convergent. The converse is true if X is finite-dimensional.

2.1.3 Geometric Structure, Hilbert spaces

An even closer resemblance to Euclidean geometry exists in inner product linear spaces, which are
complex or real linear spaces on which a mapping from V ×V to F is defined (where F is C or R),
called inner product, that is denoted by ⟨·, ·⟩ and satisfies the following axioms: for all x, y, z ∈ V
and a ∈ F ,
(IP1) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ (Additivity)
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(IP2) ⟨ax, y⟩ = a⟨x, y⟩ (Homogeneity)
(IP3) ⟨x, y⟩ = ⟨y, x⟩∗ (Symmetry)
(IP4) ⟨x, x⟩ > 0 if x ̸= 0 (Positive Definiteness)
where (·)∗ denotes complex conjugate. The first three axioms imply the following additional prop-
erties:
(IP5) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩
(IP6) ⟨x, ay⟩ = a∗⟨x, y⟩ .
A (complex or real) Hilbert space is a (complex or real) complete inner product linear space.

Any inner product generates a norm defined as follows:

∥x∥ ,
√
⟨x, x⟩

Lemma 1 (Cauchy-Schwarz Inequality). For any elements x, y of an inner product space,

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ (1)

Equality holds iff x and y are linearly dependent.

In an inner product space X, two elements x, y are called orthogonal, written as x ⊥ y, if
⟨x, y⟩ = 0. Two subsets A,B of X are called orthogonal, written as A ⊥ B, if ⟨x, y⟩ = 0 for all
(x, y) ∈ A×B.

Theorem 2 (Generalized Pythagorean Theorem). In an inner product space, if two ele-
ments x, y are orthogonal, then

∥x+ y∥2 = ∥x∥2 + ∥y∥2

The converse is true if the space is real.

2.1.4 Examples of Linear Image Spaces

Finite-dimensional Spaces: The simplest image function model is a finite vector f = (f1, ..., fN )
of N real- or complex-valued image samples formed by some indexing of the finite image domain. If
our application or problem requires linear operations, then the image space is the finite-dimensional
vector space (FN , ∥ · ∥p), where F is R or C, equipped with the familiar ℓp norms for vectors:

∥f∥p ,
{

(|f1|p + |f2|p + · · ·+ |fN |p)1/p, 1 ≤ p <∞
max(|f1|, |f2|, ..., |fN |), p = ∞ (2)

For each p ≥ 1, we have a Banach space. The case p = 2 corresponds to the well-known
Euclidean norm ∥f∥ =

√
⟨f , f⟩, which yields a Hilbert space with the familiar inner-product

⟨f ,g⟩ = f · g = f1g1
∗ + f2g2

∗ + · · ·+ fNgN
∗ (3)

Since all the ℓp norms are equivalent, we generally refer to the linear spaces (FN , ∥·∥p) as Euclidean
spaces.

Discrete-domain Infinite-dimensional Image Spaces: Consider the complex or real linear
space ℓ(Zm) that consists of all complex- or real-valued m-dimensional infinite sequences denoted
as discrete-domain signals f [n] with n = (n1, ..., nm) ∈ Zm, m = 1, 2, 3, ..., where vector addition
and scalar multiplication is, respectively, the pointwise sum of two sequences and the multiplication
of a sequence by a scalar. The ℓp norm of f [n] is defined by

∥f∥p ,
{ (∑

n∈Zm |f [n]|p
)1/p

, 1 ≤ p <∞
supn∈Zm |f [n]|, p = ∞

(4)
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The subset of image sequences with finite norm is a linear subspace because it is closed under
scalar multiplication and vector addition. The latter results from the Minkowski Inequality :

∥f + g∥p ≤ ∥f∥p + ∥g∥p, 1 ≤ p ≤ ∞ (5)

for any two sequences f, g. For each p ∈ [1,∞], this subspace of m-dimensional infinite sequences
with finite ℓp norm is a Banach space called the ℓp(Zm) space. Three cases are most important
for the analysis of discrete-domain images: for p = 1 we have the space of absolutely summable
images, whereas for p = ∞ we have the space of bounded image sequences. Finally, for p = 2 we
have the space of finite-energy image sequences, which is a Hilbert space with inner product given
by

⟨f, g⟩ =
∑
n∈Zm

f [n]g∗[n] (6)

Hölder Inequality: For 1 ≤ p ≤ ∞ and p−1 + q−1 = 1,∑
n∈Zm

|f [n]g∗[n]| ≤ ∥f∥p · ∥g∥q (7)

Continuous-domain Infinite-dimensional Image Spaces: Consider all real- or complex-
valued image functions defined on a measurable (e.g. open and usually bounded) subset E of
Rm which are measurable3 and Lebesgue integrable, i.e.

∫
E ∥f∥ < ∞. Their collection forms

a linear space, L1(E,C), under function addition and scalar multiplication. More generally, for
1 ≤ p < ∞, let Lp(E,C) be the linear space of all those functions whose p-th absolute power is
integrable, i.e. whose Lp norm is finite:

∥f∥Lp =

(∫
E
|f |p(x)dx

)1/p

<∞ (8)

We may omit the range and image domain from the notation of Lp if understood from the context.
In Lp, if two functions f and g are equal almost everywhere (a.e.), i.e. A = {x : f(x) ̸= g(x)} has
measure zero, then

∫
E f =

∫
E g and hence ∥f − g∥Lp = 0. Thus, ∥f∥Lp = 0 means that f = 0 a.e.

Hence, the function ∥ · ∥Lp is not a norm, but a seminorm. However, we can make it a norm by
defining it on equivalence classes of functions where two functions are equivalent if they are equal
a.e. Thus, if we don’t distinguish between two equivalent functions, then ∥ · ∥Lp becomes a norm,
and Lp becomes a Banach space. For p = 2, this is a Hilbert space with inner product

⟨f, g⟩ =
∫
E
f(x)g∗(x)dx (9)

Consider now the linear space L∞ of all scalar-valued measurable functions on E that are
bounded. This becomes a Banach space if we equip it with the essential supremum norm:

∥f∥∞ = inf{B : |f(x)| ≤ B almost everywhere} (10)

For a sequence of functions (fn) in the Lp spaces, in addition to its pointwise convergence to a
limit function f , which means that lim fn(x) = f(x) for almost all points x ∈ E, we more often use
another type of convergence in the norm, denoted by fn → f which means that limn ∥fn−f∥Lp = 0.
If 1 ≤ p < ∞, the norm convergence is referred to as convergence in the mean of order p. In the
case p = ∞ the norm convergence is equivalent to uniform convergence a.e.

3A real-valued function is measurable if all its level sets are measurable. A complex-valued function is measurable
if both its real and imaginary part are measurable functions.
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Spaces of Continuous and Differentiable Functions Consider the collection of real-valued
continuous functions defined on some open set E ⊆ Rm. Several subcollections of such functions
form linear spaces that are of interest in image analysis and computer vision. Examples include
the following:

1. The space BC(E,R) of all bounded and continuous functions f : E → R equipped with the
supremum norm

∥f∥∞ = sup{f(x) : x ∈ E}
is a Banach space. Further, if E is compact, then the above space becomes the Banach space
C(E,R) of continuous real functions on E.

2. Space LC(E,R) of Lipschitz continuous functions on E, i.e. functions f for which there exists
a constant K > 0 (called Lipschitz coefficient) such that for all x,y ∈ E

|f(x)− f(y)| ≤ K∥x− y∥ (11)

Let Lip(f) be the smallest constant K satisfying (11); then Lip(f) is a seminorm. However
the following is a norm:

∥f∥LC = ∥f∥∞ + Lip(f)

3. Space Cnc (E) of continuously differentiable functions up to order n = 0, 1, 2, ... and with
compact support. A frequently used norm in this space is the square root of the sum of the
square energies of the function and all its derivatives up to order n. The case n = ∞ is called
the space of infinitely differentiable functions with compact support C∞c (E) =

∩
n≥0C

n
c (E).

In examples 1 and 2 the domain E may also generalize to an arbitrary metric space. Further,
in all examples above the images may also be complex-valued.

2.2 Linear Operators

2.2.1 Algebraic Definitions for Linear Operators

A mapping L : X → Y between two linear spaces over the same scalar field is called a linear
operator if it preserves addition and scalar multiplication. This is equivalent to

L(a1x1 + · · ·+ anxn) = a1L(x1) + · · ·+ anL(xn)

for all x1, ..., xn ∈ X, all scalars a1, ..., an and all finite n. An operator that does not satisfy the
above is called nonlinear. The null space and range of L are defined as

Nul(L) , {x ∈ X : L(x) = 0}, Ran(L) , {L(x) : x ∈ X}

The null space is a linear subspace of X, whereas the range is a linear subspace of Y . For any
linear operator L : X → Y between two linear spaces, the dimensions of its null and range spaces
are related as follows to the dimension of the domain space:

dim{Nul(L)}+ dim{Ran(L)} = dim{Dom(L)}

Two linear spaces X and Y over the same scalar field are called isomorphic if there exists an
invertible linear operator L : X → Y . Such a mapping L is called an isomorphism between the two
linear spaces. The inverse mapping L−1 : Y → X is also a linear operator. It can be shown that a
linear operator L is an isomorphism iff Nul(L) = {0}.

All linear spaces over the same field are isomorphic iff they have the same dimension. Hence,
all real (resp. complex) finite-dimensional linear spaces are isomorphic to Rn (resp. Cn) for some
n. Thus, finite-dimensional linear spaces are essentially linear vector spaces, if by ‘vector’4 we agree
to mean a finite tuple of scalars.

4In the broad mathematics literature, the terminology ‘vector space’ is used as synonymous with ‘linear space’
and includes both finite- and infinite-dimensional linear spaces. In this chapter, since we are dealing with a large
variety of linear and nonlinear spaces, we distinguish between the two terms and use the term ‘vector space’ only in
the finite-dimensional case.
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2.2.2 Linear Operators on Normed Spaces

A map f : X → Y between two normed linear spaces is called continuous if lim f(xn) = f(x)
for each convergent sequence xn → x in X, or equivalently if lim ∥f(xn) − f(x)∥Y = 0 whenever
lim ∥xn − x∥X = 0. Continuous linear maps are the only ones distributing with infinite series as
the following fundamental result implies.

Theorem 3 (Principle of Infinite Linear Superposition). Let L : X → Y be a mapping
between two normed linear spaces. Then, L is a continuous linear operator if and only if

L

( ∞∑
n=1

anxn

)
=
∞∑
n=1

anL(xn)

for every convergent series
∑∞

n=1 anxn.

An operator L : X → Y between two normed linear spaces is called bounded if there exists
M ≥ 0 such that ∥L(x)∥ ≤M∥x∥ for all x ∈ X. Equivalently, L is bounded iff its operator norm,
defined as

∥L∥ , inf{M ≥ 0 : ∥L(x)∥ ≤M∥x∥ ∀x},

is finite. More versatile expressions for the operator norm are the following:

∥L∥ = sup{∥L(x)∥/∥x∥ : x ̸= 0}
= sup{∥L(x)∥ : ∥x∥ ≤ 1} (12)

Intuitively, ∥L∥ expresses the ‘maximum’ gain of the operator. Obviously,

∥L(x)∥ ≤ ∥L∥ · ∥x∥, ∀x ∈ X. (13)

Theorem 4 A linear transformation between two normed linear spaces is continuous if and only
if it is bounded.

Space of Bounded Linear Operators: The collection BLT (X,Y ) of all bounded linear trans-
formations L : X → Y between two normed linear spaces equipped with the above operator norm
∥L∥ becomes a normed linear space, where the operator addition and scalar multiplication are in-
duced by the corresponding operations on the operators’ inputs and outputs. This operator space
is Banach if Y is Banach. For the norm of the composition of two operators S, T in this space we
have

∥ST∥ ≤ ∥S∥ · ∥T∥ (14)

If we need to analyze the limiting behavior of an infinite sequence of operators in BLT (X,Y ), we
need to study its convergence. This can be done in two ways. 1) Globally via the operator norm:
We say that a sequence (Tn) converges uniformly to T in BLT (X,Y ), written as limTn = T ,
if lim ∥Tn − T∥ = 0. 2) Locally at each point: The sequence (Tn) converges strongly to T in
BLT (X,Y ), written as limTn =s T , if lim ∥Tn(x)− T (x)∥ = 0 for all x ∈ X. Uniform convergence
implies strong convergence.

2.2.3 Linear Operators on Inner Product Spaces

Let L : H → K be a bounded linear operator between two Hilbert spaces. Then there exists a
unique operator L∗ : K → H, called the adjoint of L, such that for all x ∈ H, y ∈ K

⟨L(x), y⟩K = ⟨x, L∗(y)⟩H

A bounded linear operator T on a Hilbert space is called normal if it commutes with its adjoint:
TT ∗ = T ∗T . A self-adjoint operator is a special case of a normal operator S with S = S∗.

Some of the properties of the adjoint include the following:
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Proposition 1 Let L, S, T be bounded linear operators on a Hilbert space H. Then:
(a) The adjoint L∗ of L is itself a bounded linear operator with ∥L∗∥ = ∥L∥.
(b) (L∗)∗ = L∗.
(c) (S + T )∗ = S∗ + T ∗ and (aL)∗ = a∗L∗.
(d) (ST )∗ = T ∗S∗.
(e) S is self-adjoint iff ⟨x, S(x)⟩ ∈ R for all x ∈ H.

A self-adjoint operator S is called positive, written as S ≥ 0, if ⟨x, S(x)⟩ ≥ 0 for all x ∈ H and
strictly-positive if ⟨x, S(x)⟩ > 0 for all x ̸= 0. The following introduces a partial ordering on the
class of self-adjoint operators S, T :

S ≤ T ⇐⇒ 0 ≤ T − S

Examples 1 (Self-Adjoint and Normal Operators):
(a) The identity I and zero operator O are self-adjoint.
(b) If a finite-dimensional linear operator A on Cn is represented by a matrix A, its adjoint corre-
sponds to the matrix AH . The operator is self-adjoint iff A is Hermitian. Further, the operator is
positive iff the matrix is positive semidefinite. More generally, the operator is normal iff the matrix
is square and AAH = AHA.
(c) Bounded linear time-invariant operators are normal.
(d) A continuous projection on a Hilbert space H is orthogonal iff it is self-adjoint.

2.2.4 Isomorphisms

There are four ways that linear spaces X and Y can be isomorphic in the sense of having equivalent
algebraic structure and geometric structure (if the latter exists). Next we define these types of
isomorphisms in order of increasing structure; namely each new definition makes the assumptions
of the previous ones. The last three types are bounded linear operators.

Specifically two linear spaces X and Y over the same field are called:

• (Algebraically) Isomorphic if there exists a linear bijection α : X → Y . Such a map is
called an (algebraic) isomorphism of X onto Y .

• Topologically Isomorphic if they are normed spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) for which
there exists a linear bijection τ : X → Y that is continuous and has a continuous inverse; τ is
called a topological isomorphism. It can be proven that two linear normed spaces (X, ∥ · ∥X)
and (Y, ∥ · ∥Y ) are topologically isomorphic iff there exists a linear map ϕ : X → Y and two
positive constants c1, c2 such that for all x ∈ X

c1∥x∥X ≤ ∥ϕ(x)∥Y ≤ c2∥x∥X (15)

The map ϕ satisfying (15) is a topological isomorphism.

• Isometrically Isomorphic if they are normed spaces for which there exists a linear map
µ : X → Y that preserves norms:

∥µ(x)∥Y = ∥x∥X , ∀x ∈ X (16)

µ is called an isometry isomorphism, or simply a linear isometry. Note that (16) implies that
µ is continuous and that µ−1 exists and is a linear isometry.

• Unitarily Equivalent if they are inner-product spaces (X, ⟨·⟩X) and (Y, ⟨·⟩Y ) for which
there exists a linear bijection θ : X → Y that preserves inner products:

⟨θ(x), θ(y)⟩Y = ⟨x, y⟩X , ∀x, y ∈ X (17)

θ is called a unitary operator. Note that a linear map between two inner-product spaces is
unitary iff it is an isometry.
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2.3 Linear Projections

2.3.1 Algebraic Decomposition

Assume we have two linear subspaces A and B of a linear space X. There are two ways to combine
them and form a new space. Their sum is defined as the linear space

A⊕B = {a+ b : a ∈ A, b ∈ B}

and their product is defined as the linear space

A×B = {(a, b) : a ∈ A, b ∈ B}

where addition and scalar multiplication is defined componentwise.5 Thus, the sum of the subspaces
A and B equals the span(A ∪ B), whereas their product has as underlying set their Cartesian
product.

Two subspaces A and B of X are called disjoint if A ∩ B = {0}. If additionally X = A ⊕ B,
then B is called the algebraic complement of A. All algebraic complements of a subspace A have
the same dimension, called the co-dimension of A. The concept of algebraic complement offers a
decomposition of a linear space X into a sum of disjoint subspaces A,B where each point in X
admits a unique expression as a sum of two points in A and B, respectively.

Lemma 2 Two linear subspaces A and B of a linear space X are algebraic complements of each
other if and only if for each x ∈ X there is a unique pair (x1, x2) ∈ A×B with x = x1 + x2.

A projection P : X → X on a linear space X is a linear map that is idempotent, i.e. P 2 = P .
A projection enables the decomposition of a linear space as in Lemma 2.

Theorem 5 (a) If M and N are two disjoint linear subspaces of a linear space X such that
X = M ⊕ N , then there is a unique projection P on X with M = Ran(P ) and N = Nul(P ).
(b) Conversely, if P is a projection, then its range and null space are algebraic complements of
each other.

2.3.2 Orthogonal Projections

Consider an inner product space X. For any subset M of X, its orthogonal complement is defined
as

M⊥ , {x ∈ X : ⟨x, y⟩ = 0 ∀y ∈M}

We write x ⊥M if x ∈M⊥. If M = ∅, we set M⊥ = X. A projection P on X is called orthogonal
if its range and null space are orthogonal sets. Orthogonal projections have many interesting
properties.

Lemma 3 Let P be an orthogonal projection on an inner product space X. Then:
(a) P is a continuous, and hence bounded operator.
(b) If P ̸= O, then ∥P∥ = 1.
(c) Its range M and null space N are closed linear subspaces of X, which are also orthogonal and
algebraic complements of each other.
(d) Each x ∈ X can be written uniquely as x = m + n with (m,n) ∈ M × N and m ⊥ n; hence,
∥x∥2 = ∥m∥2 + ∥n∥2.

5Several authors use a different notation: they call the sum of two linear subspaces A and B inner sum and denote
it as A + B, whereas they call the product space as direct sum and denote it by A ⊕ B. Our notation for ⊕ is the
Minkowski set addition.
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Theorem 6 (Projection Theorem in Hilbert Spaces) Let M be any closed subspace of a
Hilbert space H. Then:
(a) There is a unique orthogonal projection P on H with M = Ran(P ), M⊥ = Nul(P ), and
H =M ⊕M⊥.
(b) For each x ∈ H, its projection yo = P (x) is the unique point in M whose difference from x is
orthogonal to M :

x− yo ⊥M

(c) This unique point yo is at minimum distance from x:

∥x− yo∥ < ∥x− y∥ ∀y ∈M \ {yo}

A direct corollary of this celebrated theorem is to interpret least squares approximation as
simply an orthogonal projection. Thus, if we consider the points y ∈M as an approximation of the
original data x ∈ H, then yo is the best linear approximation in the sense of minimizing the mean
squared error (MSE), i.e. the squared norm E(x, y) = ∥e∥2 of the approximation error e = x − y.
This linear least squares approximation

yo = argminy∈M∥x− y∥

can be found easily as the orthogonal projection yo = P (x) of the original data onto M . Geometri-
cally, the corresponding error eo = x− yo is orthogonal to all points in M and the minimum error
norm is

Emin(x) = ∥eo∥2 = ⟨x, eo⟩ = ∥x∥2 − ⟨x, P (x)⟩

If the subspaceM is finite-dimensional and is the span of p linearly independent vectors u1, u2, ..., up,
then the best approximation is a linear combination of these basis vectors:

yo =

p∑
k=1

akuk

Exploiting the orthogonality conditions eo ⊥ uk gives rise to the normal equations

p∑
k=1

ak⟨uk, ui⟩ = ⟨x, ui⟩, i = 1, ..., p

Emin = ∥x∥2 −
p∑

k=1

ak
∗⟨x, uk⟩

which are the basic tool in computing the optimal coefficients and the minimum error for least
squares approximation problems.

2.4 Representations of Linear Operators

2.4.1 Matrix Representation of Linear Operators on Finite-dimensional Vector Spaces

Let L : X → Y a linear operator between two finite-dimensional linear spaces X and Y whose
Hamel bases are, respectively, the sets B1 = {x1, ..., xn} and B2 = {y1, ..., ym}. Since every point
x in X has a unique representation as linear combination of basis elements

x = c1x1 + · · ·+ cnxn

its image will be
L(x) = c1L(x1) + · · ·+ cnL(xn)

Since L(x) is a point in Y , it can be expressed as a unique linear combination of the basis elements
of Y :

L(x) = d1y1 + · · ·+ dmym
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In addition, L(x1), ..., L(xn) are also points in Y and can be expressed by corresponding unique
linear combinations of the basis elements of Y :

L(x1) = a11y1 + · · ·+ am1ym
...

...
...

L(xn) = a1ny1 + · · ·+ amnym

Hence, the two vectors of coefficients of the expansions of x and L(x) in the corresponding bases
are related via a matrix-vector multiplication:

[L]


c1
c2
...
cn

 =


d1
d2
...
dm

 , [L] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


Thus, there is one-to-one correspondence between the linear operator L and the m× n matrix [L]
over the field F .

Similarly, if we consider a linear operator fromX to itself, then this corresponds to a square n×n
matrix with elements from F . Let Fn×n the set of all such matrices; equipped with addition and
multiplication of matrices, it becomes ring. Therefore, if we consider the set of all linear operators
from X to itself equipped under addition of composition of operators, this algebraic structure is a
ring of linear operators, which is isomorphic to the matrix ring Fn×n.

2.4.2 Riesz Representation Theorem and Linear Convolution

Given a linear space V over a field F of scalars, a linear functional on V is called any linear
transformation of V into its scalar field F , i.e. any linear operator ℓ : V → F that maps points
(e.g. vectors, signals) of the space to scalar numbers.

Theorem 7 (Riesz Representation Theorem). Let ϕ be a bounded linear functional on a
Hilbert space H. Then there exists a unique point k ∈ H such that ϕ(x) = ⟨x, k⟩ for all x ∈ H.
Further, ∥ϕ∥ = ∥k∥.

The ‘vector’ k is called a representation of the functional ϕ; thus, a signal represents a linear
system. This fundamental theorem is the basis of the convolutional representation of linear systems.
LetH be the Hilbert space L2(R,C) of complex-valued continuous-time signals. Consider a bounded
linear operator L on H, i.e. ∥L∥ <∞. This acts as a linear system that maps a finite-norm input
signal f(t) to a finite-norm output signal

g(t) = L[f(t)]

If we consider the output value at any time location t = to, then the map f(t) 7→ g(to) = ϕ(f) is a
bounded linear functional on H. From the Riesz representation theorem, there is a unique signal
kto ∈ H such that

g(to) = L[f(t)]|t=to = ⟨f, kto⟩ =
∫
f(τ)kto

∗(τ)dτ, ∀to ∈ R

Clearly, the function kto(t) is the complex conjugate of the system’s impulse response map at time
t = to, i.e. the system’s output

hto(t) , L[δ(t− to)] (18)

when the input is an impulse function δ(t− to) located at t = to. Note that the above function is
a map that assigns a possibly different signal at each time instant to because the system may be
time-varying.



22 P. Maragos: Chapter in A.I.E.P., vol.177, 2013.

However, if the linear system L is also time-invariant, then there exists a unique function
h(t) = L[δ(t)], called impulse response of the system, such that

hto(t) = h(t− to), ∀to ∈ R

In this case, the Riesz representation theorem implies that the system’s output signal g is the
continuous-time linear convolution of the input signal f and the impulse response h:

g(t) = L[f(t)] =

∫
f(τ)h(t− τ)dτ (19)

The above ideas easily carry over to linear systems processing discrete-time signals, i.e. bounded
linear operators L on the Hilbert space H = ℓ2(Z,C). If f [n] is an input sequence and g[n] =
L(f [n]) the corresponding output, then for each n = no there is a unique finite-energy sequence
hno = L(δ[n − no]), defined as the system’s response for input impulse at location n = no, such
that

g[n] = L[f [n]] =
∑
m

f [m]hno [n−m]

If the system is also time-invariant, there is a unique sequence h[n] = L(δ[n] called the impulse
response, such that hno [n] = h[n− no] for all no, and hence the system’s input-output relationship
is given by a discrete-time linear convolution:

g[n] = L[f [n]] =
∑
m

f [m]h[n−m] (20)

Finally, the Riesz representation theorem and its consequences (e.g. the convolutional expression in
case of shift-invariance) directly apply to bounded linear operators on spaces of multidimensional
signals.

2.4.3 Spectral Representation of Linear Operators on Finite-dimensional Vector Spaces

The main idea here is to perform a geometrical analysis of a complex Hilbert space H by decom-
posing it into a sum of simpler subspaces, e.g. those formed as ranges of projections, while a linear
operator L on H is expressed as a corresponding superposition of simpler operations, e.g. projec-
tions on these subspaces. This also leads to a spectral analysis of the operator via its eigenvalues
and eigenvectors. We shall outline from Naylor and Sell (1982) some main results in the case where
the decomposition is done with a finite number of projections.

A collection {P1, P2, ..., Pm} of continuous projections on H is called a resolution of the identity
if (i) they are orthogonal, (ii) PiPj = O if i ̸= j, and (iii) I = P1 + · · ·Pm. Without any loss of
generality we shall henceforth assume that Pi ̸= O for all i. Then, the space can be decomposed as

H = Ran(P1)⊕ · · · ⊕ Ran(Pm) (21)

where Ran(Pi) ⊥ Ran(Pj) if i ̸= j. Let {λ1, ..., λm} be a set of distinct scalars and consider the
linear operator

L = λ1P1 + · · ·+ λmPm (22)

Then, L is continuous and normal. Further, it is self-adjoint iff all the λi’s are real. Note that, L
agrees with λiI on Ran(Pi). Thus, since any ‘vector’ x ∈ H can be decomposed uniquely as

x = x1 + · · ·+ xm, xi ∈ Ran(Pi), (23)

the action of L on x can also be decomposed as

L(x) = λ1x1 + · · ·+ λmxm (24)
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The {λi} are called the eigenvalues of L because they are the only scalar solutions of the equation

L(x) = λx

For each λi the corresponding eigenvector must lie in Ran(Pi). Actually, there exists an orthonormal
basis of eigenvectors {ei} of L. By using it, we can express any point x ∈ H (input to the operator)
as

x =

m∑
i=1

⟨x, ei⟩ei (25)

and the corresponding output from the operator as

L(x) =

m∑
i=1

λi⟨x, ei⟩ei (26)

The norm of the operator can also be expressed via its eigenvalues:

∥L∥ = max
i

|λi| (27)

The above analysis was relatively easy because we started from synthesizing a linear operator
as a finite linear combination of known orthogonal projections that can build up completely the
whole space. A more difficult problem is to start from a linear operator and then find a set of such
orthogonal projections. For further details the reader is referred to Naylor and Sell (1982).

3 Lattice Spaces and Morphological Image Operators

3.1 Lattices: Synopsis

Most of the material in Section 3.1 follows Birkhoff (1967), Heijmans and Ronse (1990), and
Heijmans (1994).

A partially-ordered set, briefly poset (P,≤), is a set P in which a binary relation ≤ is defined
that is a partial ordering, i.e., satisfies the following three properties for all X,Y, Z ∈ P:

P1. X ≤ X (reflexive)
P2. X ≤ Y and Y ≤ X imply X = Y (antisymmetric)
P3. X ≤ Y and Y ≤ Z imply X ≤ Z (transitive)

If ≤ has the additional property that, for any two elements we have either X ≤ Y or Y ≤ X, then
P is called a totally-ordered set or chain.

To every partial ordering ≤ on P there corresponds a dual partial ordering ≤′ defined by
“X ≤′ Y iff X ≥ Y ”. Duality Principle: If (P,≤) is a poset, then (P,≤′) is also a poset, called
the dual poset.

Let S be a subset of a poset (P,≤). An upper bound of S is an element B ∈ P such that X ≤ B
for all X ∈ S. The least upper bound of S is called its supremum and denoted by supS or

∨
S.

By using the duality principle, we can also define the concepts of a lower bound and the greatest
lower bound of S; the latter is called its infimum and denoted by inf S or

∧
S. The supremum

and infimum are unique if they exist. If the supremum (resp. infimum) of S belongs to S, then
it is called the the greatest element or maximum (resp. least element or minimum) of S. If the
poset P is not easily inferred from the context, the supremum and infimum of a subset S may be
denoted as supP S and infP S respectively. An element M of S is called maximal (resp. minimal)
if there is no other element in S that is greater (resp. smaller) than M with respect to ≤.

A lattice is a poset (L,≤) any two of whose elements have a supremum, denoted by X ∨ Y ,
and an infimum, denoted by X ∧Y . We often denote the lattice structure by (L,∨,∧). A lattice is
L is complete if each of its subsets has a supremum and an infimum in L. Any nonempty complete
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lattice is universally bounded because it contains its supremum I =
∨

L and infimum O =
∧

L
which are its greatest and least elements, respectively. Sometimes O is called the ‘null element’
and I is called the ‘all element’. If L is not easily inferred from the context, we may denote its
least and greatest elements by LO and LI respectively.

Duality in Lattices: In any lattice L, by replacing the partial ordering ≤ with its dual ≤′ and by
interchanging the roles of the supremum and infinum, i.e., by considering the dual operations ∨′ = ∧
and ∧′ = ∨, we can form a new lattice (L,∨′,∧′), called the dual lattice and often denoted just by
L′. The duality principle dictates that to every definition, property and statement that applies to
the lattice L there corresponds a dual one that applies to the dual lattice L′ by interchanging ≤
with ≤′ and ∨ with ∧.

A bijection between two lattices L and M is called an isomorphism (resp. dual isomorphism)
if it preserves (resp. reverses) suprema and infima. If L = M, a (dual-)isomorphism on L is called
(dual-)automorphism. A lattice is called self-dual if there is a dual automorphism on it; it can be
shown that a lattice L is self-dual iff it is isomorphic with its dual lattice L′.

3.1.1 Lattice Properties

The lattice operations satisfy many properties, the most fundamental of which are summarized in
Table 1. Conversely, a set L equipped with two binary operations ∨ and ∧ that satisfy the first
four pairs of properties, i.e., (L1,L1′)–(L4,L4′) is lattice whose supremum is ∨, infimum is ∧, and
partial ordering ≤ is given by L5. Note that, properties (L6,L6′) and (L7,L7′) hold only if the
lattice contains a least and a greatest element, respectively.

Table 1: Properties of Lattice Operations
Sup-Semilattice Inf-Semilattice Description

L1. X ∨X = X L1′. X ∧X = X Idempotence

L2. X ∨ Y = Y ∨X L2′. X ∧ Y = Y ∧X Commutativity

L3. X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z L3′. X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z Associativity

L4. X ∨ (X ∧ Y ) = X L4′. X ∧ (X ∨ Y ) = X Absorption

L5. X ≤ Y ⇐⇒ Y = X ∨ Y L5′. X ≥ Y ⇐⇒ Y = X ∧ Y Consistency

L6. O ∨X = X L6.′ I ∧X = X Identity

L7. I ∨X = I L7.′ O ∧X = O Absorbing Null

A lattice L is called distributive if

A ∧

(∨
i∈J

Xi

)
=
∨
i∈J

(A ∧Xi) and A ∨

(∧
i∈J

Xi

)
=
∧
i∈J

(A ∨Xi) (28)

for any finite index set J and for all A,Xi ∈ L. If the above also holds for infinite index sets, then
the lattice is called infinitely distributive.

A lattice L is called modular if ∀X,Y, Z ∈ L

X ≤ Z =⇒ X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ Z (29)

Obviously, a distributive lattice is modular, but the converse is not always true.

3.1.2 Semilattices

A lattice contains two weaker substructures, i.e., two semilattices. In general, a semilattice (P, ◦)
is a set P equipped with a binary operation ◦ that is associative, commutative, and idempotent.
Actually, any semilattice (P, ◦) is a poset in which the partial ordering is defined by X ≤ Y iff
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Y = X ◦Y and any two elements possess a supremum6 defined by X∨Y = X ◦Y ; such a semilattice
is called a sup-semilattice. Conversely, if (P,≤) is a poset in which any two elements X,Y have a
supremum X ◦ Y , then P is a semilattice with respect to the binary operation ◦. It now becomes
evident that a lattice (L,∨,∧) contains a sup-semilattice (L,∨) that satisfies properties L1-L3 of
Table 1, an inf-semilattice (L,∧) that satisfies properties L1′-L3′, and the two binary operations of
supremum and infimum are related via properties L4,L4′ that make them dual to each other.

3.1.3 Sublattices and Sup/Inf-closed subsets

Let (L,∨,∧) be a lattice with partial ordering ≤ and consider a nonempty subset S of L. Under
the same partial ordering, (S,≤) is a poset. If S is also closed under finite suprema and infima
that are induced by the partial ordering of L, then S is a called an underlattice of L. If S is an
underlattice whose supremum and infimum induced by ≤ are the same operations (∨,∧) as those
of L, then S is called a sublattice of L. A sublattice is always an underlattice, but the converse
is not always true. Underlattices and sublattices are complete if they remain closed under infinite
suprema and infima.

A subset S of a complete lattice L is called sup-closed (resp. inf-closed) if any subcollection of
its elements has its L supremum (resp. infimum) in S. The extreme case where this subcollection
is empty implies that O ∈ S if S is a sup-closed (resp. I ∈ S if S is inf-closed). It turns out that
in a complete lattice, any sup-closed or inf-closed subset is a complete underlattice; if a subset is
both inf- and sup-closed, then it is a complete sublattice.

Example 1 (Lattices and Sublattices):
(a) Any chain is a lattice under the chain order, because the supremum and infimum of any pair
of elements exist and equal their maximum and minimum, respectively. Thus, the chain (R,≤) of
real numbers equipped with the natural order ≤ is a lattice, but it is not complete. However, if we
consider the lattice (R,∨,∧), where

R = R ∪ {−∞,+∞}

is the set of extended real numbers, then R is a complete lattice and all its subsets have a supremum
and infimum. For example, supR = +∞ and inf R = −∞. R, as well as any other complete chain, is
completely distributive.7 The set Z = Z∪{−∞,+∞} of extended integers is a complete sublattice
of R. In contrast, the chain Q = Q ∪ {−∞,+∞} of extended rationals is only an incomplete
sublattice of R.
(b) The power set P(E) of an arbitrary set E equipped with the partial order of set inclusion is
the archetypal poset. It is also a completely distributive lattice under the supremum and infimum
induced by set inclusion which are the set union and intersection, respectively. Any collection of
subsets of E that is closed under finite unions and intersections is called a ring of sets. Any such
set ring is a sublattice of the power set P(E). If E is a topological space, e.g. the Euclidean space
Rm, let F(E) be the collection of its closed subsets. Then, F(E) is an inf-closed subset and hence
a complete underlattice of P(E); further, F(E) is an incomplete sublattice of P(E).
(c) If V is a linear space, then (P(V ),∪,∩) is a complete lattice, whose partial ordering, supremum
and infimum are the set inclusion, union and intersection, respectively. The greatest and least
elements of P(V ) are V and ∅, respectively. Let now S be the collection of linear subspaces of
V . Then, S is inf-closed but not sup-closed. Actually, S becomes a complete underlattice of P(V )
equipped with set intersection as its infimum and with (Minkowski) sum as its supremum. The
greatest and least elements of S are V and {0}, respectively.

6If in the semilattice (P, ◦) we consider a different partial ordering X ≤′ Y ⇐⇒ Y = X ◦ Y where X ◦ Y is
interpreted as the infimum X ∧ Y , then (P, ◦) becomes an inf-semilattice and vice-versa. Obviously, (P,≤′) is the
dual poset of (P,≤).

7The complete distributivity is an even stronger property than the infinite distributivity of (28) with infinite index
set; it is explained in Birkhoff (1967) and Heijmans (1994).
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3.1.4 Sup-generators, Atoms

A subset A of a complete lattice L is called sup-generating (resp. inf-generating) if each lattice
element can be expressed as a supremum (resp. infimum) of members of A. Such generators can
be found if the lattice has atom-like elements. Specifically, an element A ∈ L is called an atom if
it is a minimal element of L \ {O}, i.e. if A ∈ L \ {O} and, for each X ∈ L, X ≤ A implies X = O
or X = A. Respectively, a dual atom is called any maximal element of L \ {I}. For example, the
lattice of any power set P(E) has as atoms all the singletons.

A lattice is called atomic (resp. dual atomic) if the class of its atoms (resp. dual atoms) is
sup-generating (resp. inf-generating). For example, the lattice P(E) is atomic since any subset of
E is the union of the singletons of the points it contains.

Atoms may not exist in a lattice. For example, R is an atomless chain. Further, let us henceforth
denote collections of functions with common domain and range by

Fun(X,Y ) , set of all functions f : X → Y

Then, the lattice Fun(E,R) partially ordered by ‘f ≤ g ⇐⇒ f(x) ≤ g(x) ∀x’ is also atomless. A
weaker concept is the semi-atom: a nonzero element A ∈ L is called a semi-atom if A ≤ X ∨ Y
implies A ≤ X or A ≤ Y . A lattice is called semi-atomic if the class of its semi-atoms is sup-
generating. For example, all the elements of any chain are semi-atoms and any chain is semi-atomic.
Another example is the lattice L = Fun(E,R) where we consider the impulse functions

qh,v(x) =

{
v, x = h
−∞, x ̸= h

(30)

Then these impulses are semi-atoms and the lattice is semi-atomic since any function f in the
lattice can be written as supremum of some semi-atoms:

f(x) =
∨
h∈E

qh,f(h)(x) (31)

In lattices with semi-atoms, we can also define dual semi-atoms (as the atoms of the dual lattice),
which, if they form an inf-generating class, create a dual semi-atomic lattice.

If they exist, the (semi-)atoms of a lattice are preserved by a lattice isomorphism, whereas they
are mapped to dual (semi-)atoms by a dual isomorphism.

3.1.5 Boolean Lattices

In a lattice L with universal bounds O and I, an element X ∈ L is said to have a complement
X∗ ∈ L if X ∨ X∗ = I and X ∧ X∗ = O. For example, if L is a power set P(E), then X∗

is the well-known set complement Xc = E \ X. If all the elements of a general lattice L have
complements, then L is called complemented. A Boolean lattice is defined as any lattice that
is complemented and distributive. In any Boolean lattice B, the complement of each element is
unique and involutive: (X∗)∗ = X. Actually, the mapping X 7→ X∗ = ν(X) is a negation (i.e. an
involutive dual automorphism) on B. Thus, any Boolean lattice is self-dual.

For each X,Y ∈ B the following additional properties hold:

X ∨X∗ = I and X ∨X∗ = O
(X ∨ Y )∗ = X∗ ∧ Y ∗ and (X ∧ Y )∗ = X∗ ∨ Y ∗ (32)

The set B, equipped with the two binary operations of supremum and infimum and with the unary
operation of the complement, becomes an algebra. When so considered, a Boolean lattice is called
a Boolean algebra.

A collection S of subsets of some arbitrary universal set E is called a field of sets if it is closed
under finite unions, intersections and complementation. This structure is isomorphic to Boolean
lattices, as explained by the following representation theorem, which can be found in Halmos (1963).
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Theorem 8 (a) Any Boolean lattice is isomorphic to a field of sets. (b) A Boolean lattice is
complete and atomic iff it is isomorphic to the power set P(E) of some set E.

A finite Boolean algebra is obviously a complete and atomic lattice. Hence, it is isomorphic to
the power set of the set of its atoms. Thus, the cardinality of a finite Boolean algebra must be of
the form 2n, where n ≥ 1 is the number of atoms.

Example 2 (Boolean algebras and Boolean Functions):
(a) The simplest Boolean algebra is the set B = {0, 1} equipped with the operations

x ∨ y = x+y, x ∧ y = x · y, x∗ = x = 1− x (33)

where + denotes addition modulo 2, and (·) denotes Boolean complement.
(b) Consider the set BVn = {0, 1}n = {v = (v1, ..., vn) : vi ∈ {0, 1}} of n-dimensional Boolean
vectors equipped with the operations

v ∨ u = v+u = (v1+u1, ..., vn+un)
v ∧ u = v.u = (v1u1, ..., vnun)

v∗ = v = (v1, ..., vn)
(34)

The partial ordering of BVn is

v ≤ u ⇐⇒ vi ≤ ui ∀i = 1, ..., n (35)

Then, BVn is a Boolean algebra with 2n elements. Its atoms are the n vectors that have exactly
one component equal to 1.
(c) Consider the set BFn = Fun({0, 1}n, {0, 1}) of Boolean functions with n variables. Given any
such Boolean functions b, b1, b2 we can define the following two binary and one unary operations:

(b1 ∨ b2)(v) = (b1+b2)(v) = b1(v)+b2(v)
(b1 ∧ b2)(v) = (b1 · b2)(v) = b1(v) · b2(v)

b∗(v) = b(v) = b(v)

(36)

Under these operations the set BFn becomes a Boolean algebra of 22
n
elements. The corresponding

partial ordering is

b1 ≤ b2 ⇐⇒ b1(v) ≤ b2(v) ∀v ∈ {0, 1}n (37)

3.1.6 Function Lattices

An easy and frequent way of creating new lattices out of existing lattices is by forming mappings
from an arbitrary nonempty set E to an existing lattice (L,∨,∧). Let LE = Fun(E,L) be the set
of all functions f : E → L. If ≤ is the partial ordering of the lattice L, we can equip the function
space LE with the following pointwise partial ordering :

f ≤ g ⇐⇒ f(x) ≤ g(x) ∀x ∈ E (38)

This induces the following pointwise supremum
∨
i fi, and pointwise infimum

∧
i fi on the function

space LE : (∨
i∈J

fi

)
(x) =

∨
i∈J

fi(x), x ∈ E (39)(∧
i∈J

fi

)
(x) =

∧
i∈J

fi(x), x ∈ E (40)
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where J is an abritrary index set. Thus, (LE ,∨,∧) is lattice called a power lattice or function
lattice. These lattices are very useful for modeling lattice spaces of finite- or infinite-support images
and unifying their properties. For instance, if L has any of the properties of being complete,
or distributive, or infinitely distributive, or Boolean, then the function lattice LE retains these
properties. Preservation of the Boolean property was already encountered in Example 2.

Two useful cases of function lattices are the following: (1) Vector lattices: If E = {1, 2, ..., n},
then LE becomes the set of all n-dimensional vectors (x1, ..., xn) with elements from L. (2) Signal
lattices: If E = Rm or E = Zm, then LE becomes the set of all m-dimensional signals (with
continuous or discrete domain) with values from L. The special case of the lattice {0, 1}E of
binary-valued signals is isomorphic to the set lattice P(E).

3.2 Image Lattices

We shall deal mainly with function lattices. The underlying set of these lattices is the collection
S = Fun(E, C) of all image (or image-related) functions f : E → C whose domain is an arbitrary
nonempty set E and their range is the value set C which is a complete lattice. Of main importance
is the case E = Rm or E = Zm, m = 1, 2, 3, where S becomes the set of all spatio-temporal image
signals defined on the continuous Euclidean space or its discretized version on a regular grid and
taking values in C. We denote the multi-dimensional image signal domain in both of these cases by
Em where E = R or Z. But E could also be a finite index set for matrix-based image processing
or the set of vertices of a graph in cases of images defined on a graph. Let the partial order,
supremum and infimum of C be ≤, ∨, and ∧, respectively. Then, the complete lattice structure of
C is also inherited by the function space Fun(E, C) by extending the partial order, supremum and
infimum among elements in C to functions in S pointwise, as in (38), (39) and (40). The function
lattice Fun(E, C) inherits many of the extra properties that the value lattice C may have, such as
its distributivity type or Boolean nature.

Example 3 (Lattices of Shapes and Images):
The main examples of complete and infinitely distributive lattices used in image analysis are:
(a) The space P(Em) of all m-dimensional shapes represented by subsets of the m-dimensional
continuous plane Em = Rm or the discrete plane Em = Zm equipped with set inclusion ⊆ as the
partial ordering. The induced supremum and infimum operations are the set union and intersection,
respectively. This set lattice is isomorphic to the function lattice of allm-dimensional binary images
f : Em → {0, 1}. Both are complete, infinitely distributive, atomic Boolean lattices.
(b) The space of all graylevel image signals f : Em → R where the partial ordering ≤, supremum

∨
and infimum

∧
are defined by extending pointwise the corresponding notions from the value lattice

R to functions. Intensity images usually have as range [0,∞], or [0, 1] if they are normalized; both
ranges are complete sublattices of R. Density images, i.e. logarithms of intensity images have range
R.
(c) Spaces of vector-valued images, e.g. color images or moving images, can be modeled as complete
lattices by using several different partial orderings, as explained in Goutsias et al. (1995).

Example 4 (Lattices of Semi-continuous and Lipschitz Image Functions):
(a) Within the lattice Fun(Rm,R) of all m-dimensional extended real-valued functions defined on
Rm, let us consider the subcollections Funusc(Rm,R) and Funlsc(Rm,R), respectively, of all upper
semi-continuous (u.s.c.) and lower semi-continuous (l.s.c.)8 functions. As explained in Heijmans
and Maragos (1997), the pointwise infimum (resp. supremum) of any collection of u.s.c. (resp.
l.s.c.) functions is still an u.s.c. (resp. l.s.c.) function. Let βu(f) denote the upper closed hull of
f which is defined as the infimum of all u.s.c. functions that lie above f . Dually, let αl(f) denote

8A function f : Rm → R is upper semi-continuous (u.s.c.) [resp. lower semi-continuous (l.s.c.)] iff, for each
x ∈ Rm and t ∈ R, f(x) < t (resp. f(x) > t) implies that f(y) < t (resp. f(y) > t) for all y in some neighborhood
of x. Equivalently, f is u.s.c. (resp. l.s.c.) iff all its level sets are closed (resp. open) subsets of Rm. A function is
continuous iff it is both u.s.c. and l.s.c.
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the lower closed hull of f which is defined as the supremum of all l.s.c. functions below f . It can
be shown that

αl(f)(x) = lim inf
y→x

f(y), βu(f)(x) = lim sup
y→x

f(y) (41)

As explained by the next result, the two above collections of semi-continuous functions are com-
plete underlattices of Fun(Rm,R). Further, their intersection, i.e. the collection Fun(Rm,R) of
continuous functions is a complete sublattice.

Proposition 2 (Heijmans and Maragos, 1997).
(a) The set Funusc(Rm,R) is a complete lattice under the pointwise ordering with the pointwise
infimum

∧
i fi, and with supremum given by βu(

∨
i fi).

(b) The set Funlsc(Rm,R) is a complete lattice under the pointwise ordering with the pointwise
supremum

∨
i fi, and with infimum given by αl(

∧
i fi).

(b) A real-valued function f on Rm is called globally Lipschitz continuous (or just Lipschitz) if
there exists a constant K such that for all x,y

|f(x)− f(y)| ≤ K∥x− y∥

The infimum of such constants K is called its Lipschitz coefficient and denoted by Lip(f). By
restricting for each point the domain on which the Lipschitz condition holds to an open neighbor-
hood around that point, we can also define locally Lipschitz functions. Any Lipschitz function is
uniformly continuous. Given that Lipschitz functions are differentiable almost everywhere and the
magnitude of their derivatives is bounded by their constant K, they are the best choice (in terms of
degree of regularity) between continuous and differentiable functions. As observed in Serra (1988,
ch.12), the pointwise infimum and supremum of Lipschitz functions are still Lipschitz. Thus the
collection Funlip(Rm,R) of Lipschitz functions is a complete sublattice of the lattice of continuous
functions. Another interesting property of Lipschitz functions is that they remain Lipschitz after
their Minkowski dilation and erosion by another function, as shown in van den Boomgaard and
Smeulders (1994).

3.3 Image and Signal Operators on Lattices

Let L be a complete lattice and let O(L) be the set of all operators on L, i.e., mappings from L
to itself. This is an example of a function lattice where the domain and value set are both equal
to L. Given two such operators ψ and ϕ we define below a partial ordering ≤ between them, their
supremum (ψ ∨ϕ) and infimum (ψ ∧ϕ) in a pointwise way; further, we define their composition as
an operator product ψϕ: for X ∈ L

ϕ ≤ ψ ⇐⇒ ϕ(X) ≤ ψ(X) ∀X
(ψ ∨ ϕ)(X) , ψ(X) ∨ ϕ(X)

(ψ ∧ ϕ)(X) , ψ(X) ∧ ϕ(X)

ψϕ(X) , ψ(ϕ(X))

Equipped with the above ordering, supremum and infimum, the set O(L) becomes a complete
lattice which inherits many of the properties of L.

Next follow the definitions of the identity and two constant operators as well as some general
definitions for lattice operators ψ that are related to their ordering or self-compositions:

identity : id(X) = X ∀X ∈ L
constant operators: O(X) = LO, I(X) = LI , ∀X ∈ L

extensive : id ≤ ψ
antiextensive : ψ ≤ id
idempotent : ψψ = ψ
involution : ψψ = id
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3.4 Monotone Lattice Operators

Of great interest are the monotone operators. They come in three basic kinds according to which
of the following three lattice structures they preserve (or map to its dual): (i) partial ordering,
(ii) supremum, (iii) infimum.

A lattice operator ψ is called increasing or isotone if it is order-preserving, i.e., ∀X,Y ,

increasing : X ≤ Y =⇒ ψ(X) ≤ ψ(Y )

A lattice operator ψ is called decreasing or antitone if it is order-inverting, i.e., ∀X,Y ,

decreasing : X ≤ Y =⇒ ψ(X) ≥ ψ(Y )

It can be shown that an equivalent condition for an operator ψ to be increasing is the following:

ψ is increasing ⇐⇒ ψ(X ∧ Y ) ≤ ψ(X) ∧ ψ(Y ) ⇐⇒ ψ(X) ∨ ψ(Y ) ≤ ψ(X ∨ Y ) (42)

If the lattice is complete, the supremum and infimum in (42) can be taken on infinite collections.

3.4.1 Increasing Operators

Examples of increasing operators are the homomorphisms. A sup-homomorphism is any operator
that preserves suprema over a finite collection, whereas an inf-homomorphism preserves infima. An
operator ϕ : L → M between two lattices L and M that combines both properties is called a lattice
homomorphism:

ϕ(
∨
i

Xi) =
∨
i

ϕ(Xi), ϕ(
∧
i

Xi) =
∧
i

ϕ(Xi) (43)

If the lattice homomorphism is a bijection, then it is called a lattice isomorphism, or a lattice
automorphism if L = M. It can be shown that an operator θ is a lattice isomorphism if it is a
bijection and both θ and its inverse θ−1 are increasing:

X ≤ Y ⇐⇒ θ(X) ≤ θ(Y ) (44)

Four important types of increasing operators, which are fundamental for unifying lattice-based
image analysis, are the following:

δ is dilation iff δ(
∨
i∈J Xi) =

∨
i∈J δ(Xi)

ε is erosion iff ε(
∧
i∈J Xi) =

∧
i∈J ε(Xi)

α is opening iff α is increasing, idempotent & anti-extensive
β is closing iff β is increasing, idempotent & extensive

The first two definitions require arbitrary (possibly infinite) collections {Xi : i ∈ J} of lattice
elements; hence, the dilation and erosion operators need complete lattices. The special case of an
empty input collection equips each dilation and erosion with the following necessary properties:

δ(O) = O, ε(I) = I (45)

The above definitions of lattice operators can be seen as generalizations of the corresponding
translation-invariant Minkowski-type morphological image operators, whose definitions are given
below.

Example 5 (Translation-Invariant Set Operators based on Minkowski set addition and subtrac-
tion):
(a) Automorphisms: On the image domain Em, consider the translations of sets X ⊆ Em by vectors
z ∈ Em:

X 7→ X+z , {x+ z : x ∈ X} (46)
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the reflection of a set:

X 7→ Xs , {−x : x ∈ X} (47)

and the uniform scaling of a set:

X 7→ rX , {rx : x ∈ X}, r ∈ R \ {0}. (48)

These three operators are automorphisms; hence they are both dilations and erosions.
(b) Some well-known (and familiar to image practitioners) special cases of the four above types of
lattice operators are the following translation-invariant set operators on Em:

δB(X) = X ⊕B , {z : (Bs)+z ∩X ̸= ∅} =
∪

b∈B X+b

εB(X) = X ⊖B , {z : B+z ⊆ X} =
∩

b∈B X−b
αB(X) = X◦B , (X ⊖B)⊕B

βB(X) = X•B , (X ⊕B)⊖B

(49)

In image processing applications, the set B is called a structuring element and usually has a
simple shape and small size. We shall refer to these translation-invariant operators as Minkowski
operators, although historically the set dilation (a.k.a. Minkowski set addition) was developed by
Minkowski (1903), whereas the set erosion (a.k.a. Minkowski set subtraction) and opening were
developed by Hadwiger (1957). Minkowski-type operators were also developed for graylevel image
analysis either as local min/max operations and their compositions in Meyer (1978), Nakagawa
and Rosenfeld (1978), Goetcherian (1980), Serra (1982), or as max-plus convolutions in Sternberg
(1980, 1986).
(c) Hit-Miss: The most famous non-monotone operator in morphological image analysis is the
hit-miss transformation (Serra, 1982) of sets X by a pair of disjoint structuring elements (A,B):

X ⊗ (A,B) , {z : A+z ⊆ X and B+z ⊆ Xc} (50)

Despite its non-monotonicity, it is very useful for binary feature detection and extraction.

3.4.2 Decreasing Operators

Examples of decreasing operators are the dual homomorphisms, which interchange suprema with
infima. These are the following.

δa is anti-dilation iff δa(
∨
i∈J Xi) =

∧
i∈J δ

a(Xi)
εa is anti-erosion iff εa(

∧
i∈J Xi) =

∨
i∈J ε

a(Xi)

where J is an arbitrary (possibly infinite) index set.

Example 6 (Thresholding Operators):
Consider extended real-valued graylevel images f : E → R defined on an arbitrary set E and the
following operators mapping graylevel images to binary images represented by subsets of E:

εt(f) = {x ∈ E : f(x) ≥ t}
δt(f) = {x ∈ E : f(x) ≤ t}c
εat (f) = {x ∈ E : f(x) ≥ t}c
δat (f) = {x ∈ E : f(x) ≤ t}

(51)

Then, for any threshold level t ∈ R, εt, δt, εat and δat are, respectively, an erosion, dilation, anti-
erosion, and anti-dilation (Banon and Barrera, 1993).

A lattice dual-isomorphism (or anti-isomorphism) is a bijection η : L → M between two lattices
that interchanges suprema with infima; when L = M, η is called a dual-automorphism. It can be
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shown that an operator η is a lattice dual isomorphism if it is a bijection and both η and its inverse
η−1 are decreasing:

X ≤ Y ⇐⇒ η(X) ≥ η(Y ) (52)

A negation ν is a dual automorphism that is also involutive, i.e., ν2 = id; we often write
X∗ = ν(X) for the negative of a lattice element. Given an operator ψ in a lattice equipped with a
negation, its corresponding negative (also called dual) operator is defined as ψ∗ = νψν; i.e.,

ψ∗(X) , [ψ(X∗)]∗

For example, the most well-known negation on the set lattice P(E) is the complementation ν(X) =
Xc = E\X, whereas on the function lattice Fun(Em,R) the most well-known negation is ν(f) = −f .

The above definitions of increasing and decreasing operators allow broad classes of signal oper-
ators (monotone or not) to be grouped as parallel or sequential combinations of lattice dilations,
or erosions, or openings, or closings, possibly composed with negations, and their common prop-
erties to be studied under the unifying lattice framework. Next we shall see several examples and
applications of the above general definitions of lattice operators.

We conclude this section with some results on the complete lattices formed by the classes of
increasing and decreasing operators as well as by the classes of dilations, erosions, anti-dilations
and anti-erosions.

Proposition 3 (Heijmans and Ronse, 1990; Banon and Barrera, 1993).
Let L be a complete lattice. Then:
(a) The class O+(L) of increasing operators on L is a complete sublattice of O(L).
(b) The class O−(L) of decreasing operators on L is a complete sublattice of O(L).
(c) The class of dilations on L is a sup-closed subset and hence a complete underlattice of O+(L).
(d) The class of erosions on L is an inf-closed subset and hence a complete underlattice of O+(L).
(e) The class of anti-dilations on L is an inf-closed subset and hence a complete underlattice of
O−(L).
(f) The class of anti-erosions on L is a sup-closed subset and hence a complete underlattice of
O−(L).

Both sublattices O+ and O− contain the greatest operator (I) and least operator (O) of O.
Further, the identity operator belongs to O+. In the lattice of dilations, the least element is O
whereas the greatest element is a dilation that maps O to itself and every input X ̸= O to I.
Dually, in the lattice of erosions, the greatest element is I whereas the least element is an erosion
that maps I to itself and every input X ̸= I to O.

3.5 Adjunctions, Dilations, Erosions

Dilations and erosions come in pairs as the following concept reveals. Let L and M be two complete
lattices, and consider two operators δ : L → M and ε : M → L. The operator pair (ε, δ) is called
an adjunction9 between L and M if

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) ∀X ∈ L, Y ∈ M (53)

If L = M, then the above operator pair is called an adjunction on L. In any adjunction (ε, δ), ε is
called the adjoint erosion (or left adjoint) of δ, whereas δ is the adjoint dilation (or right adjoint)
of ε. There is a one-to-one correspondence between the two operators of an adjunction pair, as
explained below.

9As explained in Heijmans and Ronse (1990) and Heijmans (1994), the ‘adjunction’ is related to a well-known
concept in group and lattice theory, the ‘Galois connection’. The term ‘adjunction’ was used in Gierz et al. (1980).
It is also related to residuation theory (Blyth and Janowitz, 1972), where we have an increasing operator ψ and find
its ‘residual’ ψ+ such that ψψ+ ≤ id ≤ ψ+ψ. Then ψ, which is called the ‘residuated mapping’, plays the role of the
dilation whereas ψ+ plays the role of the erosion in the adjunction (ψ+, ψ). Banon and Barrera (1993) introduced a
more general form of adjunction for non-increasing operators.
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Proposition 4 (Serra, 1988; Heijmans and Ronse, 1990).
Let L and M be two complete lattices. Then:
(a) Given a dilation δ : L → M, there is a unique erosion

εδ(Y ) =
∨

{X ∈ L : δ(X) ≤ Y } (54)

such that (εδ, δ) is adjunction.
(b) Conversely, given an erosion ε : M → L, there is a unique dilation

δε(X) =
∧

{Y ∈ M : X ≤ ε(Y )} (55)

such that (ε, δε) is adjunction.

The following summarizes some properties of adjunctions. The proposition is adapted to our
definitions.

Proposition 5 (Serra, 1988; Heijmans and Ronse, 1990).
Let (ε, δ) be and adjunction between complete lattices L and M. Then:
(a) δ is a dilation and ε is an erosion.
(b) δε is an opening, and εδ is a closing.
(c) If (εj , δj) are adjunctions between L and M, then (

∧
j εj ,

∨
j δj) is an adjunction between L

and M.
(d) If (ε1, δ1) and (ε2, δ2) are adjunctions between L and M, then ε2 ≤ ε1 iff δ2 ≥ δ1.
(e) If ϕ : L → M is a lattice automorphism, then (ϕ−1, ϕ) is an adjunction between L and M.
(f) If (ε1, δ1) is an adjunction between L and M and (ε2, δ2) is an adjunction between complete
lattices M and N , then (ε1ε2, δ2δ1) is an adjunction between L and N .
(g) If L and M have negations (·)∗, then (ε, δ) is an adjunction between L and M if and only if
(δ∗, ε∗) is an adjunction between M and L.

Example 7 (Adjunctions of Minkowski Erosions and Dilations):
(a) Adjunction of Minkowski Set Erosion and Dilation:
On the complete lattice of the power set of Rm or Zm, consider the Minkowski set dilation by a
structuring set B:

δB(X) = X ⊕B =
∪
b∈B

X+b (56)

Its adjoint erosion εB must satisfy

X ⊕B ⊆ Y ⇐⇒ X ⊆ εB(Y )

Expressing in the LHS the set dilation X ⊕B as union of translates of X yields∪
b∈B X+b ⊆ Y ⇐⇒ X+b ⊆ Y ∀ b ∈ B

⇐⇒ X ⊆ Y−b ∀ b ∈ B
⇐⇒ X ⊆

∩
b∈B Y−b

⇐⇒ X ⊆ Y ⊖B

Hence, the adjoint erosion εB must equal the Minkowski set erosion by B:

εB(Y ) = Y ⊖B (57)

(b) Adjunction of Minkowski Flat Erosion and Dilation:
On the complete lattice of extended real-valued functions defined on Em = Rm or Zm, consider the
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Minkowski flat10 erosion of a function g(x) by a structuring set element B ⊆ Em:

εB(g)(x) = (g ⊖B)(x) ,
∧
y∈B

g(x+ y) (58)

Its adjoint dilation δB must satisfy

δB(f) ≤ g ⇐⇒ f ≤ g ⊖B

By expressing the flat erosion as infimum of translates of g, the RHS becomes

f(x) ≤
∧

y∈B g(x+ y) ⇐⇒ f(x) ≤ g(x+ y) ∀ y ∈ B, ∀ x

⇐⇒ f(x− y) ≤ g(x) ∀ y ∈ B, ∀ x
⇐⇒

∨
y∈B f(x− y) ≤ g(x) ∀ x

⇐⇒ f ⊕B ≤ g

Hence, the adjoint dilation must equal the Minkowski flat dilation by B:

δB(f)(x) = (f ⊕B)(x) ,
∨
y∈B

f(x− y) (59)

(c) Adjunction of Minkowski Weighted Erosion and Dilation:
On the complete lattice of extended real-valued functions defined on Em = Rm or Zm, consider the
Minkowski weighted dilation of a function f(x) by a structuring function kernel k(x):

δk(f)(x) = (f ⊕ k)(x) ,
∨

y∈Em

f(x− y) + k(y) =
∨

z∈Em

f(z) + k(x− z) (60)

This is also called the supremal convolution of f and k in convex analysis and optimization (Bellman
and Karush, 1963; Rockafellar, 1970). Its adjoint erosion εk must satisfy

f ⊕ k ≤ g ⇐⇒ f ≤ εk(g)

Hence, the adjoint erosion must equal the Minkowski weighted erosion by k:

εk(g)(x) = (g ⊖ k)(x) ,
∧
y∈Em

g(x+ y)− k(y) =
∧

z∈Em

g(z)− k(x+ z) (61)

3.6 Shift-varying Dilation and Erosion

In applying image operators to non-stationary signals, the need often arises to vary the moving
computational kernel and adapt it at different locations based on various strategies. One such
possibility is to have a family of kernels possibly varying at each location. This leads to spatial
adaptation, i.e. spatially-varying operators, also called shift-varying operators. These ideas are
practically useful both for linear and morphological operators. In the latter case, they form cases
of adaptive morphology ; in this area, a basic requirement on developing adaptive morphological
operators should be on keeping the adjunction structure in pairs of adaptive dilations and erosions.
Next, we summarize the main ideas and give some examples.

10An operator is called flat if the range of its output signals is equal to or a subset of the range of its input signals;
hence, if its input is binary, the output will also be binary. Thus, a flat operator can process both graylevel and
binary images without altering this property of the input.
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3.6.1 Structuring Element Map (SEM)

A general framework for spatially-varying morphology, in the Euclidean space, is the concept of the
structuring element map (SEM), also known as ‘structuring function’, proposed in (Serra, 1988,
chap.2). In this case, we have not a fixed but a spatially-varying (SV) structuring element, which
can be either a set or a function. For example, in the case of structuring sets we have a map
A(x) : E → P(E) that assigns a possibly different set A(x) at each point x of space E. The SEM
is equivalent to the datum of any dilation operator, as explained by the following.

Theorem 9 (Serra, 1988).
A set operator δ on the collection P(E) of all subsets of some general domain E is a dilation if
and only if there exists a map A(x) : E → P(E) such that δ can be expressed as

δA(X) =
∪
x∈X

A(x) (62)

To find the adjoint erosion, εA, of δA in (62), first note that∪
x∈X

A(x) ⊆ Y ⇐⇒ A(x) ⊆ Y ∀x ∈ X

Hence, the adjoint erosion is
εA(Y ) = {x ∈ E : A(x) ⊆ Y } (63)

The SEM approach has also been extended to morphological operators on graylevel image
functions (Serra, 1988, chap.9). This can be done in two possible ways:
(1) Adaptive Window, where the operators are flat and use an SV set-valued SEM A : E → P(E).
For example, consider the following SV flat dilation and erosion:

δA(f)(x) =
∨

y∈A(x)

f(x− y) (64)

εA(f)(x) =
∧

y∈A(x)

f(x+ y) (65)

Each of them is a valid lattice erosion and dilation, and their pair (εA, δA) is an adjunction of SV
morphological operators.

Example 8 One example of shift-varying dilation and erosion that is very useful in practice arises
when we have to dilate or erode a signal f(x) by a constant window B, but the values of f are
given only over a compact mask (frame) S and there is no knowledge of its values outside S. The
problem arises when the moving window B reaches the boundaries of S and includes points from
the mask complement Sc. Then, one solution is to compute the local maximum or minimum of
signals values only over the intersection of the moving B and the analysis frame S, so that there
will never be a need to use values of f outside S. This is formalized as a shift-varying Minkowski
dilation or erosion by a shift-varying structuring element

A(x) = S ∩B+x (66)

The above solution creates an output signal having the same extent as the input.

(2) Adaptive Kernel, where the weighted dilation and erosion operators use an SV gray kernel
k : Em → Fun(Em,R), whose support and/or weights/values may vary at each point x of the image
domain:

∆k(f)(x) =
∨
y

f(x− y) + kx(y) (67)

Ek(f)(x) =
∧
y

f(x+ y)− kx(y) (68)
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Thus, we have replaced the shift-varying flat structuring element A(x) with a shift-varying weighted
structuring element kx(·). The mapping x 7→ kx corresponds to each point in the signal domain
Em a possibly different function from Fun(Em,R). The support of each such function kx is a shift-
varying window A(x). This function-valued SEM is also called the impulse response map in a later
section on translation-invariant operators, because each structuring function kx can be seen as the
‘impulse response’ of a dilation system when excited by a properly defined ‘impulse signal’.

3.6.2 Adaptive Morphology

Since the introduction of the concept of the SEM approach, the interest of the scientific community
for adaptive morphology has continuously increased. Examples include the following:
1) The SV structuring element idea was explored in Lerallut et al. (2005) by developing morpholog-
ical operators based on adjunctions with non-fixed shape kernels. These filters were able to adapt
their kernel shape by taking into consideration the local image contour variations and gave better
results than shift-invariant filters that used fixed-shape kernels. Due to their adaptive nature, they
were called amoeba filters.
2) Adaptivity is omnipresent in connected morphological operators (Salembier and Serra, 1995;
Ouzounis and Wilkinson, 2007), which process connected components in images. For instance,
area openings (Vincent, 1992; Cheng and Venetsanopoulos, 1992) at scale λ are geometry-adaptive
filters: the size of the structuring element is linked to the area λ of the connected components of
image.
3) Adaptive Neighborhoods: In Braga-Neto (1996) and in Debayle and Pinoli (2006), given some
criterion mapping h (expressing local radiometric, morphological, or geometrical information) and
a tolerance t > 0, at each point x ∈ Em, an adaptive neighborhood V h

t (x) is defined that contains
all points y with |h(y) − h(x)| ≤ t and is connected. Obviously, its shape and size vary spatially
and adapt to the local image characteristics around the seed point. Then, one can build a SEM
that provides an auto-reflected collection of adaptive structuring sets

A(x) =
∪

z∈Em

{V h
t (z) : x ∈ V h

t (z)} (69)

and use this to construct SV dilations and erosions.
4) Kernel and Basis Representation for SV operators: Bouaynaya et al. (2008) and Bouaynaya and
Schonfeld (2008) developed representations for SV morphological systems, which only possess the
increasing property, as suprema and infima of SV erosions and dilations respectively.

A brief overview of the above and other approaches for adaptive morphology has been presented
in Maragos and Vachier (2009). An important issue is whether the pairs of adaptive dilations
and erosions proposed by various researchers are actually lattice adjunctions; this is examined by
Roerdink (2009).

3.7 Convergence and Continuity on Lattices

3.7.1 Convergence and Continuity on Topological Image Spaces

Let E be topological space that is:
(1) locally compact (i.e. each point has a compact neighborhood),
(2) Hausdorff (i.e. two distinct points can be separated by two disjoint neighborhoods), and
(3) second countable, i.e. has a countable basis11 (i.e. every open set can be expressed as a
countable union of basis sets).
Examples of such topological spaces E are the continuous plane R2 with the Euclidean topology and
the discrete plane Z2 with the discrete topology. Consider now the collection F(E) of the closed

11In a topological space, the term ‘topology’ means the collection G all open subsets. The term ‘basis’ means a
subcollection of G such that every open set is a union of basis sets.
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subsets of E, which model binary image objects. Equipped with the hit-miss topology (Matheron,
1975), F(E) becomes a compact, Hausdorff space with countable basis.

Given a set sequence (Xn) in F(E), define its upper limit limXn as the set of all points to which
converges some subsequence of points xnk

∈ Xnk
and its lower limit limXn as the set of all points

to which converges some sequence of points xn ∈ Xn. These two limits obey the inequality

limXn ⊆ limXn (70)

If limXn = limXn = X, then we say that the sequence (Xn) converges to the limit X and we write
limXn = X. Incidentally, this limit X is a closed set.

Consider now a set operator ψ on F(E). It is called upper semi-continuous (u.s.c.) if limXn ⊆
ψ(X) for each convergent set sequence (Xn) with limXn = X. Similarly, ψ is called lower semi-
continuous (l.s.c.) if ψ(X) ⊆ limXn. Obviously, ψ is continuous if it is both u.s.c. and l.s.c.

The above concepts of topological semi-convergence and semi-continuity can be extended to
topological spaces of functions, specifically to the space Funusc(E,R) of extended real-valued u.s.c.
functions and to operators on this signal space. Note this image signal space is related to the image
set space F(E) because a function is u.s.c. if and only if all its level sets are closed sets.

Proposition 6 (Matheron, 1975; Serra, 1982).
Consider set operators on F(E). Then:
(a) The Minkowski set dilation by compact structuring elements is continuous.
(b) The Minkowski set erosion, opening and closing by compact structuring elements are upper
semi-continuous.

3.7.2 Order Convergence and Continuity on Lattices

The Euclidean topology of the reals R can be fully defined by using only the order ≤. As explained
in Birkhoff (1967), this can be generalized to any chain (C,≤) by defining ‘open intervals’ as we do
on R; i.e. for any a, b ∈ C we define

(−∞, a) , {x ∈ C : x < a}
(b,+∞) , {x ∈ C : x > b}

(a, b) , {x ∈ C : a < x < b}
(71)

If we also need ‘closed intervals’, this can be easily done by replacing < with ≤; e.g. we assume a
complete chain and define the closed intervals

[−∞, a] , {x ∈ C : O ≤ x ≤ a}, [b,+∞] , {x ∈ C : b ≤ x ≤ I} (72)

By using these intervals we can now define order-based convergence and continuity on any chain.
For example, if (xn) is a sequence in a chain, we can write xn → a to mean that for any open
interval (b, c) around a there exists some n0 such that xn ∈ (b, c) for all n ≥ n0; exactly as we do
for the topological convergence on R.

Now this order-based convergence on a chain can be split into a conjunction of two condi-
tions: lim supxn ≤ a and lim inf xn ≥ a, where the limsup and liminf can be expressed as sup/inf
combinations:

lim supXn ,
∧
n≥1

∨
k≥n

Xk (73)

lim infXn ,
∨
n≥1

∧
k≥n

Xk (74)

The minimax inequality on lattices (Birkhoff, 1967) implies that

lim infXn ≤ lim supXn (75)
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In the above definitions we replaced the sequence of elements in a chain with an arbitrary sequence
(Xn) of lattice elements, so that we can extend henceforth the two limit definitions (73,74) to
any sequence (Xn) in a general complete lattice and use them to define the following order-based
convergence and continuity in lattices. Specifically, by mimicking a result on convergence of a
sequence (xn) in topological space where xn → x iff lim supxn = lim inf xn = x, a sequence (Xn)

in a complete lattice L is defined to order converge to a lattice element X, written as Xn
ord→ X,

if lim infXn = lim supXn = X.
Now we also define order continuity : An operator ψ : L → M between two complete lattices is

called ↓-continuous if (Xn)
ord→ X in L implies that lim supψ(Xn) ≤ ψ(X) in M. Dually, ψ is called

↑-continuous if (Xn)
ord→ X implies that lim inf ψ(Xn) ≥ ψ(X). Finally, ψ is called ↕-continuous

or order continuous if is both ↓-continuous and ↑-continuous. Obviously, on a chain the concepts
of order convergence and order continuity coincide with their topological counterparts.

There is a stronger form of order convergence applicable to monotone sequences and increasing
operators. In a complete lattice L, we write Xn ↓ X to mean a monotonic convergence where
(Xn) is a decreasing sequence (Xn+1 ≤ Xn) and X =

∧
nXn. Dually, we write Xn ↑ X to mean

that (Xn) is an increasing sequence (Xn+1 ≥ Xn) and X =
∨
nXn. Based on this monotonic

convergence, we can easily examine the order continuity of increasing operators, as explained next.

Proposition 7 (Heijmans, 1994).

(a) If (Xn) is a monotone sequence in a complete lattice with Xn ↓ X or Xn ↑ X, then Xn
ord→ X.

(b) An increasing operator ψ : L → M between two complete lattices is ↓-continuous if and only
if Xn ↓ X implies that ψ(Xn) ↓ ψ(X) for any sequence (Xn). Dually, an increasing operator ψ is
↑-continuous iff Xn ↑ X implies that ψ(Xn) ↑ ψ(X).

The above result establishes that the general order convergence and continuity become equiv-
alent to the monotonic convergence and continuity as long as we work on a complete lattice and
the operator is increasing. Now if we focus on specific classes of increasing operators like erosions
and dilations, some of the following results are immediate consequences of their distributivity over
infima and/or suprema.

Proposition 8 (Heijmans, 1994).
(a) Erosions are ↓-continuous.
(b) Dilations are ↑-continuous.
(c) Automorphisms are ↕-continuous.
(c) The infimum of ↓-continuous operators is ↓-continuous. The supremum of ↑-continuous opera-
tors is ↑-continuous.
(d) The ψϕ composition of two operators is ↓-continuous if (i) ϕ is ↓-continuous and ψ is increasing
and ↓-continuous, or (ii) ϕ is ↕-continuous and ψ is ↓-continuous.

Finally, the following result connects the topological semi-continuity with the order-based mono-
tonic continuity.

Proposition 9 (Matheron, 1975).
Consider an increasing operator on the space F(E) of closed subsets of a locally compact, Hausdorff,
second countable topological space E. Then, ψ is u.s.c. if and only if it is ↓-continuous.

3.8 Openings, Closings, Order Projections

A large variety of useful morphological operators share two properties: increasing and idempotent.
Such operators were called morphological filters by Matheron and Serra. We shall call them order
projections, since they preserve the lattice ordering and are idempotent in analogy with the linear
projections that preserve the algebraic structure of linear spaces and are idempotent. The most
well-studied special cases of order projections are the lattice openings and closings, each of which
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has an additional property. Specifically, openings are order projections that are anti-extensive,
whereas closings are extensive order projections.

Combinations of such generalized filters have proven to be very useful for image enhancement,
multiscale image simplification, segmentation, motion analysis, and object detection.

In this section we focus on their lattice theoretic properties and representations. To build
intuition, we also mention some examples and show figures with image analysis experiments.

3.8.1 Lattice Theory of Openings and Closings

Several algebraic properties of order projections, and especially those of openings and closings, can
be analyzed based on the set of fixed points of such an operator ψ, called the invariance domain
and denoted by

Inv(ψ) , {X ∈ L : ψ(X) = X}

The following summarizes some immediate properties of the invariance domain stemming from
various characteristic of its corresponding operator.

Proposition 10 (Matheron, 1975; Heijmans, 1994).
Let ψ be an operator on a complete lattice L and let Inv(ψ) be its invariance domain. Then:
(a) (Tarski Fixpoint Theorem): If ψ is increasing, then Inv(ψ) is nonempty.
(b) ψ is idempotent if and only if Inv(ψ) = Ran(ψ).
(c) If ψ is increasing and anti-extensive, then Inv(ψ) is sup-closed.
(d) If ψ is increasing and extensive, then Inv(ψ) is inf-closed.

We see from the above proposition, part (c) and (d), that, the invariance domains of increas-
ing extensive and antiextensive operators are complete lattices. If we add the third property of
idempotence, we get openings and closings. Well, the fixed points of an opening (resp. closing)
contain sufficient information to represent them via a supremum (resp. infimum), as the following
important result explains.

Proposition 11 (Serra, 1988; Ronse and Heijmans, 1991).
If α and β are opening and closing operators, respectively, on a complete lattice L, then:

α(X) =
∨

{Y ∈ Inv(α) : Y ≤ X}, X ∈ L (76)

β(X) =
∧

{Y ∈ Inv(β) : Y ≥ X}, X ∈ L (77)

Thus, the invariance domain can uniquely represent an opening or closing. The following
proposition groups together some useful facts about openings and closings that are formed from
adjunctions.

Proposition 12 (Serra, 1988; Ronse and Heijmans, 1991; Heijmans, 1994).
Let (ε, δ) be an adjunction between two complete lattices. Then:
(a) δε is an opening, and εδ is a closing.
(b) δεδ = δ and εδε = ε.
(c) Inv(δε) = Ran(δ) and Inv(εδ) = Ran(ε).

Thus, from any adjunction (ε, δ) we can always construct an opening and a closing via the
composition of its erosion and dilation. The converse is also true: given an opening or closing we
can express it by composing the erosion and dilation of some properly defined adjunction. This is
explained next for the case of an opening.
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Proposition 13 (Heijmans, 1994).
Any opening α on a complete lattice L can be can be expressed as the composition δε of an erosion
with a dilation, where (ε, δ) is an adjunction between L and the complete lattice M = P(Inv(α)).
The erosion ε : L → M is defined by

ε(X) = {A ∈ Inv(α) : A ≤ X}, X ∈ L (78)

The dilation δ : M → L is defined by

δ(K) =
∨

K, K ⊆ Inv(α) (79)

The following result allows to synthesize new openings (resp. closings) by taking the supremum
(resp. infimum) of a family of openings (resp. closings).

Proposition 14 (Serra, 1988; Ronse and Heijmans, 1991; Heijmans, 1994).
Let {αi} and {βi} be indexed families of openings and closings on a complete lattice. Then:
(a) α =

∨
i αi is an opening and β =

∧
i βi is a closing.

(b) Inv(α) =
∪
i Inv(αi) and Inv(β) =

∩
i Inv(βi).

3.8.2 Examples of Openings and Closings

Thus, from any adjunction we can generate an opening via the composition of its erosion and
dilation. As an elementary example, if we consider the translation-invariant (Minkowski) mor-
phological erosion ε(X) = X ⊖ B and dilation δ(X) = X ⊕ B, then δε(X) coincides with the
translation-invariant (Minkowski) morphological opening X◦B = (X ⊖B)⊕B. But there are also
numerous other possibilities, some of which are briefly described next.

Radial Openings: Consider a 2D image f that contains 1D objects, e.g. lines; then the simple
Minkowski opening or closing of f by a disk B will eliminate these 1D objects. Another problem
arises when f contains large-scale objects with sharp corners that need to be preserved; in such
cases opening or closing f by a disk B will round these corners. These two problems could be
lessened or avoided in some cases if we replace the conventional opening with a radial opening

αL(f) =
∨
θ

f◦Lθ (80)

where the sets Lθ are rotated versions of a symmetric line segment L at various angles θ ∈ [0, 2π).
This has the effect of preserving an object in f if this object is left unchanged after the opening by
Lθ in at least one of the possible orientations θ. See Fig. 2 for an example of a radial opening of a
graylevel image. Dually, in case of dark 1D objects, we can use a radial closing

β∗L(f) =
∧
θ

f•Lθ = −αL(−f) (81)

Connected Filters: The flat zones of an image signal f : Em → R are defined as the connected
components of the image domain on which f assumes a constant value. A useful class of morpho-
logical filters was introduced in Salembier and Serra (1995) which operate by merging flat zones
and hence exactly preserving the contours of the image parts remaining in the filter’s output. These
are called connected operators. They cannot create new image structures or new boundaries if they
did not exist in the input. Specifically, if D is a partition of the image domain, let D(x) denote
the (partition member) region that contains the pixel x. Now, given two partitions D1,D2, we say
that D1 is ‘finer’ than D2 if D1(x) ⊆ D2(x) for all x. An operator ψ is called connected if the flat
zone partition of its input f is finer than the flat zone partition of its output ψ(f). Next we discuss
two types of connected operators, the area filters and the reconstruction filters, which are lattice
openings or closings.
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Original Image = F Radial Opening (F) Reconstr. Opening (rad.open|F)

(a) (b) (c)

Figure 2: (a) Original image f of an eye angiogram with microaneurisms (264×255 pixels). (b) Radial
opening αL(f) of f as max of four openings by lines oriented at 0o, 45o, 90o, 135o of size 20 pixels each.
(c) Reconstruction opening ϱ−(αL(f)|f) of f using the radial opening as marker.

Area Filters: There are numerous image enhancement problems where what is needed is sup-
pression of arbitrarily-shaped connected components in the input image whose areas (number of
pixels) are smaller than a certain threshold n. This can be accomplished by the area opening αn
of size n which, for binary images, keeps only the connected components whose area is ≥ n and
eliminates the rest. Consider an input set X =

⊔
iXi as a union of disjoint connected components

Xi. Then the output from the area opening is

αn(X) =
⊔

area(Xj)≥n

Xj , X =
⊔
i

Xi (82)

where
⊔

denotes disjoint union. The area opening can be extended to graylevel images f by
applying the same binary area opening to all level sets of f

Xv(f) , {x : f(x) ≥ v} (83)

and constructing the filtered graylevel image via threshold superposition:

αn(f)(x) = sup{v : x ∈ αn[Xv(f)]} (84)

The graylevel area opening is a flat operator. Figure 3 shows examples of binary and gray area
openings. If we apply the above operations to the complements of the level sets of an image, we
obtain an area closing.

The area filters can be generalized to other connected operators that operate by processing
connected components of a binary image (or of the level sets of a graylevel image) and keeping
only those components for which an increasing criterion exceeds some threshold. Such filters are
called attribute openings and were proposed and studied in Breen and Jones (1996); examples of
increasing criteria include (i) the diameter, or area of the largest (resp. smallest) circle that can
be inscribed into (resp. circumscribed around) a connected component, (ii) the area or perimeter
of the convex hull of a connected component. Generalizations of attribute filters based on second-
order connectivity were studied in Ouzounis and Wilkinson (2007).

Reconstruction Opening and Closing: Consider a reference (image) setX =
⊔
iXi as a union

of I disjoint connected components Xi, i ∈ I, and let M ⊆ Xj be a marker in some component(s)
Xj , indexed by j ∈ J ⊆ I; i.e., M could consist of a single point or some feature sets in X that lie
only in the component(s) Xj . Let us define the reconstruction opening as the operator

ϱ−(M |X) , connected components of X intersecting M . (85)
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Original  Image Component  Area  >  50 Component  Area  >  500

(a) (b) (c)

(d) (e) (f)

Figure 3: Top row: (a) Original binary image (192×228 pixels). (b) Area opening by keeping connected
components with area ≥ 50. (c) Area opening by keeping components with area ≥ 500. Bottom row:
(d) Gray original image (420 × 300 pixels). (e) Gray area opening by keeping bright components with
area ≥ 500. (f) Gray area closing by keeping dark components with area ≥ 500.

Its output contains exactly the input component(s) Xj that intersect the marker. It can extract
large-scale components of the image from knowledge only of a smaller marker inside them. Note
that the reconstruction opening has two inputs. If the marker M is fixed, then the mapping
X 7→ ϱ−(M |X) is a lattice opening since it is increasing, anti-extensive and idempotent. Its output
is called the morphological reconstruction of (the components of) X from the marker M .

For both continuous and discrete shapes, the reconstruction can be modeled as the union of
multiscale geodesic dilations of the marker M within the reference X at all scales. For discrete
shapes, a practical algorithm to implement the discrete reconstruction opening is based on the
conditional dilation of M by B within X:

δB(M |X) , (M ⊕B) ∩X

where B is the unit-radius discrete disk associated with the selected connectivity of the rectangular
grid; i.e., a 5-pixel rhombus or a 9-pixel square depending on whether we have 4- or 8-neighbor
connectivity, respectively. By iterating this conditional dilation we can obtain in the limit the
whole marked component(s) Xj , i.e. the conditional reconstruction opening

ϱ−B(M |X) = lim
k→∞

Yk, Yk = δB(Yk−1|X), Y0 =M. (86)

An example is shown in Fig. 4.
Replacing the binary with graylevel images, the set dilation with function dilation, and ∩ with ∧

yields the conditional graylevel reconstruction opening of a digital graylevel image f from a marker
image m:

ϱ−B(m|f) = lim
k→∞

gk, gk = (gk−1 ⊕B) ∧ f, g0 = m ≤ f. (87)

This reconstructs the bright components of the reference image f that contain the marker m. For
example, as shown in Fig. 2, the results of any prior image smoothing, like the radial opening of
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Image  &  Marker 10  iters 40  iters Reconstruction  Opening

(a) (b) (c) (d)

Figure 4: (a) Original binary image (192×228 pixels) and a square marker within the largest component.
The next three images show sample iterations of the conditional dilation of the marker with a 3×3-pixel
square structuring element. (b) 10 iterations. (c) 40 iterations. (d) Reconstruction opening, reached
after 128 iterations.

Fig. 2(b), can be treated as a marker which is subsequently conditionally dilated under the original
reference image to reconstruct Fig. 2(c) exactly those bright image components whose parts have
remained after the first operation.

There is a large variety of reconstruction openings depending on the choice of the marker.
Two useful cases are (i) size-based markers chosen as the Minkowski erosion m = f ⊖ rB of the
reference image f by a disk of radius r, and (ii) contrast-based markers chosen as the difference
m(x) = f(x)−h of a constant h > 0 from the image. In both cases, the marker is a function of the
reference signal. There are also dual definitions for markers suitable for reconstruction closings,
where the marker should be larger than the reference.

Reconstruction of the dark image components hit by some marker is accomplished by the dual
filter, the reconstruction closing

ϱ+B(m|f) = lim
k→∞

gk, gk = (gk−1 ⊖B) ∨ f, g0 = m ≥ f. (88)

Examples of graylevel reconstruction filterings are shown in Fig. 5 for a 1D signal and in Fig. 2(c)
for a 2D image. Openings and closings by reconstruction have proven to be extremely useful for
image simplification because they can suppress small features and keep only large-scale objects
without any smoothing of their boundaries.
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Figure 5: (a) Reconstruction Opening, (b) Reconstruction Closing and (c) Leveling of a 1D signal. Each
subfigure shows the reference signal f (dash line), the marker (thin solid line), and the filter output
(thick solid line). In (a) the marker was an erosion of f minus a constant, and hence the filter is a
reconstruction opening. In (b) the marker was a dilation of f plus a constant, and hence the filter is a
reconstruction closing. In (c) the marker was a Gaussian convolution of f and the filter’s output is a
leveling.
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3.8.3 Examples of Order Projections

Next we mention some examples of order projections, i.e. increasing and idempotent lattice oper-
ators, that are neither anti-extensive (i.e. openings) nor extensive (i.e. closings).

Alternating Sequential Filters: A useful combination of openings and closings involves cas-
cading pairs of openings and closings βtαt at multiple scales t = 1, ..., r. A simple choice for the
multiscale openings and closings is to have Minkowski flat openings αt(f) = f◦tB and closings
βt(f) = f•tB of image signals f by multiscale convex sets tB = {tb : b ∈ B}: This generates a
class of efficient nonlinear smoothing filters

ψasf (f) = βrαr...β2α2β1α1(f) (89)

called alternating sequential filters (ASF), which smooth progressively from the smallest scale
possible up to a maximum scale r and have a broad range of applications (Serra, 1988). Their
optimal design was studied in Schonfeld and Goutsias (1991). Figure 1(c) shows a single iteration
of an ASF.

Further, the Minkowski openings-closings in an ASF can be replaced by other types of lattice
openings-closings. Examples of such simple generalized ASFs include replacing each open-closing
pair with radial or reconstruction or area open-closings.

Levelings: Despite their many applications, reconstruction openings and closings have as disad-
vantage the property that they are not self-dual operators; hence, they treat the image and its
background asymmetrically. A connected operator that unifies both of them and possesses self-
duality is the leveling (Meyer and Maragos, 2000). Levelings are nonlinear ‘object-oriented’ filters
that simplify a reference image f through a simultaneous use of locally expanding and shrinking
an initial seed image, called the marker m, and globally constraining of the marker evolution by
the reference image. Specifically, iterations of the image operator ϕ(m|f) = (δB(m) ∧ f) ∨ εB(m),
where δB(·) (resp. εB(·)) is a dilation (resp. erosion) by the unit-radius discrete disk B of the grid,
yield in the limit the conditional leveling of f w.r.t. m:

ϱB(m|f) = lim
k→∞

gk, gk = (δB(gk−1) ∧ f) ∨ εB(gk−1), g0 = m (90)

In contrast to the reconstruction opening (closing) where the marker m is smaller (greater) than
f , the marker for a general leveling may have an arbitrary ordering w.r.t. the reference signal.
See Fig. 5(c) for a 1D example and Fig. 1(d) for a 2D example. The leveling reduces to being
a reconstruction opening (closing) over regions where the marker is smaller (greater) than the
reference image. Actually, it can be shown that the leveling can be obtained as a cascade of a
reconstruction opening and a reconstruction closing.

If the marker is self-dual, then the leveling is a self-dual filter and hence treats symmetrically
the bright and dark objects in the image. Thus, the leveling may be called a self-dual reconstruction
filter. It simplifies both the original image and its background by completely eliminating smaller
objects inside which the marker cannot fit. The reference image plays the role of a global constraint.
In general, levelings have many interesting multiscale properties (Meyer and Maragos, 2000) and
have proven to be very useful for image simplification toward segmentation because they can sup-
press small-scale noise or small features and keep only large-scale objects with exact preservation
of their boundaries.

4 Minimax Algebra and Image Operators on Complete Weighted
Lattices

This section extends the lattice theory of mathematical morphology from the combined viewpoints
of minimax algebra and translation-invariant systems by introducing a nonlinear signal algebra that
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has both a sup/inf signal superposition structure and two scalar semigroup ‘multiplication’-type
operations (⋆ and its dual ⋆′) that distribute over sup and inf, respectively. On the set of scalars,
this generalized algebraic structure is called ‘clodum’ (complete lattice-ordered double monoid) and
combines ideas from both lattice and minimax algebra. We name the resulting nonlinear spaces
complete weighted lattices. They combine the sup-inf lattice structure with a scalar semi-ring
arithmetic that possesses generalized ‘additions’ and ⋆-‘multiplications’. Their role for analyzing
lattice operators with sup-⋆ arithmetic is conceptually similar to the role played by linear (sum-
product) vector spaces for linear operators.

This generalized signal algebra unifies four main cases where we have complete weighted lattices:
(1) Max-Plus mathematical morphology: classic Minkowski translation-invariant operators, which
are nonlinear convolutions of the max-plus type. (2) Max-Product mathematical morphology:
Lattice extensions of Minkowski dilations and erosions that are supremal and infimal convolutions
with multiplicative structuring elements. (3) Fuzzy image operations and convolutions, where ⋆ (⋆′)
becomes a fuzzy intersection (union). (4) Binary translation-invariant mathematical morphology:
this can be seen as a special case of (1) or (3).

Further, we show that any translation-invariant operator that distributes over the main op-
erations of this nonlinear space, can be represented via generalized sup-⋆ convolutions. In the
finite-dimensional case, such operators admit a matrix representation, i.e. become equivalent to a
generalized max-⋆ or its dual min-⋆′ ‘product’ of the operator’s matrix with the input vectors.

4.1 Lattice-Ordered Monoids

The material in Section 4.1 interprets some algebraic structures in minimax algebra (Cuninghame-
Green, 1979) by using concepts from lattice theory, specifically from lattice-ordered groups (Birkhoff,
1967).

A poset, lattice, or semilattice L is often endowed with additional structure of the group type.
Namely, L may have an additional binary operation, called symbolically the ‘multiplication’ ⋆,
under which (L, ⋆) is any of the following:

Semigroup if ⋆ is associative.
Monoid if ⋆ is associative and has identity element.
Group if ⋆ is associative, has identity, and each element has an inverse.

In addition, if ⋆ is also commutative, we obtain a commutative semigroup/monoid/group. Hence-
forth, we shall deal only with commutative (semi)group operations ⋆.

A lattice-ordered group is an algebra (L,∨,∧, ⋆) in which (L,∨,∧) is a lattice, (L, ⋆) is a group,
and the group ‘multiplication’ is increasing. It follows that any group translation X 7→ A ⋆ X is a
lattice automorphism.

An algebra (M,∨, ⋆) is called a semilattice-ordered monoid if M is a sup-semilattice under ∨,
monoid under ⋆, and ⋆ distributes over ∨:

A ⋆ (X ∨ Y ) = (A ⋆ X) ∨ (A ⋆ Y ) (91)

for all A,B,X, Y ∈ M. If M also has an infimum ∧ that (together with ∨) makes it a lattice, then
(M,∨,∧, ⋆) is called a lattice-ordered monoid. Suppose now that M is also a monoid under a ‘dual
multiplication’ operation ⋆′ that distributes over infimum:

A ⋆′ (X ∧ Y ) = (A ⋆′ X) ∧ (A ⋆′ Y ) (92)

Now M has four binary operations. We call the resulting algebra (M,∨,∧, ⋆, ⋆′) a lattice-ordered
double monoid. To the above definitions we add the word complete if M is a complete lattice and
the distributivities involved are infinite. For algebraic structures similar to the above definitions
alternative names12 have been used in previous works on minimax algebra and discrete-event control

12In minimax algebra (Cuninghame-Green, 1979) a semilattice is called a band. Further, a semilattice-ordered
semigroup is called a belt, and a lattice-ordered double semigroup is called a belt with duality. A belt (B,∨, ⋆) with
an identity element for the semigroup operation ⋆ and with an element ζ that is both the least element w.r.t. ≤ and
also a null, i.e. a ∨ ζ = a and a ⋆ ζ = ζ, ∀a ∈ B, is called a dioid in Cohen et al. (1989).
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systems.
In any lattice-ordered double monoid the distributivity of ⋆ over ∨ and of ⋆′ over ∧ imply that

both ⋆ and ⋆′ are increasing; i.e.,

X ≤ Y =⇒ A ⋆ X ≤ A ⋆ Y
X ≤ Y =⇒ A ⋆′ X ≤ A ⋆′ Y

(93)

These properties imply in turn that

A ⋆ (X ∧ Y ) ≤ (A ⋆ X) ∧ (A ⋆ Y )
A ⋆′ (X ∨ Y ) ≥ (A ⋆′ X) ∨ (A ⋆′ Y )

(94)

If ⋆ = ⋆′, we have a self-dual ‘multiplication’. This always happens if (M, ⋆) is a group; in this case
we obtain a lattice-ordered group, and the inequalities (94) become equalities.

4.2 Clodum: An Algebraic Structure for Weighted Lattice Arithmetic

We henceforth assume that all vector elements or signals involved in the description of the operators
and systems examined herein take their values from a set C of scalars, which in general will be a
subset of the set R = R ∪ {−∞,∞} of extended real numbers. Under the standard real number
ordering ≤, C is a chain, and

∨
and

∧
become the standard supremum and infimum on the reals.

We assume that C is universally bounded, i.e., contains its least CO ,
∧

C and greatest element
CI ,

∨
C. For the unified nonlinear signal processing algebra examined herein we need to equip C

with four binary operations:
(A). A generalized ‘addition’ under which C becomes a complete sup-semilattice. We shall

henceforth fix this ‘addition’ to be the standard supremum ∨ on R.
(A′). A dual ‘addition’ which makes C a complete inf-semilattice and is related to the general-

ized ‘addition’ via the absorption law L4 of Table 1. The standard infimum ∧ on R will henceforth
be this dual ‘addition’.

(M). A commutative generalized ‘multiplication’ ⋆ under which: (i) C is a monoid with a
(‘unit’) identity element Cid,

a ⋆ Cid = a, ∀a ∈ C, (95)

a (‘zero’) null element CO,
a ⋆ CO = CO, ∀a ∈ C, (96)

and (ii) ⋆ is a scalar dilation, i.e., distributes over any supremum

a ⋆

(∨
i∈J

xi

)
=
∨
i∈J

(a ⋆ xi) (97)

for any (possibly infinite) index set J . So far (C,∨,∧, ⋆), i.e. the value set equipped only with
three operations, is a dioid, which is a structure defined in Cohen et al. (1989). Also, note that the
properties (96),(97) imply that

a ⋆ CI = CI, ∀a ̸= CO. (98)

(M′). A commutative dual ‘multiplication’ ⋆′ under which: (i) C is a monoid with an identity
C′id,

a ⋆′ C′id = a, ∀a ∈ C, (99)

a null element CI,
a ⋆′ CI = CI, ∀a ∈ C, (100)

and (ii) ⋆′ is a scalar erosion, i.e., distributes over any infimum:

a ⋆′

(∧
i∈J

xi

)
=
∧
i∈J

(a ⋆′ xi) (101)
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Also, note that the properties (100),(101) imply that

a ⋆′ CO = CO, ∀a ̸= CI. (102)

We group the above requirements into the following sets of conditions:
(C1). (C,∨,∧) is a complete infinitely-distributive lattice.
(C2). (C, ⋆) is a commutative monoid, and ⋆ is a dilation.
(C3). (C, ⋆′) is a commutative monoid, and ⋆′ is an erosion.

Under the above assumptions (C,∨,∧, ⋆, ⋆′) becomes a commutative complete lattice-ordered
double monoid, in short clodum. This will be the most general and minimally required algebraic
structure we consider for the set of scalars. We avoid degenerate cases by henceforth assuming that
each ‘addition’ is different from its corresponding ‘multiplication’, i.e., ∨ ̸= ⋆ and ∧ ̸= ⋆′. However,
⋆ may be the same as ⋆′, in which case we have a self-dual ‘multiplication’.

In some cases we may have some additional algebraic structure in C. This occurs if we assume
that C = CG ∪ {CO, CI} where (CG, ⋆) is a commutative group. Then, for each element a ∈ CG there
exists its ‘multiplicative’ inverse a−1 such that a ⋆ a−1 = Cid. Further, (CG,∨,∧, ⋆, ⋆) is a lattice-
ordered group with self-dual ‘multiplication’. The ‘multiplication’ ⋆ and its self-dual ⋆′ (which
coincide over CG) can be extended over the entire C by adding the rules in (96) and (100) involving
the null elements. The resulting richer structure (C,∨,∧, ⋆, ⋆) is called a bounded lattice-ordered
group in Cuninghame-Green (1979), in short blog.

A clodum C is called self-conjugate if it has a negation, i.e. an involutive dual automorphism
that maps each element a to its conjugate element a∗ such that

(
∨
i ai)

∗ =
∧
i ai
∗

(
∧
i bi)

∗ =
∨
i bi
∗

(a ⋆ b)∗ = a∗ ⋆′ b∗
(103)

The first two above properties are generalization of De Morgan’s laws in Boolean algebras. As
for the ‘multiplication’ operations, we assume that the negation also distributes over any (possibly
infinite) suprema and infima. If C is a blog, then it becomes self-conjugate by setting

a∗ =


a−1 if CO < a < CI
CI if a = CO
CO if a = CI

(104)

4.3 Nonlinear Spaces based on Clodums: Complete Weighted Lattices

4.3.1 General Algebraic Structure

We are interested in creating nonlinear spaces whose algebraic structure will resemble that of
traditional linear spaces, like for example the spaces Rn of vectors or the spaces ℓp(Zm,R) of signals
with finite norm, but whose vector/signal addition and scalar multiplication will be replaced by the
lattice supremum and infimum operations and the scalar addition and multiplication in the field of
scalars supporting a linear space will be replaced by the scalar arithmetic of a clodum.

Consider a nonempty collection W of mathematical objects, which will be our space; examples
of such objects include the vectors in Rn or signals in Fun(E,R). Thus, we shall symbolically refer
to the space elements as ‘vectors/signals’, although they may be arbitrary objects. Also, consider
a clodum (C,∨,∧, ⋆, ⋆′) of scalars. We define two operations among vectors/signals F,G in W:
their supremum F ∨ G : W2 → W and infimum F ∧ G : W2 → W, which we denote using the
same supremum symbol (∨) and infimum symbol (∧) as in the clodum, hoping that the differences
will be clear to the reader from the context. Further, we define two operations among any vec-
tor/signal F in W and any scalar in c in C: a scalar ‘multiplication’ c ⋆ F : (C,W) → W and a
scalar dual multiplication’ c ⋆′ F : (C,W) → W; again, we denote these scalar ‘multiplications’ of
vectors/signals by using the same symbols as in the clodum. Now, we define W to be a weighted
lattice (WL) space over a clodum (C,∨,∧, ⋆, ⋆′) of scalars if for all F,G,H ∈ W and a, b ∈ C the
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following axioms hold:

(WL-A1). F ∨G ∈ W and F ∧G ∈ W, (Closure under sup/inf).
(WL-A2). F ∨G = G ∨ F and F ∧G = G ∧ F , (Commutativity of sup/inf).
(WL-A3). F ∨ (G∨H) = (F ∨G)∨H and F ∧ (G∧H) = (F ∧G)∧H, (Associativity of sup/inf).
(WL-A4). F ∨O = F and F ∧ I = F , (Existence of ‘addition’ identities).
(WL-A5). F ∨ F = F and F ∧ F = F , (Idempotence of sup/inf).
(WL-A6). F ∨ (F ∧G) = F and F ∧ (F ∨G) = F , (Absorption between sup/inf).
(WL-A7). F ∨ (G∧H) = (F ∨G)∧ (F ∨H) and F ∧ (G∨H) = (F ∧G)∨ (F ∧H), (Distributivity
of sup/inf).
(WL-SM1). a ⋆ F ∈ W and a ⋆′ F ∈ W, (Closure under scalar ‘multiplications’).
(WL-SM2). a ⋆ (b ⋆ F ) = (a ⋆ b) ⋆ F and a ⋆′ (b ⋆′ F ) = (a ⋆′ b) ⋆′ F , (Associativity of scalar
‘multiplications’).
(WL-SM3). Cid ⋆ F = F and C′id ⋆′ F = F , (‘Multiplication’ with scalar identities).
(WL-SM4). CO ⋆ F = O and CI ⋆′ F = I, (‘Multiplication’ with scalar ‘zeros’-nulls).
(WL-A&SM1). a ⋆ (F ∨G) = a ⋆ F ∨ a ⋆ G and a ⋆′ (F ∧G) = a ⋆′ F ∧ a ⋆′ G, (Distributivity
A&SM 1)
(WL-A&SM2). (a∨ b) ⋆F = a ⋆F ∨ b ⋆F and (a∧ b) ⋆′ F = a ⋆′ F ∧ b ⋆′ F , (Distributivity A&SM 2)

We observe the following:
(1) The six axioms from (WL-A1) until (WL-A6) make (W,∨,∧) a lattice with a least element (O)
and a greatest element (I).
(2) Axiom (WL-A7) makes this lattice distributive.
(3) The above axioms of a weighted lattice (WL) space bear a striking similarity with those of a
linear space in Section 2.1.1. For example, compare the ‘addition’ axioms (WL-A1) until (WL-A4)
with the axioms(A1)-(A4) of linear spaces. Similarly, compare the ‘multiplication’ axioms from
(WL-SM1) until (WL-SM4) with the axioms (SM1)-(SM4) of linear spaces. Finally, compare the
combined ‘addition’ and ‘multiplication’ axioms from (WL-A&SM1) until (WL-A&SM2) with the
axioms (A&SM1)-(A&SM2) of linear spaces. One difference is that the vector/signal addition (+)
of linear spaces is now replaced by two dual superpositions, the lattice supremum (∨) and infimum
(∧); further, the scalar multiplication (×) of linear spaces is now replaced by two operations ⋆ and
⋆′ that are dual to each other. Only one major property of the linear spaces is missing from the
weighted lattices: the existence of ‘additive inverses’; i.e., the supremum and infimum operations
do not have inverses.

We shall define the weighted lattice W over the clodum C to be a complete weighted lattice
(CWL) space if all the following hold:
(i) W is closed under any, possibly infinite, suprema and infima.
(ii) Its distributivities between supremum and infimum are of the infinite type.
(iii) The distributivities between the scalar operations ⋆ or ⋆′ and the supremum or infimum are of
the infinite type.
Note that, a clodum is by itself a scalar complete weighted lattice over itself.

A subset X of a (complete) weighted lattice W over a scalar clodum C is called a (complete)
weighted sublattice if it is itself a (complete) weighted lattice over C, or equivalently if it is (com-
pletely13) closed under the original lattice supremum and infimum as well as by the two scalar
multiplications.

13When we call a weighted lattice ‘completely closed’ under the supremum and infimum as well as by the two scalar
multiplications, we mean that it is closed under arbitrary suprema and infima and all its distributivities are infinite,
both between supremum and infimum, as well as between the scalar operations ⋆ or ⋆′ and the supremum or infimum
respectively.
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4.3.2 Sup/Inf Span, Independence, Basis, Dimension

Consider a subset A of a complete weighted lattice W over a clodum C. A space element F is called
a sup-⋆ combination of points in A if there exists an indexed set of space elements {Fi} in A
and a corresponding set of scalars {ai} in C such that

F =
∨
i

ai ⋆ Fi, (105)

The sup-⋆ span of A, denoted by span∨(A), is the set of all sup-⋆ combinations of elements in A.
If A = ∅, then span∨(A) = {O}. Dually, a space element G is called an inf-⋆′ combination of
points in A if there exists an indexed set of elements {Gi} in A and a corresponding set of scalars
{bi} in C such that

G =
∧
i

bi ⋆
′ Gi, (106)

The inf-⋆′ span of A, denoted by span∧(A), is the set of all inf-⋆′ combinations of elements in A.
If A = ∅, by convention we set span∧(A) = {I}.

If the above sup-⋆ and inf-⋆′ combination are based on a finite set of space elements, we shall
call them max-⋆ and min-⋆′ combination, respectively. A set S in a complete weighted lattice is
called max-⋆ independent (resp. min-⋆′ independent) if each point f ∈ S is not a max-⋆ (resp.
min-⋆′) combination of points in S \{f}. The set S is called max-⋆ dependent if it contains at least
one element F that is a max-⋆ combination of points in S \{F}. Dually for the min-⋆′ dependence.

Recall the definition in linear spaces of a Hamel basis as a subset of the space that is linearly
independent and its linear span makes up all the space. In the nonlinear spaces under discussion,
a subset B of a complete weighted lattice W is called an upper basis for the space if each element
F of the space can be represented as a sup-⋆ combination of (i.e. supremum of ⋆-translated) basis
elements:

F =
∨
i

ci ⋆ Bi, Bi ∈ B (107)

Dually, a subset B′ of W is called a lower basis for the space if each element of the space can be
represented as a min-⋆ combination of (i.e. infimum of ⋆′-translated) basis elements:

F =
∧
i

di ⋆
′ B′i, B′i ∈ B′ (108)

If the space W is self-conjugate, then (107) implies that

F ∗ =
∧
i

ci
∗ ⋆′ Bi

∗ (109)

Thus, if the space possesses an upper basis, it will possess a lower basis too. We conjecture
that the upper and lower bases of a complete weighted lattice have the same cardinality. This
cardinality is called the dimension of W. If this is finite, the space is called finite-dimensional;
otherwise, it is called infinite-dimensional. Examples of an upper and a lower basis are mentioned
in Section 4.4.1 and Section 4.7 for signal and vector spaces respectively; in the first case the basis
is infinite-dimensional, whereas the second case is finite-dimensional.

4.3.3 Complete Weighted Lattices of Functions

In this chapter we are primarily interested in working on complete weighted lattice14 (CWL) spaces
of signals and vectors. Thus, the underlying set of our CWL space is a function space W =

14Our definition of complete weighted lattices (CWL) is general and can also be applied to collections of objects
that are different than vectors or signals. It is only because this chapter deals with signal operators that we have
focused on CWL signal or vector spaces and have defined the ‘additions’ and scalar ‘multiplications’ by extending
pointwise the corresponding scalar operations of the clodum to functions.
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Fun(E, C) where E is an arbitrary nonempty set playing the role of the domain of our functions.
The values of these functions are in a set C of scalars, which for our purposes will generally be a
subset of R. For the value set C we assume that it is a clodum equipped with four binary operations,
a supremum ∨, an infimum ∧, a scalar ‘multiplication’ ⋆ and a dual scalar ‘multiplication’ ⋆′

satisfying the following properties:
(1). (C,∨,∧) is a complete infinitely distributive lattice.
(2). (C, ⋆) is a commutative monoid, and ⋆ distributes over any supremum ∨.
(3). (C, ⋆′) is a commutative monoid, and ⋆′ distributes over any infimum ∧.
Then, we extend pointwise the supremum, infimum and scalar multiplications of C to the functions:
for all F,G ∈ W and a ∈ C

(F ∨G)(x) , F (x) ∨G(x), x ∈ E

(F ∧G)(x) , F (x) ∧G(x), x ∈ E

(a ⋆ F )(x) , a ⋆ F (x), x ∈ E

(a ⋆′ F )(x) , a ⋆′ F (x), x ∈ E

(110)

Assuming that the function collection W is closed under the above four operations, then W
becomes a complete infinitely distributive lattice that inherits many properties from the lattice
structure of C. The least (O) and greatest (I) elements of W are the functions

O(x) = CO, I(x) = CI, ∀x ∈ E. (111)

Further, the scalar operations ⋆ and ⋆′, extended pointwise to functions, distribute over any suprema
and infima, respectively. Thus, the function space Fun(E, C) is by construction a complete weighted
lattice of functions over the clodum C. The collection of all its properties creates a rich algebraic
structure.

If the clodum C is self-conjugate, i.e. has a negation (·)∗ satisfying (103), then we can extend
the conjugation to elements F of the space W pointwise:

F ∗(x) , (F (x))∗, x ∈ E (112)

In such a case we talk about a self-conjugate complete weighted lattice.

Example 9 (Complete Weighted Lattice spaces):
(a) CWL Vector spaces: E = {1, 2, ..., n}, C = R. These are essentially complete minimax15 vector
spaces. See Section 4.7.
(b) CWL Signal spaces: E = Rm E = Zm, C = R. See Section 4.4.1.

4.4 Image Operators on Complete Weighted Lattices

4.4.1 Image Space, Impulse Representations and Vertical Translations

Based on our previous discussion, the collection S = Fun(E, C) of functions with values in the
clodum (C,∨,∧, ⋆, ⋆′) becomes a complete weighted lattice (CWL) function space, where the four
operations of C are extended pointwise to functions. Of main importance is the case E = R2 or
E = Z2, where S becomes the set of all image signals defined on the continuous or discrete image
plane and taking scalar values in C; the multidimensional domain Em is also a straightforward
extension. But E could also be a finite index set, e.g. E = {1, 2, ..., n} for matrix-based image
processing or the set of vertices of a graph in cases of images defined on a graph.

15By ‘minimax vector spaces’ we mean the finite-dimensional nonlinear vector spaces of minimax algebra that are
equipped with max-plus arithmetic or its dual and corresponding nonlinear matrix operations (Cuninghame-Green,
1979).
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Viewed as a lattice, S possesses semi-atoms qy,v and dual semi-atoms q′y,v which are the following
elementary pulse functions

qy,v(x) ,
{
v, x = y
CO, x ̸= y

, q′y,v(x) ,
{
v, x = y
CI, x ̸= y

(113)

Further, since S also has a monoid structure, we can consider generalized translations of function
values via their ‘⋆-multiplication’ by constants v, denoted as λv : a 7→ a ⋆ v; we call them verti-
cal translations, in short V-translations, since geometrically they affect the function graph in the
vertical direction. Similarly we can define dual vertical translations λ′v : a 7→ a ⋆′ v. The scalar
mappings λ,λ′ can be extended to functions pointwise; we keep the same symbol for both scalar
and function operations:

λv(F )(x) , λv[F (x)] = v ⋆ F (x), λ′v(F )(x) , λ′v[F (x)] = v ⋆′ F (x) (114)

Now, the function semi-atoms can be expressed as V-translations of only those whose height equals
the identity. Namely, if we define

qy(x) ,
{

Cid, x = y
CO, x ̸= y

, q′y(x) ,
{

C′id, x = y
CI, x ̸= y

(115)

as the impulse and dual impulse16 functions, respectively, then all semi-atoms can be expressed as
V-translations of the impulse functions:

qy,v(x) = v ⋆ qy(x), q′y,v(x) = v ⋆′ q′y(x) (116)

Hence, since S is a semi-atomic lattice, every function F (x) admits a representation as a supre-
mum of V-translated impulses placed at all points of the domain E or as infimum of dual V-
translated impulses:

F (x) =
∨
y∈E

F (y) ⋆ qy(x) =
∧
y∈E

F (y) ⋆′ q′y(x) (117)

Note that the collection of semi-atoms qy,v (resp. dual semi-atoms q′y,v) constitutes a sup-
generating (resp. inf-generating) subset of S viewed as a lattice; see (31). Further, the collection
of impulses qy(x) (resp. dual impulses q′y(x)) is an upper (resp. lower) basis for the space S viewed
as a complete weighted lattice. If E = Rm or Zm, then these bases are infinite since the number or
required impulses is infinite. However, if E = {1, 2, ..., n} as is the case of vector spaces, then we
have finite bases; this case is detailed in Section 4.7.

4.4.2 Representation of Dilations and Erosions Invariant Under Vertical Translations

We are interested in increasing operators on the complete weighted lattice (CWL) space S =
Fun(E, C) of functions. The previous V-translations λv : F 7→ v ⋆ F of functions F via ‘multipli-
cation’ by constants v are increasing operators. Actually they are dilations of the simplest type,
which we shall often call elementary function dilations. Their collection17 L = {λv : v ∈ C} forms
under composition a commutative monoid of function dilations:

λaλb = λa⋆b (118)

16We may also call q and q′ an upper impulse and a lower impulse, respectively.
17In some specialized cases, the need may arise to restrict the vertical translations only by scalars v that are not

extreme elements in the complete lattice C, i.e. to not allow v to equal the least element CO or greatest element CI

of C. Such a case may arise when C is a blog, because then C = CG ∪ {CO, CI} where (CG, ⋆) is a group; for example,
if C = R, then CG = R and (CG,+) is the additive group of finite reals. We will leave our discussion general, i.e.
without such restrictions, and wherever needed we shall mention any exceptions. Besides, it is always easy to set a
few rules and correctly handle the two extreme elements of C for the clodum arithmetic.
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A function mapping ψ is called V-translation invariant operator, in short L-operator, if it commutes
with any V-translation, i.e., ψλv = λvψ for all v.

All the above concepts apply as well for function translations via dual ‘multiplication’. Each
dual V-translation λ′v : F 7→ v⋆′F is an elementary function erosion, and their collection L′ = {λ′v :
v ∈ C} is a monoid of function erosions. Namely, we call an operator dual V-translation invariant
iff it commutes with any such dual V-translation. If C is a blog, the above two monoids L,L′, after
restriction to non-extreme translations v ∈ CG, become the same group of automorphisms on the
function lattice.

Important examples of increasing operators are the dilations and erosions. The following pro-
vides a decomposition of function dilations and erosions on the lattice S into suprema and infima
of scalar dilations and erosions on C, respectively.

Proposition 15 (Decomposition of Adjunctions) (Heijmans and Ronse, 1990).
Let C be a complete lattice and E an arbitrary nonempty set. The pair (ε, δ) is an adjunction on
the function lattice Fun(E, C) iff for every x, y ∈ E there exists an adjunction (ex,y, dy,x) on C such
that

δ(F )(x) =
∨
y∈E

dy,x(F (y)) , ε(G)(y) =
∧
x∈E

ex,y(G(x)) (119)

for x, y ∈ E and F,G ∈ Fun(E, C).

In the space S, if we consider the impulse functions qy(x) and their duals q′y(x) in (115), we
can enable the decomposition (119) by defining the scalar dilations to be

dy,x(v) = δ(qy,v)(x) = δ(v ⋆ qy)(x), x, y ∈ E, v ∈ C (120)

and ex,y to be the adjoint erosion of dy,x.
Dually we can define the scalar erosions ex,y from the action of ε on the dual impulses q′, i.e.

ex,y(v) = ε(q′x,v)(y) = ε(v ⋆′ qx)(y), x, y ∈ E, v ∈ C (121)

and then define the scalar dilations dy,x as adjoints of ex,y.
An important outcome from the above discussion is that the output functions from dilation

(resp. erosion) operators excited by V-translated impulses are sufficient for the supremal (resp. in-
fimal) representation of the operators. Henceforth we assume that these operators are V-translation
invariant. For dilations and erosions this invariance implies that they obey an interesting nonlinear
superposition principle which has direct conceptual analogies with the linear superposition obeyed
by linear operators. Specifically, we define δ to be a dilation V-translation invariant (DVI)
operator iff

δ(
∨
i∈J

ci ⋆ Fi) =
∨
i∈J

ci ⋆ δ(Fi), ci ∈ C, Fi ∈ S (122)

for any index set J . We also define ε to be an erosion V-translation invariant (EVI) operator
iff

ε(
∧
i∈J

ci ⋆
′ Fi) =

∧
i∈J

ci ⋆
′ ε(Fi), ci ∈ C, Fi ∈ S (123)

Compare the two above nonlinear superpositions with the linear superposition obeyed by a
linear operator Γ:

Γ(
∑
i∈J

ai · Fi) =
∑
i∈J

ai · Γ(Fi) (124)

where J is a finite index set, ai are constants from a field (e.g. the set of reals or complex numbers)
and Fi are field-valued signals from a linear space.

If we assume that our operators are V-translation invariant, then their outputs obtain a sim-
plified structure which is best described by defining next the operator’s impulse responses. Given
a dilation operator δ, its impulse response map is the mapping H : E → Fun(E, C) defined
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at each y ∈ E as the output function from δ when the input is the impulse qy. Dually, for an
erosion operator ε we define its dual impulse response map H ′ via its outputs when excited by dual
impulses:

Hy(x) , δ(qy)(x), H ′y(x) , ε(q′y)(x), x, y ∈ E (125)

The following gives a unified representation for all V-translation invariant dilations and erosions
on a CWL function space.

Theorem 10 (Maragos, 2005a).
Let S = Fun(E, C) be a complete weighted lattice of functions over a clodum (C,∨,∧, ⋆, ⋆′). Then:
(a) An operator δ on S is DVI, i.e. obeys the sup-⋆ superposition of (122), if and only if it can be
expressed as

δ(F )(x) =
∨
y∈E

F (y) ⋆ Hy(x) (126)

where Hy is its impulse response map in (125).
(b) An operator ε on S is EVI, i.e. obeys the inf-⋆′ superposition of (123), if and only if it can be
expressed as

ε(F )(x) =
∧
y∈E

F (y) ⋆′ H ′y(x) (127)

where H ′y is its dual impulse response map in (125).

Note that, in the case of a signal space (E = Em), the operations in (126) and (127) are like
adaptive nonlinear convolutions where a dilation (resp. erosion) system’s output is obtained as
supremum (resp. infimum) of various impulse response signals produced by exciting with impulses
at all points and weighted by the input signal values via a group-like ⋆-‘multiplication’.

4.5 Representation of Signal Dilation and Erosion Operators Invariant under
Translation Monoids on Complete Weighted Lattices

In this section we shall work with the complete weighted lattice (CWL) signal space S = Fun(E, C)
over a clodum (C,∨,∧, ⋆, ⋆′), where the underlying set S consists of all signals with values from
C ⊆ R and defined on a multidimensional plane-like domain18 E that is a subset of the Euclidean
domain Rm or its discrete version Zm, m = 1, 2, ... We shall consider monoids T of generalized
signal translations, which include both horizontal and vertical translations, and shall prove that
signal dilations (resp. erosions) invariant under such translations are equivalent to generalized
supremal (resp. infimal) convolutions. Related adjunctions will also be found from pairs of such
operators.

These results generalize previous work by Heijmans and Ronse (1990) where T was constrained
to be a commutative group of automorphisms. We also treat differently the horizontal form the ver-
tical translations. Heijmans and Ronse (1990) had also made a basic assumption that S contained
a sup-generating subset ℓ, which was left invariant by T and that T was transitive on ℓ. In this
chapter, where we deal with signal and vector spaces, this sup-generating class already exists and
is formed by vertical translations of the upper basis of the complete weighted lattice; as explained
later, this basis consists of horizontally translated impulses.

4.5.1 Generalized Translations

The signal domain E possesses various commutative group structures which allow us to define
corresponding horizontal motions that form two major types of Euclidean motions. The most
obvious and practical choice is to set E = Rm or Zm and consider the horizontal translations on

18In this section we will not use the bolface notation for vector points of the signal domain E, because this will
not always be equal to Em and the generalized translation group on it will not always be the standard horizontal
Euclidean translation group.
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the image plane where each such operator µh(F )(x) = F (x−h) performs a planar shift of an input
signal F (x) along the vector h. The class Tht = {µh : h ∈ Em} of all horizontal translations under
composition is a commutative group of automorphisms both on the Boolean lattice P(Em) (the
collection of all subsets of Em) as well as on the signal lattice S; i.e. µxµy = µx+y. A second choice
is to set E = R2\{(0, 0)} and to consider polar motions µr,θ : that transform the support of an input
signal via a rotation by θ and a radial scaling by r. The class Thr = {µr,θ : r > 0, θ ∈ [0, 2π)} of all
polar motions is also a commutative group of automorphisms; i.e. µr,θµρ,ϕ = µrρ,θ+ϕ. Both of these
choices were studied in Heijmans (1987, 1994); the polar case in Roerdink and Heijmans (1988).
As a third possibility we can consider the group of all Euclidean planar motions, i.e. combined
translations and rotations; this is a non-commutative group of automorphisms studied in Roerdink
(1993). Another example of a non-commutative group of automorphisms is the group of affine of
mappings on the plane, studied in Maragos (1990). Henceforth, we focus only on the commutative
cases, i.e. the first two choices. However, for notational simplicity, we shall use only the horizontal
Euclidean translation group and write it simply as Th, even if our results will also include the case
of polar motions. Further, for both of these horizontal translation groups we will use the additive
notation for its group operation. Note a difference though: the horizontal Euclidean translations
apply to more general signal domains, both continuous (Rm) and discrete (Zm), whereas for the
polar motions we need as domain the punctured plane R2 \ {(0, 0)}.

In the previous section we worked with vertical translations λv[F (x)] = F (x) ⋆ v whose collec-
tion L forms a commutative monoid of signal dilations, as well as with dual vertical translations
λ′v[F (x)] = F (x) ⋆′ v which are erosions. The composition of these two (horizontal and vertical)
types of translations yields a generalized translation τ and its dual τ ′:

τh,v(F )(x) , F (x− h) ⋆ v, τ ′h,v(F )(x) , F (x− h) ⋆′ v (128)

Note that the horizontal and vertical translations commute:

τh,v = µhλv = λvµh, τ ′h,v = µhλ
′
v = λ′vµh (129)

The collection of all such generalized translations

T = Th × L = {τh,v : h ∈ E, v ∈ C} (130)

forms a monoid under composition:

τx,aτ y,b = τx+y,a⋆b (131)

If C is a blog, then T restricted to non-extreme vertical translations becomes a group of automor-
phisms. However, in the general case, T is just a commutative monoid of elementary signal dilations
on S. We call an operator ψ T-translation invariant, in short T-invariant, if it commutes with
all translations τ ∈ T.

ψ is T-invariant: ψτ = τψ, ∀ τ ∈ T

Dually, the collection T′ = {τ ′h,v : h ∈ E, v ∈ C} forms a monoid of signal erosions. We call an
operator T′-invariant if it commutes with all translations τ ′ ∈ T′.

Consider now two elementary signals, called the impulse q and the dual impulse q′

q(x) ,
{

Cid, x = 0
CO, x ̸= 0

, q′(x) ,
{

C′id, x = 0
CI, x ̸= 0

(132)

which are the pulse semi-atoms of S placed at the origin 0 of Em and with identity height. Then
every signal can be represented as a supremum of translated impulses or as infimum of dual-
translated impulses:

F (x) =
∨
y∈E

F (y) ⋆ q(x− y) =
∧
y∈E

F (y) ⋆′ q′(x− y) (133)



P. Maragos: Chapter in A.I.E.P., vol.177, 2013. 55

Now, in this CWL signal space S on which we also have generalized translations, the set B of all
translated impulses

B = {q(x− y) : y ∈ E} (134)

is an infinite upper basis for S, which is infinite-dimensional. Dually, the set B′ = {q′(x−y) : y ∈ E}
is a lower basis of the same cardinality as B.

4.5.2 Generalized Convolution Representation of T-Invariant Dilations and Erosions

Consider now a T-invariant dilation on S, i.e. an operator ∆ that obeys the nonlinear superposition
(122) and is horizontally translation-invariant, or equivalently distributes over suprema and obeys
the T-invariance. We call ∆ a dilation translation-invariant (DTI) system. Let

H , ∆(q)

be the system’s impulse response. We shall show next that, the DTI system’s output ∆(F ) due
to an input signal F (x) equals the following nonlinear sup-⋆ convolution ⃝⋆ of the input with the
impulse response:

(F ⃝⋆H)(x) ,
∨
y∈E

F (y) ⋆ H(x− y) (135)

Dually, consider a T′-invariant signal erosion, i.e. an operator E that distributes over infima and
obeys the T′-invariance; we call E an erosion translation-invariant (ETI) system. Let H ′ =
E(q′) be the system’s dual impulse response. As shown next, the ETI system’s output E(F ) equals
the following nonlinear inf-⋆′ convolution ⃝⋆ ′ of the input F with the dual impulse response H ′:

(F ⃝⋆ ′H ′)(x) ,
∧
y∈E

F (y) ⋆′ H ′(x− y) (136)

Thus, DTI and ETI systems are represented by the above nonlinear convolutions, and conversely.
Overall, we have the following fundamental result.

Theorem 11 (Maragos, 2005a).
Consider a CWL signal space S = Fun(E, C) over the clodum (C,∨,∧, ⋆, ⋆′) of scalars. Over this
space, consider the monoid T of generalized translations defined in (130) and the monoid T′ of dual
translations. Then:
(a) (DTI Systems): A signal operator ∆ on S is a T-translation invariant dilation iff it can be
represented as the sup-⋆ convolution of the input signal with the system’s impulse response H =
∆(q).
(b) (ETI Systems): A signal operator E on S is a T′-translation invariant erosion iff it can be
represented as the inf-⋆′ convolution of the input signal with the system’s dual impulse response
H ′ = E(q′).

The above theorem has a direct conceptual analogy with Riesz’s representation theorem for
linear operators, which states that linear and horizontally translation-invariant (in short, LTI)
operators are uniquely represented as linear (sum-product) convolutions of the input F with their
impulse response H:

Γ is LTI ⇐⇒ Γ(F )(x) = (F∗H)(x) =
∑
y

F (y)H(x− y) (137)
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4.5.3 Generalized Convolution Adjunctions

Let us now find the adjoint operators of the above nonlinear convolutions. A T-invariant dilation
∆H(F ) = F ⃝⋆H can be represented via scalar dilations as

∆H(F )(x) =
∨
y∈E

F (y) ⋆ H(x− y)

=
∨
y∈E

λH(x−y)(F (y)) (138)

where the V-translation λa(v) = a ⋆ v is a scalar dilation. Let λ←a be the scalar adjoint erosion of
λa. By setting

λH(x−y)(v) = dy,x(v), λ←H(x−y)(w) = ex,y(w) (139)

we can identify the scalar adjunction (λ←H(x−y),λH(x−y)) of V-translations with the scalar adjunction
(ex,y, dy,x) of Proposition 15. Then, it follows that the adjoint signal erosion of ∆H is

EH(G)(y) =
∧
x∈E

λ←H(x−y)(G(x)) (140)

If C is a blog, i.e. CG = C \ {CO, CI} is a group under ⋆-‘multiplication’, let v∗ denote the conjugate
of each scalar v ∈ C as defined in (104); this coincides with the group inverse if v is a group element.
Then, the scalar adjoint erosion can be expressed as λ←a (w) = a∗ ⋆ w, and hence the adjoint signal
erosion becomes

EH(G)(y) =
∧
x∈E

G(x) ⋆ [H(x− y)]∗ (141)

By interchanging x with y we can write this as

EH(G)(x) =
∧
y∈E

G(y) ⋆ [H(y − x)]∗ (142)

which, when compared with (138), reveals that the adjoint of a signal sup-⋆ convolution has the
computational structure of an inf-⋆ correlation.

Similarly, if we consider a T′-erosion EH′(G) = G⃝⋆ ′H ′ and decompose it into scalar erosions as

EH′(G)(x) =
∧
y∈E

G(y) ⋆′ H ′(x− y)

=
∧
y∈E

λ′H′(x−y)(G(y)) (143)

where λ′a(w) = a ⋆′ w are dual V-translations, then the adjoint signal dilation of EH′ is

∆H′(F )(y) =
∨
x∈E

λ′←H′(x−y)(F (x)) (144)

where λ′←a is the scalar adjoint dilation of λ′a. Again, if C is a blog, each scalar v possesses a
conjugate v∗, and the scalar adjoint dilation can be shown to equal λ′←a (v) = a∗ ⋆′ v. Then, the
adjoint signal dilation becomes

∆H′(F )(y) =
∨
x∈E

F (x) ⋆′ [H ′(x− y)]
∗

(145)

We see in both cases that while a T-invariant dilation (or T′-invariant erosion) has the compu-
tational structure of a signal convolution, its corresponding adjoint has the structure of a nonlinear
signal correlation. Now, are these adjoint operators invariant w.r.t. the corresponding generalized
translation? The next result describes the limits of such invariances.
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Proposition 16 (Maragos, 2005a).
Let (ε, δ) be an adjunction on the CWL space S. Then:
(a) δ is invariant to any horizontal translation µ iff ε is invariant to such translation; i.e. δµ =
µδ ⇐⇒ εµ = µε.
(b) Consider a scalar adjunction (λ←,λ) on C where λ is a vertical translation and λ← is its
adjoint. Then δ is invariant to a vertical translation λ iff ε is invariant to the adjoint translation
λ←; i.e. δλ = λδ ⇐⇒ ελ← = λ←ε.
(c) Consider a scalar adjunction (λ′,λ′←) on C where λ′ is a dual vertical translation and λ′← is
its adjoint. Then ε is invariant to a dual vertical translation λ′ iff δ is invariant to the adjoint
translation λ′←.
(d) If C is a blog, δ is T-invariant iff ε is T-invariant.

Concluding, our emphasis on working always with adjunctions (ε, δ) is justified by the following
reasons: (i) If we have an adjunction, we can immediately create an opening α(F ) = δε(F ) and a
closing β(F ) = εδ(F ), by simply concatenating the erosion and dilation. (ii) If a signal dilation
(resp. erosion) is not invertible, then its adjoint erosion (resp. dilation) is the closest to an ‘inverse
operator’. (iii) Adjunctions provide us with many tools to analyze their constituent operators.

4.6 Special Cases

By specifying the clodum C and its scalar ‘multiplication’ operations ⋆ and its dual ⋆′, we obtain
a large variety of classes of nonlinear image processing systems that are described by the previous
unified representations. Next we briefly describe three such choices.

4.6.1 Max-Plus Image Operators

We set C = R = R ∪ {−∞,+∞}. The ‘multiplications’ ⋆ and ⋆′ are the regular extended addition
+ and its dual +′ over R, respectively; i.e., + and +′ are identical for finite reals, but

a+ (−∞) = −∞ and a+′ (+∞) = +∞ ∀a ∈ R.

Thus, the clodum of scalars is ([−∞,∞],∨,∧,+,+′). In this case C is a blog and contains an
additive group (R,+) where each scalar a has an inverse −a that coincides with its conjugate a∗.
The adjunction (EH ,∆H) of a sup-sum convolution (dilation) ∆H and its adjoint erosion EH become

∆H(F )(x) = (F ⊕H)(x) ,
∨
y∈E F (y) +H(x− y)

EH(F )(x) = (F ⊖H)(x) ,
∧
y∈E F (y)−H(y − x)

(146)

These are the traditional weighted Minkowski dilation and erosion of an image F by an additive
structuring function H (Sternberg, 1980), which have found numerous applications in nonlinear
filtering, image processing and computer vision Serra (1982); Sternberg (1986); Ritter and Wilson
(1987); Maragos and Schafer (1990); Haralick and Shapiro (1992); Heijmans (1994); Dougherty
and Astola (1994); Maragos (1998, 2005b). Similarly, the adjunction (EH′ ,∆H′) of an inf-sum
convolution (erosion) EH′ and its adjoint dilation ∆H′ become

EH′(F )(x) = (F ⊕′ H)(x) ,
∧
y∈E F (y) +

′ H ′(x− y)

∆H′(F )(x) =
∨
y∈E F (y) +

′ [−H ′(y − x)]
(147)

Note that sup-sum ⊕ and inf-sum ⊕′ convolutions have been known in optimization (Bellman and
Karush, 1963) and convex analysis (Rockafellar, 1970; Lucet, 2010) under the names ‘supremal
convolution’ and ‘infimal convolution’.19

19In convex analysis (Rockafellar, 1970; Lucet, 2010) the infimal convolution of two functions f and g is usually
denoted by (f2g)(x) =

∧
y f(y) + g(x− y). In our exposition we use the symbol ⊕′.
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The signal translations become

τh,v(F )(x) = F (x− h) + v

and their collection for h ∈ Em and v ∈ R is a commutative group of automorphisms, studied
in Heijmans and Ronse (1990); Heijmans (1994); note that to get a group we restrict the vertical
translation amounts v to be finite. Henceforth, unless we clarify it in the context, when we talk
about ‘translation-invariance (TI)’ of some operator without specifying the translation-group, we
shall refer to this standard case: the horizontal Euclidean translations group and the vertical scalar
addition group. Another standard term is ‘shift-invariance’ of some operator ψ which shall always
mean invariance with respect to the horizontal Euclidean translations group, i.e. ψτh,0 = τh,0ψ.

As explained in Section 5, TI operators play a major role in the morphological representation
theory. For example, increasing TI operators can be represented as a supremum of Minkowski
erosions or as infimum of dilations by functions in a suitable collection called ‘kernel’ or a minimal
subcollection (Maragos, 1989a).

In addition to morphological image processing, there are many other scientific fields where
the max-plus algebraic system is often used. Examples include machine scheduling and operations
research (Cuninghame-Green, 1979), convex analysis and optimization (Rockafellar, 1970), shortest
path problems on graphs (Peteanu, 1967), morphological neural nets (Davidson and Hummer, 1993;
Ritter et al., 1998; Pessoa and Maragos, 2000; Ritter and Urcid, 2003).

In short, the max-plus case is the algebraically richest and most well explored case in math-
ematical morphology and image algebra as well as in minimax algebra, both in theory and in
applications.

4.6.2 Max-Product Image Operators

Another less explored paradigm, but equally algebraically rich with the max-plus case, results
when we choose as set of scalars the extended nonnegative numbers C = [0,+∞] and as self-dual
⋆-‘multiplication’ the standard product ‘×’ of nonnegative numbers extended to include the +∞.
Thus, the clodum of scalars is ([0,∞],∨,∧,×,×′). The signal translations become

τh,v(F )(x) = F (x− h)× v

and their collection for h ∈ E and v ∈ (0,+∞) is a commutative group of automorphisms, studied
in Heijmans and Ronse (1990); Heijmans (1994); note that to get a translation group we restrict the
multiplication scalars v to be non-extreme. As in the max-plus case, the scalar set C is again a blog
and contains a multiplicative group ((0,∞),×) with inverses a−1 that coincide with the conjugate
a∗ of each scalar a. Now, the adjunction (EH ,∆H) of a sup-product convolution (dilation) ∆H and
its adjoint erosion EH become

∆H(F )(x) = (F ⊗H)(x) ,
∨
y∈E F (y)×H(x− y)

EH(F )(x) =
∧
y∈E F (y)/H(y − x)

(148)

These are translation-invariant Minkowski-like dilation and erosion of an image F by a multi-
plicative structuring function H. Some of its properties, their translation-invariances and kernel
representations of such systems have been studied in Heijmans (1994).

Note that there is an isomorphism between the max-plus and the max-product enabled by
a logarithmic-exponential pointwise bijection of the image signals. Despite this isomorphism, we
believe that there is a significant applications potential in this algebraic system, which has not been
explored so far. This potential can be appreciated by the following observations: (1) Image signals
are naturally nonnegative and the max-product dilations-erosions maintain this nonnegativity of the
input signals. (2) In certain vision applications there is sometimes the need to include in the visual
processing the logarithm of intensity images; e.g., such a nonlinearity approximates some of the
early stages in biological vision systems. This creates the density (log-intensity) representation of
images. Then, max-plus dilations and erosions of the density image are equivalent to max-product
dilations and erosions of the intensity image.
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4.6.3 Weighted Lattice Operators using Fuzzy Norms

This section presents an important special case of our unified lattice image processing systems
which covers a broad area in the intersection of mathematical morphology and fuzzy logic. We set
C = [0, 1] and the clodum of scalars is ([0, 1],∨,∧, T, T ′) where T (resp. T ′) is a fuzzy intersection
(resp. union). The signal space S = Fun(E, [0, 1]) consists of all image signals defined on E = Rm
or Zm and assuming real values in [0, 1]; alternatively, these signals can be viewed as membership
functions of fuzzy sets. This is a more difficult clodum case than the previous two (max-plus and
max-product) because it is not a blog. Thus, there are no inverses under the ⋆-‘multiplication’.

Mathematical Morphology and Fuzzy Logic: Mathematical morphology and fuzzy sets share
many common theoretical concepts. As an earlier example, the use of min/max to extend the in-
tersection/union of ordinary (crisp) sets to fuzzy sets Zadeh (1965) has also been used to extend
the set-theoretic morphological shrink/expand operations on binary images to min/max filtering
on graylevel images (Nakagawa and Rosenfeld, 1978; Goetcherian, 1980). While the field of mor-
phological image analysis was maturing, several researchers developed various other approaches
using fuzzy logic ideas for extending or generalizing the morphological image operations (Sinha
and Dougherty, 1992; Bloch and Maitre, 1995). The main ingredients of these approaches have
been to (1) map the max-plus structure of Minkowski signal dilation to a sup-T signal convolution,
where T is some fuzzy intersection norm, and (2) use duality to map the inf-minus structure of
Minkowski signal erosion to a inf-T ′ convolution, where T ′ is a dual fuzzy union norm. We refer
the reader to Nachtegael and Kerre (2001) for connections and comparisons of all these approaches
to fuzzy morphologies. The main disadvantage of these approaches is that composition of the op-
erators from steps (1) and (2) is not guaranteed to be an algebraic opening or closing. In addition
to the above approaches, there have been efforts to combine mathematical morphology and fuzzy
logic or lattices and neuro-fuzzy systems by fuzzifying respectively the inclusion indicator or the
partial ordering of the lattice, as done respectively in Chatzis and Pitas (2000) and Kaburlasos
and Petridis (2000). In the field of pattern recognition, of relevance is also the work in Yang and
Maragos (1995) on min-max classifiers that used max-min operations on vectors.

In Maragos et al. (2000, 2001, 2003) lattice theory was used to develop generalizations of
morphological signal and vector operations based on fuzzy norms that have an adjunction structure
A similar work appeared independently in Deng and Heijmans (2002). In this section we present
these preliminary results as special cases of the general algebraic structure. From fuzzy set theory
(Klir and Yuan, 1995) we use t-norms and t-conorms to extend intersection and union of crisp sets to
signal convolutions. To form openings and closings we use pairs of t-norms and fuzzy implications.

Fuzzy Intersection and Union Norms: A fuzzy intersection norm, in short a T -norm, is a
binary operation T : [0, 1]2 → [0, 1] that satisfies the following conditions (Klir and Yuan, 1995):
For all a, b, c ∈ [0, 1]
F1. T (a, 1) = a and T (a, 0) = 0 (boundary conditions).
F2. T (a, T (b, c)) = T (T (a, b), c) (associativity).
F3. T (a, b) = T (b, a) (commutativity).
F4. b ≤ c =⇒ T (a, b) ≤ T (a, c) (increasing).

For the T -norm to be a scalar dilation (with respect to any argument) on V, it must also satisfy
(Maragos et al., 2000):

F5. T is a continuous function.
A fuzzy union norm (Klir and Yuan, 1995) is a binary operation U : [0, 1]2 → [0, 1] that satisfies
F2-F5 and a dual boundary condition:

F1′. U(a, 0) = a and U(a, 1) = 1.
Clearly, U is an erosion on V.
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Lattice Fuzzy Convolutions and Adjunctions: We have built the general DTI or ETI systems
(equivalent to sup-⋆ or inf-⋆′ convolutions) as supremum or infimum of signal translations of the
type τh,v(f)(x) = f(x − y) ⋆ v. In this section we shall use new translations where the binary
operation a ⋆ b is replaced by fuzzy intersection norms T and the dual operation a ⋆′ b is replaced
by fuzzy union norms U . Namely, the new generalized signal translations on S = Fun(E, [0, 1]) are
the operators τ and the dual translations are the operators τ ′:

τh,v(f)(x) = T (f(x− y), v) (149)

τ ′h,v(f)(x) = U(f(x− y), v) (150)

where (h, v) ∈ E× [0, 1] and f(x) is an arbitrary input signal. (As in the previous two special cases,
the signal domain will be E = Em.) These translations include both horizontal shifts as well as
vertical shifts induced by the fuzzy norms. A signal operator on S is called translation invariant
(resp. dual-translation invariant) iff it commutes with any such translation τ (resp. τ ′) based on
a fuzzy norm. Consider now the two elementary signals, the impulse q and the dual impulse q′:

q(x) ,
{

1, x = 0
0, x ̸= 0

, q′(x) ,
{

0, x = 0
1, x ̸= 0

Then every signal f can be represented as a supremum of translated impulses or as infimum of
dual-translated dual impulses:

f(x) =
∨
y

T [q(x− y), f(y)] =
∧
y

U [q′(x− y), f(y)]

Translation invariant signal dilations and erosions can result, respectively, from the sup-T con-
volution ⃝T and the inf-U convolution ⃝′U of two signals f and g defined by

(f ⃝T g)(x) ,
∨
y

T [g(x− y), f(y)], (151)

(f ⃝′U g)(x) ,
∧
y

U [g(x− y), f(y)] (152)

The following results are a direct corollary of the generalized convolution representation Theo-
rem 11.

Theorem 12 (Maragos, 2005a).
(a) Given a fuzzy intersection norm T , an operator ∆ on Fun(E, [0, 1]) is a dilation invariant to
the general translations (149) iff it can be represented as the sup-T convolution of the input signal
with the operator’s impulse response H = ∆(q).
(b) Given a fuzzy union norm U , an operator E on Fun(E, [0, 1]) is an erosion invariant to the
dual translations (150) iff it can be represented as the inf-U convolution of the input signal with
the system’s dual impulse response H ′ = E(q′).

However, the erosion E of the above theorem may not be the adjoint of the dilation ∆. To form
an adjunction, we first define a signal fuzzy dilation as a sup-T convolution:

∆H,T (F )(x) ,
∨
y∈E

T [H(x− y), F (y)] = (F ⃝T H)(x) (153)

By recognizing T [H(x − y), F (y)] as the scalar dilations dy,x(F (y)) in the general decomposition
(119) of a signal dilation, it follows that the adjoint signal fuzzy erosion is

EH,Ω(G)(y) ,
∧
x∈E

Ω[H(x− y), G(x)] (154)
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where Ω[H(x − y), G(x)] represents the adjoint scalar erosions ex,y(G(x)) in (119) and is actually
the adjoint of the fuzzy T -norm:

T (a, v) ≤ w ⇐⇒ v ≤ Ω(a,w) (155)

An alternative interpretation of T [H(x − y), F (y)] and Ω[H(x − y), G(x)] is that they are equal,
respectively, to a scalar V-translation λ and its adjoint λ← of the signal values:

T [H(x− y), F (y)] = λH(x−y)(F (y))

Ω[H(x− y), G(x)] = λ←H(x−y)(G(x))
(156)

Now, given T we can find its adjoint function Ω by

Ω(a,w) = sup{v ∈ [0, 1] : T (a, v) ≤ w} (157)

In fuzzy logic, the norm T can be interpreted as a logical conjunction, whereas its corresponding
adjoint Ω can be interpreted as a logical implication (Klir and Yuan, 1995).

Three examples of T -norms are:

Min : T1(a, v) = min(a, v)
Product : T2(a, v) = a · v
Yager : T3(a, v) = 1− (1 ∧ [(1− v)p + (1− a)p]1/p), p > 0.

The corresponding three adjoint functions are:

Ω1(a,w) =

{
w, w < a
1, w ≥ a

Ω2(a,w) =

{
min(w/a, 1), a > 0
1, a = 0

Ω3(a,w) =

{
1− [(1− w)p − (1− a)p]1/p, w < a
1, w ≥ a

Let us consider now the construction of lattice-fuzzy openings and closings based on an adjunc-
tion (ε, δ) of a lattice-fuzzy dilation δ and erosion ε. The adjunctional lattice-fuzzy opening α and
lattice-fuzzy closing β are defined as

α(f) , δ(ε(f)), β(f) , ε(δ(f)) (158)

This is the correct approach to create openings and closings from fuzzy dilations and erosions. To
compare it with previous works, consider an involutive fuzzy complement a 7→ a∗, e.g. a∗ = 1− a.
This is a negation (i.e. conjugation) on the scalar clodum [0, 1] and induces a negation on the
signal clodum S too. If we define via complementation an alternative erosion operator (as an inf-U
convolution) by

ε′(f)(y) =
∧
x

U [f(x), h(y − x)] (159)

where U(a, b) = 1− T (1− a, 1− b) is a fuzzy union that is the dual (i.e. complement) of the fuzzy
intersection T , then ε′(f) = 1 − δ(1 − f) = δ∗(f), where ψ∗ denotes the negative operator of ψ;
i.e., this second erosion ε′ is the dual (i.e. negative) of the first dilation δ. Further, the adjoint
dilation δ′ of ε′ is an operator that is dual (i.e. negative) of the first erosion ε. Many previous works
used pairs (ε′, δ) which are duality pairs (via negation) but not adjunctions and hence cannot form
openings/closings via compositions.
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Examples: To gain some insight on the lattice-fuzzy image operators, we briefly present a few
experimental results illustrating the differences between the classical morphological operators and
the lattice operators based on fuzzy T -norms.

Figure 6 shows the outputs of dilation, erosion, opening and closing operators on 1D images,
first for the morphological type using a 51-pixel flat structuring element and second for the fuzzy
type (153), (154) and (158). For the fuzzy operations in Fig. 6, three T -norms were used: the
minimum norm, the product norm, and the Yager norm (with parameter p = 2). The structuring
function H : Z → [0, 1] was the parabola

H(x) =

{
1− k(x/s)2, |x| ≤ s
0, |x| > s

(160)

whose parameter s determines the scale, while k affects the shape of H. (We used s = 25 and
k = 0.5.) In general, by experimenting with a large variety of T -norms and structuring functions
H we have observed that, the fuzzy operators are more adaptive and track closer the peaks/valleys
of the signal than the corresponding flat morphological operators of the same scale.
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Figure 6: Comparison of 1D basic morphological and lattice-fuzzy signal operators. Rows 1 and 2,
left to right: flat, minimum, product, Yager. Row 1: original signal (solid line), dilation (dashed line),
erosion (dotted line). Row 2: closing (dashed line), opening (dotted line). From Maragos et al. (2001).

Figure 7 reports experiments with 2D images. For all the fuzzy operations in this figure, we
used the Yager T -norm with parameter p = 10 and a conical structuring function H. The second
row compares the morphological flat dilation and erosion of an original image in Fig. 7(a) with its
fuzzy dilation and erosion. In both cases the structuring element had a 7× 7-pixel support, being
flat in the morphological case and conical in the fuzzy case. The third row of Fig. 7 deals with edge
enhancement : Figure 7(f) shows the standard discrete morphological gradient F ⊕B − F ⊖B, as
the difference between the morphological flat dilation and erosion, respectively, of F by a 3×3-pixel
square B. Figure 7(g) shows the same type of gradient but uses a fuzzy dilation δ and erosion ε
with a 3 × 3-pixel structuring function H. Figures 7(h) and (i) combine the fuzzy dilation and
erosion differently to derive respectively the following two types of new edge gradients:

FuzzyEdgemin(F ) = min[δ(F ), 1− ε(F )]
FuzzyEdgemax(F ) = max[δ(F ), 1− ε(F )]

(161)

The new edge gradients were inspired by the standard discrete morphological gradient F⊕B−F⊖B,
but to make the gradient operator more consistent with fuzzy set theory we replaced the difference
between dilation and erosion with min (or max) of the dilation and the fuzzy complement of the
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 7: (a) Original image F . (b) Morphological flat dilation F ⊕B. (c) Morphological flat erosion
F ⊖B. (d) Fuzzy dilation δ(F ). (c) Fuzzy erosion ε(F ). (f) Morphological gradient F ⊕B − F ⊖B.
(g) δ(F )− ε(F ). (h) Fuzzy min gradient min[δ(F ), 1− ε(F )]. (i) Fuzzy max gradient max[δ(F ), 1−
ε(F )]. From Maragos et al. (2001).

erosion. As shown in Fig. 7, these new fuzzy gradient operators have a promising behavior since
they yield cleaner and sharper edge peaks than the morphological gradient.

The power but also the difficulty in applying these lattice fuzzy operators to image analysis is
the large variety of fuzzy norms and the absence of systematic ways in selecting them. As shown
in Maragos et al. (2001, 2003), by experimenting with the type of fuzzy norm and the shape-size of
the structuring function, it is possible to adapt the new fuzzy operators so that their performance
has many promising aspects compared with the standard morphological operators.

4.7 Matrix Representations of Image Operators on Finite-dimensional Weighted
Minimax Vector Spaces

In this section we shall work with a finite-dimensional function lattice Cn = Fun({1, 2, ...n}, C),
equipped with a scalar arithmetic of a clodum (C,∨,∧, ⋆, ⋆′) where C ⊆ R. The underlying set Cn
consists of all vectors with components from C. The four scalar operations of C (and possibly the
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conjugation if it exists) are extended to vectors x,y ∈ Cn componentwise:20

{x ∨ y}i , xi ∨ yi, i = 1, ..., n

{x ∨ y}i , xi ∨ yi, i = 1, ..., n

{a ⋆ x}i , a ⋆ xi, i = 1, ..., n

{a ⋆′ x}i , a ⋆′ xi, i = 1, ..., n

{x∗}i , xi
∗, i = 1, ..., n

(162)

Under these four operations, Cn becomes a complete weighted lattice (CWL) vector space over C.
This nonlinear vector space is similar to the ‘band spaces’ of minimax algebra (Cuninghame-Green,
1979); however, we have endowed Cn with a richer algebraic structure, that of a complete weighted
lattice.

Of interest are operators ψ on Cn (i.e., vector transformations) that are increasing, i.e., x ≤ y
implies ψ(x) ≤ ψ(y). Elementary increasing operators are the scalar ‘multiplications’ of a vector by
a scalar using the ⋆ or ⋆′ operation componentwise. As done in Section 4.4.2 for general functions,
we view these scalar ‘multiplications’ as vertical translations which shift the values of a vector x
componentwise by combining them with a scalar v via the operations ⋆ and ⋆′:

λv(x) , [v ⋆ xi], λ′v(x) , [v ⋆′ xi] (163)

The set L all such vertical translations λv forms a commutative monoid of vector dilations under
composition, and so does the set of dual vertical translations λ′v which are vector erosions.

If we define the elementary pulse vectors

ei , [CO, ..., CO, Cid, CO, ..., CO]T (164)

with a Cid value at the ith position and CO elsewhere, then the collection B = {ei : i = 1, ..., n} is
a finite upper basis for this CWL vector space. Specifically, each vector x = (x1, ..., xn)

T can be
represented as a weighted maximum of basis vectors (or equivalently as a maximum of translated
elementary vectors):

x =
n∨
i=1

xi ⋆ ei =
n∨
i=1

τxi(ei) (165)

Thus, the set B = {ei : i = 1, ..., n} is a finite upper basis for this WMM vector space. For example,
in the max-plus algebraic system where C = (R,∨,∧,+,+′), the basis vectors become:

ei , [−∞, ...,−∞, 0,−∞, ...,−∞]T

and the representation of a vector from basis elements:

x =
n∨
i=1

xi + ei

A dual vector representation of (165) results from using a lower basis of dual elementary pulse
vectors

e′i , [CI, ..., CI, C′id, CI, ..., CI]T (166)

and form their weighted minimum of dual basis vectors:

x =

n∧
i=1

xi ⋆
′ e′i =

n∧
i=1

τ ′xi(e
′
i) (167)

20Notation: If M = [mij ] is a matrix, its (i, j)th element is denoted as {M}ij or simply mij . Similarly, if x = [xi]
is a vector, its ith element is denoted as {x}i or simply xi.
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Two very important types of increasing operators on this nonlinear vector space are the vector
dilations δ and the vector erosions ε which are defined as vector operators that distribute over any
pointwise supremum and infimum of vectors, respectively:

δ(
∨
i

xi) =
∨
i

δ(xi), ε(
∧
i

xi) =
∧
i

ε(xi) (168)

Two special examples of vector dilation (δM) and vector erosion (εM) are, respectively, the max-⋆
‘product’ ⋆ and min-⋆′ ‘product’ ⋆ ′ of a matrix M with an input vector:

δM(x) , M ⋆ x, εM(x) , M ⋆ ′ x (169)

where the matrix operations ⋆ and ⋆ ′ are defined as follows: The max-⋆ matrix ‘product’ ⋆ of
an arbitrary m× n matrix A = [aij ] with an arbitrary n× p matrix B = [bij ] is the m× p matrix
M = [mij ] defined as

M = A ⋆ B , mij =

n∨
k=1

aik ⋆ bkj (170)

Dually, their min-⋆′ matrix ‘product’ ⋆ ′ is defined as

M = A ⋆ ′ B , mij =
n∧
k=1

aik ⋆
′ bkj (171)

Let us now combine on this nonlinear vector space the properties of being (vertical) translation
invariant and increasing. In Section 4.4.2 we defined V-translation invariant dilations and erosions
for general CWL function spaces. Now we specialize these definitions for the case of vector spaces.
An operator δ on the CWL vector space is called a dilation V-translation invariant (DVI) operator
iff

δ(
∨
i

ai ⋆ xi) =
∨
i

ai ⋆ δ(xi), ∀ ai ∈ C, xi ∈ Cn (172)

for any indexed vector collection. Dually, ε is an erosion V-translation invariant (EVI) operator
iff

ε(
∧
i

ai ⋆
′ xi) =

∧
i

ai ⋆
′ ε(xi), ∀ ai ∈ C, xi ∈ Cn (173)

Compare the above definitions with that of a linear operator L on a linear vector space:

L(
∑
i

ci · xi) =
∑
i

ci · L(xi) (174)

The following theorem establishes a one-to-one correspondence between DVI and EVI operators
on this nonlinear vector space and the max-plus and min-plus matrix-based vector transformations,
respectively.

Theorem 13 (a) (DVI): Any operator δ on Cn that obeys the max-⋆ superposition of (172) can be
represented as a matrix-based dilation δM where M = [mij ] with mij = {δ(ej)}i, and vice-versa.
(b) (EVI): Any operator ε on Cn that obeys the min-⋆′ superposition of (173) can be represented as
a matrix-based erosion εM where M = [mij ] with mij = {ε(e′j)}i, and vice-versa.

This theorem can be seen as a special case of Theorem 10. It establishes that any transformation
ψ on this nonlinear vector space that is a dilation (i.e. distributes over supremum) and V-translation
invariant (i.e. commutes with the scalar operation ⋆) admits amatrix representation. Namely, it can
be represented as a max-plus ‘product’ (170) of a matrix with the input vector. This characteristic
matrix is formed by putting as columns the vectors ψ(ei) where ei, i = 1, ..., n are the basis vectors.
Dually, any EVI vector transformation admits a matrix representation; the details follow from above
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by replacing dilation with erosion, the scalar operation with ⋆′, the matrix operation with the min-
plus ‘product’ (171), and the basis vectors with the dual pulse vectors e′i. Compare the striking
similarity between this pair of dual results with the result in Section 2.4.1 where we showed that
any linear transformation over a finite-dimensional linear space admits a matrix representation as
a regular matrix product of the input vector with a matrix whose columns are the transformations
of the basis vectors.

4.8 Elements from Max-plus Matrix Algebra and Spectral Analysis

In this section we summarize some results of minimax algebra, on the eigenvalues and spectral
analysis of max-plus matrix algebra.

Solving Max-Plus Equations: Consider the matrix A ∈ Rm×n and the vector b ∈ Rm. The
set of solutions of

A� x = b (175)

over R is either empty or forms a commutative semigroup under vector ∨. In Cuninghame-Green
(1979) necessary and sufficient conditions are given for the existence and uniqueness of such solu-
tions. One such result important for our analysis is given next, by using the conjugate matrix A∗

where {A∗}ij = −{A}ji for all i, j:
A∗ , −AT (176)

Theorem 14 (Cuninghame-Green, 1979).
Equation (175) has at least one solution iff x = A∗ �′ b is a solution; and x = A∗ �′ b is then the
greatest solution.

An Optimization Problem in Max-Plus Algebra: In applications of max-plus algebra
to scheduling, assume a problem where a vector x represents start times, a vector b represents
finish times and a matrix A represents processing delays. Then, assuming that (175) does not
have an exact solution, it is possible to find the optimum x such that we minimize a norm of the
earliness subject to zero lateness. This optimum will be the solution of the following constrained
minimization problem:

Minimize ||b−A� x||
subject to A� x ≤ b

(177)

where the norm || · || is either the ℓ∞ or the ℓ1 norm.

Theorem 15 (Cuninghame-Green, 1979).
The solution to the optimization problem (177) is

x = A∗ �′ b (178)

Vector Independence: Eq. (175) can also be written as

n∨
j=1

a(j) + xj = b (179)

where a(j) ∈ Rm, j = 1, ..., n, are the n consecutive columns of A. If xj > −∞ ∀j, we say that b
is max-plus dependent21 on all the a(j), ..., a(n). By negation of max-plus dependence, the vectors
a(j), ..., a(n) are called max-plus independent iff none of them is max-plus dependent on the others.
A stronger and perhaps more useful type of independence is the following. The vectors a(j), ...,
a(n) are called strongly max-plus independent (SMI) iff there exists a finite b ∈ Rm that has
a unique expression of the form (179) with all xj finite and the max of each row and column of A
is a finite real.

21What we call here ‘max-plus (in)dependence’, Cuninghame-Green (1979) calls it ‘linear (in)dependence’. We
changed the terminology because it may be confused with the corresponding concept for linear operators.
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Theorem 16 (Cuninghame-Green, 1979).
The vectors a(j), ..., a(n) are SMI iff there exists a finite b ∈ Rm such that (175) is uniquely
soluble.

Matrix Rank: If we can find r columns of A (1 ≤ r ≤ n), but no more, that are SMI, then A
is said to have column-rank equal to r.

Graph of a Matrix: Each square matrix A = [aij ] ∈ Rn×n can be represented by a directed
weighted graph Gr(A) that has n nodes, is strongly complete, i.e., for each pair of nodes there is a
corresponding directed graph branch (arc) joining them, and the weight of each arc joining a pair of
nodes (i, j) is equal to aij . Consider a path on the graph, i.e., a sequence of nodes P = (i0, i1, ..., it);
its length L(P ) and weight W (P ) are defined, respectively, by:

L(P ) , # arcs on P = t, W (P ) , ai0i1 + ...+ ait−1it

A path is called a circuit if i0 = it; the circuit is elementary if the nodes i0, ..., it−1 are pairwise
distinct. For any circuit P we can define its average weight by W (P )/L(P ). Let

λ(A) ,
∨

all circuits P of A

W (P )

L(P )
(180)

be the maximum average circuit weight in Gr(A). Since Gr(A) has n nodes, only elementary
circuits (with lenth ≤ n) need be considered in (180). There is also at least one circuit whose
average weight coincides with the maximum value (180); such a circuit is called critical.

Definite and Metric Matrices: A matrix A is called definite if every circuit in its graph has
weight ≤ 0 and at least one such circuit has weight = 0. The metric matrix generated by a matrix
A is defined by

Γ(A) , A ∨A(2) ∨ ... ∨A(n) (181)

Eigenvalues, Eigenvectors: Given a square matrix A = [aij ] ∈ Rn×n, we say that x ∈ Rn is
an eigenvector of A and λ ∈ R a corresponding eigenvalue of A if

A� x = λ+ x (182)

If we can find finite λ and x satisfying (182), then we say that the eigenproblem is finitely soluble
for A. If A is definite, its associated graph Gr(A) contains at least one circuit with zero weight.
An eigennode is any node on such a circuit.

Theorem 17 (Cuninghame-Green, 1979).
Let A be definite. Then:
(a) j is an eigennode of Gr(A) iff {Γ(A)}jj = 0.
(b) If j is an eigennode of Gr(A), then the jth column of Γ(A) is an eigenvector of A whose
corresponding eigenvalue is zero.

Thus, columns of Γ(A) that correspond to eigennodes provide eigenvectors for A, which are called
fundamental eigenvectors. Two such eigenvectors are called equivalent if their corresponding eigenn-
odes belong to the same critical circuit. Max-plus combinations of non-equivalent fundamental
eigenvectors generate the eigenspace of A, whose elements are eigenvectors of A with correspond-
ing eigenvalue = 0.

Theorem 18 (Cuninghame-Green, 1979).
(a) If the eigenproblem for A is finitely soluble, then every finite eigenvector has the same unique
finite eigenvalue, called the principal eigenvalue, which is equal to the maximum average circuit
weight of A defined in (180). All finite eigenvectors of A lie in the eigenspace of the definite
matrix A−λ(A). The non-equivalent fundamental eigenvectors which generate this space are SMI.
(b) The eigenproblem for A is finitely soluble iff λ(A) is finite and ϕ(A− λ(A)) has rows and
columns whose maxima are finite, where ϕ(A− λ(A)) is any matrix whose columns form a maximal
set of non-equivalent fundamental eigenvectors for the definite matrix A− λ(A).
(c) If A is finite, then the eigenproblem for A is finitely soluble.
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5 Kernel and Basis Representations of Operators on Lattices

Consider m-dimensional binary images represented by subsets of Em, where Em is equal to Rm or
Zm. This section begins with a representation theory unifying all set operators Ψ on P(Em) that
are translation-invariant (TI), i.e.

Ψ(X+z) = Ψ(X)+z, ∀X ⊆ Em, z ∈ Em (183)

TI operators have the exceedingly desirable property that the result of an image transformation is
independent of the exact location of the image object.

(1) The first main result refers to a very broad class of translation-invariant operators that have
two additional properties of being increasing and monotonically continuous. It will be shown that
such operators can be represented exactly as a minimal union (resp. intersection) of morphological
erosions (resp. dilations). These results will then be extended to increasing image and signal
operators ψ operating on Fun(Em,R) that are translation-invariant, i.e.

ψ(fh,v) = ψ(f)h,v, ∀ fh,v(x) = f(x− h) + v, h ∈ Em, v ∈ R (184)

Again, such operators will be represented as suprema (infima) of flat or weighted Minkowski func-
tion erosions (dilations) by some basis elements that uniquely characterize the operator. All these
aforementioned representations establish as building blocks of all translation-invariant set or sig-
nal operators the Minkowski erosions and dilations, which are essentially infimal and supremal
convolutions.

The above representation theory is also extended to several other categories of operators: (2) TI
Non-increasing set operators: in this case the representations will be unions (or intersections) of
non-monotone operators by set intervals in some basis. The building blocks are operations that are
closely related to hit-miss transformations for shape detection. (3) Increasing Spatially-Varying op-
erators: here we find representations as unions of spatially-varying erosions by structuring element
maps in a collection that uniquely characterizes the operator. (4) Operators on complete weighted
lattices invariant with respect to generalized translations. (5) TI set openings: here we examine
the representation of general TI lattice openings both as unions of Minkowski openings by some of
their fixed sets as well as unions of erosions. We illustrate the above cases with several examples.

In terms of terminology, whenever we mention simply ‘translation-invariant (in short, TI)’
operators, we shall mean operators that commute with Euclidean translations, as in (183),(184).

5.1 Kernel Representation of TI Increasing Set Operators

Consider set operators on P(Em). The kernel of a TI operator Ψ is defined as the following
collection of input sets:

Ker(Ψ) , {A ⊆ Em : 0 ∈ Ψ(A)} , (185)

where 0 denotes the zero vector of Em.

Example 10 (Kernel of Erosion and Dilation):
The kernel of the set erosion operator Ψ(X) = X ⊖B is

KeB , Ker(X 7→ X ⊖B) = {A : A ⊇ B} , (186)

where Ker(X 7→ Ψ(X)) denotes Ker(Ψ). The kernel of the set dilation Ψ(X) = X ⊕B is

KdB , Ker(X 7→ X ⊕B) = {A : A ∩Bs ̸= ∅} . (187)

A fundamental kernel property is that we can uniquely synthesize a TI operator Ψ if we know
its kernel as follows:

Ψ(X) = {z ∈ Em : X−z ∈ Ker(Ψ)}, X ⊆ Em. (188)

Other kernel properties include the following. If {Ψi : i ∈ I} is an indexed family of TI set
operators, it is simple to prove that intersection, union and ordering of operators induces the same
operations for their kernels, as stated next.
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Proposition 17 (Properties of Kernels).
(a) Ker(

∩
i∈I Ψi) =

∩
i∈I Ker(Ψi).

(b) Ker(
∪
i∈I Ψi) =

∪
i∈I Ker(Ψi).

(c) Ψ1 ⊆ Ψ2 ⇐⇒ Ker(Ψ1) ⊆ Ker(Ψ2).
(d) The complete lattice of TI operators on P(Em) is isomorphic to the lattice P(P(Em))) of their
kernel collections.
(e) If the TI set operator Ψ is increasing and ∅ ̸= X ∈ Ker(Ψ), then Y ∈ Ker(Ψ) for all Y ⊇ X.

Assume henceforth that we deal only with TI set operators Ψ that are nondegenerate: i.e.,

Ψ(∅) = ∅ , Ψ(Em) = Em, (189)

and that Ker(Ψ) contains more22 elements than the single set Em.
Let Ψ be a TI increasing set operator. The dual (or negative) set operator of Ψ is defined by

Ψ∗(A) , [Ψ(Ac)]c

Obviously, Ψ∗ is TI and increasing if and only if Ψ is TI and increasing, respectively. The kernel
of any TI increasing set operator has the following remarkable property:

Theorem 19 (Matheron, 1975).
Let Ψ : P(Em) → P(Em) be a TI increasing set operator. Then

Ψ(X) =
∪

A ∈ Ker(Ψ)

X ⊖A =
∩

B ∈ Ker(Ψ∗)

X ⊕Bs . (190)

5.2 Basis Representation of TI Increasing Set Operators

Theorem 19 a may be theoretically interesting but has no direct practical importance, because it
requires an infinite number of erosions to implement an increasing TI operator, since the kernel of
such a operator has an infinite number of elements due to property 17(e). This motivated Maragos
(1985) to introduce the concept of the basis of such operators, which is defined as the collection of
minimal kernel elements. If the basis is nonempty, then we may be able to exactly represent an
operator as a minimal (possibly finite) union of erosions using just the basis elements.

The kernel Ker(Ψ) of a set operator Ψ is a partially ordered set under set inclusion. A kernel
set-element is minimal in (Ker(Ψ),⊆ ) if and only if it is not preceded (with respect to ⊆ ) by any
other kernel set. If Ψ is also increasing, and M ∈ Ker(Ψ), then {A : A ⊇ M} ⊆ Ker(Ψ). In
addition, X ⊖ A ⊆ X ⊖M for any set X and A ⊇ M . Thus, in representing Ψ as a union of
erosions, the erosion byM contains the erosions by any other kernel set larger thanM , and, hence,
it is the only one needed. The morphological23 basis of any TI set operator Ψ is defined as the
collection of its minimal kernel sets, denoted as

Bas(Ψ) , {M ∈ Ker(Ψ) : [A ∈ Ker(Ψ) and A ⊆ M ] =⇒ A =M} (191)

At this point, two fundamental questions naturally arise: Does the basis exists? Can we
represent the operator only by its basis? In what follows we will answer both of these questions
affirmatively. Toward this goal we have to restrict the general space of signals. Thus, instead of
the most general set class P(Em), now we select for image representation the class F(Em) of all
closed subsets of Em. This is a natural compromise if we assume that each image object contains
its boundary. This is a restriction only if Em = Rm. Discrete sets, i.e. subsets of Zm, are all closed.

22This assumption on the kernel (i.e. that it contains more elements than just Em), in addition to (189), practically
excludes from our discussion the greatest dilation operator which maps ∅ to ∅ and every other input set to Em.

23If there is possibility of confusion with other concepts of ‘basis’, we shall call (191) the ’morphological basis’;
otherwise, we shall simply call it the ‘basis’ of the TI increasing operator.
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A sufficient condition to prove the existence of a basis for increasing TI operators is to assume
that they are also upper semi-continuous (u.s.c.). If an operator is increasing, then there is an
easy way to check its upper semi-continuity:24 Let (Xn) be any decreasing sequence of sets that
converges monotonically to a limit set X, i.e., Xn+1 ⊆ Xn ∀n and X =

∩
nXn; we denote this

by Xn ↓ X. An increasing set operator Ψ on F(Em) is upper semi-continuous if and only if
Xn ↓ X implies that Ψ(Xn) ↓ Ψ(X). Upper semi-continuity amounts to requiring operators to be
insensitive to fine details in the signal, since a physical resolution limit cannot be avoided. This,
together with the already discussed importance of increasingness and translation-invariance, makes
TI increasing upper semi-continuous operators an important class of image and signal operators.
Such operators are “digitalizable”, meaning that the transition between transforming continuous
and discrete image objects satisfies a continuity condition (Serra, 1982). Further, they play a
central role in our discussion since the basis of a TI increasing set or signal operator exists if the
operator is upper semi-continuous, as explained next.

Theorem 20 (Maragos, 1985, 1989a).
Let Ψ : F(Em) → F(Em) be a TI, increasing and upper semi-continuous set operator. Then, the
kernel of Ψ has a minimal element. Further, for any A ∈ Ker(Ψ), there exists a minimal kernel
set M ∈ Bas(Ψ) such that A ⊇M .

Theorem 20 establishes that, given a TI, increasing and upper semi-continuous set operator
Ψ, we don’t need its whole kernel K to represent it as a union of erosions Ψ(X) =

∪
A∈KX ⊖ A,

but we only need a minimal subcollection, its basis B. Namely, for each A ∈ K there is a M ∈ B
such that M ⊆ A; thus the erosion X ⊖ A is not needed because it is contained in X ⊖ M .
Hence, Ψ(X) =

∪
M∈BX ⊖M . To find a dual basis representation involving dilations, we restrict

the domain on which binary images are defined to be Em = Zm. Next is the first theorem for
representation by minimal elements.

Theorem 21 (Maragos, 1985, 1989a).
(a) Let Ψ : F(Rm) → F(Rm) be a TI, increasing and upper semi-continuous set operator. Then Ψ
can be represented exactly as the union of Minkowski erosions by all its basis sets; i.e.,

Ψ(X) =
∪

M ∈ Bas(Ψ)

X ⊖M . (192)

(b) Let Ψ : P(Zm) → P(Zm) be a discrete TI, increasing and upper semi-continuous set operator.
Then, if the dual operator Ψ∗ is upper semi-continuous, Ψ can be represented as the union of
Minkowski erosions by all its basis sets, and also as the intersection of Minkowski dilations by all
the reflected basis sets of Ψ∗; i.e.,

Ψ(X) =
∪

M ∈ Bas(Ψ)

X ⊖M =
∩

N ∈ Bas(Ψ∗)

X ⊕N s . (193)

Since we consider only nondegenerate operators, the basis is a proper subset of the kernel.
Hence, there is a proper subset M of Em belonging to the basis. Then, all the (infinite in number)
sets X such that M ⊆ X ⊆ Em belong to the kernel but not to the basis. Thus, Theorem 21,
compared with Theorem 19, realizes the operator by infinitely reducing the number of required
erosions (or dilations).

The previous result establishes the erosions and dilations as the building elements of any TI,
increasing and u.s.c. operator. The class of such operators is closed under parallel and serial
combinations of them.

Proposition 18 Any finite union, intersection, and composition of TI, increasing and u.s.c. op-
erators is also TI, increasing and u.s.c.

24Here upper semi-continuity is meant with respect to the hit-miss topology of the space F(Em) of the closed
subsets; for definitions see Section 3.7.1.
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5.3 Examples of Set Operator Bases

One technique to find the basis of a set operator Ψ is based on the fact that its minimal kernel
elements are the smallest (with respect to ⊆ ) solutions X of the set inequality 0 ∈ Ψ(X). Finding,
however, these solutions depends upon the specific operator, as the following examples indicate.

5.3.1 Morphological Set Operators

Example 11 Minkowski Erosion: Consider the set erosion E(X) = X ⊖A by a fixed set A. Then
0 ∈ X ⊖A⇐⇒ A ⊆ X; the smallest X ⊇ A is A. Hence, the erosion basis is

Bas(X 7→ X ⊖A) = {A} . (194)

Example 12 Minkowski Dilation: Consider the set dilation ∆(X) = X ⊕ A. Clearly, 0 ∈
∆(X) ⇐⇒ X ∩As ̸= ∅ ⇐⇒ −a ∈ X for some a ∈ A. Hence, the dilation basis is

Bas(X 7→ X ⊕A) = {{−a} : a ∈ A} . (195)

Example 13 Minkowski Opening: Let Γ(X) = X◦A = (X ⊖A)⊕A. Since

X◦A =
∪
a∈A

(X ⊖A)+a =
∪
a∈A

X ⊖A−a =
∪
a∈A

{z : A−a+z ⊆ X} (196)

0 ∈ X◦A⇐⇒ A−a ⊆ X for some a ∈ A

Thus, the kernel of the opening is

Ker(X 7→ X◦A) = {X : X ⊇ A−a for some a ∈ A} (197)

Hence, the basis of the set opening is

Bas(X 7→ X◦A) = {A−a : a ∈ A} . (198)

Example 14 Minkowski Closing: Let Φ(X) = X•A = (X ⊕A)⊖A, where A is compact. Since

X•A =
∩
a∈A

X ⊕A−a

the kernel is

Ker(X 7→ X•A) = {X : X ∩ (As)+a ̸= ∅ ∀a ∈ A} (199)

In this case we cannot find explicitly the basis elements, but we can find a fixed upper bound. That
is, let G ∈ Ker(Φ) and define

H =
∪
a∈A

G ∩ (As)+a

Obviously, G ⊇ H and H ∈ Ker(Φ). By Theorem 20, the kernel sets G and H contain a minimal
element M . Then,

M ⊆ H ⊆
∪
a∈A

(As)+a = A⊕As

Hence, the basis of the set closing is

Bas(X 7→ X•A) = {M ⊆ A⊕As : 0 ∈M•A and M is minimal} (200)
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Thus, the basis of discrete set erosions, dilations, openings, and closings by a finite set A is
finite. Specifically, the erosion has only one basis set, the dilation n, and the opening n basis sets;
the number of elements in the basis of the closing is smaller than |P(A⊕As)|, where |·| denotes
set cardinality.

Next we focus on the basis of the opening and its dual closing. Since X◦A = (Xc•As)c, the
dual set operator of the opening by A is the closing by As. Thus, the last two examples imply the
following representation of a Minkowski set opening:

X◦A =
∪
a∈A

X ⊖A−a =
∩

M ∈ Bas(Y 7→ Y •As)
X ⊕M s . (201)

For 2D structuring sets A, the basis of the opening is relatively easy to find by using (198),
whereas the minimal elements of the closing require some search procedure. In general, we observe
that for both the opening and the closing by A, their basis sets are subsets of the finite window
W = A ⊕ As. Interesting geometrical structures in the basis of a discrete closing by 2D sets have
been found by Svalbe (1991), who has also found a geometric connection between the basis sets of
a closing and the complete minimal representation of logic functions.

Example 15 . Consider the opening and closing on Z2 by the 4-point discrete square set A =
{(0, 0), (0, 1), (1, 0), (1, 1)}. As shown in Fig. 8, the basis of the opening by A has only four 4-point
sets, whereas the basis of the closing by A has twelve sets: {(0, 0)}, two 2-point sets, eight 3-point
sets, and one 4-point set.

Basis of Opening

A=

◦ • •
◦ • •
◦ ◦ ◦

,

◦ ◦ ◦
◦ • •
◦ • •

,

• • ◦
• • ◦
◦ ◦ ◦

,

◦ ◦ ◦
• • ◦
• • ◦

Basis of Closing
◦ ◦ ◦
◦ • ◦
◦ ◦ ◦

,

◦ ◦ ◦
• ◦ •
◦ ◦ ◦

,

◦ • ◦
◦ ◦ ◦
◦ • ◦

,

• ◦ •
◦ ◦ ◦
• ◦ •

◦ ◦ •
• ◦ ◦
◦ • ◦

,

• ◦ ◦
◦ ◦ •
◦ • ◦

,

◦ • ◦
◦ ◦ •
• ◦ ◦

,

◦ • ◦
• ◦ ◦
◦ ◦ •

• ◦ ◦
◦ ◦ •
• ◦ ◦

,

◦ • ◦
◦ ◦ ◦
• ◦ •

,

◦ ◦ •
• ◦ ◦
◦ ◦ •

,

• ◦ •
◦ ◦ ◦
◦ • ◦

Figure 8: Basis sets of the set opening and closing by the 2× 2-pixel square A. In both cases, all the
basis sets are subsets of the 3× 3-pixel square W = A⊕As. Points denoted by • belong to basis sets
and to W ; points denoted by ◦ belong to W but not to basis sets.

5.3.2 Median and Rank Filters for Sets

Consider discrete sets X ⊆ Zm and a finite window W ⊆ Zm with cardinality n = |W | points.
The k-th rank set operator by W is

Ξ(X) = RW,k(X) , {x ∈ Zm : |X ∩W+x| ≥ k} (202)

The rank operators contain as special cases the dilation (for k = 1) and the erosion (for k = n),
since

RW,1(X) = X ⊕W s, RW,|W |(X) = X ⊖W (203)
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If n is odd, the rank for k = (n+ 1)/2 is called median and denoted by medW (·).
The basis of the k-th rank operator is

Bas(X 7→ RW,k(X) = {M ⊆ W : |M | = k} , (204)

and has n!
k!(n−k)! elements. For example, let m = 2 and W = {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1)}

be the 5-pixel discrete rhombus centered at the origin of Z2. Then the basis of the set median by
W has ten elements which are all the 3-pixel subsets of W ; see Fig. 9.

· ◦ ·
• • •
· ◦ ·

,

· • ·
◦ • ◦
· • ·

,

· • ·
◦ • •
· ◦ ·

,

· • ·
• • ◦
· ◦ ·

,

· ◦ ·
• • ◦
· • ·

,

· ◦ ·
◦ • •
· • ·

· • ·
◦ ◦ •
· • ·

,

· • ·
• ◦ •
· ◦ ·

,

· • ·
• ◦ ◦
· • ·

,

· ◦ ·
• ◦ •
· • ·

Figure 9: Basis sets of the set median by the 5-pixel rhombus window W . Points denoted by • belong
to basis sets and to W ; points denoted by ◦ belong to W but not to basis sets. Points denoted by · do
not belong to W .

The dual set operator of Ξ is

Ξ∗(X) = (Ξ(Xc))c = {x ∈ Zm : |X ∩W+x| ≥ n− k + 1} (205)

which is the (n− k + 1)th rank by W .
For each rank set operator, the basis representation theorem yields the following alternative

expression:

RW,k(X) =
∪

A⊆W
|A| = k

X ⊖A =
∩

B⊆W
|B| = n− k + 1

X ⊕Bs . (206)

Thus, any median and rank set operator can be expressed via a closed formula involving only
union (resp. intersection) of erosions (resp. dilations) by pre-specified subsets of the window
without requiring any sorting or counting of pixels inside the moving window.

5.3.3 Window Transformations for Shape Detection and Locally-defined Set Opera-
tors

For the purpose of shape detection, Crimmins and Brown (1985) defined the following type of
transformation: LetW ⊆ Zm be some finite window. A discrete set operator Ψ is called a window
transformation if there exists a shape collection T ⊆ P(W ) such that

Ψ(X) = {p ∈ Zm :W ∩X−p ∈ T } , X ⊆ Zm. (207)

The patterns in T are exactly the shapes or templates or objects that the window operator can
detect. Given a window operator Ψ we can find its defining shape collection as follows:

T (Ψ) = {A ⊆ W : 0 ∈ Ψ(A)}. (208)

Thus, there is a one-to-one correspondence between the window operator and its shape collection.
Let A be a fixed finite set and let W be another finite set containing A such that the set

difference W \ A serves as a border (narrow ring) around A. Then the hit-miss transformation
(X ⊖A)∩ [Xc⊖ (W \A)] provides the set of points p at which A “fits exactly” inside an input set
X; hence, it acts as a shape detection operator. Essentially, it is an erosion-based matched filter.
The next result shows that this special case of a hit-miss operator is the prototype for any window
transformation.
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Theorem 22 (Crimmins and Brown, 1985).
Let Ψ : P(Zm) → P(Zm) be a window transformation with window W . Then

Ψ(X) =
∪

A ∈ T (Ψ)

(X ⊖A) ∩ [Xc ⊖ (W \A)] =
∪

A ∈ T (Ψ)

X ⊗ (A,W \A). (209)

Thus Ψ(X) is the the set of points p at which at least one of the shapes A in the collection T (Ψ),
shifted at location p, fits exactly inside X.

Obviously, any window transformation Ψ is TI. Hence, it can be represented by its kernel
Ker(Ψ) = {X : 0 ∈ Ψ(X)} = {X :W ∩X ∈ T (Ψ)}. If W = Zm, then T (Ψ) = Ker(Ψ).

A discrete set operator Φ is called locally-defined if there exists a finite window W ⊆ Zm
such that

p ∈ Φ(X) ⇐⇒ p ∈ Φ(X ∩W+p) (210)

for all X ⊆ Zm. Thus, the value of the output Φ(X) at each point depends only on the values of
the input X within the window W shifted at that point. There is a very close relationship between
window transformations and locally-defined operators as the following result reveals.

Proposition 19 . A set operator on P(Zm) is a window transformation if and only if it is a
locally-defined TI operator.

Henceforth, we shall use interchangeably the equivalent concepts of a ‘window operator’ and a
‘TI locally-defined operator’. Next we compare the representation of window operators based on
their shape collection versus their basis.

Theorem 23 (Heijmans, 1987).
Let Φ : P(Zm) → P(Zm) be an increasing TI locally-defined operator. Then
(a) Φ can be represented as a finite union of erosions; i.e.,

Φ(X) =
∪

A∈T (Φ)

X ⊖A (211)

(b) Φ is upper semi-continuous.

So far we have seen that any increasing window operator, can be represented either as a finite
union of hit-miss transformations or as a finite union of erosions. These representations are impor-
tant because increasing finite-window transformations encompass all rank operators, stack filters,
and increasing discrete morphological operators that use finite structuring elements. However, they
are computationally less efficient than the representation of all these operators via erosions by the
basis elements. The reason is that, for any increasing finite-window operator Ψ, both T (Ψ) and its
basis Bas(Ψ) are finite but the basis contains fewer elements than T . To see this, let F ⊆ G ⊆ W
with F ̸= G and 0 ∈ Ψ(F ) ⊆ Ψ(G). Then both subsets F and G of W belong to T (Ψ), but only
F may belong to Bas(Ψ) because G is not a minimal kernel element. Thus, we have the general
result

Bas(Ψ) ⊆ T (Ψ) ⊆ Ker(Ψ). (212)

Example 16 . Let W be the 5-pixel symmetric rhombus and consider the set median Ψ(X) =
medW (X). Then, Ψ is a window operator whose shape collection is T = {A ⊆ W : 3 ≤ |A| ≤ 5}.
Thus, T consists of 16 subsets of W ; these subsets are the shapes that the window transformation
detects. The basis of Ψ is B = {A ⊆ W : |A| = 3}. Thus, B contains only 10 sets, and Theorem 21
represents Ψ as the union of 10 erosions by these basis sets. However, Theorem 22 represents Ψ as
the union of 16 hit-miss transformations by the elements of T , and each hit-miss transformation
is the intersection of two erosions; hence, the latter representation is computationally less efficient
because it requires a larger number of more complex morphological operations. Similarly, Theo-
rem 23a represents Ψ as a union of 16 erosions, which is less efficient than the 10 erosions required
by the basis representation.
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The previous analysis gives us a very useful result.

Proposition 20 . If Ψ : P(Zm) → P(Zm) be a discrete set operator. If Ψ is an increasing window
operator, then its basis is finite.

The basis representation of window operators applies if they are increasing. The increasingness
allows us to easily extend these operators to graylevel image processing by building flat opera-
tors that process all the level sets of the input graylevel image using a binary window operator.
A lattice-theoretic study of more general binary window operators that may be non-increasing
was done in Barrera and Salas (1996) where they were used as building blocks of computational
morphological machines. Further, Barrera and Dougherty (1998) investigated an extension of bi-
nary window operators to graylevel image processing using weighted windows(i.e. windows with
graylevel weights), but the computational complexity is larger.

Concluding this section on the basis representations of increasing TI set operators (including
morphological, median and rank filters, and window-based feature/object detection operators),
such representations may be useful for alternative parallel implementations (hardware or software)
of the corresponding binary image processing systems, as explained in Maragos (1989a). Another
application area is optimal restoration of binary images (e.g. documents) in the presence of noise
by using a union of erosions by a small number sets from a subcollection of the basis (Loce and
Dougherty, 1992b). They also apply to graylevel image processing in the case of flat operators
defined based on a finite window, which, as explained next, also admit a basis representation as
maximum of flat erosions by the minimal kernel sets of their set generators.

5.4 Kernel and Basis Representations for TI Increasing Function Operators

In Sections 5.1 and 5.2 we discussed a representation theory by which every set operator that is
translation-invariant (TI) and increasing can be expressed as a union of erosions by its kernel sets
or as an intersection of dilations. If additionally the operator is upper semi-continuous (u.s.c.),
then this union of erosions needs only the minimal kernel elements, i.e. the sets of its basis.

In this section we summarize a similar representation theory that has been developed for signal
and graylevel image operators and provide some examples, e.g. its application to some nonlinear
filters (openings, median and stack filters) and some linear filters (digital FIR filters).

5.4.1 Representation of Weighted Operators and Basis Approximations

For every TI, increasing, and u.s.c. signal operator there is a special collection of functions, called
its basis, such that the operator can be represented as a supremum of morphological erosions by
its basis functions. As for the case of TI set operators, this basis is a subcollection of a suitably
defined kernel. Specifically, let ψ be a signal operator on Fun(Em,R), i.e., the set of extended-real-
valued functions defined on Em = Rm or Zm, and let ψ∗(f) = −ψ(−f) be its dual (a.k.a. negative)
operator. Let

Ker(ψ) , {f : ψ(f)(0) ≥ 0} (213)

be the kernel of ψ. This collection of signals can uniquely represent the operator, as the following
result reveals.

Theorem 24 (Maragos, 1985, 1989a).
If ψ is a TI and increasing operator on Fun(Em,R), then it can be represented as supremum of
weighted erosions by the functions of its kernel and as infimum of weighted dilations by the reflected
functions of the kernel of its dual operator:

ψ(f) =
∨

g∈Ker(ψ)

f ⊖ g =
∧

h∈Ker(ψ∗)

f ⊕ hs (214)
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In the above theorem hs(x) = h(−x) denotes the reflection of a function, and the function dilations
and erosions are of the weighted type, defined in (60) and (61).

We can improve this representation by using fewer erosions as follows. The basis Bas(ψ) is
defined as the collection of the minimal (w.r.t. ≤) kernel functions:

Bas(ψ) , {g ∈ Ker(ψ) : [f ∈ Ker(ψ) and f ≤ g] =⇒ f = g} (215)

If we limit to u.s.c. operators acting on the class of u.s.c. functions, then the basis exists and can
fully represent the operator, as explained next.

Theorem 25 (Maragos, 1985, 1989a).
(a) If ψ is a TI, and increasing and u.s.c. operator on Funusc(Em,R), then it can be represented
as supremum of weighted erosions by the functions of its basis.
(b) If Em = Zm and the dual operator is also u.s.c., the ψ can also be represented as the infimum
of weighted dilations by the reflected functions of the basis of its dual operator:

ψ(f) =
∨

g∈Bas(ψ)

f ⊖ g =
∧

h∈Bas(ψ∗)

f ⊕ hs (216)

Thus, the above theorem represents exactly any TI increasing and u.s.c. operator by using a full
expansion of erosions by all its basis functions (and dually as a dilation expansion). What happens
if we use only a subcollection of the basis functions in the above representation? Such a question
arises often in practical image processing applications such as denoising where an optimum system
needs to be designed based on a finite small number of erosions (Loce and Dougherty, 1992b, 1995).
The following result is a straightforward consequence of Theorem 25(b).

Proposition 21 (Approximate Basis Representation):
If in the basis representation (216) we use smaller collections B ⊂ Bas(ψ) and B∗ ⊂ Bas(ψ∗) than
the bases of the operators ψ and ψ∗, respectively, of Theorem 25(b), and we create the operators

ψℓ(f) ,
∨
g∈B

f ⊖ g, ψu(f) ,
∧
h∈B∗

f ⊕ hs (217)

then the original operator ψ is bounded from below and above by these two operators with the
truncated bases:

ψℓ(f) ≤ ψ(f) ≤ ψu(f), ∀f . (218)

For cases where all the basis functions are finite-valued on the same subset of the general do-
main (e.g., such a case is the basis of increasing linear translation-invariant filters discussed in
Section 5.4.4), Dougherty and Kraus (1991) have found a tight error bound in the approximation
of an operator when removing one basis functions from the full erosion expansion.

The bounding result (217) assumed that we already had a TI increasing operator whose basis
was truncated to create a new approximate operator. Another direction is to synthesize a collection
of functions possessing the fundamental property of a morphological basis, i.e. its elements must
be minimal, and then construct an operator as supremum of erosions by these basis functions:

Proposition 22 .
(a) Let B be a collection of functions such that all elements of B are minimal in (B,≤) and define
the operator

ψ(f) ,
∨
g∈B

f ⊖ g (219)

Then ψ is a TI and increasing operator whose basis is equal to B.
(b) Let B∗ be a collection of functions such that all elements of B∗ are minimal in (B∗,≤) and
define the operator

ϕ(f) ,
∧
h∈B∗

f ⊕ hs (220)

Then ϕ is a TI and increasing operator whose dual operator ϕ∗ has B∗ as its basis.
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Thus, the morphological basis plays a conceptually similar role as a Hamel basis in a linear
space. The minimality condition between two distinct functions g1 and g2 in a morphological basis
implies that there exist points x and y such that

g1(x) > g2(x) and g1(y) < g2(y)

In other words, inside the morphological basis we cannot find two distinct elements such that one
contains (w.r.t. the partial order) or is contained by the other. All the elements in a basis B are
atoms in the poset (B,≤). Thus, the elements of a morphological basis are ‘independent’ in the
sense of being minimal and can synthesize an operator via supremum. Next, we proceed with the
example of a graylevel image operator that possesses a finite basis. In Section 5.4.4 we shall present
an application of the basis representation Theorem 25 to linear filters too.

Example 17 (Basis of Weighted Opening):
Consider the TI weighted opening of discrete-domain input signals f ∈ Fun(Zm,R) by a non-flat
(structuring function) kernel k(x):

(f◦k)(x) = [(f ⊖ k)⊕ k](x) =
∨
z

∧
y

f(x+ y − z)− k(y) + k(z) (221)

From Proposition 22 it follows that this operator has a basis that consists of the functions in the
following collection

Bas(f 7→ f◦k) = {g : g(x) = k(x+ z)− k(z), z ∈ Spt∨(k)} (222)

where Spt∨(k) = {x : k(x) > −∞} is the support of k(x). Assuming, as usually done in imaging
applications, that k has a finite support yields a finite basis. Note, however, that the above results
also hold for structuring functions k(x) with infinite support and for continuous-domain openings.

Morales and Acharya (1993) have analyzed the above discrete opening for 1D signals and found
its finite basis. Then, this was used to efficiently implement the 1D discrete opening and closing
by k using a block matrix method in Ko et al. (1995).

5.4.2 Representation of Flat Operators

Consider now a signal operator ϕ on Fun(Em,R) that is flat, i.e., for binary inputs it yields binary
outputs. Let Φ be its corresponding set operator; i.e. Φ explains the action of ϕ on binary signals
represented by sets. If ϕ commutes with thresholding, i.e.

Xv[ϕ(f)] = Φ[Xv(f)], v ∈ R (223)

where Xv(f) = {x ∈ Em : f(x) ≥ v} are the level sets of f , then ϕ can be constructed by its set
operator Φ via threshold superposition (Maragos and Ziff, 1990):

ϕ(x) = sup{v : x ∈ Φ[Xv(f)]} (224)

Thus, Φ is called the set generator of ϕ. The flat operator ϕ is TI and increasing if and only if its
set generator Φ is TI and increasing. Further, the commuting with thresholding makes both ϕ and
Φ increasing and u.s.c. Then, Theorem 21 and (224) give us the following simpler representation
for flat operators involving flat erosions and dilations, defined in (58) and (59).

Theorem 26 (Maragos, 1985, 1989a).
(a) If ϕ is a TI flat operator on Funusc(Em,R) that commutes with thresholding and Φ is its set
generator, then ϕ can be represented as the supremum of flat erosions by the basis sets of its set
generator Φ.
(b) Under the assumptions of (a), if we have a discrete signal domain Em = Zm and the dual set
generator Φ∗ is u.s.c., then ϕ can also be represented as the infimum of flat dilations by the reflected
dual basis sets:

ϕ(f) =
∨

M∈Bas(Φ)

f ⊖M =
∨

N∈Bas(Φ∗)

f ⊕N s (225)
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The above morphological basis representations (both for flat and weighted operators) have been
applied to various classes of image operators, including morphological, median, stack, and linear
filters (Maragos and Schafer, 1987a,b). One of their most attractive aspects is the capability of
parallel implementations of a large class of systems, in a single pass, using simple local operations
that do not involve multiplications. These representations of TI increasing operators as supremum
of erosions (sup-inf operators) or as infimum of dilations (inf-sup operators) have proven to be
very useful in (Catte et al., 1995) for nonlinear scale-space analysis and image enhancement using
anisotropic diffusion and for solving a large variety of similar problems in image processing using
PDEs (Guichard and Morel, 2001; Guichard et al., 2005). A versatile class of sup-inf operators was
synthesized in Catte et al. (1995) as supremum of flat erosions by equal-length symmetric straight
line segments oriented at all possible angles; this collection of line segments is a basis, as explained
by Proposition 22. More recently, they have also been used in (Alvarez et al., 2010) to simplify the
discretization of the PDEs driving geodesic active contours and their implementation via level sets
for solving computer vision problems.

We provide below an application of the flat operator representation Theorem 26 to median
filtering of graylevel images and in the next section we explain how it also applies to a broad class
of nonlinear digital filters, called stack filters, which contain the median as special case.

Example 18 (2D Flat Median):
Consider digital images on Z2, letW = {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1)} be the rhombus-shaped
5-point discrete disk of unit radius, let ϕ(f) = medW (f) be the graylevel median filter w.r.t. window
W , and let Φ(X) = medW (X) be its corresponding set generator. The basis of Φ consists exactly
of the ten 3-pixel subsets of W which are shown in Fig. 9. By (206), the set generator can be
represented as

medW (X) =
∪

A⊆W, |A|=3

X ⊖A =
∩

B⊆W, |B|=3

X ⊕Bs (226)

Then, by Theorem 26, the graylevel median is expressed as a maximum of ten 3-point moving local
minima:

medW (f)(x) =
∨

A⊆W, |A|=3

min
y∈A

{f(x+ y)} =
∧

B⊆W, |B|=3

max
y∈B

{f(x+ y)} (227)

This representation (Maragos and Schafer, 1987b) connects the morphological image analysis area
with the order-statistics nonlinear filtering area, since any median and rank filter for graylevel
images and real-valued signals can be expressed via a closed formula involving only a maximum
(resp. minimum) of flat erosions (resp. dilations) by pre-specified subsets of the window without
requiring any sorting inside the moving window. Beyond the possible implementational benefits
(e.g. parallelism, local operations on pre-specified subwindows), a big scientific gain is the ability to
analyze and design rank-based nonlinear filters using geometric operations (erosions and dilations)
and mathematical logic, since the basis representation of the set generator is essentially a minimal
representation of a Boolean function, as explained in the next section.

5.4.3 Representations of Boolean Functions and Stack Filters

Boolean Functions The representation theory of discrete set operators as union of erosions
or as intersection of dilations has direct analogies with the representation of Boolean functions.
Before we can make this precise, we need a few definitions from the theory of Boolean functions
(Kohavi, 1978; Muroga, 1971). Any Boolean expression of n variables v1, v2, . . . , vn ∈ {0, 1} can be
written as Boolean sum-of-products (SOP) terms or as Boolean product-of-sum (POS) terms. Each
product or sum term may contain each literal (a variable or its complement) at most once and/or
the Boolean constants 0 or 1. To each Boolean expression there corresponds a unique Boolean
function b(v) ∈ {0, 1}, where v = (v1, v2, . . . , vn). A Boolean function is usually described through
a truth table. Two Boolean expressions are called equivalent if they correspond to the same Boolean
function. A Boolean function b1 is said to imply b2 iff b2(v) = 1 for each v such that b1(v) = 1. A
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prime implicant π of b is a product term which implies b, such that deletion of any literal from π
results in a new product which does not imply b. A prime implicate of b is a sum term σ implied
by b, such that deletion of any literal from σ results in a new sum term which is not implied by
b. Any minimal SOP (resp. POS) expression for b is a sum (resp. product) of prime implicants
(resp. prime implicates) such that removal of any of them makes the remaining expression no longer
equivalent to b, and the expression contains the minimum number of literals and product (resp.
sum) terms. This minimal expression is not necessarily unique. A function b(v) is called positive if
it can be represented by a SOP or POS expression in which no variable appears in uncomplemented
form. Each positive function has a unique minimal SOP expression that is positive and is the sum
of all its prime implicants; it also has a unique minimal POS expression that is positive and is the
product of all its prime implicates.

Consider now from Example 2 the lattice BVn = {0, 1}n of n-variable Boolean vectors and the
lattice BFn of Boolean functions defined on BVn. A Boolean function b is called increasing if v ≤ u
implies that b(v) ≤ b(u). A Boolean function is increasing if and only if it is positive (Gilbert,
1954). If b is positive, its dual function b∗(v) = b(v) is positive too, where (·) denotes Boolean
complement.

In BVn, a vector x is called a minimal true vector of a Boolean function b iff b(x) = 1 and x
is not preceded (with respect to the vector partial ordering) by any other vector v with b(v) = 1.
Dually, a vector y is called a maximal false vector of b iff b(y) = 0 and y is not followed by any
other vector u with b(u) = 0.

Boolean functions can generate TI digital signal and image operators. Consider anm-dimensional
digital binary image signal 1S(x) : Zm → {0, 1} with values 1 for the image foreground S ⊆ Zm
and 0 for the background Sc. This is actually the set’s binary indicator function:

1S(x) =

{
1, x ∈ S
0, x ∈ Sc

(228)

Typical local image transformations involving a neighborhood of n samples whose indices are ar-
ranged in a finite window set W = {p1,p2, ...,pn} ⊆ Zm can be expressed as Boolean filtering of
the binary signal 1S corresponding to the input image set S:

ϕb(1S)(x) , b(1S(x+ p1), ...,1S(x+ pn)) (229)

where b(v1, ..., vn) is a Boolean function of n variables The mapping 1S 7→ ϕb(1S) is a nonlinear
shift-invariant operator for binary signals, called a Boolean filter or Boolean operator. This has a
unique correspondence with a TI set operator Φb by replacing input and output binary signals with
sets:

ϕb(1S) = 1Φb(S) (230)

The dual Boolean function b∗ will generate the dual set operator Φb
∗. Assume henceforth that b

is increasing; then, both Φb and its dual are TI, increasing and u.s.c. discrete set operators on
P(Zm). Hence, by Theorem 21, Φb can be represented as the union of erosions by its basis sets
and as the intersection of dilations by the reflected basis sets of its dual operator. Then we have a
one-to-one correspondence between the basis sets of the set operator, which are subsets of W , and
the minimal true vectors of the Boolean function (Maragos and Schafer, 1987b).

For example, if we analyze 1D binary signals on Z with Boolean operations inside a moving
3-point window W = {−1, 0, 1}, consider the Boolean filter generated by the Boolean function
(written as a SOP and a POS expression)

b(v1, v2, v3) = v1v2 + v2v3 = v2(v1 + v3) (231)

where the indexing of the Boolean variables vi is i = w+ 2, w ∈W . The binary filter follows from
the general definition (229):

ϕb(1S)(x) = b(1S(x− 1),1S(x),1S(x+ 1)), x ∈ Z (232)
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Each shift 1S(x + w), w ∈ W , of the binary signal corresponds to a shift S−w of the input set.
Thus, the set operator generated by the above Boolean function is

Φb(S) = (S+1 ∩ S) ∪ (S ∩ S−1) = S ∩ (S−1 ∪ S+1), S ⊆ Z (233)

The basis of Φb is B = {{−1, 0}, {0, 1}}, and the basis of Φb
∗ is B∗ = {{0}, {−1, 1}}. The minimal

true vectors of b are (1, 1, 0) and (0, 1, 1). Indeed, we confirm the one-to-one correspondence between
the basis sets of Φb and the minimal true vectors of b. Dually, the maximal false vectors of b are
(0, 1, 0) and (1, 0, 1) which correspond to the basis sets of Φb

∗.

Stack Filters Consider the class of digital positive real-valued signals f with domain Zm and
quantized range Ran(f) ⊆ {0, 1, 2, ...,M}. For such signals Wendt et al. (1986) defined the class
of stack filters by using a positive Boolean function b(v1, ..., vn) of n variables (corresponding to
positions in a moving window W of n points) to filter all binary signals corresponding to the level
sets

Xt(f) = {x : f(x) ≥ t}

and synthesizing the graylevel output signal via threshold superposition:

STb(f)(x) ,
M∑
t=1

ϕb(1Xt(f))(x) (234)

If we replace the pointwise summation in the above definition with supremum we can remove both
the constraint of dealing with positive signals and the constraint of a quantized range (Maragos
and Schafer, 1987b). For the cases when b is a threshold function (Muroga, 1971), Wendt et al.
(1986) provided a functional definition for STb as a generalization of rank filters, in which multi-
ple repetitions of the same element are allowed. Further, Wendt et al. (1986) studied several of
the deterministic and statistical properties of stack filters and analyzed in detail all stack filters
corresponding to the 20 positive Boolean functions with n = 3.

As we did for increasing Boolean functions, it is possible to use a basis representation for stack
filters too. Details can be found in Maragos and Schafer (1987b). Here we outline the main ideas
and illustrate them with an example. All stack filters are TI, increasing and u.s.c. operators on the
class of real-valued discrete-domain signals. They are generated by a positive Boolean function b
or equivalently by a TI, increasing and u.s.c. set operator Φb. Further, they are flat operators, i.e.
yield binary outputs for binary inputs, and they commute with thresholding. The basis of their
set generator Φb is finite and consists of all subsets of W that correspond with the minimal true
vectors of b. Thus, Theorem 26 can represent all stack filters exactly as a maximum of moving local
minima inside the basis sets or as a minimum of moving local maxima inside the basis sets of the
dual operator. For an example, if we use the 3-variable Boolean function b of (231) as generator,
the resulting stack filter is

STb(f)(x) = max{min[f(x− 1), f(x)],min[f(x), f(x+ 1)]}
= min{f(x),max[f(x− 1), f(x+ 1)]} (235)

We can observe that, if we have already expressed a positive Boolean function in its irreducible SOP
or POS form, then the max-min representation of the corresponding stack filter follows directly by
replacing Boolean OR with max and Boolean AND with min.

5.4.4 Representation of Linear Operators via Morphological Operations

Let Γ be a linear shift-invariant (LSI) filter defined on a class of discrete-domain (Zm) real-valued
signals closed under translation, and let h be its impulse response. Then its output can be found
via linear convolution of the input signal with the impulse response:

Γ(f)(x) = (h∗f)(x) =
∑
y∈Zm

f(y)h(x− y), x ∈ Zm (236)
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Due to the linearity of Γ, it is identical with is dual (w.r.t. negation) operator: Γ∗(f) = −Γ(−f) =
Γ(f). The LSI operator Γ is increasing if and only if

h(x) ≥ 0 ∀ x, (237)

and translation-invariant if and only if ∑
x

h(x) = 1 (238)

Under the two above conditions we can represent the linear filter via morphological operations, as
the following result explains. We restrict our discussion to discrete linear filters with finite impulse
response (FIR), which covers most of the filters used in linear digital signal processing. The FIR
constraint is a sufficient condition for the existence of a morphological basis.

Theorem 27 (Maragos and Schafer, 1987a).
Let h(x), x ∈ Zm, be the finite-extent impulse response of an m-dimensional linear shift-invariant
filter Γ(f) = f∗h, which is defined on a class S of real-valued discrete-domain signals f : Zm → R
closed under translation. If h satisfies the conditions (238), then the morphological basis of Γ exists
and is equal to

Bas(Γ) = {g ∈ S :
∑

y∈Spt(h)

h(y)g(−y) = 0 and g(−x) = −∞ ⇐⇒ h(x) = 0} (239)

Further, the linear operator can be represented as a supremum of weighted erosions by its basis
functions:

Γ(f)(x) = (h∗f)(x) =
∨

g∈Bas(Γ)

∧
y∈Zm

f(y)− g(y − x) (240)

It can also be represented as an infimum of weighted dilations by the reflected functions of its basis.

A linear shift-invariant filter that satisfies the additional two conditions (238) is an increasing
linear translation-invariant (ILTI) operator. Note that the sup-inf representation of such an oper-
ator in (240) requires two different ways of interpreting and representing the support of an input
signal f . By ‘support’ we mean the set of samples that carry information affecting the operator.
For linear convolutions with an impulse response h, the support of h is the set of non-zero samples:

Spt(h) , {x : h(x) ̸= 0}

For morphological-type convolutions with a structuring function g the role of the zeros in linear
operations is now played by the −∞ values; hence, the upper support is defined as follows:

Spt∨(g) , {x : g(x) > −∞}

Now, for the double (linear and morphological) representation in (240), the ‘support’ of an input
signal f must be represented in two different ways. When f is linearly convolved with h in (240),
we assume that f(x) = 0 outside the support of f . However, when f is morphologically convolved
with g, we assume that f(x) = −∞ outside the support of f .

Theorem 27 requires some constraints on the impulse response of the LSI filter, i.e., nonneg-
ativity and sum of values equal to one. These constraints can relaxed by expressing the impulse
response as the difference between two positive signals and normalizing them to have a unity
DC-gain (Maragos and Schafer, 1987a).

Since a supremum of erosions involves only additions and max-min comparisons, the morpo-
hological representation of a linear filter has the attractive feature of implementing linear systems
without using multiplications. However, we need an infinite number of erosions to precisely build
the linear filter. Specifically, the basis functions of the FIR ILTI operator Γ are given by (239).
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They all have support on the set [Spt(h)]s and form a finite-dimensional space, i.e. RN−1, where
N = |Spt(h)| is the number of points in the support of h. Thus, the basis consists of an infinite
number of functions, fully described with N − 1 real parameters. As proposed in Maragos and
Schafer (1987a), if we can use only a finite number of the required erosions to realize an ILTI sys-
tem by quantizing and bounding the range of input signals and quantify the approximation errors,
these morphological representations of linear systems may become practically useful. Such issues
were investigated by Dougherty and Kraus (1991) and Koshravi and Schafer (1994). Dougherty
and Kraus (1991) studied the properties of the basis of digital moving average filters and found a
tight bound for the approximation error in a truncated erosion expansion which occurs when we
remove one or more basis functions. By using a finite quantized range for the signals, Koshravi and
Schafer (1994) developed practical implementations of FIR digital linear filters that require only a
finite number of max-min operations and additions and studied the quantization error effects; these
implementations include a decomposed structure that reduced to linear the exponential dependency
on the number of quantization levels and cardinality of the support.

We finish our discussion on the morphological representation of linear filters with a simple
example.

Example 19 (2-point Moving Average Linear filter):
Consider a discrete linear filter f 7→ Γ(f) = f∗h for 1D signals f(n) with impulse response

h(n) = aδ(n) + (1− a)δ(n− 1), n ∈ Z, (241)

where 0 < a < 1 and δ(n) is the discrete unit impulse. Thus, Γ is a moving average filter on a
2-point moving window. Its basis elements are functions g(n), n ∈ Z, defined by

g(n) =


r ∈ R, n = 0
−ar/(1− a), n = −1
−∞, n ̸= 0,−1

(242)

Then, Theorem 27 yields the following representation for the linear filter

(f∗h)(n) = af(n) + (1− a)f(n− 1) = sup
r∈R

[
min

{
f(n)− r, f(n− 1) +

ar

1− a

}]
(243)

which implements the linear convolution using only max-min operations and additions.

5.5 Representations for Spatially-Varying Increasing Operators

The most general representation theorem for increasing operators on complete lattices is the fol-
lowing.

Theorem 28 (Serra, 1988).
Let ψ be an operator on a complete lattice L. Then, ψ is increasing with ψ(I) = I if and only if ψ
is a supremum of a nonempty set of erosions:

ψ(X) =
∨
B ̸=I

εB(X), X ∈ L (244)

where the erosions are defined by

εB(X) =


I, if X = I
ψ(B), if I > X ≥ B
O, if X ̸≥ B

(245)
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Despite the generality of the above theorem, it is not practical because it employs too many
erosions, i.e. as many as the number of lattice elements, and it is self-referencial since the erosions
are defined in terms of the operator ψ which they aim to synthesize.

Another approach to represent increasing image operators on the set lattice P(Em) and the
function lattice Fun(Em,R) without the translation-invariance constraint has been developed by
Bouaynaya et al. (2008) for binary images and by Bouaynaya and Schonfeld (2008) for graylevel
images. This is based on spatially-varying (SV) morphology and on extending the previous kernel
and basis representation theorems for TI increasing operators to employ suprema and infima of SV
erosions and dilations respectively. We shall summarize below the main ideas only for binary image
(set) operators on P(Em).

Recall from Section 3.6 the concept of the structuring element map (SEM), proposed in (Serra,
1988, chap.2) where it was called a ‘structuring function’. This is an SV structuring element, which
in the case of sets is a map A(x) : Em → P(Em) that assigns a possibly different set A(x) at each
point x of Em. Define its transposed SEM by

As(x) , {y ∈ Em : x ∈ A(y)} (246)

This helps us define an SV adjunction (EA,∆A) of an adaptive dilation and erosion by A:

∆A(X) = {z ∈ Em : As(z) ∩X ̸= ∅} =
∪
x∈X

A(x) (247)

EA(X) = {z ∈ Em : A(z) ⊆ X} =
∩

y∈Xc

(As(y))c (248)

The two above adaptive operators are capable of representing any increasing operator; if the
operator is also u.s.c., then the representation can become minimal. These representations need
the concept of a kernel and a basis for adaptive operators. The main concepts are like the ones
developed before in the translation-invariant case by Matheron (1975) and Maragos (1985), but
extended to the SV case by Bouaynaya et al. (2008). Specifically, let ψ be an SV operator on
P(Em). Its SV kernel is defined as the following collection of SEMs

Kersv(ψ) , {A : x ∈ ψ[A(x)] ∀ x ∈ Em} (249)

The subscript ‘sv’ in the kernel notation reminds us that it is for SV operators. The SV basis of ψ
is the collection Bassv(ψ) of minimal kernel elements.

Theorem 29 (Bouaynaya et al., 2008).
(a) An SV operator ψ on P(Em) is increasing if and only if it can be represented as the union of
SV erosions by the SEMs of its kernel or equivalently as the intersection of SV dilations by the
transposed SEMs of the kernel of its dual operator ψ∗.
(b) If ψ is restricted on F(Em) and is u.s.c., then its basis exists and ψ can be represented as the
union of SV erosions only by the SEMs of its basis. In addition, if ψ∗ is u.s.c, then ψ can also be
represented as the intersection of SV dilations by the transposed SEMs of the basis of its dual:

ψ(X) =
∪

A∈Bassv(ψ)

EA(X) =
∩

A∈Bassv(ψ∗)

DAs(X) (250)

Thus, any increasing operator can be decomposed into a supremum of adaptive erosions (or
infimum of adaptive dilations), and this decomposition can be minimal. These results unify the
adaptive morphological operators based on SV neighborhoods with those based on group-invariant
morphology. For example, the circular morphology (a.k.a. polar morphology) case by Roerdink
and Heijmans (1988) and the affine morphology by Maragos (1990) were shown in Bouaynaya et al.
(2008) to correspond to SV morphological operations with specific choices for an SEM. We illustrate
Theorem 29 with two examples.
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Example 20 (Polar Morphology):
Consider set operators on P(E) where E = R2 − {(0, 0)}. For any points x = (rx, θx) and y =
(ry, θy) in E expressed in polar coordinates, define the binary operation

x⊙ y = (rxry, θx + θy mod 2π) (251)

which is multiplication on the complex plane. Based on this group operation, we can consider
generalized translations

τ r,θ(X) = {x⊙ (r, θ) : x ∈ X} (252)

that are rotations and scalar multiplications of planar sets. By combining these generalized transla-
tions for all vectors in a fixed nonempty planar set B ⊆ E, Roerdink and Heijmans (1988) defined
the following two planar set operators that are invariant under rotations and scalar multiplications:

X ⊕p B ,
∪

(r,θ)∈B

τ r,θ(X) (253)

X ⊖p B ,
∩

(r,θ)∈B

τ−1r,θ (X) (254)

They are called polar dilation and polar erosion, respectively.

By using the above ideas, Bouaynaya et al. (2008) defined the following SEM

A(x) = B ⊙ x = {b⊙ x : b ∈ B} (255)

which is the generalized translation of B that rotates and scales the points in B by the polar
coordinates of x. The transposed SEM is

As(x) = B−1 ⊙ x (256)

where B−1 = {(r−1,−θ) : (r, θ) ∈ B}. Thus, under the above formalism, the polar dilation (253)
and polar erosion (254) become the SV dilation and erosion by the SEM of (255):

X ⊕p B = {z ∈ E : (B−1 ⊙ z) ∩X ̸= ∅} (257)

X ⊖p B = {z ∈ E : B ⊙ z ⊆ X} (258)

If we wish to represent these adaptive operators using the basis expansion (250), then their basis
contains just one SEM.

Example 21 (Adaptive Binary Median filter):
Consider a SEM W : Zm → P(Zm) that works as an adaptive window for a n-point binary median
filter X 7→ medW(X). Namely, it moves to various positions x on a discrete domain as a spatially-
varying set W(x) which may change its shape but its cardinality remains constant and equal to
some odd integer |W(x)| = n. For example, if n = 5, the SV window may assume (according to
some rule) at each location one out of three possible shapes: a 5-pixel horizontal line segment, or a
5-pixel vertical line segment, or a 5-pixel rhombus. This operator is increasing but spatially-varying.
Its SV basis is equal to (Bouaynaya et al., 2008)

Bassv(medW) = {A : A ⊆ W and |A| = (n+ 1)/2} (259)

Thus, by Theorem 29, this adaptive median can be represented as the union of SV erosions by

the SEMs of the above basis, whose cardinality is

(
n
r

)
with r = (n + 1)/2. In the presence of

non-stationary noise, the adaptive median can provide a more efficient denoising than a translation-
invariant median with the same window size.



P. Maragos: Chapter in A.I.E.P., vol.177, 2013. 85

5.6 Representations for TI Non-Increasing Operators

So far all the representation theorems in Section 5 (with the exception of Theorem 22) referred to the
realization of translation-invariant (TI) increasing operators via erosions or dilations. However, it
is possible to use kernels to represent TI operators that are not necessarily increasing via operations
closely related to hit-miss transformations. Specifically, consider the complete lattice25 P(Em), of
subsets of the Euclidean space Em = Rm or its discrete version Zm, and define a closed interval
[A,B] ⊆ P(Em) by

[A,B] , {X ⊆ Em : A ⊆ X ⊆ B}, A,B ⊆ Em. (260)

The sets A and B are called the extremities of this interval.
The building blocks of general TI operators will be the following two operators that are closely

related to the hit-miss operator. Let us define the sup-generating operator ⃝∧ and the inf-generating
operator ⃝∨ by

X⃝∧ (A,B) , {x ∈ Em : A+x ⊆ X ⊆ B+x} (261)

= (X ⊖A) ∩ (Xc ⊖Bc)

X⃝∨ (A,B) , {x : (As)+x ∩X ̸= ∅ or (Bs)+x ∩X ̸= Em} (262)

= (X ⊕A) ∪ (Xc ⊕Bc)

The sets (A,B) play the role of parameters for these operators. The names of these two operators
above are due to the fact that, as explained next, they can generate arbitrary TI set operators by
forming a union (supremum) or intersection (infimum) of such mappings selected from a class that
specifies the operator. Recall the definition of the hit-miss operator

X ⊗ (A,B) = {x ∈ Em : A+x ⊆ X and B+x ⊆ Xc}

where A is the (positive) template hitting the foreground of the binary image X, whereas B is the
(negative) template hitting the background. Note that the sup-generating operator is essentially
the hit-miss operator with the exception of a complementation on the negative template:

X⃝∧ (A,B) = X ⊗ (A,Bc) (263)

Further, the inf-generating operator is also closely related by duality:

X⃝∨ (A,B) = [Xc⃝∧ (As, Bs)]c (264)

Now, as the following theorem explains, any TI set operator can be expressed as combination
of these sup/inf-generating operators by set pairs related to closed intervals inside the kernel.

Theorem 30 (Banon and Barrera, 1991).
Any TI set operator ψ : P(Em) → P(Em) can be represented as the union of sup-generating
operators by pairs of sets that form closed intervals in its kernel:

ψ(X) =
∪

[A,B]⊆Ker(ψ)

X⃝∧ (A,B) (265)

Further, ψ can be represented as the intersection of inf-generating operators by pairs of reflected
sets that form intervals in the kernel of its dual operator:

ψ(X) =
∩

[A,B]⊆Ker(ψ∗)

X⃝∨ (As, Bs) (266)

25Actually, the representation theory developed by Banon and Barrera (1991) for TI set operators assumes as
image domain an arbitrary nonempty set E equipped with a commutative group structure whose binary operation
is denoted by +, and the lattice of image sets is P(E). In this case, ‘translation-invariance’ means invariance w.r.t.
generalized translations formed by this group operation.
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The essence of the above theorem is that, any TI set operator can be expressed as union or
intersection of hit-miss operations by set pairs that are extremities of closed intervals in the kernel.
Barrera and Salas (1996) have further studied this representation as applied to finite window
operators, by developing an algebra of lattice operations on closed intervals of sets, and applied
their results to the automatic programming of morphological machines.

Banon & Barrera’s representation using hit-miss operations by kernel set intervals generalizes
Matheron’s representation using erosions or dilations by individual kernel sets. Of course, if we
add the extra assumption that the TI set operator is also increasing, then Theorem 30 reduces to
Matheron’s Theorem 19. However, instead of adding the ‘strong’ assumption that ψ is increasing,
we can alternatively add one of the following two weaker assumptions. A set operator ψ is called:

inf-separable: X ⊆ Z ⊆ Y =⇒ ψ(X) ∩ ψ(Y ) ⊆ ψ(Z)
sup-separable: X ⊆ Z ⊆ Y =⇒ ψ(Z) ⊆ ψ(X) ∪ ψ(Y )

(267)

Note that, any increasing and decreasing operators are both inf-separable and sup-separable. The
following result is a corollary of Theorem 30.

Proposition 23 (Banon and Barrera, 1991).
Let ψ be a TI set operator on P(Em).
(a) If ψ is inf-separable, then

ψ(X) =

 ∪
A∈Ker(ψ)

X ⊖A

 ∩

 ∪
B∈Ker(ψ)

Xc ⊖Bc

 (268)

(b) If ψ is sup-separable, then

ψ(X) =

 ∩
A∈Ker(ψ∗)

X ⊕As

 ∪

 ∩
B∈Ker(ψ∗)

Xc ⊕ (Bs)c

 (269)

The name ‘inf-separable’ reflects the fact such mappings are an intersection (infimum) of two
parts: an increasing part which is a union of erosions and a decreasing part which is a union
of anti-dilations. Another simplification we obtain in the inf-separable case is that the required
erosions and anti-dilations are by individual kernel sets without the need for operations with set
intervals. Similarly, the name ‘sup-separable’ means that such mappings are a union (supremum) of
two parts: an increasing part which is an intersection of dilations and a decreasing part which is an
intersection of anti-erosions. If a TI inf-separable operator becomes increasing, then the decreasing
part in its representation (268) vanishes and we are left only with its increasing part which is the
regular union of erosions by kernel sets. Similarly, the decreasing part of a sup-separable operator
disappears if the operator is increasing and leaves us only with the intersection of dilations by
reflected dual kernel sets.

For a minimal representation, Banon and Barrera (1991) have developed a different concept of
a basis of the kernel of TI operators, suitable for their sup-generating and inf-generating operators.
They defined this new basis as the collection of maximal closed intervals of the kernel. To guarantee
existence of this new basis they had to add the usual topological structure to the space P(Em), i.e.
restrict to closed sets and use the hit-miss topology. Then, by using an approach similar to that
used by Maragos (1985), they showed each TI and u.s.c set operator possesses a basis and can be
represented as a union of sup-generating operations by pairs of sets that form intervals only inside
the basis.

Let us compare the above minimal representation with the standard basis representation of
Theorem 21 for increasing TI operators. Since every hit-miss operation detects the locations of
a template (A,B), which has a positive part (A) hitting the foreground and a negative part (B)
hitting the background, we see that the above representation acts like a Boolean function that
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can be expressed as a Boolean sum of products (SOP) or as a Boolean product of sums (POS).
Considering only the expansion with sup-generating operations, i.e. the SOP expression, we see
that each Boolean product corresponds to a single hit-miss operation where the uncomplemented
variables correspond to points of A whereas the complemented variables correspond to points of B.
If we compare this Boolean interpretation of the representation with hit-miss operations against
the corresponding Boolean interpretation of increasing TI binary filters, which was explained in
Section 5.4.3, we observe that in the latter case the Boolean function is irreducible and has only
positive terms (i.e. no complementations). Thus, as also illustrated in Example 16, for an increasing
TI set operator, if we use as basis elements the maximal intervals in the kernel, then these intervals
may overlap which may create redundancies in the corresponding representation as union of hit-
miss operations. In contrast, the basis using the minimal kernel elements has no redundancies and
synthesizes the operator as union of simpler operations (erosions).

We conclude this section by mentioning that, many of the above concepts and representation
results have been extended by Banon and Barrera (1993) to general complete lattices.

5.7 Representations for TI Increasing Operators on Complete Weighted Lat-
tices

In this section we extend the kernel representation theory for increasing T-invariant operators Ψ
on complete weighted lattice (CWL) signal spaces S = Fun(Em, C) over a clodum (C,∨,∧, ⋆, ⋆′).
The difficulty here is that the set T of translations is a group of automorphisms when C is a blog
and we restrict the vertical translations only by non-extreme scalars (i.e. scalars belonging to the
group in C), but otherwise it is only a monoid of generalized translations that are lattice dilations.
Similarly the set T′ of dual translations is a monoid of lattice erosions. We define the kernel of Ψ
by

Ker(Ψ) , {F : Ψ(F ) ≥ q} = {F : Ψ(F )(0) ≥ Cid} (270)

where q(x) is the impulse signal

q(x) =

{
Cid, x = 0
CO, x ̸= 0

Cid is the identity element of the monoid (C, ⋆), and CO is its null element. We can reconstruct the
operator Ψ from its kernel by adding an extra condition: we henceforth assume that Ψ also com-
mutes with adjoint operators λ← of vertical translations λ. Thus, Ψ is invariant to all combinations
of horizontal translations µ and vertical translations λ as well as to adjoint vertical translations
λ←. We abbreviate this combined invariance by saying that Ψ is Ta-invariant. Obviously, if C is
a blog, then all vertical translations λ by non-extreme scalars are automorphisms whose inverses
are the adjoints λ← = λ−1; hence, in the blog case, the T-invariance is almost identical to the
Ta-invariance. But in the general case Ta-invariance places an extra constraint on Ψ.

Now observe that, for any semi-atom

qh,v(x) = q(x− h) ⋆ v = µhλv(q),

the adjunction (λ←v ,λv) implies that [see also (53)]

qh,v ≤ Ψ(F ) ⇐⇒ λv(q) ≤ Ψ(µ−hF ) ⇐⇒ q ≤ Ψ(λ←v µ−hF ) (271)

Therefore, we can reconstruct the operator Ψ from knowledge of its kernel Ker(Ψ) as follows:

Ψ(F )(x) = sup{v ∈ C : λ←v µ−x(F ) ∈ Ker(Ψ)} (272)

The kernel has several properties outlined next.

Proposition 24 (Maragos, 2005a).
Consider Ta-operators on the S.
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(a) If Ψ is increasing and F ∈ Ker(Ψ), then G ∈ Ker(Ψ) for all G ≥ F .
(b) If {Ψi} is an indexed family of operators, then

Ker(Ψ) =
∪
i

Ker(Ψi) =⇒ Ψ =
∨
i

Ψi (273)

(c) Ker(
∨
iΨi) ⊆

∪
iKer(Ψi).

(d) Ker(
∧
iΨi) =

∩
iKer(Ψi).

(e) Ψ1 ≤ Ψ2 =⇒ Ker(Ψ1) ⊆ Ker(Ψ2).

Example: Let ∆H(F ) = F ⃝⋆H be a T-invariant dilation, expressed as a sup-⋆ convolution in
(138), and let EH be its adjoint erosion in (140). The kernel of this erosion is

KH , Ker(EH) = {F : EH(F )(0) ≥ Cid}
= {F :

∧
x λ
←
H(x)(F (x)) ≥ Cid}

= {F : λ←H(x)(F (x)) ≥ Cid ∀x}
= {F :

∨
{v : H(x) ⋆ v ≤ F (x)} ≥ Cid ∀x}

= {F : H(x) ≤ F (x) ∀x}
= {F : F ≥ H}

(274)

It turns out that the kernel of the above simple erosion system is the building block of the
kernel of a large class of increasing operators. This leads us to the following fundamental result.

Theorem 31 (Maragos, 2005a).
Let Ψ be an increasing Ta-invariant operator on the CWL signal space S and let (EH ,∆H) be
adjunctions where ∆H(F ) = F ⃝⋆H are sup-⋆ convolutions by functions H in the kernel of Ψ.
Then, Ψ can be represented as the supremum of all the adjoint erosions:

Ψ(F ) =
∨

H∈Ker(Ψ)

EH(F ) (275)

Consider now increasing operators Ψ that are T′a-invariant, i.e. invariant to all compositions of
horizontal translations µ and dual vertical translations λ′ as well as invariant to the adjoint λ′← of
any dual vertical translation, where (λ′,λ′←) is a scalar adjunction. To find kernel representations
for such Ψ we need to define the various kernel-related concepts in a dual way. Next we list the
basic ideas and results; their derivation can be obtained by using duality on the previous results.
The dual kernel of a T′a-invariant operator Ψ is defined by

Ker′(Ψ) , {F : Ψ(F ) ≤ q′} = {F : Ψ(F )(0) ≤ C′id} (276)

where C′id is the identity element of the monoid (C, ⋆′).
Example: Let EH′(F ) = F ⃝⋆ ′H ′ be a T′-invariant erosion as in (143) and let ∆H′ be its adjoint

dilation in (144). The dual kernel of this dilation is

K′H′ , Ker′(∆H′) = {F : F ≤ H ′} (277)

The properties of the dual kernel include the following.

Proposition 25 Consider T′a-operators on S.
(a) If Ψ is increasing and F ∈ Ker′(Ψ), then G ∈ Ker′(Ψ) for all G ≤ F .
(b) If {Ψi : i ∈ J} is an indexed family of operators, then

Ker′(Ψ) =
∩
i

Ker′(Ψi) =⇒ Ψ =
∧
i

Ψi (278)

The above results lead us to the following fundamental representation.
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Theorem 32 (Maragos, 2005a).
Let Ψ be an increasing T′a-invariant operator on the CWL signal space S and let (EH′ ,∆H′) be
adjunctions where EH′(F ) = F ⃝⋆ ′H ′ are inf-⋆′ convolutions by functions H ′ in the dual kernel of
Ψ. Then, Ψ can be represented as the infimum of all the adjoint dilations:

Ψ(F ) =
∧

H′∈Ker′(Ψ)

∆H′(F ) (279)

5.8 Representations for TI Openings and Closings

In previous sections we discussed representations of increasing operators that are translation-
invariant (TI). In this section we shall examine representations for TI operators that in addition to
being increasing are also idempotent and extensive or anti-extensive. Namely, we shall examine TI
openings and closings on the complete lattice P(Em), where Em = Rm or Zm. Generalizations to
other complete lattices with commutative horizontal translation groups on them are possible (Ronse
and Heijmans, 1991). Since a set opening (resp. closing) can be represented as supremum (resp.
infimum) of its invariant sets that are included in it (resp. include it), the translation-invariance of
an opening or closing is directly controlled by its invariance domain as the following result explains.

Proposition 26 A closing or an opening is translation-invariant if and only if its invariance
domain is closed under translation.

Given the invariance domain A = Inv(α) of a TI opening α, if we can find a subcollection A0 ⊆
A that can generateA via translations and (possibly infinite) set unions, we call26 it a morphological
subbasis of A. By using this concept, the following fundamental result can be proven, which states
that every set opening on P(Em) can be represented as a supremum of Minkowski openings by all
the structuring elements in its subbasis A0. Taking the infimum of Minkowski closings by reflected
structuring elements in A0 can also represent the dual mapping of α, which is a closing.

Theorem 33 (Matheron, 1975).
A set operator α on P(Em) is a translation-invariant opening if and only if there is a set collection
A0 ⊆ P(Em) such that α can be represented as

α(X) =
∪
A∈A0

X◦A (280)

Then, A0 is the subbasis that generates the collection Inv(α) of α-invariant sets. Further, the dual
mapping β(X) = (α(Xc))c is a translation-invariant closing that can be represented as

β(X) =
∩

B∈A0

X•Bs (281)

Dually, we can also work with a subbasis generating a TI closing. Specifically, a subcollection
B0 of the invariance domain B = Inv(β) of a TI closing β is called a dual subbasis of B if the
latter can be generated by B0 via translations and (possibly infinite) set intersections of members
of B0. If β is the dual of the above opening α, then the two subbasis collections are related since
B0 = {Ac : A ∈ A0}.

Returning to the representation (280) of the TI opening via its subbasis, we observe that we
can write it from the basis expansion (201) as

α(X) =
∪
A∈A0

∪
a∈A

X ⊖A−a =
∪

a∈A∈A0

X ⊖A−a (282)

26Matheron (1975) calls A0 a ‘basis’ of the TI opening; however, throughout Section 5 we have used the term
‘basis’ to mean the set of minimal elements of the kernel of a TI operator.
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To avoid redundancies in A0, we henceforth assume that A0 consists of the minimal elements of
Inv(α) that are not translations of each other. Then, the second representation in (282) is identical
to the basis representation of α, where its basis (i.e. set of minimal kernel elements) is the collection

Bas(α) = {A−a : a ∈ A, A ∈ A0} (283)

Thus, we have established the following relationship between the subbasis and basis of the invariance
domain of any TI opening:

A0 ⊂ Bas(α) ⊂ Inv(α) (284)

Example 22 (Area Opening):
It can be shown that the area opening (82) of digital planar shapes, which keeps only the connected
components of an input set X ⊆ Z2 with area ≥ n, is equal to the TI opening

αn(X) =
∪
|A|=n

X◦A (285)

where the structuring elements A can be found as the connected subsets of a n × n-pixel square
that are not translations of each other. The collection of all these sets A forms the subbasis A0.
By applying α to all level sets Xv(f) of an input graylevel image f , we can extend the above result
to graylevel images and build a flat area opening:

αn(f) =
∨
|A|=n

f◦A (286)

This max-of-openings by connected structuring elements of fixed size was introduced by Cheng and
Venetsanopoulos (1992) to perform nonlinear filtering without the shape bias of a fixed structuring
element. They argued heuristically against implementing αn as a max of openings by all A because
this would be computationally intense due to the large number of A which grows exponentially
with n. Instead, they implemented it is as in (282), without realizing that this is essentially the
basis representation.

For example, if n = 2, there are exactly four sets A in

A0 =

{
• • ,

•
• ,

•
• ,

•
•

}
(287)

The basis Bas(αn) consists of the translations A−a, a ∈ A, of all the above sets A ∈ A0. For the
example of (287), the basis consists of 8 sets. Thus, for relatively small n, the area opening can be
efficiently implemented as maximum of minima over the basis sets:

αn(f) =
∨

a∈A,|A|=n

f ⊖A−a (288)

In another application of binary image denoising, Song and Delp (1990) used a composite
morphological filter formed as union of openings by multiple connected structuring elements to
remove noise more effectively than from using a single filter. In one example they used as structuring
elements for the openings 8 connected sets of n = 3 pixels each. However, this number is smaller
than the total number of 3-pixel connected sets which is 20 (without counting translations of the
same set). Hence, their composite filter yields a smaller output compared to the n = 3 area opening
(285); i.e. for n = 3 the subbasis A0 contains 20 connected 3-pixel sets. Their filter can still be
implemented more simply using the basis expansion (288), but it corresponds to a truncated basis.
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6 Conclusions

The major new contributions of this chapter are in Section 4 and in Section 5. Section 4 builds
nonlinear signal spaces by introducing a new algebraic structure, called complete weighted lattices
(CWLs), based on which operators that obey superpositions compatible with the basic operations
of this new algebra and are translation-invariant can be represented as generalized nonlinear con-
volutions of the supremum or infimum type. These results provide new and strong theoretical
connections between lattice-based mathematical morphology, image algebra, and minimax algebra.
Section 5 unifies the morphological representation theory of operators that obey a few fundamental
properties such as translation-invariance and increasingness as supremum or infimum of elementary
morphological operators by extending the theory to cases where one of these properties is missing
as well as to cases beyond the traditional Euclidean morphology such as the above nonlinear spaces.
Section 3 provides a tutorial review of the main ideas and operators from lattice-based morphology.
Similarly, Section 2 provides a synopsis of main ideas and results from linear operators on topics
conceptually similar with the topics that we analyze for morphological image operators.

We have found many interesting analogies between linear operators and the new view of morpho-
logical operators on complete weighted lattices. The most interesting and fundamentally important
is the striking similarity between the algebraic structure of a linear space and that of the (nonlinear)
complete weighted lattice space which we introduced in this chapter. Another striking similarity is
between the linear convolution representation of a linear shift-invariant operator and the supremal
or infimal convolution of weighted lattice operators that obey a weighted supremum or infimum
superposition and some kind of generalized translation-invariance. In the finite-dimensional case,
this becomes another impressive similarity between the linear algebra matrix representation of a
linear operator over traditional vector spaces and the max-plus (or more general max-⋆) matrix
representation of a dilation or erosion operator over finite-dimensional complete weighted lattices.
Of possible interest in the future is also to explore possible analogies between the pair formed
by a linear operator and its adjoint with the lattice adjunction pair of an erosion and its adjoint
dilation. Compared with linear operators, an area that is still not well developed in morphological
and lattice operators is the class of projections. For instance, missing is a lattice-based ‘projec-
tion theorem’, whereas the corresponding projection theorem in Hilbert spaces has proven to be
extremely useful as an interdisciplinary tool for approximate modeling. In this chapter we have
only observed some conceptual analogies between linear projections and morphological projections
and we have analyzed several lattice-theoretic aspects of the latter. Another area which is well
developed in linear operators is their spectral decomposition. However, with the exception of the
slope transform, it seems almost absent from morphological operators. Only some work has been
done in eigenvalue-eigenvector analysis in max-plus algebra, but the developments are still far from
the vast knowledge that has accumulated in linear algebra. Finally, missing seems to be for mor-
phological operators a study of their continuity based on some norm, at some level close to what is
done for linear operators on normed spaces. The only results available deal with their order-based
(semi-)continuity and its relationship with topological (semi-)continuity.

In representation theory, we have covered a broad spectrum of ideas and results from morpho-
logical operators and their lattice generalizations, focusing on their theoretic representations of two
types: (1) As supremal or infimal convolutions, in the case where we have operators that obey a
supremum or infimum superposition and translation-invariance, either Euclidean or some invari-
ance w.r.t. a (semi-)group of generalized ‘translations’ . (2) As parallel combinations (supremum
or infimum superpositions) of simpler morphological operations (elementary erosions or dilations),
in the case where we have operators that are increasing and/or translation-invariant (TI). The
representation theory of increasing and TI operators encompasses a very broad variety of nonlinear
and linear systems. In this chapter we have provided examples from several categories of systems
to which this theory applies. This class of operators is sup-generated by elementary erosions with
basis functions or inf-generated by elementary dilations with the dual basis functions. Namely, in
the lattice of increasing and TI operators, the erosions by basis elements are atoms that can synthe-
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size more complex operators. Exact representation requires all the atoms; thus the basis expansion
is irreducible. Of great practical and theoretical significance are the approximate representations
using a truncated morphological basis.
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