Proyecciones Journal of Mathematics
Vol. 38, N° 2, pp. 255-266, June 2019.
Universidad Catdlica del Norte
Antofagasta - Chile

On the (M,D) number of a graph

J. John
Government College of Engineering, India
P. Arul Paul Sudhahar
Rani Anna Gobernment Constituent College for Women, India
and
D. Stalin
Bharathiyar University, India
Received : June 2017. Accepted : March 2019

Abstract

For a connected graph G = (V, E), a monophonic set of G is a set
M C V(G) such that every vertex of G is contained in a monophonic
path joining some pair of vertices in M. A subset D of vertices in G is
called dominating set if every vertex not in D has at least one neigh-
bour in D. A monophonic dominating set M is both a monophonic
and a dominating set. The monophonic,dominating, monophonic dom-
ination number m(G),v(G), ym(G) respectively are the minimum car-
dinality of the respective sets in G. Monophonic domination number
of certain classes of graphs are determined. Connected graph of order
p with monophonic domination number p—1 or p is characterised. It
s shown that for every two intigers a,b > 2 with 2 < a < b, there is a
connected graph G such that v, (G) = a and v4(G) = b, where ~4(G)
is the geodetic domination number of a graph.

Keywords: monophonic number, domination number, monophonic
domination number, geodetic domination number.
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1. Introduction

By a graph G = (V, E'),we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by p and ¢ respectively.
For basic graph theoretic terminology we refer to Harary [1]. The vertices u
and v in a connected graph G,the distance d(u, v) is the length of a shortest
u — v path in G. The eccentricity e(v) of a vertex v in G is the maximum
distance from v and a vertex of G. The minimum eccentricity among the
vertices of G is the radius, rad G or r(G) and the maximum eccentricity is
its diameter, diamG of G. An u— v path of length d(u,v) is called an u —v
geodesic. A vertex x is said to lie on a u — v geodesic P if z is a vertex of P
including the vertices u and v. A geodetic set of G is a set S C V(G) such
that every vertex of G contained in a geodesic joining some pair of vertices
in S. The geodetic number g(G) of G is the minimum order of its geodetic
sets and any geodetic set of order g(G) is a geodetic basis of G . The
geodetic number was introduced in[7] and further studied studied in [4,8].
A chord of a path P is an edge joining two non adjacent vertices of P. A
path P is called monophonic if it is a chordless path. A monophonic set of
G is set M C V such that every vertex of GG is contained in a monophonic
path joining some pair of vertices in M. The monophonic number m(G)
of G is the minimum order of its monophonic sets and any monophonic
set of order m(G) is a minimum monophonic set or simply a m— set of G.
The monophonic number of a graph G is studied in [5,6,9]. If e = uv is an
edge of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendent
edge, u a leaf and v a support vertex. Let L(G) be the set of all leaves
of a graph G. We denote by P,,C),, and K, s, the path on p vertices, the
cycle on p vertices and complete bipartite graph in which one partite set
has r vertices and the other partite set has s vertices respectively. For any
set M of vertices of GG, induced subgraph < M > is the maximal subgraph
of G with vertex set M.For any connected graph G, a vertex v € V(G) is
called a cut vertex of G if < V —{v} > is no longer connected. A maximum
connected induced subgraph without a cut vertex is called a block of G. A
graph G is a block graph if every block in G is complete. Sum of two graphs
G1 and Gs is the union of G and G35 together with all the lines joining
vertices of G1 to vertices of Gy . Let N(v) = {u € V(G) : wv € E(G)}
is called the neighborhood of the vertex v in G. A vertex v is a simplicial
vertex of a graph G if < N(v) > is complete. A simplex of a graph G
is a subgraph of G which is a complete graph. A vertex v in a graph G
dominates itself and its neighbours. A set of vertices D in a graph G is a
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dominating set if each vertex of G is dominated by some vertices of D. The
dominating number v(G) of G is the minimum cardinality of a dominating
set of G. For references on domination parameters in graphs see [2,3]. A
set of vertices M in G is called a geodetic dominating set if M is both a
geodetic set and a dominating set. The minimum cardinality of a geodetic
dominating set of G is its geodetic domination number and is denoted by
74(G). A geodetic dominating set of size v,(G) is said to be a vy,— set. The
geodetic domination number of a graph was introduced and studied in [8].
It is easily seen that a dominating set is not in general a monophonic set
in a graph G. Also the converse is not valid in general. This has motivated
us to study the new domination conception of monophonic domination.
We investigate subsets of vertices of a graph that are both a monophonic
set and a dominating set. We call these sets as a monophonic dominating
sets. We call the minimum cardinality of the monophonic dominating set
of GG,the monophonic domination number of G. Throughout this paper GG
denotes simple connected graph with at least two vertices

The following theorems are used in sequel.

Theorem 1.1. [9]Each simplicial vertex of a connected graph G belongs
to every monophonic set of G. In particular every end vertex of a connected
graph G belongs to every monophonic set of G.

Theorem 1.2. [8]FEach simplicial vertex of a connected graph G belongs
to every geodetic dominating set of G. In particular every end vertex of a
connected graph G belongs to every geodetic dominating set of G.

2. The Monophonic Domination Number Of a Graph

Definition 2.1. Let G be a connected graph. A set of vertices M in G
is called a monophonic dominating set or simply (M, D)-set if M is both
a monophonic set and a dominating set. The minimum cardinality of a
(M, D)- set of G is its monophonic domination number or simply (M, D)-
number and is denoted by v, (G). A (M, D)-set of size v, (G) is said to be
a Ym-set.

Example 2.2. For the graph G is given in Figure 2.1, M = {vi,v4} is a
(M, D)-set of G so that v, (G) = 2.
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Remark 2.3. FEach simplicial vertex of a connected graph G belongs to
every (M, D)- set of G.

Remark 2.4. Let G be a connected graph and v be a cut-vertex of G.
Then every (M, D)- set contains at least one element from each component
of G —v.

Remark 2.5. If G is a connected graph of order p,then
2 < max{m(G),7(G)} < 1m(G) < p.

Remark 2.6. For any cycle Cp, (p > 4), ym(Cp) = v(Cp) = [p/3].

In the following, we determine the (M,D)- number of some standard graphs.

Theorem 2.7. For the complete graph K,(p > 2), ym(K,) = p.

Proof. Since every vertex of the complete graph K,(p > 2) is a simplical
vertex, the vertex set of K, is the unique (M, D)-set of K. Thus 7,,(Kp) = p.
O

Theorem 2.8. For the wheel G = W,(p > 4),

Ym(wp) = 4, if p = 4;
2, ifp=5,6;
3,ifp>T1.
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Proof. Let {z,v1,vs...v,_1} be the vertices of G = W, (p > 4), with deg(x) =
p— 1.

Case(i) Let p = 4. Then G = K, and by Theorem 2.7,7,,(w,) = 4.

Case(ii) Let p = 5 or 6. Then M = {vy,v3} is a (M, D)-set of G so that
Ym(W,) = 2-

Case(iii) Let p > 7. Let M = {z,v;,v;} (1 <1 # j < p—1), where v; and v,
are any two non adjacent vertices of G. Then M is a (M, D)-set of G so that
Ym(G) < 3. Suppose that 4,,,(G) = 2. Then there exists a (M, D)-set M’ such
that |[M'| =2. If M’ = {z,v;},(1 <i<p-—1), then zv;, (1 <i<p-—1)isa chord
of path  — v; and so M’ is not a (M, D)-set of G, which is a contradiction. If
M’ = {v;,v;}(1 <i# j <p—1) then M’ is a monophonic set of G which is not
a dominating set of G,which is a contradiction. Therefore v, (W,) =3. O

Theorem 2.9. For the complete bipartite graph G = K n,Ym(K,n.) =
2, ifm=n=1

nifn>2m=1

min{m,n,4} if m,n > 2.

Proof. Case(i). Let m=n=1. Then G = K3.By Theorem 2.7 v,,(G) = 2.

Case(ii). Let m = 1,n > 2. Then G = K ,,. Let M be the set of n end vertices
of G. Then by Remark 2.3,v,,(G) > n. It is clear that M is a (M,D)-set of G so
that v, (G) = n.

Case(iii) Let 2 < m < n. Let U = {uy,uz...up} and V = {v1,vs...v,} be the
bipartite sets of G

Subcase iiia. Let m = 2,n > 2. Then U = {uq,us} is a (M, D)-set of G so that
Tm(G) =2.

Subcase iiib. Let m = 3 and n > 3. Then M = {uy,uz2,u3} is a (M, D)-set of
G and so v, (G) < 3. Let M’ be a (M, D)— set of G with |M'| =2. If M’ C U,
then there exists # € U such that x ¢ M’. Then the vertex z doesnot lie on
a monophonic path joining a pair of vertices of M’, which is a contradiction. If
M’ C W, then there exists at least one y € W such that y ¢ M’. Then the the
vertex y doesnot lie on monophonic path joining a pair of vertices of M’, which
is contradiction. If M’ C UU W, then M’ = {u;,w; }(1 < < 3),(1 <j < n).
Since w;w; is a chord of the path u; — w;, M’ is not a (M, D)-set of G,which is a
contradiction. Therefore v,,(G) = 3.
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Subcase iiic. Let m >4 and n > 4. Then M = {u;,us,v1,v2} is a (M, D) set of
G and so that v,,(G) < 4. By the similar argument given in Subcase iiib, there is
no (M, D)-set M’ such that | M’ |=2 or | M’ |= 3. Hence v,,(G) =4. O

Theorem 2.10. If G is a non complete connected graph such that it has a mini-
mum cut set, then v,,(G) < p — k(G).

Proof. Since G is non complete, it is clear that 1 < k(G) < p — 2. Let
U = {uy,uz,...,ux} be a minimum cut set of G. Let G1,Ga,...,G.(r > 2) be the
components of G — U and let M = V(G) — U. Then every vertex u;(1 <i < k) is
adjacent to at least one vertex of G; for every j(1 < j <r). It is clear that M is
a (M, D)-set of G so that v,,(G) <p—k(G). O

Theorem 2.11. Let G be a connected graph of order p > 2. Then ~,,(G) = 2 if
and only if there exist a (M, D)-set M = {u,v} of G such that d(u,v) < 3.

Proof.  Suppose v, (G) = 2. Let M = {u,v} be a (M, D)-set of G. Suppose
that d(u,v) > 4. Then the diametrical path contains at least three internal ver-
tices. Therefore 7,,(G) > 3, which is a contradiction. Therefore d(u,v) > 3. The
converse is clear. O

Theorem 2.12. Let G be a connected graph of order p > 2. Then ~,,(G) = p if
and only if G is the complete graph on p vertices.

Proof.  Suppose G = K. Then by Theorem 2.7, 7,,(G) = p. Conversely, let
Ym(G) = p. Suppose that G is non complete. Then by Theorem 2.10, v,,,(G) <
p — 1, which is a contradiction. It follows that G is complete. O

Theorem 2.13. Let G be a connected graph of order p > 2. Then 7,,(G) =p—1
if and only if G = K1 + |Jm,; K, where > " m; > 2,7 > 1.

Proof. Suppose 7,,(G) = p — 1. Then by Theorem 2.10, k(G) = 1. Therefore
G contains only one cut vertex, say v. We show that each component of G — {v}
is complete. Suppose that there exist a component G; of G — {v} such that
G is non complete. Then |Gi| > 2. Let u be the non simplicial vertex of Gj.
Then M = V(G) — {u,v} is a (M, D)-set of G so that v,,(G) < p — 2, which
is a contradiction. Hence each component of G — {v} is complete. Therefore
G = Ky + Um;K;, where ) m; > 2. Conversely suppose G = K; + Jm,K;
where )" m; > 2. Then it is clear that v,,,(G) =p—1. O

Remark 2.14. IfG is a graph of order p, then 7, (G)+m (G ) < 2p and 7, (G) +
vm (G)= 2p if and only if G = K, or G=K,,.

Theorem 2.15. IfG is a connected graph of order p, then 7, (G)+7vm (G)= 2p—1
if and only if p > 3 and G = Ky p—1 or G= Ky p_1.
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Proof. Suppose p >3 and G = K;, 1 or G = Ky, 1. Then by Theorem

2.9(ii), Ym(G) + vm(G) = 2p — 1. Conversely suppose Y, (G) + vm(G) = 2p — 1.
Then 7,,(G) = p or v,m(G) = p. Without loss of generality, we assume that
Ym(G) = p. Then 7,,(G) = p — 1. We prove that the components of G are
complete graphs. If not, then G contains a component H with two non adjacent
vertices u and v. Let P be a path in u — v geodesic in H and z be a vertex of
P adjacent to u. Let S = V(G) — {z}. Then S is a monophonic dominating set
of G so that 7,,(G) < p — 1,which is a contradiction to 7,,(G) = p. If G is not
connected, then p > 2 and G is connected. By Theorem 2.13, we find that there
exists a vertex v in G such that v is adjacent to every other vertex of G and G —v
is the union of at least two complete graphs. Therefore p > 3. Since 7v,,(G) = p,

the components of G — {v} are isolated vertices. This shows that G = Ky ,,_1. O

3. Realization results

Theorem 3.1. For any two integers a,b > 2, there is a connected graph G such
that v(G) = a,m(G) = b and 7, (G) = a + .

Proof. Let F:r s,u,v,t,7 be a copy of Cs. Let H be a graph obtained from
F by adding the new vertices 21, 29, ..., 251 and join each to the vertex r. Let G
be the graph obtained from H by taking a copy of the path on 3(a—2)+1 vertices
Y0, Y15 s Y3(a—2) and joining yo to the vertex u as shown in the Figure 3.1.Let
Z = {r,u,Y2,Ys5, -, Y3(a—2)—1}-Then it is clear that Z is a minimum dominating
set of G so that ¥(G) = a. Let Z’ = {21, 22,..., 2b—1,Y3(a—2) }- Then by Theorem
1.1, Z’ is a subset of every monophonic set of G and so m(G) > b. Now Z’ is
a monophonic set of G so that m(G) = b. By Remark 2.3, Z’ is subset of every
(M, D)-set of G. Now, let M = ZUZ'. Tt is clear that M is a minimum (M, D)-set
of G so that v,,(G) =a+b. O
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Theorem 3.2. For any two integers a,b > 2 with 2 < a < b, there is a connected
graph G such that v,,,(G) = a and v4(G) = b.

Proof. Let P: x,y, 2z be a path on three vertices.Let P; : u;,v;(1 <4 < (b—a+ 2)
be a path on two vertices. Let H be a graph obtained from P and P; by join-
ing each u;(1 <149 <b—a+2) with 2 and each v;(1 <4 < b,12) with z. Let G be
a graph obtained from H by adding the new vertices z1, 23, ..., z4—2 and joining
each z;(1 <i < a—2) with 2 and y as shown in Figure 3.2. First we show that
Ym(G) = a. Let Z' = {z1,23,...,24—2} be the set of all of simplicial vertices of G.
By Remark 2.3, Z is subset of every (M, D)-set of G. It is clear that Z is not a
(M, D)-set of G. 1t is easily verified that Z U {v}, where v ¢ Z is not a (M, D)-
set of G and so v, (G) > a.However M = Z U {z, z} is a (M, D)-set of G so that
¥m(G) = a. Next, we show that v4(G) = b. By Theorem 1.2 Z is subset of every
geodetic dominating
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Figure 3.2

set of G. It can be easily verified that Z is not a geodetic dominating set of
G. Now M=Z U {v1,va,...,Up—qt2} is a geodetic dominating set of G so that
v4(G) < b. Let H; = {u;,v;}(1 <i<b—a+2). Let S be a geodetic dominating
set of G. Suppose that z € S. Then S contains at least one element of each
H;(1 <i<b—a+2). If not suppose that uj,v; ¢ S. Then uy,v; do not lie on
a geodesic joining a pair of vertices of S, which is a contradiction. Therefore S
contains at least one element of each H;(1 <i < b—a+ 2). Hence it follows that
v4(G) >a—2+4+1+4+b—a+2=>b+ 1, which is a contradiction. Therefore z ¢ S.
Let G; = {uj,vi1}(1<i<b—a+1), Q; = {vi,uip1}(1<i<b—a+1) and
S" = {v1,v9, ..., Up—at2}. It is easily observed that S contain at least one element
from each G;(1 < i < b— a+ 2) or least one element from each Q;(1 < i < b—a+2)
or S” C S. Hence it follows that v,(G) =a—-2+b—a+2=05b. O

4. Block Graphs

Theorem 4.1. Let G be a connected block graph of order p > 2, and let M be
the set of simplicial vertices of G. Then M is the unique minimum monophonic
set of G.

Proof.  The theorem is obvious when M = V(G). Hence assume that M C
V(G). Let v € V(G) — M be an arbitrary vertex. It follows that v is a cut-vertex
of G. Let H and H' be two components of G — {v} and H and H’ are also block
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graphs. Let x € V(H) and 2’ € V(H') be two simplicial vertices of G. Let P
be a monophonic path from z to 2’ in G. Since v is a cut-vertex of G containing
v, the monophonic path contains v. Hence P is a x — 2’ monophonic path of G
containing v. Then J[M] = V(G). Thus M is a monophonic set of G. As every
monophonic set M’ of G must contain M, the set M is the unique monophonic
set of G. O

Theorem 4.2. If G is a connected block graph of order p > 2, then the following
conditions are equivalent.

(2) Y (G) = m(G) = 7(G).
(b) The set M of simplicial vertices of G is a minimum dominating set of G.

¢) Every block of G contains at most one simplicial vertex, and every vertex o
E block of G contains at t implicial vert d tex of
G belongs to exactly one simplex of G.

Proof. (a) = (b). Suppose 7,,(G) = m(G) = v(G). Then by Theorem 4.1,
the set M of simplicial vertices of G is a minimum dominating set of G.

(b) = (a). Suppose the set M of simplicial vertices of G is a minimum dominating
set of G. It follows that v,,(G) = m(G) = v(G).

(¢) = (b). Let G1,Ga,...Gi be the simplexes of G with simplicial vertices
v; € V(G;) for i = {1,2,...,k}. Clearly each simplex G; is also a block of G. Since
every block of G contains at most one simplicial vertex, v; is the only simplicial
vertex of G;,(i=1,2,....k). The hypothesis that every vertex of G belongs to ex-
actly one simplex of G shows that V(G) = V(G1) UV (G2)U...UV(Gy). Therefore
M = {v1,vs,...,v;} is a dominating set of G. On the contrary, suppose that G
contains a dominating set M’ with |M’| < |M|. This implies that there exists a
vertex y € M’such that y dominates at least two simplicial vertices, say v; and v
which is a contradiction. This contradiction shows that y belongs to the simplexes
Giand G3. Hence M is a minimum dominating set of G.

(b) = (¢). Suppose that the set M of simplicial vertices of G is a minimum
dominating set of G. If there is a block containing two simplicial vertices v and
v, then M — {u} is also a dominating set of G, which is a contradiction. This
shows that every block of G contains at most one simplicial vertex. If there exists
a vertex which does not belong to any simplex of G, then M is not a dominating
set of G, which is a contradiction. Finally, on the contrary, suppose that there
is a vertex u belonging to at least two simplexes of G; and Gs. If v; and vy are
simplicial vertices of G; and G2 then (M — {v1,v2}) U {u} is a dominating set
of GG, which is a contradiction. Hence, every vertex of G belong to exactly one
simplex of G. O
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