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Purpose. Body composition analysis in colorectal cancer (CRC) typically utilises a single 2D-abdominal axial CTslice taken at the
mid-L3 level. Te use of artifcial intelligence (AI) allows for analysis of the entire L3 vertebra (non-mid-L3 and mid-L3). Te goal
of this study was to determine if the use of an AI approach ofered any additional information on capturing body composition
measures.Methods. A total of 2203 axial CTslices of the entire L3 level (4–46 slices were available per patient) were retrospectively
collected from 203 CRC patients treated at Western Health, Melbourne (97 males; 47.8%). A pretrained artifcial intelligence (AI)
model was used to segment muscle, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) on these slices. Te
diference in body composition measures between mid-L3 and non-mid-L3 scans was compared for each patient, and for males
and females separately. Results. Body composition measures derived from non-mid-L3 scans exhibited a median range of 0.85% to
6.28% (average percent diference) when compared to the use of a single mid-L3 scan. Signifcant variation in the VATsurface area
(p � 0.02) was observed in females compared to males, whereas male patients exhibited a greater variation in SAT surface area
(p< 0.001) and radiodensity (p � 0.007). Conclusion. Signifcant diferences in various body composition measures were observed
when comparing non-mid-L3 slices to only the mid-L3 slice. Researchers should be aware that considering only the use of a single
midpoint L3 CT scan slice will impact the estimate of body composition measurements.

1. Introduction

Te measurement of body composition relies on the as-
sessment of quantity and distribution of body fat and lean
muscle mass [1] and varies between sexes [2]. In colorectal
cancer (CRC) patients, body composition has been associ-
ated with survival-related clinical outcomes [3–8]. Te most
common technique for evaluating body composition has
arisen through the use of computed tomography (CT) [9].
Grading of CT images through the use of a semiautomated
analysis using a manual interpretation of body composition
is possible, but this approach has limitations due to its

labour-intensive nature and a high degree of specialisation.
A single abdominal axial CT image taken at the L3 level
(typically at the midpoint of L3, referred to as mid-L3 from
hereon) is typically used to examine body composition in
individuals with CRC [10–12]. However, there is limited
justifcation as to why the mid-L3 is used as the gold
standard [13, 14] and limited data exist to compare whether
body composition measures utilising other CTslices from L3
or the entire L3 vertebral level (non-mid-L3) result in dif-
ferent estimates.

Deep learning is one of the primary techniques used in
artifcial intelligence (AI), and its use has been growing in
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popularity as a viable approach for automating the process of
body composition segmentation [15]. In prior studies, AI
models designed to replicate the process of semiautomated
analysis have been trained and validated using a single mid-
L3 slice [16–21]. Tese models have yielded promising re-
sults [16–21]. Our previously trained AI model has also
shown promising segmentation (98% dice similarity) of CT
body composition in CRC patients (submitted for publi-
cation). Te use of AI technologies may therefore make it
possible for the rapid acquisition of other L3 slices to assess
body composition measures compared to those from a single
mid-L3 slice.

In the present study, we aimed to employ our in-house
AI model for automated segmentation and quantifcation of
body composition from all available CT scans from a pa-
tient’s complete L3 level. Tis would allow determination as
to the level of variation across the L3 region in terms of
estimating body composition measurements and highlight
any potential impact on future clinical studies.

2. Methods

Tis study was approved by the Western Health Ofce for
Research (Project QA2020.24_63907). Te protocol fol-
lowed the tenets of the Declaration of Helsinki and all
privacy requirements were met.

Te AI model was developed and validated using Python
3.7.11, Spyder 5.15 (Anaconda distribution) with Keras
(https://keras.io/) and Tensorfow (https://www.tensorfow.
org/) using NVIDIA RTX Graphics Processing Unit.
RStudio (version 2022.2.2.485) was used to perform other
statistical analysis.

2.1. Study Population and CT Scans. Using sagittal imaging,
the anatomical level of L3 was identifed by a trained human
grader (author JoY) using the medical image viewer Synapse
5 (FUJIFILM). All available axial scans (n� 2203 axial scans)
at the L3 level for each patient were collected. For each
patient, one CTslice being most representative of the L3 was
defned as the mid-L3 slice, which in line with the Alberta
Protocol (https://tomovision.com/Sarcopenia_Help/index.
htm) was manually selected by a trained human grader
(author JoY).

Each collected CT scan was represented as a digital
imaging and communications in medicine (DICOM) image
with a resolution of 512 by 512 pixels. Te CT scan pa-
rameters included slice thickness (1mm–8mm) and dose
value (100–140 kVp) that difered depending on the clinical
indication. Each CT unit/pixel was transformed to the
Hounsfeld unit (HU) scale; a quantitative measure of
radiodensity for analysing CT scans [22] using the formula:
pixel value× slope + intercept (https://www.idlcoyote.com/
fleio_tips/hounsfeld.html). Te pixel value, intercept, and
slope were retrieved from each DICOM fle.

Patients’ inclusion criteria included being (a) diagnosed
with colon cancer atWestern Health between 2012 and 2021.
Patients were identifed from the Australian Comprehensive
Cancer Outcomes and Research Database (ACCORD),

a prospectively maintained registry of patients diagnosed
with CRC in Victoria, Australia; (b) availability of L3 axial
CT scans.

Patients were excluded from the study if any of the
following were present in their L3 scan: (a) low CT scan
quality that was difcult to manually read; (b) evidence of an
excess quantity of SAT extending outside the CT image; (c)
signs of muscle cut of; and (d) presenting with major
artefacts.

Age at the time of diagnosis and sex were both obtained
from the ACCORD database for each patient.

2.2. Body Composition Measures. Tis study examined
skeletal muscle (SM), visceral adipose tissue (VAT), and
subcutaneous adipose tissue (SAT) as components of body
composition measures on the mid-L3 slice and other L3
slices for each patient. Te following body composition
measures were analysed in this study:

(1) SM surface area (cm2)
(2) VAT surface area (cm2)
(3) SAT surface area (cm2)
(4) SM radiodensity (HU)
(5) VAT radiodensity (HU)
(6) SAT radiodensity (HU)

Te formula used to calculate the surface area (cm2) of
a particular body composition for each slice was (size of the
specifc body composition× the pixel spacing). Te pixel
spacing was derived from the data included within each CT
DICOM fle.

Te radiodensity of a specifc body composition measure
was determined by averaging the values of pixel representing
that body composition in each slice.

2.3. AI Model. A two-dimension U-Net convolutional
network that was trained and validated on 541 previously
collected mid-L3 CT scans was used to segment muscle,
VAT, and SAT (submitted for publication). Te training
dataset comprised 338 CT scans derived from CT scans of
116 CRC patients. Each patient’s accessible CT scans (from
six months prior to surgery or three months after surgery)
were collected so that one or more scans were available for
the same patient. For each patient, a trained human grader
(author JoY) manually selected the mid-L3 CT slice based
on the Alberta Protocol (https://tomovision.com/
SarcopeniaHelp/index.html). Using a semiautomated soft-
ware (Slice-O-Matic version 5.0, Tomovision, Quebec,
Canada), all CT scans of the training dataset were manually
segmented in accordance with the Alberta Protocol (https://
tomovision.com/Sarcopenia_Help/index.html). Tis dataset
was then randomly divided into a training (80% of scans,
number of scans� 270) and a validation dataset (the
remaining 20% of scans, number of scans� 68). Te training
dataset was used to develop the segmentation model, and the
validation dataset was applied to assess the performance of
the fnal ftted model. According to the results, the average

2 Radiology Research and Practice

https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://tomovision.com/Sarcopenia_Help/index.htm
https://tomovision.com/Sarcopenia_Help/index.htm
https://www.idlcoyote.com/fileio_tips/hounsfield.html
https://www.idlcoyote.com/fileio_tips/hounsfield.html
https://tomovision.com/SarcopeniaHelp/index.html
https://tomovision.com/SarcopeniaHelp/index.html
https://tomovision.com/Sarcopenia_Help/index.html
https://tomovision.com/Sarcopenia_Help/index.html


dice coefcient in the validation dataset for all body com-
position segmentation was 0.98, with 0.98 for muscle, 0.98
for VAT, and 0.99 for SAT. Te AI model was further tested
on an additional CTdataset from another 203 patients, with
1 in 10 scans (number of scans� 21) selected at random for
manual segmentation in order to perform cross-validation.
Te average dice coefcient for the AI model constructed in
this test dataset was 0.98, with 0.97 for muscle, 0.98 for VAT,
and 0.98 for SAT.

Figure 1 shows an example of body composition seg-
mentation, including an original CT scan and a segmented
CT scan.

To assess the performance of our AI model in seg-
menting diferent L3 slices in the current dataset, all available
scans at the L3 level (198 CT slices in total) from a randomly
selected 21 patients were manually segmented (author JoY)
using the semiautomated software (Slice-O-Matic version 5.0,
Tomovision, Quebec, Canada), according to the Alberta
Protocol (https://tomovision.com/Sarcopenia_Help/index.
htm). Te threshold settings for the segmentation tool
were as follows: SM: −29 to 150 HU, VAT: −150 to −50 HU,
and SAT: −190 to −30. Tese thresholds were predefned in
the Alberta Protocol for SliceOmatic (https://tomovision.
com/Sarcopenia_Help/index.htm).

Te Sorensen–Dice coefcient (Dice coefcient) was
used to determine the efectiveness of U-Net-based seg-
mentation by comparing AI and manual reading on the 198
assessed scans. Te average Dice coefcient achieved for all
body composition segmentation on these scans was 0.97,
with 0.97 for SM, 0.96 for VAT, and 0.97 for SAT, re-
spectively, indicating that our AI produced a highly accurate
representation of body composition segmentation for each
of the diferent L3 slices.

2.4. Statistical Analysis. To compare body composition
between mid-L3 and other L3 slices, the average percent
diference was calculated. For a particular body composition
measure of each patient, the average percent diference was
computed using the formula: average (absolute value ((each
L3 slice (excluding mid-L3) body composition–mid-L3 body
composition)/mid-L3 body composition)× 100).

Te Mann–Whitney test was performed to determine if
there was a statistically signifcant diference between sexes
(unpaired data) regarding continuous parameters. A p value
threshold of 0.05 indicated a statistically signifcant result.

3. Results

Te dataset for the current study consisted of 2203 CTscans
obtained from 203 patients who had surgical treatment for
CRC. Te mean age of the cohort was 60.87± 12.42 years
(97M, 106 F). Te median number of CT slices that rep-
resented the whole-L3 vertebra was 10 slices per patient
(IQR: 9–11).

3.1. Single Mid-L3 Slice. Body composition measurements
using themid-L3 CTslice of all patients are shown in Table 1.
Females had signifcantly less SM and VATsurface area than

males (p< 0.001). Female patients exhibited signifcantly
more SAT surface area and lower SAT density than male
patients (p< 0.001).

3.2. Non-Mid-L3 versus Mid-L3 Slice. Te average percent
diference in SM, VAT, and SAT surface area and radio-
density between the mid-L3 slice and non-mid-L3 slices
were calculated for each patient (Table 2, Supplementary
Figure 1). Among these various body compositions, the VAT
surface area had the greatest average percent diference
(median� 6.28%, IQR� 3.94–10.79) between mid-L3 and
non-mid-L3, followed by SATsurface area (median� 5.49%,
IQR� 3.30–7.35), and SM surface area (median� 3.58%,
IQR� 2.62–4.66).

We further examined the average percent diference in
calculated measures of each body composition between the
mid-L3 slice and the non-mid-L3 slices by sex (Table 2,
Supplementary Figure 2). Female patients had a signifcantly
larger average percent diference in VAT surface area
(p � 0.02; median� 6.90%, IQR� 4.62–11.27) than males
(median� 5.23%, IQR� 3.33–8.99). In contrast, male pa-
tients showed signifcantly larger percent diferences in SAT
surface area (p< 0.001, median� 6.60%, IQR� 4.64–8.31)
(median� 4.33%, IQR� 2.38–6.22) and radiodensity
(p � 0.007, median� 0.97%, IQR� 0.65–1.35) than females
(median� 0.76%, IQR� 0.50–1.13).

4. Discussion

Body composition measurements, in particular SM surface
area, have been associated with rectal cancer response to
neoadjuvant therapy and corresponding survival outcomes
[23, 24]. Furthermore, body composition has been suggested
as a superior method of dosing chemotherapy for CRC, to
decrease rates of dose-limiting toxicity [8, 25]. Currently,
2D body composition is still commonly measured as there
is limited clinically validated software available for re-
searchers and clinicians to use. As a result, the gold
standard Alberta Protocol derived mid-L3 vertebral CT
slice is routinely utilised for the measurement of body
composition [10–12].

Two studies by Shen et al. [13, 14] published in 2004 have
been frequently cited as justifcations for the use of the L3
vertebra as the gold standard of obtaining body composition.
Te frst study examined the relationship between cross-
sectional VATareas at various anatomic locations and VAT
volume in 320 healthy subjects. Teir fndings indicated
that the area between 5 and 10 cm above the L4-5 vertebrae
level provided the most accurate estimate of VAT volume
in men and women, respectively, when utilising only
a single 2D CT slice. Te latter study by Shen investigated
the relationship between a single cross-sectional area at
diferent anatomic locations and the total volume of muscle
and adipose tissues in 328 healthy subjects. Tese results
indicated that the area between 5 cm above the L4-5 level
and 5 cm below the L4-5 level showed the highest corre-
lation with muscle and adipose tissues volume, re-
spectively. However, both studies relied on MRI scans, and
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neither study included CRC patients nor specifcally stated
the signifcance of L3 segments (although L3 is located 5/
10 cm above L4-5). Another study by Schweitzer et al. [26]
reported that a single MRI scan at the L3 level was the best
representative site for assessing total volumes of SM, VAT,
and SAT. Again, this study was conducted on only 142
healthy subjects and not CRC patients. Consequently, if
considering using only a single representative CT slice for
body composition, using a mid-L3 CT slice and correlating
it to a patient’s clinical outcome does not appear to have
been adequately addressed and requires further
investigation.

Our study demonstrated that body composition mea-
surements obtained from a single-CTslice image at the mid-
L3 vertebral level difer to those obtained from analysis of
multiple slices that constitute the entire L3 vertebra. Te
surface area of body composition components displayed
a large degree of variability across L3. For example, VATand
SATsurface area readings had a median of 5.49% and 6.28%
in average percent diference, respectively, between non-
mid-L3 slices and the mid-L3 vertebral slice.

It was of particular interest that we identifed signifcant
variation in body composition parameters in the mid-L3
slice and the non-mid-L3 slices between the two sexes. Our

Table 1: Characteristics of body composition for all patients and by sex in CRC patients using only the mid-L3 slice.

All (n� 203)
Sex split

Female (n� 106 patients) Male (n� 97 patients) p value (male vs
female)

Median (interquartile range)
SM surface area (cm2) 125.03 (101.69–149.00) 103.92 (96.31–119.66) 148.14 (133.44–164.21) <0.00 
Muscle radiodensity (HU) 37.82 (31.63–43.44) 37.07 (30.60–43.21) 38.78 (33.13–44.11) 0.14
VAT surface area (cm2) 138.12 (80.76–225.92) 107.68 (69.88–174.59) 191.34 (99.64–282.73) <0.00 
VAT radiodensity (HU) −90.89 (−95.70–−84.34) −90.52 (−95.27–−84.20) −91.36 (−97.00–−85.10) 0.51
SAT surface area (cm2) 199.30 (132.30–292.60) 262.68 (171.61–346.77) 148.0 (108.5–201.7) <0.00 
SAT radiodensity (HU) −102.74 (−106.15–−95.69) −103.92 (−107.85–−100.17) −99.37 (−104.29–−92.26) <0.00 

Table 2: Average percent diference (%) in muscle, VAT, SATarea, and radiodensity between the mid-L3 slice and non-mid-L3 slices in all
patients and by sex. For each patient, the average percent diference was calculated by averaging (absolute value ((each L3 slice (excluding
mid-L3) body composition–mid-L3 body composition)/mid-L3 body composition)× 100).

All (n� 203)
Sex split

Female (n� 106 patients) Male (n� 97 patients) p value (male vs
female)

Average percent diference (%) median (interquartile range)
SM surface area 3.58% (2.62–4.66) 3.64% (2.62–4.67) 3.54% (2.57–4.63) 0.96
Muscle radiodensity 2.85% (2.00–4.00) 3.02% (2.03–4.26) 2.74% (1.89–3.71) 0.09
VAT surface area 6.28% (3.94-10.79) 6.90% (4.62-11.27) 5.23% (3.33–8.99) 0.02
VAT radiodensity 1.28% (0.86–2.04) 1.32% (0.85–2.05) 1.23% (0.90–2.00) 0.85
SAT surface area 5.49% (3.30–7.35) 4.33% (2.38–6.22) 6.6% (4.64–8.31) <0.00 
SAT radiodensity 0.85% (0.57–1.27) 0.76% (0.50–1.13) 0.97% (0.65–1.35) 0.007
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Figure 1: A sample case demonstrating the original CT scan (a) and the AI segmented CT slice (b). In the segmented CT slice, the red
indicates the region of SAT, the yellow indicates the region of VAT, and the blue indicates the region of muscles.
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study also demonstrated that between the mid-L3 slice and
non-mid-L3 slices, VAT variance was greater in females,
whereas the opposite was true for SAT variance.

From our results, it can be surmised that the use of only
a single 2D CT scan at the mid-L3 level presents a limited
view of body composition and that the advent of AI now
ofers researchers an enhanced and more accurate means of
obtaining a broader based measure of 3D body composition
measures which will aid in our understanding of the role that
body composition plays in clinical outcomes.

In this study, we have presented results from our validated
AI model to automatically segment body composition mea-
sures for SM, SAT, and VATfrommultiple CTslices across the
whole-L3 vertebra in CRC patients. Manual cross-check
validation with experienced researchers demonstrated that
the AI model provides excellent body composition segmen-
tation on all CT slices at this L3 level (Dice similarity of 0.97).

Despite these promising results, there were several
limitations to our study. Te study was conducted at a single
centre, with data that were collected retrospectively. Fur-
thermore, these fndings on body composition measures need
to be further elaborated on their clinical impact on CRC
outcomes. In addition, while our results are highly promising,
we should note that our results have not been evaluated on an
external dataset (i.e., other hospital institutions or in other
countries). Our future work will recruit additional internal
and external patient datasets to test the validity of our results
and strengthen our fndings with data from various in-
stitutions and patient cohorts in order to verify its robustness.
A future prospective study in a clinical context is essential to
conduct more rigorous testing of our AI models, specifcally
to evaluate their generalizability and robustness.

5. Conclusion

We found that the use of multiple CT slices from various
locations on L3 identifed signifcant variations in estimates
of body composition compared to when only using a single
slice from the mid-L3 vertebral level. Tis heterogeneity in
body composition across L3 was signifcantly linked to sex
diferences. Te use of AI to derive 3D body composition
ofers an enhanced means of obtaining a more accurate
measure of body composition as a predictive tool for de-
termining outcomes related to colorectal cancer.

Data Availability

Te datasets generated during and/or analysed during the
current study are available from the corresponding author
on reasonable request.

Disclosure

Te sponsor or funding organizations had no role in the
design or conduct of this research.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this article.

Authors’ Contributions

Justin M. C. Yeung and Paul N. Baird contributed equally as
senior authors.

Acknowledgments

Te authors would like to thank Western Health, Mel-
bourne, Australia, for allowing our study team to complete
this study. Open access publishing facilitated by Te Uni-
versity of Melbourne, as part of the Wiley-Te University of
Melbourne agreement via the Council of Australian Uni-
versity Librarians.

Supplementary Materials

Supplementary Figure 1 Average percent diference in
muscle, VAT, and SAT surface area and radiodensity be-
tween the mid-L3 slice and non-mid-L3 slices for all pa-
tients. Supplementary Figure 2 Average percent diference in
muscle, VAT, and SAT surface area and radiodensity be-
tween the mid-L3 slice and non-mid-L3 slices for females
(A) and males (B). (Supplementary Materials)

References

[1] S. Bedrikovetski, W. Seow, H. M. Kroon, L. Traeger,
J. W.Moore, and T. Sammour, “Artifcial intelligence for body
composition and sarcopenia evaluation on computed to-
mography: a systematic review and meta-analysis,” European
Journal of Radiology, vol. 149, Article ID 110218, 2022.

[2] M. A. Bredella, “Sex diferences in body composition,” Ad-
vances in Experimental Medicine and Biology, vol. 1043,
pp. 9–27, 2017.

[3] G. Malietzis, A. C. Currie, T. Athanasiou et al., “Infuence of
body composition profle on outcomes following colorectal
cancer surgery,” British Journal of Surgery, vol. 103, no. 5,
pp. 572–580, 2016.

[4] A. S. Almasaudi, R. D. Dolan, S. T. McSorley, P. G. Horgan,
C. Edwards, and D. C. McMillan, “Relationship between
computed tomography-derived body composition, sex, and
post-operative complications in patients with colorectal
cancer,” European Journal of Clinical Nutrition, vol. 73, no. 11,
pp. 1450–1457, 2019.

[5] I. Drami, E. T. Pring, L. Gould et al., “Body composition and
dose-limiting toxicity in colorectal cancer chemotherapy
treatment; a systematic review of the literature. Could muscle
mass be the new body surface area in chemotherapy dosing?”
Clinical Oncology, vol. 33, no. 12, pp. e540–e552, 2021.

[6] J. J. Hopkins, R. L. Reif, D. L. Bigam, V. E. Baracos,
D. T. Eurich, and M. B. Sawyer, “Te impact of muscle and
adipose tissue on long-term survival in patients with stage I to
III colorectal cancer,” Diseases of the Colon and Rectum,
vol. 62, no. 5, pp. 549–560, 2019.

[7] J. Xiao, V. C. Mazurak, T. A. Olobatuyi, B. J. Caan, and
C. M. Prado, “Visceral adiposity and cancer survival: a review
of imaging studies,” European Journal of Cancer Care, vol. 27,
no. 2, Article ID e12611, 2018.

[8] K. Cao, J. Yeung, Y. Arafat et al., “Can AI-based body
composition assessment outperform body surface area in
predicting dose-limiting toxicities for colonic cancer patients
on chemotherapy?” Journal of Cancer Research and Clinical
Oncology, vol. 2023, 2023.

Radiology Research and Practice 5

https://downloads.hindawi.com/journals/rrp/2023/1047314.f1.zip


[9] C. Yip, C. Dinkel, A. Mahajan, M. Siddique, G. J. Cook, and
V. Goh, “Imaging body composition in cancer patients:
visceral obesity, sarcopenia and sarcopenic obesity may im-
pact on clinical outcome,” Insights Imaging, vol. 6, no. 4,
pp. 489–497, 2015.

[10] A. A. Arayne, R. Gartrell, J. Qiao, P. N. Baird, and J. M. Yeung,
“Comparison of CTderived body composition at the thoracic
T4 and T12 with lumbar L3 vertebral levels and their utility in
patients with rectal cancer,” BMC Cancer, vol. 23, no. 1, p. 56,
2023.

[11] J. C. Brown, S. B. Heymsfeld, and B. J. Caan, “Scaling of
computed tomography body composition to height: relevance
of height-normalized indices in patients with colorectal
cancer,” J Cachexia Sarcopenia Muscle, vol. 13, no. 1,
pp. 203–209, 2022.

[12] A. Kotti, A. Holmqvist, M. Woisetschläger, and X.-F. Sun,
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