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Abstract: Due to the increase in future uncertainty caused by rapid environmental, societal,
and technological change, exploring multiple scenarios has become increasingly important in urban
planning. Land Change Modeling (LCM) enables planners to have the ability to mold uncertain
future land changes into more determined conditions via scenarios. This paper reviews the literature
on urban LCM and identifies driving factors, scenario themes/types, and topics. The results show
that: (1) in total, 113 driving factors have been used in previous LCM studies including natural,
built environment, and socio-economic factors, and this number ranges from three to twenty-one
variables per model; (2) typical scenario themes include “environmental protection” and “compact
development”; and (3) LCM topics are primarily growth prediction and prediction tools, and the rest
are growth-related impact studies. The nature and number of driving factors vary across models and
sites, and drivers are heavily determined by both urban context and theoretical framework.

Keywords: urban land change; land change model; driving factors; uncertainty; scenarios;
scenario development

1. Introduction

As the environment, society, and technology rapidly change, future uncertainty calls for better
scenario-based planning approaches [1]. Scenario planning identifies and evaluates various future
growth options, and helps stakeholders (e.g., agencies, local officials, developers, land owners, general
public) to make better decisions for possible future conditions by comparing and assessing different
and plausible growth options [2]. Over the past few decades, urban Land Change Modeling (LCM) has
significantly increased in capabilities, addressing land change systems and their impacts across many
fields [3,4]. LCM creates the opportunity to mold an uncertain future into a determined condition
via scenario planning, becoming a planning support tool for envisioning potential future land use
options [5].

People transform the earth surface for their own uses [6], and land use change is the result
of interaction between human activity and land-related biophysical constraints [7]. Understanding
historic land development processes can inform the land use planning process to better predict
implications of various planning options in the future [5]. Land Change Modeling (LCM) is a prediction
tool for urban land change analysis which enables planners to visualize potential future land changes
via scenarios. LCM-based urban growth scenarios have been examined in several fields (e.g., ecology,
hydrology) and their impacts have been evaluated to find the most desirable future. LCM can be used
to describe and predict land change and analyze the possible outcome of natural and human systems [6].
Modeling algorithms (e.g., machine learning or statistical regression) typically use two types of maps
as inputs: land cover maps (for patterns) and explanatory maps (for drivers). The algorithms identify
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the patterns/relationships among land cover and explanatory variables to estimate the most likely
patterns [6].

LCMs have been further advanced in regard to computational performance, predictive
performance, and their ability to analyze impacts on the natural and built environment [3,4]. These
advances afford the ability to more effectively address the current and future challenges of urbanization
with better and more detailed visualization and representation of future land change [6]. Several
reviews were on LCM methodologies and the drivers of specific land cover change, and have provided
valuable and extensive insights on their proficiencies and accuracy. In regard to LCM models and
processes, Agarwal et al. (2002) evaluated scale and complexities of 19 LCMs through temporal, spatial,
and human decision-making frameworks and identified a severe lack of systematic consideration
of social factors, lapses in trends in prediction methodologies, and differences in spatiotemporal
scales in models [7]. Wu and Silva (2010) reviewed how Artificial Intelligence (Al) systems have
been applied in urban and land change modeling processes, specifying the strengths and weaknesses
of each Al approach; their findings suggested a hybrid approach to LCM, incorporating static and
non-static Al approaches, as a more appropriate method for urban modeling [8]. The National Research
Council (2014) specified and explained the six primary modeling approaches of LCMs—machine
learning and statistical, cellular, sector-based economic, spatially disaggregate economic, agent-based,
and hybrid approaches—also finding that the majority of the future opportunities for LCMs are linked
to future land observation strategies and infrastructure support [6]. Verburg et al. (2019) described the
limitations of current land change models (e.g., multi-scalar challenges, human interaction, modeling
procedures); in their review, they identified the potential to advance land change modeling toward
participatory modeling, multi-scale interaction, human agency, and linking urban land demand and
supply [9]. Tong and Feng (2020) summarized 69 assessment metrics in the cellular automata models
in terms of dataset, procedure, and result assessment and suggested a set of assessment tools for each
modeling phase [10].

Regardless of model type, outputs for LCMs are dependent upon the input variables, or driving
factors, used to assist in prediction. In the review of driving factors on deforestation, Geist and Lambin
(2002) analyzed the proximate and underlying driving factors of tropical deforestation; agricultural
expansion, wood extraction, and infrastructure extension were proximate causes, and economic
factors, institutions, and policies proved to be underlying causes [11]. Keys and McConnell (2005)
reviewed 91 case studies of agricultural change in Africa, Latin American, and South/Southeast Asia,
and identified the drivers of agricultural land intensification as biophysical, demographic, market
influential, institutional, governmental, and property factors [12]. Using 157 case studies in Africa,
Latin America, and South/Southeast Asia, Van Vliet et al. (2012) identified the rate of conversion of
agriculture to other land uses in tropical forest areas, the drivers of this land use change, and their
impacts on quality of life and the environment [13]. Agricultural areas decreased in most study
regions, and primary drivers of this change were policies and market development. The land change
influenced income, health, and education positively, but population migration and cultural loss more
negatively. Plieninger et al. (2016) reviewed 144 case studies to identify driving forces of landscape
change in Europe and found a list of proximate and underlying driving factors, and characteristics
of them [14]. The research showed that drivers of landscape change can be extremely diverse and
that underlying factors consist of combinations of political/institutional, economic, cultural, technical,
and natural/spatial drivers. The most prominent driver of landscape change, however, proved to be
land abandonment. Research tendencies were related to regional GDP and biogeographic location.
Seto et al. (2011) analyzed land change factors at a global scale between 1970 and 2000 based on a
literature review of urban remote sensing case studies and forecasted future global urban land cover
by 2030 [15]. The study examined how the relationship of urban expansion with the population and
economic growth rate varied across world regions. Likewise, Giineralp et al. synthesized remote
sensing-based urban land change studies to estimate regional and global trends in urban land expansion,
urban population density, and conversion of land to urban from 1970 to 2020 [16].
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Each of the existing reviews of land change-based drivers focuses on a particular topic (e.g., tropical
deforestation, agriculture, landscape) and/or considers a specific geographic context (e.g., tropical
regions, Europe). Furthermore, many of the urban LCM studies have employed various driving factors,
resulting in ambiguity when selecting variables. Thus, there is a lack of knowledge on what factors are
typically included as drivers of urban land change across a diversity of approaches, topics, and contexts.
This is partly due to the diversity of disciplines employing LCMs and their focus on various topics as
well as differences in spatiotemporal scales and geographic context [14]. Further, as future uncertainty
(e.g., climate change, new technologies) increases, LCM capabilities in scenario building will become
increasingly important, but no study has focused on topics dealing with urban LCM nor their related
subsequent impacts and scenarios. A review on current practice of and use of scenarios in urban
LCM will inform how urban LCM can be made more useful and relevant in addressing challenges
of contemporary urbanization, in particular, among urban planners who have not widely used
scenario-based urban LCM. Providing the empirical studies in urban growth/expansion will provide
readers with more information about urban land change systems as a baseline of consistent drivers.
To advance urban LCM’s prediction and scenario capabilities, this study presents a comprehensive
literature review of the driving factors of urban growth, scenarios, and primary topics used in current
urban LCM literature. We seek to answer: What factors are typically used as driving forces behind
land change in urban LCM? What are the purposes of urban LCM-related prediction-based studies?
How are scenarios utilized in these studies?

2. Methods

To uncover the driving factors, topics, and scenarios used in urban LCM, we searched for land
use prediction articles with land cover changes in an electronic database with backward and forward
searches [17] using SCOPUS as the initial search database from 1974 to 21 September 2017, and Web
of Science (WoS) and JSTOR as the additional up-to-date database from 2018 to 8 July 2020. Due to
the license expiration of accessing SCOPUS in 2020, the authors used other search engines for the
additional up-to-date search database. The search keywords were “land use change”, “land cover”,
“future urban growth”, “urban land change”, “land use prediction”, and “future urban expansion”.
To capture urban LCM articles broadly, the authors used the search keywords as stated since urban LCM
simulates urban growth/expansion through land use/land cover change; resulting in 11,340 articles.
The search covered the years from 1974 to 2020, and the subject areas covered were environmental
science, agriculture, biological science, social science, earth and planetary sciences, computer science,
economics, econometrics and finance, and neuroscience. Document types were limited to English
language peer-reviewed articles, reviews, and book chapters. As Figure 1 illustrates, in the first round,
11,340 articles were searched, and after reviewing titles and abstracts, the second round resulted in
2018 articles. After reviewing full texts, the selected land cover prediction-related articles totaled
148, containing urban land change predictions, prediction models, and driving factors of urban
growth. During the full-text review, 20 additional articles were found through backward and forward
search, finding citing/cited articles, so the total number of articles to review this research totaled 168.
For driving factors, 164 articles were analyzed excluding four articles, two with no variable explanation
and two duplicated prediction studies. For scenarios, 77 articles were examined utilizing multiple
urban growth scenarios. For topics, all 168 studies were analyzed.

With the 168 urban LCM-based articles, we used descriptive statistics to show the tendency in the
categories of driving factors, topics, and scenario application. In addition, to better understand the
driving factors utilized for prediction purposes, before looking at the results of drivers of the reviewed
urban LCM, we analyzed empirical research to identify the nature of relationships hypothesized to
exist between driving factors and urban growth.
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Identification Records identified through SCOPUS (1974-2017)
and WoS & JSTOR (2018-2020) search
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Total no. of driver studies included Total no. of topic studies included Total no. of scenario studies included
(n=164) (n=168) (n=T7)

Records excluded with
no urban growth scenarios (n=91)

Figure 1. Urban Land Change Modeling (LCM) literature search and evaluation for inclusion (modified
from Xiao and Watson (2019) [17]).

3. Results

As Figure 2 shows, the U.S. (36 papers), China (35 papers), and Iran (18 papers) are the countries
which had urban LCM applied to locations the most, with more than half of the total prediction articles
located in these three countries. Most studies deal with a single study area within a single country—in
total 50 countries have been studied. Within the current literature, there are 26 multi-locational studies
(2 district, 1 town, 11 city, and 12 county scaled) within an individual country, five multi-national
studies (1 district, 3 city, and 2 watershed scaled) within multiple countries [18-23], and seven global
scaled studies [24-30]. Out of the 30 total multi-location/national studies, 18 of the multi-location
studies work within adjacent or tangent regions, while only 8 studies [18,19,22,23,31-34] compare
study areas in different cities or countries (from two to twenty). For example, Linard et al. (2013)
compare 20 cities in 15 African countries to develop a city scaled model and identify influential factors
for urban growth in Africa [19]. The reasons there are few large scale (e.g., multi-national, global)
studies may be due to a lack of data availability and processing capabilities. Study areas range from as
small as a district to entire terrestrial land surfaces. Most studies follow administrative boundaries,
but 24 studies that relate to hydrology follow natural or watershed boundaries; boundary types per
study are summarized as follows: districts (11), towns (3), cities (83), counties (24), countries (9), world
(7), and watershed (24).

In regard to LCM models, spatial prediction of urban land change began with the Markov
model [35] in 1974, and many urban LCMs were introduced in the 1990s and early 2000s: California
Urban Futures (CUF) [36], Cellular Automaton (CA) [37], Land Use Scanner [38], What IF [39],
Conversion of Land Use and its Effects (CLUE) [40], Land Transformation Model (LTM) [41],
SLEUTH [42], and Urban Sim [43]. In the 2000s, many hybrid tools were created to improve prediction
performance by combining various modeling techniques: Artificial Neural Network (ANN) and
CA [44-46], regression and Markov Chain (MC) [47,48], regression and CA [49-53], CA and Bayesian
Network [54], CA and Multi-Criteria Evaluation (MCE) [55], regression, ANN, and CA [8,31,56],
CA and MC [57-63], regression and ANN [64], regression, MC, and CA [65-68], artificial bee colony
algorithm and CA [69], MCE, CA, and MC [70]. Furthermore, in a rare multi-level implementation of
urban land change modeling, Giineralp et al. (2012) merged a logistic regression—CA hybrid approach
with system dynamics [71].
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Figure 2. LCM locations for the 50 countries in the 159 reviewed articles*. (*2 duplicated prediction
and 7 global prediction articles are excluded in the count; multi-national studies are counted by each

country separately.)

3.1. Driving Factors

Driving factors of urban land change identified in empirical studies vary widely as shown in
Table 1; natural environmental [36,72], built environmental [73,74], and socio-economic factors [75-77].
Empirical studies are literature that empirically evaluated certain factors as drivers of urban land
change from urban planning, real estate, economy, and land system sciences. Each paper clearly
explains how each factor contributes to urban growth; nevertheless, these drivers can change by
geographical setting or topic. Thus, this study first examines key factors contributing to urbanization
from existing empirical research, and then, reviews urban growth factors in 164 LCM-based articles to
determine to what extent urban LCMs utilize these drivers that are identified in empirical studies.

Table 1. List of key driving factors in empirical studies.

Classification Driving Factors Classification Driving Factors
slope distance to settlement
Topography  distance to river Land U land use
distance to water surface a se distance to city/district/town centers
Natural
Environment distance to forest ‘ Built distance to residence
Amenity distance to coastline Environment distance to agriculture
distance to green spaces Job distance to commercial
distance to natural scenery job location
distance to roads Servi distance to schools
) distance to highways ervice distance to hospitals
Transportation
Built distance to railways population density
Environment distance to public transportation . property value
Socio-Economy
Land U distance to settlement land use plan
and Lse distance to urban center (CBD) plan policies

3.1.1. Key Driving Factors in Empirical Studies

In regard to the environmental factors, slope—the inclination of the landscape—is a fundamental
standard to select a potential area for future development; flat and gentle-sloped lands are easy to
develop with less cost [36]. In general, land with a slope of less than 25% [5] is regarded as developable
or as stable building sites due to lower soil erosion and run-off [78]. Distance to rivers, green/open
spaces, forest, shoreline, and natural scenery sites are closely related to buyer preference and housing
prices. People prefer to live close to nature and are willing to pay more for lands closer to these
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areas [79]. From a real estate perspective, the land values close to waterfronts, rivers, lakes, greenbelt,
and open spaces tend to be higher than the value of land more distant from the amenities [72,80-84].

In regard to built environment-related factors, transportation (distance to roads, highways,
railways, and public transportation), land use (distance to settlement, land use, distance to urban
centers, cities, residential), and job opportunities (distance to agricultural land, Central Business
District (CBD), commercial, job location, urban/district/town centers) are closely related to commuting
time and cost between housing locations and workplace. Jobs tend to be concentrated in the CBD in
the initial city development stage. As urban areas expand, residences and workforces tend to also
move outward and new employment can decentralize, moving farther from the CBD [74]. As highway
construction decreases car-based commuting time/cost, more people who can afford a car use private
transportation options rather than public transportation. Finally, providing highway and road
networks makes large suburban areas more accessible to metropolitan regions; fringe development,
therefore, continues to expand to keep up with population growth [85]. Instead of driving, if there are
cost-efficient commuting alternatives (e.g., railways, metro, buses), the distance to public transportation
will be another determinant of residence location [74]. In addition, infrastructure development
(e.g., sewage, water lines) is a key implication for future development [85]. Sewage infrastructure
investment heavily leads to increased or sprawling development [73]. When developers manage
development (including infrastructure), the raised product cost (e.g., rent, sales) because of construction
of infrastructure can become a challenge for both developers and consumers [72]. Public facilities
providing community service and value become attractive for development and redevelopment [5].
Accessibility to public facilities (schools, hospitals) and institutions have also been used as determinants
for future development [61,74,86]. Mieszkowski and Mills (1993) explained that high quality schools
reflected the quality of neighborhoods and can attract other households [74].

In regard to socio-economic factors, population density and property value are closely related
and have been shown to be key factors in determining where new development will occur. Land
value is a major determinant of land use [77,87], but has mutual but complimentary aspects; both high
and low value land can have development potential. Land value is highly related to a site’s spatial
characteristics, which determines its situational worth [75,88]. For example, in land use conversion from
agricultural to urban, users (e.g., real estate developers, consumers) and landowners make bids based
on site values for situational advantages [75]. When a developer considers transitioned land value,
if land is worth more as urban than as farmland, the land use is decided through a bidding process
based on the economist’s market logic, sometimes referred to as the “invisible hand” [89]. Denser areas
and more productive agriculture lands tend to have a higher value than less dense or non-productive
ones and density and land value are positively related to one another [75,90]. High-priced farmland
is less likely to be developed into urban uses so the value as agricultural land typically works as a
determinant of the urban spatial extension [77,89,91]. Highly populated and high-value areas are
where developers would like to develop the most [90] due to their current and future site advantages.
High-value areas provide the possibility for denser populations and more jobs draw more compact
development. On the other hand, lower land values attract more scattered development when all
other conditions are the same [77]. People tend to prefer to develop on inexpensive and less congested
land [76]. Low-value agricultural land, if having a high potential value when it changes into another
use, is more likely to be developed. In plan-related factors, land use plans and policies are direct
methods for growth management to control urban development where growth is proper. They can
protect areas where preservation of natural resources is needed and the environment and open space is
a concern [92,93]. Management methods (e.g., building permits, development rights, zoning, urban
growth boundaries, tax incentives, and impact fees) [77,94] are also determinants for urban growth.

3.1.2. Driving Factors in Urban LCM Studies

As Table 2 lists, a total of 113 distinct driving factors have been applied in previous urban LCM
research, with an average number of 7.4 drivers utilized per article (1,215 driving factors/164 articles).



Land 2020, 9, 246 7 of 22

Driving factors can be classified into environmental (32), built environment (53), socio-economic (25),
and other (3) factors. Environmental variables are related to topography, green amenity, climate, risk,
and ecology. Slope (121), elevation (50), distance to water surface (37), and distance to river (35) are
the most likely applied variables in urban LCM studies. Further, hazard and risk factors have also
been used as urban growth determinants, such as floodplain coverage [20,23,47,50,70,95,96], tsunami
exposure [97], and seismicity [36,98]. Built environmental variables are related to transportation, land
use, development, job, service, and housing. Distance to major roads (135), distance to settlements
(74), distance to urban centers (52), and land use (49) are most likely applied factors. Socio-economic
variables are population, plan, and economy-related factors. Population density (42) is the most
prominent factor of urban growth. Unusually, easting and northing coordinates, classified as others
in Table 2, were used as driving factors in five articles [31,48,59,66,99], primarily to correct potential
spatial autocorrelation or indicating growth direction/balance [59,99].

Though study areas vary across LCM articles, all studies employed drivers contributing to urban
land change fitted to each site’s condition and based on urbanization/urban sprawl theory. The number
of variables in each article range from three [37,62,100-104] to twenty-one [105]. There are numerous
reasons why each article uses different types and numbers of drivers. Differences in contexts, computing
capability (software/hardware), data availability, and study disciplines can cause emphasis variations.
First, study area condition can differ driver selection since some factors (e.g., slope, distance to roads,
distance to settlements, etc.) can be generically applicable to most urban LCM, but other site-specific
factors (e.g., distance to shoreline, flood risk, seismicity) can only be utilized for specific locations.
Each study selects drivers for urban land change based on urban growth/sprawl theory depending on
relative site conditions. Second, computer processing capabilities and the type of prediction model
utilized can limit the number of drivers. Since all urban LCM models use raster images, prediction
areas and numbers of drivers directly influence prediction speed and processability. It depends on
computer performance, but in general, a lower number of pixels predicts faster and the numbers are
limited to approximately 15 to 20 drivers. Third, data availability is another critical issue. Accessibility
and availability of various data types differ across countries. Lastly, study disciplines may influence the
variable selection since different disciplines focus on different factors on urban and other land changes.
In the reviewed articles, disciplines of the first author range variously and include environmental
science, geography, urban planning, forestry, geo-science, ecology, civil engineering, etc.

When comparing drivers in empirical research and urban LCM studies in Tables 1 and 2, most key
driving factors relating to urban development/sprawl theory (e.g., job distance, developer/consumer’s
development preference, land value, etc.) have been popularly utilized as primary drivers. However,
only 24 out of 164 urban LCM studies provided an explanation as to why they use specific driving
factors based on either theory or site conditions. Thirty-three articles cited previous LCM or land
suitability studies without variable explanation. Forty-six articles identified variable relationships or
influence between driving factors and urban land change primarily using logistic regression.
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Table 2. List of predictor variables in the reviewed LCM articles *.
Classification ** Driving Factors Count ‘ Classification Driving Factors Count
slope 121 distance to town centers 13
elevation 50 likelihood to change 11
d%stance to Water surface 37 Land Use (13) lancll us.e.suital?ili'ty . B 3
distance to river 35 availability of irrigation facility 1
aspect 17 density of crop land 1
soil type 11 density of developed lands 1
Topography (14)  soil quality 8 distance to infra (water/sewer) 8
erosion 6 Development (4) available land 8
soil pH 5 P cost of land use change 2
soil permeability 3 recent development 2
altitude 2 distance to agriculture 21
silt content 2 distance to commercial 17
soil depth 2 Built distance to business 8
terrain 1 Environment (53) distance to industrial 7
Natural & ; i ‘
Environment (32) ¥stance to orest. 20 . istance .to arm 6
Amenity (4) distance to coastline 14 Job (12) job location 3
distance to green spaces 6 agricultural production 2
distance to natural scenery 4 distance to economic corridors 2
precipitation 10 employment no. 2
. temperature 8 industrial production 2
Climate (4
imate (4) hours of sunshine 4 density of oil and gas wells 1
moisture 1 unemployment rate 1
flood risk (floodplain) 7 distance to institution 14
distance to wetland/salt marsh 5 Service (3) distance to hospital 3
seismicity 3 distance to convention 1
Risk (7) ) ) -
distance to dike 1 floor space entropy index 2
distance to tsunami affected area 1 Housing (3) housing density 2
flood retention areas 1 floor space dissimilarity index 1
water contamination 1 population density 42
vegetation/env. value 3 Soc10-Ezc50nomy Population (9) population 14
Ecology (3) tree type 2 (25) race 2
endangered species 1 household number 1
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Table 2. Cont.
Classification ** Driving Factors Count ‘ Classification Driving Factors Count

distance to major roads 135 housing growth rate 1

distance to highways 24 job density 1

distance to railways 20 Population (9) job housing balance 1

distance to national/express highways 13 literacy 1

distance to airport/harbor 12 urban population density 1

distance to railway station 11 distance to protected area 13

distance to minor roads 8 land use plan/policy 8

Transportation d%stance to subw.ay stfition 7 Plan (6) d%stance to ci.ty b(')un.dary 4

(18) distance to road junction 6 ) distance to historic sites 3

distance to county roads 5 Socio-Economy county boundary 1

distance to motorway exits 5 (25) state boundary 1

Built . .

Environment (53) d¥stance to bus s'ta’qon 4 GDP 17
distance to provincial roads 4 property/land value 12

road density 4 income 5

distance to metro station 3 employment rate 3

d%stance to tollgate 2 Economy (10) poverty 2

distance to bus route 1 rent 2

transportation noise 1 industrialization rate 1

distance to settlement 74 investment 1

distance to urban center (CBD) 52 investment on agri. research 1

land use (land cover) 49 per capita foreign direct investment 1

Land Use (13) distance to residential 35 easting parameter 5

d%stance to (big) city . 25 Others (3) nc?rthmg parameter 5

distance to open land/recreation 15 crime 1

distance to district centers 13
Total Driving Factor (113) 1,215

* Drivers in SLEUTH model are counted as four (e.g., slope, land use, urban, and transportation) because hillshade and exclusion layers do not influence prediction results. Stochastic and
duplicated neighborhood drivers are excluded in count. ** Drivers include factors affecting urban land uses (e.g., residential, commercial, industrial).
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3.2. Topics in LCM

Topics of urban prediction studies have been used in a multitude of ways, including to forecast
future urban growth prediction (77), to introduce prediction models (e.g., introduction, calibration,
performance, comparison) (40), and to examine growth-related impacts (48), as shown in Figure 3.
In the early LCM developmental stages in 1990s and 2000s, the focus was on introducing new models
rather than exploring implications of various scenarios; hence, many of these early studies generated a
single forecast of urban land change. In the meantime, there have been several studies that specifically
focus on developing and fine-tuning model calibration methods. Few studies compared different LCMs
to assess performance. For example, Pontius et al. (2008) found raw data resolution as a significant
factor in prediction accuracy by comparing the input, output, and accuracy with different models at
different locations [106]. Olmedo et al. (2015) assessed prediction accuracy regarding quantity and
allocation changes by examining different calibration methods (ANN and CA-MC) [107]. Lin et al.
(2011) tested known relationships between driving factors and land use change and justified model
performances of logistic regression, auto-logistic regression, and ANN [108]. New hybrid models,
combining different land change models, are still being developed to find the best and most accurate
prediction model.

Urban Heat Island, 2, 1% Climate, 1, 1%
Agriculture, 2, 1% Wildfire, 1, 1%
Soil Erosion, 3, 2% Transportation , 1, 1%
Food Security, 3, 2%

Landscape, 6, 3%
Flood, 9, 5% ‘
Hydrology, 10, 6% .

Ecology, 11, 6%

Driving Factors,

2, 1% Urban Growth Prediction,

77, 46%

Prediction Models,
40, 24%

Figure 3. Topics in the reviewed articles*. (*When an article aims to evaluate a subsequent impact
due to urban growth prediction, its topic is classified as the growth-related topic (e.g., ecology,
hydrology, flood).)

The 48 impact analysis articles forecasted future urban growth and estimated its subsequent
impact to determine the optimal urban growth direction. Primary concerns proved to be ecology (11),
hydrology (10), flood (9), land change (6), food security (3), soil erosion (3), agricultural impact (2),
heat island impact (2), climate impact (1), transportation (1), and wildfire (1). In the case of flooding,
potential flood vulnerable areas are calculated by climate or hazard risks on the forecasted future
urban areas. Depending on the subsequent topic, impact calculations are integrated according to the
urban growth scenario utilized. For example, Lu et al. (2016) evaluated landscape ecological security
with different spatial scenarios in Huangshan City, China [109]. Wu et al. (2015) evaluated hydrologic
impacts from potential land changes with the Soil and Water Assessment Tool in the Heihe River Basin,
China [110]. Lin et al. (2007) assessed the impact of land cover change on surface run-off in the Wu-Tu
watershed in Taiwan [111]. Zare et al. (2017) estimated a soil loss rate under future climate and land
change conditions with a Revised Universal Soil Loss Equation in the Kasilian watershed in Iran [63].
Among the nine flood-related articles (climate change/sea-level rise impacts on future urban growth),
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seven studies calculated future flood-vulnerable urban areas and two articles [20,112] used a monetary
calculation for the impacts based on the damaged areas.

3.3. Urban Growth Scenarios in LCM

Land change prediction literature involving urban growth scenarios included 75 articles (45%) out
of the 166. As shown in Table 3, general future growth scenario themes tend to be “business as usual”,
“environmental protection”, “compact development”, “planned growth”, and “economic growth” [23].
Some studies use multiple urban growth themes or a combination of single scenarios (e.g., density
and ecology, economy and density) to examine various aspects [96,113]. A definition for each typical

scenario is provided below:

e  “Business as usual”: future urban growth pattern as present pattern [96];

e  “Environmental protection”: restricting new development within environmental preservation
areas [113];

e “Compact development”: encouraging compact (high-density) and contiguous development
forms [113];

e “Economic growth”: speed of economic growth reflecting housing needs and population
growth [20,21];

e  “Planned growth”: future development as previously defined land use plan or plan policies [39].

The scenarios are used to simulate plausible spatial consequences of future urban growth considering
specific planning conditions [114], to calculate the potential impact of land transformation [37], and
to create effective strategies for a desirable future growth [115]. However, as shown in Table 3,
scenario categories in the current literature are limited to environmental, population/housing density,
and economic/population growth-related scenarios. A smaller, but growing, number of studies that
employ scenarios consider the existing comprehensive plan/policy and disaster impacts. These scenarios
primarily focus on three important rationales of urban land change: location, land area, and driving
factors [23]. Location is the most common approach in formulating scenarios using exclusionary
layers (these define/exclude undevelopable areas (e.g., existing urban, water surface, environmentally
sensitive areas)) in future urban forecast/prediction models. They are typically applied to designate
environmental protection, to regulate developmental form (compact or loose), and to develop master
plans by excluding undevelopable areas according to ecological/environmental value or development
potential [116,117]. Park et al. (2017) examined the effect of the removal of greenbelt, using different
exclusionary layers to create a basement and greenbelt scenario [118]. Scenarios on land area focus on
the number of pixels for urban growth by different population growth and housing needs according to
economic/GDP growth rates. Hasan et al. (2017) simulated an economic growth scenario using high
economic and urban growth rates with more numbers of urban pixels (land area) than the baseline
scenario [119]. Scenarios using driving factors use different combinations of factors in each scenario or
weighting driving factors. Fuglsang et al. (2013) created three different scenarios, such as business as
usual, growth within limits (high access to public transportation and a compact city structure), and
beyond growth (low access to transportation and high access to recreational services) by employing and
weighting driving factors differently in each scenario [120].
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Table 3. Scenario types in Land Change Modeling (LCM).

Scenario Theme

Scenario Type

Reference

business as usual,

Romano et al. (2018) [121], Shi et al.
(2017) [122], Park et al. (2017) [118],
Goodarzi et al. (2017) [123], Lu et al.
(2016) [109], Zheng et al. (2015) [61], Liu

Ecology/Environment ecological/greenbelt et al. (2015) [56], Akber and Shrestha
glcays (2015) [124], Zen et al. (2014) [125],
Dezhkam et al. (2014) [126], Oguz (2013)
[127], Xi et al. (2010) [117], Wu et al.
(2010) [8], Wu and Martin (2002) [103]
Grigorescu et al. (2019) [128], Feng et al.
(2019) [129], Shoemaker et al. (2019) [130],
Single Henriquez-Dole et al. .(2018) [131], Song
et al. (2017) [132], Sakieh et al. (2015)
Densit business as usual, sprawl, [133], Terzi (2015) [98], Sekovski et al.
ensity compact (2015) [134], Bihamta et al. (2015) [135],
Fuglsang et al. (2013) [120], Vermeiren et
al. (2012) [136], Wilson and Weng (2011)
[137], Benavente et al. (2010) [100], Tang
et al. (2005) [138]
Bajracharya et al. (2020) [139], Huang et
Economic/Population business as usual, low and high  al. (2019) [27], Kuang (2011) [140], De
Growth economic/population growth Moel et al. (2011) [112], Allen and Lu
(2003) [141], Bright (1992) [95]
business as usual, Zhao and Shen (2019) [142], Chakraborty
Plan planned/policy/managed/spatial et al. (2015) [143], Yuan (2010) [144],
planning Hoymann (2010) [21], Hansen (2010) [145]
business as usual, economic Samie et al. (2017) [146], Hasan et al.
Growth and growth, (2017) [119], Liu et al. (2016) [51],
Environment environmental/sustainable Gallardo et al. (2016) [147], Han et al.
growth (2015) [60], Plata-Rocha (2011) [148]
. business as usual, economic Li et al. (2017) [26], Price et al. (2015)
Density and Growth growth, sprawl/compact [149], Te Linde et al. (2011) [20]
Multiple . . . Kocabas and Dragicevic (2007) [54], Pettit
Denélty{Growthtand busmte}fs as usuatl, low. and hlgth and Pullar (2004) [96], Yang and Lo (2003)
nvironmen growth, compact, environmen [114], Landis (1995) [113]
Kim and Newman (2020) [150], Rimal et
business as usual. planned al. (2019) [151], Liang et al. (2018) [152],
Plan/Density and sprawl/compact ,erI:Vironm,en tal Lu et al. (2018) [153], Osman et al. (2016)
Environment sIc)enario pact, [154], Kim and Park (2015) [155], Hua et
al. (2014) [156], Liu et al. (2011) [157], Wu
et al. (2010) [8], Gude et al. (2007) [158]
Li et al. (2020) [30], Chen et al. (2019) [29],
io-economy. disaster. driver Gibson et al. (2018) [159], Qiang and Lam
s eonamy disstn s o) 1], Cao n i 2016 101,
charg\ge, road weight lar’1 d cover Shooshtari and Gholamalifard (2015) [64],
Others change, development setback, Heetal. (2015 [161], Chaudhuri and

weighting, agri. protection,
growth location, global
coordination

Clarke (2013) [116], Mahiny (2012) [162],
Ray et al. (2010) [163], Kim (2009) [164],
Lin et al. (2007) [111], Sharma et al. (2006)
[49], Solecki and Oliveri (2004) [165],
Hilferink and Rietveld (1999) [38]

4. Discussion and Conclusions

Due to the uncertainty involved with forecasting urbanization, prediction with multiple scenarios
has become more important in urban planning. To advance urban LCM’s prediction and scenario
capability, this research sought to (1) expose the factors typically used as driving forces behind urban
land change in urban LCM, (2) determine the primary purposes of LCM-related prediction-based
studies, and (3) examine the kind of urban growth scenarios that have been utilized in the literature.
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Overall, results show that the number and type of driving factors used in urban LCM vary across
models, scales, and locations. Urban LCM topics primarily include urban growth, prediction modeling,
and their subsequent impacts primarily focusing on ecology and hydrology. The most commonly
utilized urban growth scenarios are environmental, urban density, population/economic growth,
and planned growth, while the general aspects to create these scenarios are controlling location, land
area, and driving factors. We respond to each of the research questions below.

First, what factors are used as driving forces behind urban land change in urban LCM? This review
identified an informative list of driving factors and reveals which driving factors are more frequently
employed across different urban LCM studies. Land use change is the interacting process between
human and ecological elements [7]. There exists various natural, built environment, and socio-economic
factors in urban LCM, but natural and built environmental variables are more actively employed than
socio-economic variables. This can be due to data stationarity and availability [7]. Natural and built
environments do not change as quickly as socio-economic factors [166] and their less dynamic/more
static status may make it easier to use as prediction variables. Furthermore, most cities or regions,
especially in the developed world, have a full set of environmental data which can be more convenient
to use.

A comparison of drivers reported in empirical studies in urban land change and used in urban
LCM studies shows that all the drivers identified in the empirical studies have been utilized in urban
LCM studies, but slope and distance to roads are the only two drivers used in all the urban land
change models reviewed. The lack of consistent use of empirically identified drivers requires further
scrutiny but might be because of a lack of awareness of the importance of these drivers or due to
the purpose of the study, specific site conditions, or data availability. In any case, as shown by the
empirical studies, these natural (e.g., slope, natural amenity), built environment (e.g., distance to
roads, transportation, land use, job locations), and socio-economic (e.g., land value, population density,
management methods) drivers serve as a baseline set of consistent drivers when predicting across
models, as shown in Table 1.

The number of driving factors used in any one urban LCM study ranges from three to twenty-one,
and the type varies based on the study area context. Key driving factors identified in empirical
research have been widely utilized in urban LCM studies according to each site context, but, only
a small portion of urban LCM studies justified variable selection either by referring to previous
literature, and/or by statistically testing variable influence on urban land change. The flexibility in
selecting drivers enables the reaching of a more accurate forecast for a distinct site condition. Thus, the
numbers and types of variables should ultimately be determined by urban context and a theoretical
framework thoroughly considering potential driving factors, as listed in Tables 1 and 2. For example,
generic drivers (e.g., proximity to roads and settlements) can be applicable to most study areas, and
site-specific drivers (e.g., proximity to shoreline, public transportation, disaster) can work depending
on the purpose and the context of the study. In particular, each factor’s contribution to the accuracy of
a prediction should be evaluated in model conceptualization, calibration, and validation stages since
each factor works conditionally under a specific urban context. Even slope, though it is the one of the
most dominant driving factors in urban land change, can be negligible if a study area has negligible
topography [53]. Thus, drivers should be selected carefully by the urban context and environment and
evaluated throughout the modeling process for a more accurate forecast [10].

Second, what are the purposes of urban LCM-related prediction-based studies? The topics related
to LCM studies give an understanding what current LCM studies focus on, and what topics/subsequent
impact studies are lacking. Two thirds of the urban LCM studies focus on urban growth prediction
and land change models. The other topics are subsequent impact studies with 48 articles (29% of
all identified LCM studies) primarily focusing on ecology/environment impacted by future urban
growth. To take advantages of the benefits of scenario planning, the urban land change modeling
should include analytics on urban growth-related impacts as well as predicted impact on uncertain
factors, such as change in climate and future transportation technology. For example, Kim (2019)
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evaluated the efficacy of a current land use plan against uncertain climate change using an urban growth
and flood risk scenario matrix in Tampa, Florida [150]. Chakraborty et al. (2011) and the National
Center for Smart Growth (2018) examined energy price scenarios to forecast land use change and its
impacts; four different future scenarios considering fuel cost, government regulation, and technology
innovations, and estimated the following land changes and traffic congestion in the Baltimore and
Washington regions [167,168].

Third, how are scenarios utilized in urban LCM studies? LCMs are potentially powerful
scenario planning tools to examine implications of future changes in land use and land cover by
comparing and assessing plausible stories [1,2]. For example, a recent analysis of several LCMs and
integrated assessment models highlights the importance of employing scenarios in uncovering wide
ranging uncertainties in relation to the future impacts of forecasted land changes on ecosystems and
ecosystem services [169]. Thus, the beauty of scenario planning is enabling us to tap into an uncertain
future condition [170]. However, our study shows that scenario types employed in urban LCM
studies are generally limited to typical urban growth scenarios such as “environmental protection”,
“compact/sprawl development”, and “economic/population growth”. Indeed, the breadth of urban
growth scenarios can be expanded to include more extreme or desirable urban growth directions,
such as a resilient growth scenario, no new development within flood zones [150], opposite to a
baseline scenario. The recent field of “urban sustainability transitions” provides a fitting theoretical
and conceptual background to expand the breadth of scenario building in urban LCM studies [171].
Moreover, two recent global-scaled studies [29,30] have utilized the Shared Socio-economic Pathways
(SSPs), quantifying five different socio-economic scenarios considering mitigation and adaptation to
future climate change [172]. On the other hand, scenarios should be realistic and based on stakeholders’
interest. In recent planning, citizen participation in the planning process has become more important
due to increased transparency as well as active implementation emphases. “Collaborative governance
is to bring diverse private and public stakeholders together in a consensus-oriented forum for decision
making” [173,174]. The collaborative planning process enables educating citizens, tapping preference,
to improving relationships, solving problems, and expanding partnerships among stakeholders [5,173].
However, most scenarios in the reviewed studies were created based on study purposes, without active
participation of citizens or stakeholders. To increase the usefulness of the LCM, scenarios should be
developed through a participatory planning process to reflect and build consensus among stakeholders’
desires and aspirations [9,175].

The United Nations (2019) reports that world population will continuously grow from 7.7 billion
in 2019 to 9.7 billion in 2050, and primary population growth will be concentrated on the developing
countries in Africa and Southern and Western Asia [176]. However, currently few LCM studies exist in
these regions: Linard et al.’s (2013) 20 cities in 15 African countries, Achmad et al.’s (2015) in Indonesia,
and Samie et al.’s (2017) in Pakistan [19,97,145]. Recently, global-scaled studies are increasing [24-30].
Urbanization impacts are globally critical issues for both developed as well as developing countries.
Considering the ongoing rapid urbanization, urban LCM studies need to broaden their study locations
into the rapidly growing countries to prepare for potential threats of/on future urban growth.

This study takes an important step in identifying a list of driving factors in urban land change
modeling as well as application and limitations of urban growth scenario themes and types, scenario
making methods, and study topics. It provides a baseline of consistent driving factors from those
urban studies that empirically evaluated these driving factors and a wide range of potential drivers
more broadly from urban LCM studies. Though there are no universal driving factors, the most
utilized drivers in line with urban context and theory of each case study, as identified by this review,
provide a comprehensive set of variables that future forecast models can utilize. The findings will help
researchers and planners better understand and utilize urban LCM depending on their purpose for
scenario-based planning.
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