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Abstract

For a connected graph G = (V,E), a monophonic set of G is a set
M ⊆ V (G) such that every vertex of G is contained in a monophonic
path joining some pair of vertices inM . A subset D of vertices in G is
called dominating set if every vertex not in D has at least one neigh-
bour in D. A monophonic dominating set M is both a monophonic
and a dominating set. The monophonic,dominating,monophonic dom-
ination number m(G), γ(G), γm(G) respectively are the minimum car-
dinality of the respective sets in G. Monophonic domination number
of certain classes of graphs are determined. Connected graph of order
p with monophonic domination number p− 1 or p is characterised. It
is shown that for every two intigers a, b ≥ 2 with 2 ≤ a ≤ b, there is a
connected graph G such that γm(G) = a and γg(G) = b, where γg(G)
is the geodetic domination number of a graph.
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1. Introduction

By a graph G = (V,E),we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively.
For basic graph theoretic terminology we refer to Harary [1]. The vertices u
and v in a connected graph G,the distance d(u, v) is the length of a shortest
u− v path in G. The eccentricity e(v) of a vertex v in G is the maximum
distance from v and a vertex of G. The minimum eccentricity among the
vertices of G is the radius, rad G or r(G) and the maximum eccentricity is
its diameter, diamG of G. An u−v path of length d(u, v) is called an u−v
geodesic. A vertex x is said to lie on a u−v geodesic P if x is a vertex of P
including the vertices u and v. A geodetic set of G is a set S ⊆ V (G) such
that every vertex of G contained in a geodesic joining some pair of vertices
in S. The geodetic number g(G) of G is the minimum order of its geodetic
sets and any geodetic set of order g(G) is a geodetic basis of G . The
geodetic number was introduced in[7] and further studied studied in [4,8].
A chord of a path P is an edge joining two non adjacent vertices of P . A
path P is called monophonic if it is a chordless path. A monophonic set of
G is set M ⊆ V such that every vertex of G is contained in a monophonic
path joining some pair of vertices in M . The monophonic number m(G)
of G is the minimum order of its monophonic sets and any monophonic
set of order m(G) is a minimum monophonic set or simply a m− set of G.
The monophonic number of a graph G is studied in [5,6,9]. If e = uv is an
edge of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendent
edge, u a leaf and v a support vertex. Let L(G) be the set of all leaves
of a graph G. We denote by Pp, Cp and Kr,s, the path on p vertices, the
cycle on p vertices and complete bipartite graph in which one partite set
has r vertices and the other partite set has s vertices respectively. For any
set M of vertices of G, induced subgraph < M > is the maximal subgraph
of G with vertex set M .For any connected graph G, a vertex v ∈ V (G) is
called a cut vertex of G if < V −{v} > is no longer connected. A maximum
connected induced subgraph without a cut vertex is called a block of G. A
graph G is a block graph if every block in G is complete. Sum of two graphs
G1 and G2 is the union of G1 and G2 together with all the lines joining
vertices of G1 to vertices of G2 . Let N(v) = {u ∈ V (G) : uv ∈ E(G)}
is called the neighborhood of the vertex v in G. A vertex v is a simplicial
vertex of a graph G if < N(v) > is complete. A simplex of a graph G
is a subgraph of G which is a complete graph. A vertex v in a graph G
dominates itself and its neighbours. A set of vertices D in a graph G is a
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dominating set if each vertex of G is dominated by some vertices of D. The
dominating number γ(G) of G is the minimum cardinality of a dominating
set of G. For references on domination parameters in graphs see [2,3]. A
set of vertices M in G is called a geodetic dominating set if M is both a
geodetic set and a dominating set. The minimum cardinality of a geodetic
dominating set of G is its geodetic domination number and is denoted by
γg(G). A geodetic dominating set of size γg(G) is said to be a γg− set. The
geodetic domination number of a graph was introduced and studied in [8].
It is easily seen that a dominating set is not in general a monophonic set
in a graph G. Also the converse is not valid in general. This has motivated
us to study the new domination conception of monophonic domination.
We investigate subsets of vertices of a graph that are both a monophonic
set and a dominating set. We call these sets as a monophonic dominating
sets. We call the minimum cardinality of the monophonic dominating set
of G,the monophonic domination number of G. Throughout this paper G
denotes simple connected graph with at least two vertices

The following theorems are used in sequel.

Theorem 1.1. [9]Each simplicial vertex of a connected graph G belongs
to every monophonic set of G. In particular every end vertex of a connected
graph G belongs to every monophonic set of G.

Theorem 1.2. [8]Each simplicial vertex of a connected graph G belongs
to every geodetic dominating set of G. In particular every end vertex of a
connected graph G belongs to every geodetic dominating set of G.

2. The Monophonic Domination Number Of a Graph

Definition 2.1. Let G be a connected graph. A set of vertices M in G
is called a monophonic dominating set or simply (M,D)-set if M is both
a monophonic set and a dominating set. The minimum cardinality of a
(M,D)- set of G is its monophonic domination number or simply (M,D)-
number and is denoted by γm(G). A (M,D)-set of size γm(G) is said to be
a γm-set.

Example 2.2. For the graph G is given in Figure 2.1, M = {v1, v4} is a
(M,D)-set of G so that γm(G) = 2.
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Remark 2.3. Each simplicial vertex of a connected graph G belongs to
every (M,D)- set of G.

Remark 2.4. Let G be a connected graph and v be a cut-vertex of G.
Then every (M,D)- set contains at least one element from each component
of G− v.

Remark 2.5. If G is a connected graph of order p,then
2 ≤ max{m(G), γ(G)} ≤ γm(G) ≤ p.

Remark 2.6. For any cycle CP , (p ≥ 4), γm(CP ) = γ(CP ) = dp/3e.

In the following, we determine the (M,D)- number of some standard graphs.

Theorem 2.7. For the complete graph Kp(p ≥ 2), γm(Kp) = p.

Proof. Since every vertex of the complete graph Kp(p ≥ 2) is a simplical
vertex, the vertex set of Kp is the unique (M,D)-set of Kp. Thus γm(KP ) = p.
2

Theorem 2.8. For the wheel G =Wp(p ≥ 4),

γm(wp) = 4, if p = 4;
2, if p = 5, 6;
3, if p ≥ 7.

Marisol Martínez
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Proof. Let {x, v1, v2...vp−1} be the vertices of G =Wp(p ≥ 4), with deg(x) =
p− 1.

Case(i) Let p = 4. Then G = K4 and by Theorem 2.7,γm(Wp) = 4.

Case(ii) Let p = 5 or 6. Then M = {v1, v3} is a (M,D)-set of G so that
γm(Wp) = 2.

Case(iii) Let p ≥ 7. Let M = {x, vi, vj} (1 ≤ i 6= j ≤ p − 1), where vi and vj
are any two non adjacent vertices of G. Then M is a (M,D)-set of G so that
γm(G) ≤ 3. Suppose that γm(G) = 2. Then there exists a (M,D)-set M 0 such
that |M 0| = 2. If M 0 = {x, vi},(1 ≤ i ≤ p− 1), then xvi, (1 ≤ i ≤ p− 1) is a chord
of path x − vi and so M 0 is not a (M,D)-set of G, which is a contradiction. If
M 0 = {vi, vj}(1 ≤ i 6= j ≤ p − 1) then M 0 is a monophonic set of G which is not
a dominating set of G,which is a contradiction. Therefore γm(Wp) = 3. 2

Theorem 2.9. For the complete bipartite graph G = Km,n,γm(Km,n) =
2, if m = n = 1
n if n ≥ 2,m = 1
min{m,n, 4} if m,n ≥ 2.

Proof. Case(i). Let m=n=1. Then G = K2.By Theorem 2.7 γm(G) = 2.

Case(ii). Let m = 1, n ≥ 2. Then G = K1,n. Let M be the set of n end vertices
of G. Then by Remark 2.3,γm(G) ≥ n. It is clear that M is a (M,D)-set of G so
that γm(G) = n.

Case(iii) Let 2 ≤ m ≤ n. Let U = {u1, u2...um} and V = {v1, v2...vn} be the
bipartite sets of G

Subcase iiia. Let m = 2, n ≥ 2. Then U = {u1, u2} is a (M,D)-set of G so that
γm(G) = 2.

Subcase iiib. Let m = 3 and n ≥ 3. Then M = {u1, u2, u3} is a (M,D)-set of
G and so γm(G) ≤ 3. Let M 0 be a (M,D)− set of G with |M 0| = 2. If M 0 ⊂ U ,
then there exists x ∈ U such that x /∈ M 0. Then the vertex x doesnot lie on
a monophonic path joining a pair of vertices of M 0, which is a contradiction. If
M 0 ⊂ W , then there exists at least one y ∈ W such that y /∈ M 0. Then the the
vertex y doesnot lie on monophonic path joining a pair of vertices of M 0, which
is contradiction. If M 0 ⊂ U ∪W , then M 0 = {ui, wj}(1 ≤ i ≤ 3), (1 ≤ j ≤ n).
Since uiwj is a chord of the path ui − wj , M

0 is not a (M,D)-set of G,which is a
contradiction. Therefore γm(G) = 3.
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Subcase iiic. Let m ≥ 4 and n ≥ 4. Then M = {u1, u2, v1, v2} is a (M,D) set of
G and so that γm(G) ≤ 4. By the similar argument given in Subcase iiib, there is
no (M,D)-set M 0 such that |M 0 |= 2 or |M 0 |= 3. Hence γm(G) = 4. 2

Theorem 2.10. If G is a non complete connected graph such that it has a mini-
mum cut set, then γm(G) ≤ p− k(G).

Proof. Since G is non complete, it is clear that 1 ≤ k(G) ≤ p − 2. Let
U = {u1, u2, ..., uk} be a minimum cut set of G. Let G1, G2, ..., Gr(r ≥ 2) be the
components of G−U and let M = V (G)−U . Then every vertex ui(1 ≤ i ≤ k) is
adjacent to at least one vertex of Gj for every j(1 ≤ j ≤ r). It is clear that M is
a (M,D)-set of G so that γm(G) ≤ p− k(G). 2

Theorem 2.11. Let G be a connected graph of order p ≥ 2. Then γm(G) = 2 if
and only if there exist a (M,D)-set M = {u, v} of G such that d(u, v) ≤ 3.

Proof. Suppose γm(G) = 2. Let M = {u, v} be a (M,D)-set of G. Suppose
that d(u, v) ≥ 4. Then the diametrical path contains at least three internal ver-
tices. Therefore γm(G) ≥ 3, which is a contradiction. Therefore d(u, v) ≥ 3. The
converse is clear. 2

Theorem 2.12. Let G be a connected graph of order p ≥ 2. Then γm(G) = p if
and only if G is the complete graph on p vertices.

Proof. Suppose G = Kp. Then by Theorem 2.7, γm(G) = p. Conversely, let
γm(G) = p. Suppose that G is non complete. Then by Theorem 2.10, γm(G) ≤
p− 1, which is a contradiction. It follows that G is complete. 2

Theorem 2.13. Let G be a connected graph of order p ≥ 2. Then γm(G) = p−1
if and only if G = K1 +

S
mjKj , where

P
mj ≥ 2, j ≥ 1.

Proof. Suppose γm(G) = p− 1. Then by Theorem 2.10, k(G) = 1. Therefore
G contains only one cut vertex, say v. We show that each component of G− {v}
is complete. Suppose that there exist a component G1 of G − {v} such that
G1 is non complete. Then |G1| ≥ 2. Let u be the non simplicial vertex of G1.
Then M = V (G) − {u, v} is a (M,D)-set of G so that γm(G) ≤ p − 2, which
is a contradiction. Hence each component of G − {v} is complete. Therefore
G = K1 +

S
mjKj , where

P
mj ≥ 2. Conversely suppose G = K1 +

S
mjKj

where
P

mj ≥ 2. Then it is clear that γm(G) = p− 1. 2

Remark 2.14. If G is a graph of order p, then γm(G)+γm(Ḡ ) ≤ 2p and γm(G)+
γm(Ḡ)= 2p if and only if G = Kp or Ḡ=Kp.

Theorem 2.15. If G is a connected graph of order p, then γm(G)+γm(Ḡ)= 2p−1
if and only if p ≥ 3 and G = K1,p−1 or Ḡ= K1,p−1.
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Proof. Suppose p ≥ 3 and G = K1,p−1 or G = K1,p−1. Then by Theorem
2.9(ii), γm(G) + γm(G) = 2p − 1. Conversely suppose γm(G) + γm(G) = 2p − 1.
Then γm(G) = p or γm(G) = p. Without loss of generality, we assume that
γm(G) = p. Then γm(G) = p − 1. We prove that the components of G are
complete graphs. If not, then G contains a component H with two non adjacent
vertices u and v. Let P be a path in u − v geodesic in H and x be a vertex of
P adjacent to u. Let S = V (G) − {x}. Then S is a monophonic dominating set
of G so that γm(G) ≤ p − 1,which is a contradiction to γm(G) = p. If G is not
connected, then p ≥ 2 and G is connected. By Theorem 2.13, we find that there
exists a vertex v in G such that v is adjacent to every other vertex of G and G− v
is the union of at least two complete graphs. Therefore p ≥ 3. Since γm(G) = p,
the components of G− {v} are isolated vertices. This shows that G = K1,p−1. 2

3. Realization results

Theorem 3.1. For any two integers a, b ≥ 2, there is a connected graph G such
that γ(G) = a,m(G) = b and γm(G) = a+ b.

Proof. Let F : r, s, u, v, t, r be a copy of C5. Let H be a graph obtained from
F by adding the new vertices z1, z2, ..., zb−1 and join each to the vertex r. Let G
be the graph obtained from H by taking a copy of the path on 3(a−2)+1 vertices
y0, y1, ..., y3(a−2) and joining y0 to the vertex u as shown in the Figure 3.1.Let
Z = {r, u, y2, y5, ..., y3(a−2)−1}.Then it is clear that Z is a minimum dominating
set of G so that γ(G) = a. Let Z0 = {z1, z2, ..., zb−1, y3(a−2)}. Then by Theorem
1.1, Z’ is a subset of every monophonic set of G and so m(G) ≥ b. Now Z0 is
a monophonic set of G so that m(G) = b. By Remark 2.3, Z 0 is subset of every
(M,D)-set of G. Now, letM = Z∪Z0. It is clear thatM is a minimum (M,D)-set
of G so that γm(G) = a+ b. 2
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Theorem 3.2. For any two integers a, b ≥ 2 with 2 ≤ a ≤ b, there is a connected
graph G such that γm(G) = a and γg(G) = b.

Proof. Let P : x, y, z be a path on three vertices.Let Pi : ui, vi(1 ≤ i ≤ (b− a+ 2)
be a path on two vertices. Let H be a graph obtained from P and Pi by join-
ing each ui(1 ≤ i ≤ b− a+ 2) with x and each vi(1 ≤ i ≤ ba+2) with z. Let G be
a graph obtained from H by adding the new vertices z1, z2, ..., za−2 and joining
each zi(1 ≤ i ≤ a− 2) with x and y as shown in Figure 3.2. First we show that
γm(G) = a. Let Z0 = {z1, z2, ..., za−2} be the set of all of simplicial vertices of G.
By Remark 2.3, Z is subset of every (M,D)-set of G. It is clear that Z is not a
(M,D)-set of G. It is easily verified that Z ∪ {v}, where v /∈ Z is not a (M,D)-
set of G and so γm(G) ≥ a.However M = Z ∪ {x, z} is a (M,D)-set of G so that
γm(G) = a. Next, we show that γg(G) = b. By Theorem 1.2 Z is subset of every
geodetic dominating

Marisol Martínez
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set of G. It can be easily verified that Z is not a geodetic dominating set of
G. Now M=Z ∪ {v1, v2, ..., vb−a+2} is a geodetic dominating set of G so that
γg(G) ≤ b. Let Hi = {ui, vi}(1 ≤ i ≤ b− a+ 2). Let S be a geodetic dominating
set of G. Suppose that z ∈ S. Then S contains at least one element of each
Hi(1 ≤ i ≤ b − a + 2). If not suppose that u1, v1 /∈ S. Then u1, v1 do not lie on
a geodesic joining a pair of vertices of S, which is a contradiction. Therefore S
contains at least one element of each Hi(1 ≤ i ≤ b− a+ 2). Hence it follows that
γg(G) ≥ a− 2 + 1 + b− a+ 2 = b+ 1, which is a contradiction. Therefore z /∈ S.
Let Gi = {ui, vi+1}(1 ≤ i ≤ b− a+ 1), Qi = {vi, ui+1}(1 ≤ i ≤ b− a+ 1) and
S0 = {v1, v2, ..., vb−a+2}. It is easily observed that S contain at least one element
from eachGi(1 ≤ i ≤ b− a+ 2) or least one element from eachQi(1 ≤ i ≤ b−a+2)
or S0 ⊆ S. Hence it follows that γg(G) = a− 2 + b− a+ 2 = b. 2

4. Block Graphs

Theorem 4.1. Let G be a connected block graph of order p ≥ 2, and let M be
the set of simplicial vertices of G. Then M is the unique minimum monophonic
set of G.

Proof. The theorem is obvious when M = V (G). Hence assume that M ⊆
V (G). Let v ∈ V (G)−M be an arbitrary vertex. It follows that v is a cut-vertex
of G. Let H and H 0 be two components of G− {v} and H and H 0 are also block

Marisol Martínez
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graphs. Let x ∈ V (H) and x0 ∈ V (H 0) be two simplicial vertices of G. Let P
be a monophonic path from x to x0 in G. Since v is a cut-vertex of G containing
v, the monophonic path contains v. Hence P is a x − x0 monophonic path of G
containing v. Then J [M ] = V (G). Thus M is a monophonic set of G. As every
monophonic set M 0 of G must contain M , the set M is the unique monophonic
set of G. 2

Theorem 4.2. If G is a connected block graph of order p ≥ 2, then the following
conditions are equivalent.

(a) γm(G) = m(G) = γ(G).

(b) The set M of simplicial vertices of G is a minimum dominating set of G.

(c) Every block of G contains at most one simplicial vertex, and every vertex of
G belongs to exactly one simplex of G.

Proof. (a) ⇒ (b). Suppose γm(G) = m(G) = γ(G). Then by Theorem 4.1,
the set M of simplicial vertices of G is a minimum dominating set of G.
(b)⇒ (a). Suppose the setM of simplicial vertices of G is a minimum dominating
set of G. It follows that γm(G) = m(G) = γ(G).

(c) ⇒ (b). Let G1, G2, ...Gk be the simplexes of G with simplicial vertices
vi ∈ V (Gi) for i = {1, 2, ..., k}. Clearly each simplex Gi is also a block of G. Since
every block of G contains at most one simplicial vertex, vi is the only simplicial
vertex of Gi,(i=1,2,...,k). The hypothesis that every vertex of G belongs to ex-
actly one simplex of G shows that V (G) = V (G1)∪V (G2)∪ ...∪V (Gk). Therefore
M = {v1, v2, ..., vk} is a dominating set of G. On the contrary, suppose that G
contains a dominating set M 0 with |M 0| < |M |. This implies that there exists a
vertex y ∈M 0such that y dominates at least two simplicial vertices, say v1 and v2
which is a contradiction. This contradiction shows that y belongs to the simplexes
G1and G2. Hence M is a minimum dominating set of G.

(b) ⇒ (c). Suppose that the set M of simplicial vertices of G is a minimum
dominating set of G. If there is a block containing two simplicial vertices u and
v, then M − {u} is also a dominating set of G, which is a contradiction. This
shows that every block of G contains at most one simplicial vertex. If there exists
a vertex which does not belong to any simplex of G, then M is not a dominating
set of G, which is a contradiction. Finally, on the contrary, suppose that there
is a vertex u belonging to at least two simplexes of G1 and G2. If v1 and v2 are
simplicial vertices of G1 and G2 then (M − {v1, v2}) ∪ {u} is a dominating set
of G, which is a contradiction. Hence, every vertex of G belong to exactly one
simplex of G. 2
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