
Enabling Transparent Hardware Acceleration on Zynq SoC for
Scientific Computing

Luca Stornaiuolo
luca.stornaiuolo@polimi.it

Politecnico di Milano
Milan, Italy

Filippo Carloni
filippo.carloni@mail.polimi.it

Politecnico di Milano
Milan, Italy

Riccardo Pressiani
riccardo.pressiani@mail.polimi.it

Politecnico di Milano
Milan, Italy

Giuseppe Natale
giuseppe.natale@polimi.it
Politecnico di Milano

Milan, Italy

Marco Santambrogio
marco.santambrogio@polimi.it

Politecnico di Milano
Milan, Italy

Donatella Sciuto
donatella.sciuto@polimi.it

Politecnico di Milano
Milan, Italy

ABSTRACT
In a quest for making FPGA technology more accessible to the

software community, Xilinx recently released PYNQ, a framework
for Zynq that relies on Python and overlays to ease the integration
of functionalities of the programmable logic into applications. In
this work we build upon this framework to enable transparent hard-
ware acceleration for scientific computations for Zynq. We do so
by providing a custom NumPy library designed for PYNQ, as it is
the de-facto scientific library for Python. We then demonstrate the
effectiveness of the proposed approach on a biomedical use case
involving the extraction of features from the Electroencephalogra-
phy (EEG).

KEYWORDS
Zynq, PYNQ, Python, NumPy, FPGA

ACM Reference Format:
Luca Stornaiuolo, Filippo Carloni, Riccardo Pressiani, Giuseppe Natale,
Marco Santambrogio, and Donatella Sciuto. 2019. Enabling Transparent
Hardware Acceleration on Zynq SoC for Scientific Computing. In Proceed-
ings of EWiLi ’19, October 17, 2019, New York, USA, , (Ed.). ACM, New York,
NY, USA, 6 pages.

1 INTRODUCTION
FPGAs are experiencing an exceptionally favorable moment, as

demonstrated by Intel’s acquisition of Altera, Microsoft’s Catapult
project [1], and Amazon’s integration of FPGAs as accelerators in
their cloud offerings1. The slowing of Moore’s law, and the rise
of fields as artificial intelligence and computational biology, are
indeed shifting the interest of industry and academia towards less
conventional computing architectures, that can meet the ever in-
creasing demand for performance and energy efficiency, an exem-
plary choice being precisely FPGAs. However, no matter how much
FPGA technology has matured, the usability barrier is still pre-
venting mainstream adoption from happening. As a matter of fact,
integrating FPGA-based hardware accelerators into applications to-
day is still a cumbersome experience. The current implementation
flow requires specific skills and knowledge of low-level tools that
1https://aws.amazon.com/it/ec2/instance-types/f1

EWiLi ’19, October 17, 2019, New York, USA,
Copyright held by Owner/Author(s).
2019.

are simply out of reach for the largest part of software developers,
and albeit High Level Synthesis (HLS) does mitigate some difficul-
ties, by at least offering the possibility to use higher level languages,
it still substantially requires to go through the same development
process.

In an effort to address the usability challenge, Xilinx recently
released PYNQ (PYthon productivity for zyNQ)2. This project, as
the name suggests, is meant to enhance productivity on Zynq SoCs,
that integrate a multi-core ARM processor with an FPGA into a
single chip, with the help of the popular Python programming lan-
guage [2]. With Python, developers can build complex applications
very quickly, by leveraging its high level of abstraction and the
plethora of available libraries. PYNQ then offers the possibility to
exploit the programmable logic within the Python environment by
means of overlays, or hardware libraries. These overlays are essen-
tially FPGA designs whose functionalities are made available to the
user as Python Application Programming Interface (API). Develop-
ers can then simply import and use these libraries, exploiting the
programmable logic while staying at the pure software level.

In this work, we start with the observation that a substantial
amount of Python applications rely on NumPy3, arguably the most
popular Python package, to perform scientific computations, whose
computational kernels are usually amenable to hardware accelera-
tion. We leverage this observation and exploit the overlay concept
to build a hardware accelerated version of NumPy that is seam-
lessly integrated into PYNQ. This modified NumPy can be used
to accelerate applications by simply changing an import in the
end-user application, with everything handled automatically and
transparently. We use a biomedical use case involving the extrac-
tion of features from the EEG to demonstrate the effectiveness of
the proposed approach. This paper represents also an evolution
and integration of our past work [3].

The paper continueswith Section 2, wherewe provide an overview
of PYNQ and discuss the related work. Section 3 is then devoted to
the description of the proposed framework to enable transparent
hardware acceleration, and it is followed by Section 4, that dis-
cusses the use-case employed for validation. We then present the
experimental results in Section 5, before concluding and outlining
possible future directions with Section 6.

2http://www.pynq.io
3http://www.numpy.org



EWiLi ’19, October 17, 2019, New York, USA,
Copyright held by Owner/Author(s). Stornaiuolo, et al.

Figure 1: Block design of the official PYNQ-Z1 base overlay
from Xilinx. The design includes hardware IP to control
GPIO devices (LEDs, Switches, Buttons), Video, Audio, and
other custom interfaces on the target board, and connects
these IP blocks to the Zynq PS.

2 PRELIMINARIES
2.1 The PYNQ Framework

PYNQ has been released in 2016 by Xilinx, it targets Zynq SoCs,
and its objective is to allow developers to write applications that
exploit the programmable logic without having to use, or know
at all, the low-level design tools needed to design programmable
logic circuits. PYNQ relies on Python as the productivity language
of choice, a decision driven by its incredible popularity [2], and the
fact that Python raises the level of programming abstraction which
results in more concise, expressive code, that is in turn less prone
to errors and faster to write. Moreover, PYNQ uses CPython, the
default and most used Python interpreter, that is written in C and
comes with different tools andmethodologies to bind functionalities
from foreign languages into Python. This means that developers do
not have to compromise performance for productivity, as one can
always wrap high performance code written in a lower-level lan-
guage into Python. This has been proven to be beneficial in the case
of PYNQ [4], but it is, in general, an important feature of CPython,
already exploited by the community to build sophisticated libraries,
such as NumPy itself, that expose a simple Python interface but
relies on highly optimized code written in another language. Also,
PYNQ proposes the concept of overlays, or hardware libraries, as a
means to utilize the programmable logic. These overlays resemble
classical software libraries, but expose functionalities of the FPGA.
Programmable logic circuits are wrapped as Python modules, that
can be imported into the application and allow developers to use
HW functions via a Python API. However, creating an overlay still
requires expertise in designing programmable logic circuits. The
key aspect is that overlays are conceived to be designed once, but
reused multiple times. In this sense, Xilinx’s intent is to create a
funnel of developers in a way that mimics Linux development. The
development of the Linux kernel is done by a handful of highly-
skilled developers that enable, with their contributions, the majority
of software developers to build their applications with a higher level
of abstraction. The rationale behind overlays is exactly the same:

few experts that build overlays to offer a large user-base the ability
to exploit programmable logic while staying at the software level.

The PYNQ environment includes by default a single overlay,
called base overlay, that is designed to target a specific class of
users: the community of “makers” familiar with Raspberry Pi or
Arduino. The block design is shown in Figure 1. This overlay comes
with support for two 12-pin PMOD connectors and an Arduino-
compatible interface, that can be used to connect Arduino shields,
for handling generic I/O and communicating with external devices.
Audio and HDMI I/O are also supported, but the overlay provides
only the controllers, no HW modules have been designed to pro-
cess audio or video signals using the programmable logic. This
overlay instantiates 3 MicroBlaze soft-cores, one to drive the I/O
for the Arduino-compatible connector, and one for each PMOD.
The Python pynq package also offers APIs to manage the load-
ing of overlays, with mechanisms to hold information about the
current overlay, used to implement safety measures and perform
run-time management, and to directly access the FPGA through
Memory-Mapped I/O (MMIO) and Direct Memory Access (DMA)
transactions.

2.2 Related Work
As stated before, PYNQ has been made publicly available only

recently. Nonetheless, a research effort to exploit and extend such
framework has already started. For instance, in [4], the impact of
PYNQ usage on Zynq SoCs is evaluated, finding potential benefits
in development time and performance. In [5], the framework has
been extended with support for dynamic partial reconfiguration.
In [6], PYNQ is integrated with Spark and evaluated on a machine
learning application.

The idea of exploiting NumPy to enable transparent hardware ac-
celeration is also not new. Indeed, although no previous work, to the
best of our knowledge, targets FPGAs, there are multiple attempts
in the literature to use NumPy to enable seamless acceleration on
GPUs [7, 8].

It is also interesting to notice that there are several projects that
rely on Python to design hardware [9–11], although they utilize the
Python syntax for low-level hardware description, in a way that
is functionally equivalent to using classical Hardware Description
Languages (HDLs). However, this approach is transversal to the
approach proposed in this paper, as we rely on overlays, i.e. where
the design of the hardware accelerator is done previously by an
expert and is not part of the application development flow. In this
sense, one might even imagine performing the hardware design of
the overlays integrated into our modified NumPy library using one
of these projects, although this is outside the scope of this work.

3 TRANSPARENT HARDWARE
ACCELERATION: NUMPY FOR PYNQ

As NumPy is the de-facto scientific library for Python, providing
hardware acceleration for it could be a valuable contribution to the
PYNQ project. We have therefore built a NumPy library specifically
designed for PYNQ, to enable transparent hardware acceleration
for a number of its core functions. Transparency is granted by the
fact that using the proposed library boils down to simply changing
the name in the import statement.



Enabling Transparent Hardware Acceleration on Zynq SoC for Scientific Computing
EWiLi ’19, October 17, 2019, New York, USA,

Copyright held by Owner/Author(s).

In the rest of this section, we provide some details of the most
important aspects that characterize this work.

3.1 Iterative Runtime Code Scheduling
There are circumstances in which offloading the computation

to the FPGA does not bring any benefits, and might hurt perfor-
mance. For this reason, we implement a predictive code scheduling
mechanism, with an approach similar to what has been done for
GPUs [12]. In particular, for each NumPy call for which we provide
one or more hardware accelerators, we implement a scheduling
policy based on performance history and some input properties or
physical constraints. Since our implementation wraps the original
NumPy, we then automatically delegate unaccelerated calls to it.
We mostly consider the input size and the input data type to predict
the execution time of the different implementations. We collect
performance history data for different inputs and build a model of
performance that we then use to discriminate what implementation
to chose given the context. We depict our code scheduling mecha-
nism in Algorithm 1. In this algorithm, we identify context() as the
action of extracting contextual information from the specific call,
as the input size and the input data type, while hw_accelerators()
retrieves all available overlays that can be used to accelerate such a
call. Finally, history() provides an estimate of performance given
the current context, relying, as the name suggests, on performance
history for the specific hardware accelerator or the software ex-
ecution of the original NumPy, referenced in the pseudocode as
sw_numpy. We account also for the reconfiguration overhead for
the estimates, checking also whether the FPGA is configured with
the considered overlay (and removing the reconfiguration time in
such case).

Algorithm 1 Performance History Scheduling

ctx ← context(numpy_call)
hw_list ← hw_accelerators(numpy_call)
chosen_impl ← sw_numpy
for all hw_impl ∈ hw_list do

if history(hw_impl , ctx) > history(chosen_impl , ctx) then
chosen_impl ← hw_impl

return chosen_impl

3.2 Matrix Dot Product Example
As part of this work, we have developed a number of overlays to

supply hardware accelerators for the most common NumPy calls.
To showcase the hardware acceleration flow and the steps needed to
include the optimized version of the function within the PYNQ plat-
form we firstly present the improvements we made to the NumPy
matrix dot product. In particular, we developed two overlays for
two different contexts, with the purpose of exploiting the reconfig-
urable logic in the best possible way every time. The first overlay
supports calls for arbitrary input size and exploit hardware pipeline
with a streaming pattern to achieve a speedup with respect to the
software execution, the second one performs the computation for
matrices where the size fits in the BRAMs, so that we can load the
entire input signals on the FPGA and compute multiple operations

0

25

50

75

16 64 12
8

25
6

38
4

51
2

76
8

10
24

Input size

E
xe

cu
tio

n 
tim

e 
[s

ec
] PYNQ-Z1 (only CPU)

PYNQ-Z1 (CPU+FPGA)

Figure 2: Execution time of the Pipelined IntegerMatrix Dot
Product for different matrix dimensions. The input size rep-
resents the dimensionN of two squarematrices, each of size
(N x N). The break-even point is approximately around an in-
put size of 384. With two matrices of size (1024 x 1024) the
hardware accelerated version reaches a speedup of 3.5x.

0.00

0.01

0.02

0.03

0.04

16 32 64 10
0

12
5

15
0

Input size

E
xe

cu
tio

n 
tim

e 
[s

ec
]

PYNQ-Z1 (only CPU)
PYNQ-Z1 (CPU+FPGA)

Figure 3: Execution time of the Parallel Integer Matrix Dot
Product for matrix of dimensions up to 150. The input size
represents the dimension N of two square matrices, each of
size (N x N). The break-even point is approximately around
an input size of 100.With twomatrices of size (150 x 150) the
hardware accelerated version reaches a speedup of 6.1x.

in parallel. Then, we leverage the Runtime Code Scheduling to
choose the right implementation to call, when an application is
executed. In this example, we decided to accelerate the matrix dot
product for integer numbers.

3.2.1 Pipelined Integer Matrix Dot Product. For the integer matrix
dot product of arbitrarily large input size, we have created two input
streams to send the rows of the first matrix and the columns of the
second one repetitively. The multiply-and-accumulate operations
are computed using hardware pipelining and the result is stored in
on-chip buffers. At each clock cycle, one point from each stream
is read and, after a number of points equal to the first matrix’s
row size (by assumption equal to the second matrix’s column size),
the result is sent through the output stream. The behavior of the



EWiLi ’19, October 17, 2019, New York, USA,
Copyright held by Owner/Author(s). Stornaiuolo, et al.

Pipelined Integer Matrix Dot Product for two matrices of arbitrary
input size,A of dimension (n×m) and B of dimension (m×p), is also
explained by the following pseudo-code, inspired from the Vivado
HLS version we produced for the implementation.

void pipelined_dot(stream<int> &a, stream<int> &b,
stream<int> &c) {

accum = 0;

[...] // read n, p and m parameters from the input streams

// iterate until all input points are read
for (int i = 0; i < n*p*m; i++) {

#pragma HLS PIPELINE II=1
accum = accum + a.read() * b.read();

if (i % m == m - 1) {
c.write(accum);
accum = 0;

}
}

}

3.2.2 Parallel Integer Matrix Dot Product. If we consider small
matrices that can be stored by only using registers and BRAMs of
the FPGA, it is possible to significantly reduce the number of input
points passed to the IP-Core, by avoiding duplication of the rows
and columns, and to better exploit the hardware levels of parallelism
to compute results. The following snippet of pseudo-code describes
how to parallelize the computation by partitioning the local BRAMs
of the board. We have fixed the matrices dimension to (150 × 150)
with a partitioning factor of 50. The choice of the local buffers
dimension and of the partitioning factor depends on the number
of hardware resources available. One peculiarity of this design is
that the dot product for fixed size matrices can be used also with
matrices of smaller dimensions by padding them with zeros. The
implementation is inspired by [13]. The unroll optimization of the
inner-most loop allows performing multiple operations at the same
time exploiting the hardware resources.

#define DIM 150

void parallelized_dot(stream<int> &s_in, stream<int> &s_out) {
int a[DIM][DIM], b[DIM][DIM], c[DIM][DIM];
int const FACTOR = 50;
#pragma HLS PARTITION variable=a factor=FACTOR
#pragma HLS PARTITION variable=b factor=FACTOR

[...] // stream in input matrices

// matrix multiplication of a A*B matrix
// in parallel
L1:for (int ia = 0; ia < DIM; ++ia)

L2:for (int ib = 0; ib < DIM; ++ib) {
#pragma HLS PIPELINE II=1
int sum = 0;
L3:for (int id = 0; id < DIM; ++id){

#pragma HLS UNROLL
sum += a[ia][id] * b[id][ib];

}
c[ia][ib] = sum;

}

[...] // stream out result matrix
}

3.2.3 Speedup and Runtime Code Scheduling. Figure 2 and Figure
3 show respectively the execution time and the speedup for the two

proposed Integer Matrix Dot Product overlays implemented for
PYNQ-Z1 with a clock frequency of 100MHz. The two break-even
points - i.e. the number of input points for which the execution with
the FPGA performs better than the pure software implementation
- are respectively 384 for the Pipelined implementation and 100
for the Parallel one. However, the Parallel implementation can be
used with dimensions up to 150, due to the hardware design. In
this context, based on the given information, our Code Scheduling
evaluates the input data type and the matrices dimensions at run-
time and executes the first implementation with integer matrices
of dimensions greater than 384 and the second one with integer
matrices of dimensions between 100 and 150. Moreover, if the de-
vice is not configured with the right overlay, the Runtime Code
Scheduling adds the PYNQ-Z1 reconfiguration time of 0.45 seconds
to the estimated execution time and recomputes the break-even
point. If the input does not match the constraints for hardware
acceleration, the original NumPy function call is executed on the
processor.

3.3 Overlays
While the Matrix Dot Product example shown in the previous

paragraph has been inserted only for explanatory purposes, we here
provide an overview of the overlays employed in the biomedical
use case described in Section 4.

3.3.1 Correlation. As far as correlation is concerned, we have ex-
ploited the fact that it is possible to calculate different points of the
function independently to parallelize the computation. We used
the BRAM to create two local buffers, the first used to store part of
the first input signal, acting as a shift register, and the second used
to collect partial results. The first input stream contains the first
signal repeated a number of times equal to the size of the output
function divided by the number of parallel operations that can be
performed. The second input stream contains the repetition of the
second signal shifted by different lags. At the end of reading a num-
ber of points equal to the input signals size, result points are sent
from the core to the shared memory through an output stream. To
keep the two streams synchronized, we pad with zeros the shifted
signals. Moreover, to guarantee parallel execution and to mask the
latency of the operations, we further improved the design applying
classical pipelining and loop unrolling optimizations.

3.3.2 Matrix Dot Product. For the matrix dot product of arbitrary
large input size, we employed the Pipelined Integer Matrix Dot
Product described in Section 3.2.1.

3.3.3 Standard Deviation. The standard deviation filter is imple-
mented as two consecutive discrete blocks. The first block computes
the variance of the input signal, and is a pipelined, windowed im-
plementation. The second block computes the square root of the
variance to output the standard deviation. We implemented the
second block relying on Vivado HLS and the already optimized
implementation of the square root provided by Xilinx with their
hls_math.h library.

3.3.4 Fast Fourier Transform. The last implementation we present
is for the computation of the Fast Fourier Transform (FFT). Similarly



Enabling Transparent Hardware Acceleration on Zynq SoC for Scientific Computing
EWiLi ’19, October 17, 2019, New York, USA,

Copyright held by Owner/Author(s).

to the other hardware accelerators presented, we opted for a stream-
ing computation pattern, to allow for continuous data processing.
More specifically, we relied on Xilinx’s FFT IP core and configured
it to implement a streaming and pipelined architecture, consisting
of a chain of radix-2 butterfly processing engines, each engine with
its own local memory, followed by a final output reordering stage
at the end of the chain.

4 A BIOMEDICAL USE CASE
We validated the work proposed in this paper by proposing an ac-

celerated version of a bio-medical application for signal processing
of EEGs. Nowadays, a multitude of Brain Computer Interface (BCI)
is being developed to cope with serious diseases (such as Amy-
otrophic Lateral Sclerosis) or to control artificial prostheses, bypass-
ing the muscular activity [14]. These technologies rely on the EEG
as a non-invasive interface thanks to its easy usability, portability
and relatively low-cost (especially if compared to really expensive
systems such as Magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI)). However, the analysis of EEG
ensemble requires a non-negligible computational power, due to
the families of algorithms involved, and the intrinsic characteristics
of the EEG signals, consequently limiting both the development
of novel BCI and its usage outside of laboratories, in the form of
embedded EEG-feature processors. Some of these characteristics
are: high number of channels, from 16 up to 256 in high-density
arrays; high sampling frequency (250 - 1000 Hz); low amplitude
and signal to noise ratio, with respect to other biological signals
(e.g. eyes’ muscles or heart rate activity). Given that developers are
already accustomed to the use of Python libraries for EEG analy-
sis [15], the availability of transparent FPGA-accelerated libraries
could speed-up the research process, and at the same time, the
underlying hardware libraries could be reused to implement the
algorithm on embedded or portable FPGA systems. In this use case,
4 EEG features are calculated, as they are used in the estimation
of brain functional connectivity, the level of coordinated activa-
tion that appears in neural assemblies or brain structures during
a certain task. These features are namely: the auto-correlation and
the cross-correlation of all channels and their power spectra, and the
cross-correlation coefficient. Let us define xm and ym as the EEG
measurements, for m = 1,2,..,M obtained from the set of available
sensors. The discrete correlation of two signals xm (n) and ym (n) at
lag τ and sample n is:

Rxy (τ ) =
∑
n∈Z

xm (n)ym (n − τ ) (1)

with xm = ym in the case of auto-correlation. Following, the cross-
spectral density is calculated as:

Pxy (f ) =
∞∑

l=−∞

E{xm (n)ym (n − τ )}e
−j2πτ f (2)

where f is the frequency and E{·} is the expected value. Finally,
the cross-correlation coefficient is defined as:

ρxy (τ ) =
1

σxσy
E{(xm (n) − µx )

(
ym (n + τ ) − µy

)
} =

1
σxσy

γxy (τ )

(3)

with τ = 0 where γxy is the cross-covariance between the two sig-
nals, and µx , µy ,σx ,σy represent the respective mean and standard
deviation of the two processes.

These features are useful to understand the degree of connectiv-
ity in the brain, in terms of hierarchical structures (auto-correlation),
general interactions between different areas (cross-correlation coef-
ficients) and the coordinated activation at specific frequencies(e.g.
the Beta-waves related to motor control).

In particular, we chose these features to outline the re-utilization
of some calculations, and the possibility guaranteed by the FPGA to
pipeline parts of the computation (e.g. the power spectral density
after cross-correlation), or the parallel execution on multiple chan-
nels through core replication of the FPGA overlay. The capability
to switch between different implementations given the input size of
the processes is particularly interesting in the case of EEG data, both
because the sampling frequencies could span from 250Hz to 1 kHz,
with different constraints in terms of computational power, and be-
cause BCI signals commonly involve the slicing of the signal in time
epochs, ranging between 1-2 seconds (motor tasks, Event Related
Potentials (ERP)) to dozens of seconds (resting-state connectivity
[16]). As stated before, the entire approach remains completely
transparent in the application, optimizing performance without
requiring any effort by the end-user in adapting the algorithm.

5 RESULTS
We conducted our experimental evaluation on the PYNQ-Z1

board, the first released board supported by PYNQ. This board
comes with a Zynq XC7Z020 SoC, integrating a 650MHz dual-core
ARM Cortex-A9 processor and an Artix-7 family FPGA. The use
case presented in Section 4 is written in Python and relying on
NumPy to perform the EEG features extraction. All it required
to accelerate this application with our approach, was changing
the import statement for NumPy, with therefore a minimal imple-
mentation effort and virtually no impact on the source code of
the application. To perform the tests we used real EEG data cor-
responding to the IVa dataset from the BCI Competition III [17].
The dataset is composed of records of five healthy subjects who
were performing motor imagery tasks (the act of mental simula-
tion of a motor action) while sitting on a chair. The brain activity
was recorded using an EEG system with 118 sensors located on
the scalp according to the 10-20 EEG coordinate system. The data
were originally acquired at 1 KHz. We tested the Python application
using different-sized input signals, comparing the execution time
of the original NumPy within the PYNQ framework against our
library. The results are shown in Figure 4a, where we report the
two execution times (lines) and the speedup obtained when using
our solution (bars). The number of points refers to the amount of
sample data of the input signals processed by the application. As
shown in the graph, our solution does not bring speedups for 1024,
2048 and 4096 points, where we instead experience a slight increase
in execution time due to the overhead of our scheduling mechanism
(approximately 5%). In these three instances, the system predicts
that using HW acceleration is not beneficial, and delegates the calls
to the original NumPy. For 8192 and 16384 points, we instead yield
a speedup of respectively 1.77x and 4.76x. As we inspected the
results further, we discovered that the speedup was caused by the



EWiLi ’19, October 17, 2019, New York, USA,
Copyright held by Owner/Author(s). Stornaiuolo, et al.

102
4

204
8

409
6

819
2

163
84

0

2

4

6

8

0

2

4

6

1

Number of Points

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Speedup

with HW acceleration
original NumPy

10
24

20
48

40
96

81
92

16
38

4
0.01

0.1

1

10

100

Sp
ee

du
p

Correlation
Dot Product Std Deviation

FFT

Number of Points 

(a)

(b)
Figure 4: On the top (a), we show the experimental results
for the entire biomedical application,wherewe compare our
solution against the original NumPy. On the bottom (b), we
report the speedups for the different NumPy calls used in
the application.

hardware acceleration of the correlation, the other NumPy calls
were indeed not accelerated. The reason for this is shown in Figure
4b, where we plot the speedups over the original NumPy of the
different calls with respect to the same input intervals, in log scale.
The graph clearly shows that for this number of points we yield
a speedup only for the correlation and the FFT. However, as the
scheduling system accounts also for the constant reconfiguration
time when predicting the performance, during the actual execution
the FFT has not been accelerated, since adding the reconfiguration
time would have indeed caused a slowdown.

Notice that although using an increasingly high input signal
would have eventually yielded a speedup for all the calls, we re-
stricted our tests for signals whose size is meaningful for the real
application. It is also worth noting that we evaluated how our DMA
layer performs, and we experienced an average 2x speedup with
respect to the one offered by PYNQ.

6 CONCLUSIONS
We believe that scientists and pure software developers should

be allowed to benefit from hardware acceleration while focusing

on what it is most important to them, without the need to in-
vest precious time in learning how to design and deploy hardware
accelerators. For this reason, we have proposed in this paper an
hardware-accelerated NumPy that brings transparent hardware
acceleration on Zynq SoCs if integrated with the PYNQ framework.
To demonstrate the validity of our solution, we evaluated it on a
biomedical use case involving the extraction of features from the
EEG, performing a comparison with the original NumPy. The re-
sults show that our system is able to automatically achieve speedups
when hardware acceleration is beneficial, at the cost of a slight de-
crease in performance when it is not the case, due to the overhead
introduced by our scheduling mechanism. Additional PYNQ-based
accelerators for NumPy library functions will be released in future
work to create a complete solution to transparently leverage FPGAs
for scientific computing.

REFERENCES
[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al., “A reconfigurable fabric
for accelerating large-scale datacenter services,” in Computer Architecture (ISCA),
2014 ACM/IEEE 41st International Symposium on, IEEE, 2014.

[2] “IEEE Spectrum: The 2017 Top Programming Languages.”
https://spectrum.ieee.org/computing/software/the-2017-top-programming-
languages (accessed: 5th of October 2017).

[3] L. Stornaiuolo, M. Perini, M. D. Santambrogio, and D. Sciuto, “Fpga-based embed-
ded system implementation of audio signal alignment,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 132–139,
IEEE, 2019.

[4] A. G. Schmidt, G. Weisz, and M. French, “Evaluating Rapid Application Develop-
ment with Python for Heterogeneous Processor-based FPGAs,” in Proceedings
of the 25th International Symposium on Field-Programmable Custom Computing
Machines, FCCM ’17, IEEE, 2017.

[5] B. Janßen, P. Zimprich, and M. Hübner, “A dynamic partial reconfigurable overlay
concept for PYNQ,” in Field Programmable Logic and Applications (FPL), 2017 27th
International Conference on, IEEE, 2017.

[6] E. Koromilas, I. Stamelos, C. Kachris, and D. Soudris, “Spark acceleration on
FPGAs: A use case on machine learning in Pynq,” in Modern Circuits and Systems
Technologies (MOCAST), 2017 6th International Conference on, IEEE, 2017.

[7] T. Blum, M. R. Kristensen, and B. Vinter, “Transparent GPU execution of NumPy
applications,” in Parallel & Distributed Processing SymposiumWorkshops (IPDPSW),
2014 IEEE International, IEEE, 2014.

[8] M. R. Kristensen, S. A. Lund, T. Blum, K. Skovhede, and B. Vinter, “Bohrium:
unmodified NumPy code on CPU, GPU, and cluster,” Python for High Performance
and Scientific Computing (PyHPC ’13), 2013.

[9] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A Unified Framework for Ver-
tically Integrated Computer Architecture Research,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium onMicroarchitecture, MICRO-47, IEEE
Computer Society, 2014.

[10] P. Haglund, O. Mencer, W. Luk, and B. Tai, “PyHDL: Hardware Scripting with
Python,” in Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms, 2003.

[11] E. Logaras, O. G. Hazapis, and E. S. Manolakos, “Python to Accelerate Embedded
SoC Design: A Case Study for Systems Biology,” ACM Trans. Embed. Comput.
Syst., vol. 13, Mar. 2014.

[12] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro, “Predictive
runtime code scheduling for heterogeneous architectures.,” HiPEAC, vol. 9, 2009.

[13] D. Bagni, A. Di Fresco, J. Noguera, and F. Vallina, “A zynq accelerator for floating
point matrix multiplication designed with vivado hls,” Application note, January,
2016.

[14] I. Choi, I. Rhiu, Y. Lee, M. H. Yun, and C. S. Nam, “A systematic review of hybrid
brain-computer interfaces: Taxonomy and usability perspectives,” PloS one, vol. 12,
no. 4, 2017.

[15] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck,
L. Parkkonen, and M. S. Hämäläinen, “Mne software for processing meg and eeg
data,” NeuroImage, vol. 86, no. Supplement C, 2014.

[16] E. Olejarczyk, L. Marzetti, V. Pizzella, and F. Zappasodi, “Comparison of connec-
tivity analyses for resting state eeg data,” Journal of Neural Engineering, vol. 14,
no. 3, 2017.

[17] G. Dornhege, B. Blankertz, G. Curio, and K. R. Muller, “Boosting bit rates in
noninvasive eeg single-trial classifications by feature combination and multiclass
paradigms,” IEEE Transactions on Biomedical Engineering, vol. 51, June 2004.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The PYNQ Framework
	2.2 Related Work

	3 Transparent Hardware Acceleration: Numpy for PYNQ
	3.1 Iterative Runtime Code Scheduling
	3.2 Matrix Dot Product Example
	3.3 Overlays

	4 A Biomedical Use Case
	5 Results
	6 Conclusions
	References

