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Abstract

The super-resolution data assimilation (SRDA) enhances a low-resolution (LR) model with a Neural Network (NN) that
has learned the differences between high and low-resolution models offline and performs data assimilation in high-resolution
(HR). The method enhances the accuracy of the EnKF-LR system for a minor computational overhead. However, performance
quickly saturates when the ensemble size is increased due to the error introduced by the NN. We therefore combine the SRDA
with the mixed-resolution data assimilation method (MRDA) into a method called “Hybrid covariance super-resolution data
assimilation” (Hybrid SRDA). The forecast step runs an ensemble at two resolutions (high and low). The assimilation is done
in the HR space by performing super-resolution on the LR members with the NN. The assimilation uses the hybrid covariance
that combines the emulated and dynamical HR members. The scheme is extensively tested with a quasi-geostrophic model in
twin experiments, with the LR grid being twice coarser than the HR. The Hybrid SRDA outperforms the SRDA, the MRDA,
and the EnKF-HR at a given computational cost. The benefit is the largest compared to the EnKF-HR for small ensembles.
However, even with larger computational resources, using a mix of high and low-resolution members is worth it. Besides,
the Hybrid SRDA, the EnKF-HR, and the SRDA, unlike the MRDA, prevent the smoothing of dynamical structures of the
background error covariance matrix. The Hybrid SRDA method is also attractive because it is customizable to available
resources.
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1 Introduction a vital role in the evolution of numerical weather prediction

(Baueretal. 2015) and are applied in many geophysical appli-

Data assimilation (DA) methods estimate the initial condition
of a forecast based on observations, a dynamical model, and
statistical information on the error terms. They have played
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cations (Carrassi et al. 2018). The Ensemble Kalman Filter
(EnKF) (Evensen 2003; Carrassi et al. 2018) has emerged in
the past decades as a widespread data assimilation method
because of its ease of implementation. The EnKF is inspired
by Monte Carlo Markov Chain (MCMC) methods and pro-
ceeds into two steps: the forecast step, where an ensemble of
realizations of the model is integrated forward in time, and the
analysis step, where the ensemble is updated by linear regres-
sion, making use of the ensemble covariances to exploit the
observations available. On the one hand, the computational
costs of integration of the EnKF being proportional to the size
of the ensemble can be deterring, especially in the case of
geophysical models. However, on the other hand, the ensem-
ble provides a time-evolving background error covariance
matrix. The background error covariance matrix describes
the spatial covariances between different variables and allows
for the multivariate correction of the non-observed variables.
However, in geophysical applications, the ensemble’s size is
necessarily limited, resulting in sampling errors, low rank of
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the background error covariance matrix, and ultimately dete-
riorated the system’s performance. Several developments
circumvent these issues, such as inflation (Anderson 2007),
localization (Hamill et al. 2001) and hybrid covariance meth-
ods (Hamill and Snyder 2000).

While inflation and localization are routinely used, there
is still room for developing and improving the original for-
mulation of the EnKF. One research axis has been focusing
on the benefits of using models at different resolutions. For
example, Gao and Xue (2008) integrated and updated in
low-resolution (LR) an ensemble and used its background
error covariance matrix to update a single high-resolution
(HR) state. The method, tested with different LR grids, pro-
vided results close to those of a single-resolution EnKF. The
method of Gao and Xue (2008) was generalized by Rainwater
and Hunt (2013) to the case of mixed-resolution data assim-
ilation (referred to hereafter as MRDA). Two ensembles at
two different resolutions are integrated, and their respective
covariance matrices are linearly combined to update both
ensembles in the HR space. The method was applied on dif-
ferent flavors of the Lorenz-96 toy model, Lorenz (1996), and
performed much better than a full low-resolution EnKF, and
compared with acomplete HR EnKF that has more than twice
the computational cost. Combining different resolutions has
also percolated to hybrid variational-ensemble methods; see,
for example, Kleist and Ide (2015); Buehner et al. (2010).

A different way to exploit LR models, named “Super-
resolution data assimilation” (SRDA), was introduced in
Barthélémy et al. (2022). If we consider an EnKF in LR,
the computational cost is small, allowing for a large ensem-
ble size. However, the error to the HR asymptotic covariance
matrix can remain potentially high because of the bias intro-
duced by the LR. On the other hand, an EnKF in HR does not
allow for a large ensemble because of the computational cost
of the model. However, it provides, for the same ensemble
size, a better estimation of the background error covariance
matrix compared to an EnKF in LR but at the expense of an
increase of the computational cost. The SRDA was designed
to take advantage of the best of both the high and low reso-
lution. It was developed on top of an EnKF and consisted of
emulating an HR EnKF by performing the ensemble inte-
gration in the LR similarly to Gao and Xue (2008), but
downscaling to the HR grid with a neural network (NN)
trained with offline free simulations. The assimilation is per-
formed in the HR space to benefit from HR observations, and
after assimilation, the HR fields are upscaled back to the LR
grid. The authors showed that the SRDA performed closely
to the EnKF, but for a fraction of the cost. It reduced the
errors when the LR EnKF performed poorly and preserved
the reliability of the ensemble. However, we will show here
that for extensive computational resources, the downscaling
errors of the SRDA remain and that the usual HR EnKF out-
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performs the SRDA. Besides, while the SRDA method was
explicitly designed in an ensemble framework, it could also
be beneficial in a variational one (Yasuda and Onishi 2023).

Nevertheless, some questions still need to be answered: is
there some information in the HR model that cannot be emu-
lated? Reintroducing at least one HR member in the ensemble
would be a practical way to enrich the ensemble covariance.
However, is this new approach cost-effective? In this work,
we build on the work of Barthélémy et al. (2022) and Rain-
water and Hunt (2013) by hybridizing the SRDA with an
HR ensemble. The forecast step is accomplished in both the
HR and LR spaces. As in the SRDA, the LR members are
downscaled to the HR space with a NN before the assimila-
tion step. The assimilation for both ensembles is performed
in the HR space using the hybrid covariance from the HR
and the downscaled LR members. After assimilation, the LR
ensemble is upscaled back to the LR space. This flavor of
the SRDA is called “Hybrid covariance super-resolution data
assimilation” (Hybrid SRDA).

We extensively validate the approach with the quasi-
geostrophic model run at two resolutions and compare the
performance of the new scheme with the standard EnKF,
the MRDA, and the SRDA. We will show that the Hybrid
SRDA outperforms all other schemes at equivalent computa-
tional resources and better preserves the system’s dynamical
properties than the MRDA. It is also easily tunable and cus-
tomizable to available resources, making it applicable to
operational systems.

The overview of the paper is as follows: in Section 2,
we present the ensemble data assimilation method used, the
MRDA and the Hybrid SRDA schemes, the formulation of
the Hybrid SRDA as a low-resolution scheme, and the super-
resolution NN used in this work. In Sections 3, 4, and 5,
we present the quasi-geostrophic model used in this study,
the setting-up of the experiments, and the validation metrics.
Section 6 shows the results of the Hybrid SRDA, and how
they compare with the EnKF, the MRDA, and the SRDA.
In the last part, Section 7, we give some conclusions and
perspectives to this work.

2 Methods

We introduce the different methods that will be tested in
the study. We start with a square root filter variant of the
Ensemble Kalman Filter and continue with a suite of methods
derived to improve its computational efficiency.

2.1 The deterministic ensemble Kalman filter

Let us consider a model whose dimension is n, and
let E € R™N an ensemble of N model realisations
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(xM,x@ .., xM). We note x € R" the ensemble mean
and A € R"™N the ensemble anomalies; x and A are given
by expressions (1a) and (1b) respectively:

1
— —E1, 1
X=- (la)

A=E<I—%11T>, (1b)

where | € RV*V is the identity matrix and 1 € R is a vector
with all elements equal to 1. In the following, ()f and ()2
stand for the forecast and the analyzed states, respectively,
and ()7 is the matrix transpose.

We note the true state x'. In this study, we assimilate
synthetic observations noted d that are defined by adding
a Gaussian noise ¢ to the true state, see Eq. 2:

d=Hx'+e, e~N(@O,R), )

where H € R”*" is the observation operator, p is the number
of observations, R € R”*? is the observation error covari-
ance matrix.

In this study, we used the deterministic EnKF, DEnKEF,
introduced by Sakov and Oke (2008). The DEnKF is a square-
root deterministic formulation of the EnKF Evensen (2003),
which, unlike the EnKF, solves the analysis without the need
for perturbation of the observations. It was shown that the
two schemes behave similarly in the framework tested here
(Sakov and Oke 2008), but the DEnKF performs slightly
better than the standard EnKF. Furthermore, it inflates the
errors by construction, which performs well in operational
applications where corrections are minor (Sakov and Oke
2008). The system has been robustly tested in many sys-
tems (Sakov et al. 2012; Counillon et al. 2016; Bethke et al.
2021). In this work, we will refer to the DEnKF as EnKF for
simplicity.

The DEnKF decomposes into two steps: the forecast step
and the analysis step. In the forecast step, each member i of
the ensemble is integrated forward in time by the model from
the previous assimilation cycle to the current one:

xf’i=/\/l<xa‘i), i=1,....N, 3)

where M stands for the integration operator of the dynamical
model.

The analysis step updates separately the ensemble mean,
Eq. 4a, and the ensemble anomalies, Eq. 4b:

X =x +K (d - fo) , (4a)
a f 1 f
A" = A"~ CKHA', (4b)
where:
. . —1
K = P'HT (HPfHT + R) , (52)
Af (AN
Pl = L’ (5b)

N-—-1
are respectively the Kalman gain matrix and the background

error covariance matrix estimated from the ensemble anoma-
lies.

2.2 Super-resolution data assimilation

“Super-resolution data assimilation” (SRDA), introduced by
Barthélémy et al. (2022), aims at taking advantage of the
LR version of a dynamical model and HR observations to

emulate an HR EnKF at a reduced computational cost.
We consider an ensemble E; of N, LR model realisa-
M @ xiNL)). In the SRDA, the forecast step

tions (XL JXp
is performed in the LR space:
= M(xE) =1 ©6)

where M, stands for the LR dynamical model operator. After
the forecast step and before the data assimilation step, the LR
members are downscaled to the HR space:

XEZZD<X]f_:l)9 i:17~"7NL’ (7)

where D is a non-linear downscaling operator from the LR
space to the HR space, which is trained with a neural network
(NN) to learn the mismatch between the LR model and the
HR model (Section 2.5). The training data set is made of
pairs of HR and LR states that are constructed by repeating
several times the following procedure: the HR model state
is spatially interpolated to the LR grid, and the state of the
LR and HR models are compared after a model integration
equivalent to the assimilation window. It was shown that the
operator reduces interpolation error and mitigates errors of
the dynamical model (Barthélémy et al. 2022).
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The mean and the anomalies of the ensemble are updated
in the HR space following (4a-4b):

X{y = xlf_I +K (d - HXI{I) , (8a)

— A" — LkHal (8b)
= A -5 ,

where K, H, and d stand respectively for the HR Kalman
gain, observation operator, and observations at the current
assimilation cycle.

After the assimilation step, the members are upscaled back
to the LR space for the next forecast:

X =uUxy,  i=1,...,N, ©)

where U is a linear upscaling operator.
2.3 Mixed-resolution ensemble data assimilation

The “mixed-resolution ensemble data assimilation” (here-
after MRDA) was introduced by Rainwater and Hunt (2013)
and builds the background error covariance matrix from the
linear combination of the covariance matrix of ensembles at
two different resolutions. In Rainwater and Hunt (2013), the
mixed-resolution scheme was implemented with the LETKEF,
Hunt et al. (2007), which is another square root filter version
of the EnKF.
In the following, we will use the subscripts:

— H < L to denote an object that has been downscaled
from the LR to the HR space;

— L <« H to denote an object that has been upscaled spa-
tially from the HR to the LR space.

Note that in the MRDA and unlike in the SRDA, the down-
scaling operator is a simple spatial interpolation, i.e. linear
or cubic spline.

Let us consider now two ensembles, E;, and Ey, where
NL and Ny are the ensemble size of the LR and the HR
1 @2 XiNL)> and

XX,
Ey = () @ ,ngH)) The forecast ensembles are

Xp > Xqp s -
integrated from the analysis ensemble at the previous assi-
milation cycle:

respectively, Ep, = (

xb _ML( ) i=1,... N (10a)
xii =My (x). i=1.... Ny,

where My and My stand for the LR and HR dynamical
models integration respectively.

(10b)
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For the analysis step, every LR member XL is downscaled

from the LR to the HR grid, Eq. 11. We note XH<_L the
resulting HR fields, and Eg, the associated HR ensemble.

X =Dx", i=1,..., N (11)

The mean and the anomalies of the HR ensemble are noted
respectively xg and Ay, while the mean and the anomalies
of the LR ensemble downscaled to the HR space are noted
Xy« and Ag respectively. Xy, A, XH<L, and Ay, are
updated based on Egs. 12a, 12b, 12c, and 12d:

X = xb, + K" (d . fo{) , (12a)
_ A~ Lopaf 12b
=Au" 3 8 (12b)

Xy = xhp + K (d—Hxp ). (120)

a 1 h
bl =Ah— EK HAL .. (12d)

where H and d are respectively the HR observation operator
and the HR observations at the current assimilation cycle.
In the following, (.)" stands for a hybrid object. The hybrid
Kalman gain K" is computed as follows:

—1
Kh = phHT (HPhHT + R) , (13)

where R is the HR observations error covariance matrix and
P is the hybrid background error covariance matrix:

P'=(1—apPl+aP. ., O<ac<l, (14a)

T
A{IeL (A%%L) .

14b
N1 (14b)

PH<—L -

The scalar « is called the hybridization coefficient.

In practice, P! can be expressed in terms of the hybrid
ensemble anomalies Ah, Counillon et al. (2009); Rainwater
and Hunt (2013), as the dimensions of the covariance matri-
ces are often too large for it to be explicitly computed:

Ay

=—— (15)
Ny + Np — 1
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with:

l—« o
A' = /Ny+nN.—1].] AL, Af ,
H+ NL |: N — 1 H N — 1 HeL

(16)

where the notation [., .] stands for the concatenation of matri-
ces with the same number of lines.

After the analysis step, the ensemble Ei‘lh_L, is upscaled
back linearly to the LR grid with the operator U before the
next forecast step:

X =uxyl L i=1,..., N (17)
2.4 Hybrid covariance super-resolution data
assimilation

The “Hybrid covariance super-resolution data assimilation”
scheme, hereafter referred to as “Hybrid SRDA”, combines
the SRDA scheme and the MRDA. In the perspective of the
MRDA, the downscaling operator D, Eq. 11, is replaced by
the operator used in the SRDA D —i.e., a NN that learns the
difference due to increased resolution during a model inte-
gration from one assimilation cycle to another. A schematic
representation of the MRDA and the Hybrid SRDA is pro-
vided in Fig. 1.

It was demonstrated in Barthélémy et al. (2022) that the
analysis of the SRDA can be performed in the LR space with
identical performance. Similarly, the Hybrid SRDA can also
be reformulated as a LR scheme. We refer to this formulation
as “LR Hybrid SRDA” in the following. This reformulation

a,l...IN
X L(tk—l)

f,1...N]
XL L(tk)

> o
(run Ny, times)
LR ensemble Downscaling
4
f,1...N]
xp g ()
AN f,1...N
Xy T (tr-1) xg (k)
S
(run Ny times)

HR ensemble

Fig.1 Schematic representation of the MRDA and the Hybrid SRDA

— DA

can be advantageous when the training of the NN requires
a lot of heavy HR model outputs. The LR Hybrid SRDA
requires HR model outputs only at the observation location
(on top of the LR samples) and not all HR model fields. Fur-
thermore, it allows the decomposition of the super-resolution
operator as a term that corrects for resolution model error and
a spatial observation operator term, which can be helpful
in understanding the relative benefits of the method (Sec-
tion 6.2). A schematic representation of the LR Hybrid SRDA
is given in Fig. 2. Full detail on the reformulation of the
Hybrid SRDA as a LR scheme is provided in Appendix A.

2.5 Super-resolution neural network

The NN super-resolution operator D is identical to the one
used in Barthélémy et al. (2022) with the same parameters
since no additional training was conducted. A summary of
the main properties of the NN operator is provided below,
and the reader is referred to Barthélémy et al. (2022) for
further details.

We use the enhanced deep super-resolution network
(EDSR) model, adapted from Lim et al. (2017). The model
consists of four residual convolutional blocks, one upsam-
pling block for the LR model and a final convolutional layer.

The NN was trained using a dataset where the initial condi-
tion of the high-resolution (HR) model is upscaled to the LR
space, the LR model integrated for 12-time steps (the length
of the assimilation cycle), and the resulting state compared
to that obtained with the HR model. The dataset consists of
10,001 snapshots of the HR fields, with the first 8,000 used
as the training set, and the last 1,997 as the validation set.

a,l...Nj
X L(tk)

Upscaling

/l\

a,l...
Xy (k)
()

a,1...Ny

Xy

HR obs. d(#x)

1

i

HR hybrid covariance matrix:
Ph = (1 - ()’)Pf_I'F a'P{_I(_L
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a,1...V]
X (tre-1)

NN LR model
error correction Q

ML
? (run Ny, times)

>

LR ensemble

HR ensemble

Fig.2 Schematic representation of the LR version of the Hybrid SRDA

Three samples were discarded between the training and vali-
dation sections to ensure independence between the training
and validation sets.

3 Models and data
3.1 Quasi-geostrophic model

The quasi-geostrophic (QG) model is a good test case for
atmospheric and oceanic data assimilating systems, and we
use the specific implementation (model parameter, observa-
tion network, assimilation frequency) that has been widely
used for data assimilation schemes intercomparison (Sakov
and Oke 2008; Dubinkina 2013; Attia and Sandu 2019;
Gilbert et al. 2017; Counillon et al. 2009). This test case
was also used in Barthélémy et al. (2022) to demonstrate the
validity of the SRDA approach. The QG model is included in
two data assimilation packages: DAPPER! (Data Assimila-
tion with Python: a Package for Experimental Research), and
NEDAS? (NERSC Ensemble Data Assimilation System).

It is a 1.5-layer reduced-gravity QG model on a square
domain with a double-gyre wind forcing and bi-harmonic
friction. The time evolution of the sea surface elevation v is
given by Eq. 18:

9q = —PUx —pJ (V. q) — pp¢ + pp AL — ppy A% +27sin2ry), (18)

where:
! https://github.com/nansencenter/DAPPER
2 https://github.com/nansencenter/NEDAS/
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Xy

£,1. a,1...NL

N
X}“l N (k) LR hybrid covariance matrix: XL1 N (k)
AU ) P = ()Pl yrePl XM )

!

— DA

T

Upscaling Super-resolution Downscaling
T obs. operator H l
£,1... V] LN,

(1) T x; M ()

HR obs. d(#z.)

— ¢ = A is the relative vorticity;

— B is the gradient of the Coriolis parameter with respect
to the latitude;

— g = ¢ — F1 is the potential vorticity;

— F is the Froude number;

- J(¥, g) = ¥yqx — ¥xqy (Where the subscripts x and y
stand for the derivative with respect to the directions x
and y);

— p is a multiplying scalar;

— pp is the bottom friction;

— py, is the horizontal friction;

— pph 1s the bi-harmonic horizontal friction;

— 2msin(2my) represents a wind stress forcing term, with
y being a location on a line of longitude.

with g = 1,p = 10°, pp = pp = 0, and pp, = 2 x
10~!2 for the true run. For the data assimilation experiments
pon = 2 x 107! is used. In the following, we refer to the
bi-harmonic friction of the truth as ppj; and that of the data
assimilation experiment as ppp,). The bi-harmonic friction
of the assimilation run is higher, which makes the model
used in assimilation non-identical to the truth. Hence, we are
in the case where there is an error in the dynamical model
used for the data assimilation which is more realistic and
more challenging. The boundary condition is given by ¢ =
Ay = A%y = 0. An example of an output of the QG model
obtained with these settings is given in Fig. 3. For more details
about the QG model, see Jelloul and Huck (2003); Sakov and
Oke (2008).

The QG model is used at two different resolutions that
are referred to as high-resolution (HR, 129 x 129 grid cells),


https://github.com/nansencenter/DAPPER
https://github.com/nansencenter/NEDAS/

Ocean Dynamics (2024) 74:949-966

955

and low-resolution (LR, 64 x 64 grid cells), see Table 1. The
differences between mean kinetic energy and eddy kinetic
energy (deteriorated in the LR) are presented in Barthélémy
et al. (2022) — Figs. 2 and 3. The computational cost of dou-
bling the resolution from LR to HR results in an increase of
the computational cost by a factor 8 as there are four times
more points (in x and y), and one needs to divide the time step
by two to satisfy the Courant-Friedrichs-Lewy condition.

4 Practical implementation of the data
assimilation experiments

The EnKF, the MRDA, the SRDA, and the Hybrid SRDA
are compared using twin experiments over 6000-time steps
and with an analysis performed every 12-time steps (i.e.
500 assimilation cycles). At each assimilation cycle, we
assimilate 300 synthetic observations generated by adding
a white Gaussian noise with standard deviation oo g = 2 to
the true run. Note that the true run is independent of the
one used to train the super-resolution operator. The rela-
tive location of the observations mimics altimeter satellite
tracks such as Topex-Poseidon and Jason, Le Traon and
Ogor (1998); Chambers et al. (2003), with a spacing between
tracks of 400 km between the along-track and an angle at
the equator of approximately 66°. The observation operator
is defined as the nearest neighbor (i.e., one for the nearest
grid cell and O otherwise). The synthetic observations are
constructed in the HR grid and, as such, are ideally collo-
cated with the HR model. However, the LR grid introduces
a shift, which results in an increased observation error term,
(representativeness error term, Janji¢ et al. (2018)), which
is estimated empirically at 0,1, = 2.4. The observations
errors are by construction uncorrelated (R is diagonal). The
initial ensemble at the start of the simulation is entirely
independent from the truth. As the HR grid is a refine-
ment of the LR grid, the two grids are overlapping, and the
upscaling operator U in Eq. 17 is a sub-sampling of the HR
grid.

We used localization — a local analysis framework with
Gaspari and Cohn tapering, Gaspari and Cohn (1999) — and
multiplicative inflation Li et al. (2009) to counteract sampling
errors. The localization radius, inflation, and the hybridiza-
tion coefficient @ for the hybrid covariance schemes are tuned

empirically to optimal performance for each ensemble size,
i.e. minimizing the error while matching the spread.

5 Validation metrics

The performance of the different assimilation schemes is esti-
mated at each assimilation cycle from the analyzed state, with
the spatial root mean square error e, Eq. 19.

R et i2
e= |- () =x), (19)

j=1

The spatial root mean square ensemble spread s, Eq. 20,
was also considered to assess the reliability of the system
(Fortin et al. 2014).

n

1 1
s= |7 w1,

j=1 i

N

(x4 () = x())’, (20)
=1
where x* and x' are respectively the mean analyzed state and
the true state at the current assimilation cycle. In a perfectly
reliable ensemble data assimilation system, e = s Anderson
and Anderson (1999). The general conclusions of the paper
remain the same if we compute these scores on the prior state
rather than on the analyzed state (not shown).

We have also considered the “spread reduction factor”
(SRF) that allows to evaluate the relative efficiency of differ-
ent assimilation schemes with different ensemble sizes. The
SRF is defined as follows:

HPL H”
SRF = T — 1 (1)
\ HPLH

The SRF represents the reduction of the spread in the
observation space and can be interpreted as a measure of the
magnitude of the data assimilation correction, see Sakov and
Bertino (2011). The SRF is between 0 (i.e. the data assim-
ilation step has no impact on the ensemble) and oo (i.e. all
the analyzed members are the same). As the EnKF performs
a linear analysis update, an ideal ensemble data assimilation
system would achieve optimal performance while perform-
ing the smallest updates possible.

The temporal average of these scores is presented beyond
10 assimilation cycles — the time needed for the system to

Table 1 Summary of different

model configurations Name Grid point size Time step State size Snapshot figure
HR 129 x 129 Figure 3-(a)
LR 4 2 65 x 65 Figure 3-(b)

Grid point size and time step are expressed in terms of that of the HR model

@ Springer
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Fig.3 Snapshot of the sea level for (a) the HR model (b) the LR model. The black points denote the location of the observations

converge to stable performance — to discard the assimilation
spin-up phase.

For the EnKF-HR, Hybrid SRDA, MRDA, and SRDA,
the assimilation step is performed in the HR space, and the
scores e and s are computed in the HR space. In the case
of the MRDA and the Hybrid SRDA, we follow Rainwater
and Hunt (2013) and compute e, s, and the SRF over the
HR ensemble. For example, if we use (Ng, N.) = (5, 10)
members, e, s, and the SRF are computed over the Ny = 5
HR members. We tested computing these scores over the
combination of the HR and the LR ensembles, but the LR
members penalize the scores, especially for the MRDA (not
shown).

6 Results
6.1 Methods intercomparison

We aim to compare first the performance of the different
methods at equivalent computational costs. For large oper-
ational systems, the computational time of integrating the
ensemble is often much larger than that of the assimilation
step.

We start by assuming that the assimilation cost is neg-
ligible (and thus the additional cost of Hybrid SRDA and
MRDA over EnKF) and compare the performance of the
methods at an equivalent computational cost of model inte-
gration, which depends on the cost of running the ensemble
of HR and LR members (having a ratio of 8 LR mem-
bers to 1 HR member). We also discard the cost of training
the NN operator (Section 2.5), which has to be done only
once before the experiments. For example, we compare the
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methods for a computational cost equivalent to the EnKF-
HR with 9 members, which is equivalent to using 72 LR
members, and the MRDA and the Hybrid SRDA for a com-
bination of (Ny, Np) equivalent to 9 HR members, for
example (Ng, NL) = (3, 48). We show in Fig. 4-(a) the
optimal RMSE for the different schemes for computational
resources equivalent to integrating 5, 7, 9, ..., 15 HR mem-
bers. It is striking that the RMSE of the SRDA is stable
or only marginally reducing with increasing computational
resources and is poorer than the EnKF-HR beyond the cost
of 9 HR members. On the contrary, the performance of
the other scheme improves with increasing computational
resources, and we anticipate they saturate around a computa-
tional cost equivalent to 25 HR members. For an equivalent
computational cost of 5 HR members, SRDA already uses
40 LR members, and the sampling error is already low. It
implies that the SRDA scheme is only beneficial for “low
computational” resources and that its performance saturates
quickly. The MRDA performs better than the standard EnKF,
in agreement with Rainwater and Hunt (2013). The Hybrid
SRDA is best for all computational resources and better than
the MRDA, especially for minimal computational resources
(roughly 14% of reduction of the RMSE). Another way to
look at the plot is to check for which computational resources
the system can achieve a given RMSE. For example, the
Hybrid SRDA reaches an RMSE of 0.8 at half the compu-
tational resources required with the EnKF (6 vs 13). Except
in the case of the EnKF for HR computational resources
equal to 5, all schemes display small SRF between 0.17 and
0.23, Fig. 4-(b). This corresponds to relatively small correc-
tions. This shows the superiority of the Hybrid SRDA as it
achieves the best performance in terms of RMSE while, on
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Fig.4 (a) Optimal averaged RMSE and (b) associated averaged SRF for the different schemes as a function of the computational resources expressed

in HR model integrations

average, the magnitude of the corrections is comparable to
the other schemes. Besides, having a small SRF limits the
risk of shocks due to the assimilation correction.

While the above shows performance where the integration
of the forecast ensemble dominates the computational cost,
we are investigating here the computational time reduction
allowed by the SRDA, the Hybrid SRDA, and the MRDA. We
compare, for a given ensemble size, the computational cost
and the skill of an ensemble composed of 15 HR members
(EnKF-HR), 15 emulated LR members (SRDA), and mem-
bers of mixed resolution with (Ny, Np.) = (5, 10) members

1000 - I Integration
Downscaling
B Assimilation

B Upscaling

800 -

600

CPU time (s.)

400

200

SRDA

(a)

Hybrid SRDA MRDA

(MRDA and Hybrid SRDA). Figure 5-(a) shows, for each
of the schemes, the decomposition of the total CPU time
according to the phase of the algorithm: integration, down-
scaling, assimilation, and upscaling. It shows that, for that
ensemble size, the Hybrid SRDA and the MRDA reduce the
computational time by one-third, and the SRDA by half, com-
pared to the EnKF-HR. Additionally, Fig. 5-(a) shows that
the computational time of the downscaling step with the NN
remains limited and accounts for 7.9% of the total computa-
tional time for the Hybrid SRDA and 16.7% in the case of
the SRDA. However, the relative computational cost of the

EnKF

SRDA

Hybrid SRDA
MRDA

1.6

RMSE

200 300 400

Assimilation cycles

(b)

500

Fig. 5 (a) Bar diagram of the CPU time (s.) for the different schemes as a function of the steps of the algorithm: integration, downscaling,
assimilation, and upscaling. (b) Time series of the RMSE for the EnKF with Ng = 15, the SRDA with Np, = 15, the Hybrid SRDA and the MRDA

with (Ny, NL) = (5, 10)
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Table2 Average SRF for the

EnKF, the SRDA, the Hybrid EnKF

SRDA Hybrid SRDA MRDA

SRDA, and the MRDA

SRF 0.228

0.227 0.228 0.246

NN downscaling step would become comparatively much
smaller with realistic oceanic/atmospheric models because
the cost of integration of these models would drastically
increase. Figure 5-(b) shows the time series of the RMSE
for the different schemes. The Hybrid SRDA displays minor
differences with the EnKF, with an increase of the RMSE of
approximately 3.1%, but with a reduction of the total compu-
tational cost of roughly one-third due to the trade-off between
HR and LR members. The MRDA also shows performance
very close to the EnKF, albeit poorer than the Hybrid SRDA.
The SRDA with a 15-members ensemble displays a more
significant error despite the NN emulator. The largest RMSE
differences occur during challenging events, between assim-
ilation cycles 300 and 400, where the model error is more
significant. The SRDA results in a deterioration of the mean
RMSE by approximately 12% compared to the EnKF-HR. In
that configuration, all the schemes, except the MRDA, dis-
play a SRF close to 0.227, see Table 2. The MRDA displays
a SRF of 0.246, which is approximately 7.9% larger than the
other schemes. This shows that the MRDA needs to extract
more information from the observations to perform as well
as the Hybrid SRDA.

Forecast experiments were conducted for each scheme
with the optimal ensemble size of Fig. 4-(a) for 7 HR compu-
tational resources. For each scheme and at each assimilation
cycle, a 120 HR times steps forecast was performed (equiva-
lent to 10 assimilation cycles). Figure 6-(a) shows the RMSE

204 —* EnKF

—e— SRDA

—e— MRDA HR

—e— Hybrid SRDA HR

0 24 48 72 9% 120
Forecast lead time (HR time steps)

(a)

(as a function of the forecast lead time) averaged over the last
490 forecasts. It should be highlighted that while the RMSE
is computed from 7 HR members in the EnKF we only use
the HR members for the other scheme; i.e., 4 members in
the Hybrid SRDA and 5 in the MRDA. This highlights that
the benefit of the Hybrid SRDA and MRDA compared to
the EnKF found at analysis time is also sustained at a longer
lead time. Figure 6-(b) shows the averaged forecasted spread,
we can notice that the spread in all schemes underestimates
the amplitude of the RMSE as a consequence of model and
sampling error, Carrassi et al. (2018). In an ensemble data
assimilation system, this is counteracted with inflation, which
is not used when running the forecast. In the particular case of
the SRDA, the forecast is performed in the LR space, which
explains why we observe such a drastic increase in RMSE at
a longer lead time.

To further investigate the behavior of the different schemes,
we analyze the spatial covariance structure from the forecast
ensemble. For that, we compute the correlation length scale
L, and the variance of the covariance functions of the dif-
ferent schemes at three characteristic points (Fig. 3-(a)):

e Point A: in the left part of the domain, where spatial and
temporal variability is high;

e Point B: in the lower part of the domain with the passing
eddies;

e Point C: in the right part of the domain with low vari-
ability.

2.01 —e— EnKF
—e— SRDA
181 —e— MRDA HR
’ —e— Hybrid SRDA HR
1.6
kel
o
s 14
(%]
1.2
1.0
0.8
0 24 48 72 96 120
Forecast lead time (HR time steps)

Fig.6 (a) RMSE and (b) spread for the EnKF, the SRDA, and the HR ensemble of the MRDA and the Hybrid SRDA
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The correlation length scale L is derived from the cor-
relation matrix €', which is calculated from the covariance
matrix Pf, as follows:

ct=x"1pfx-1, (22)

where X is a diagonal matrix with the standard-deviation of
P on the diagonal. The correlation length scale L p can be
computed from the correlation matrix C' using the Gaussian-
based formula in Pannekoucke et al. (2007):

5x
b= o

where p is the correlation function at the point that we
consider (i.e. p is the column of the correlation matrix C
corresponding to that point) and §x is the considered “sepa-
ration distance”; in this study, §x corresponds to the HR grid
resolution.

The correlation length scales are averaged along the ho-
rizontal and vertical axis to account for possible anisotropy
in the covariance functions. The variance and the correlation
length scales are computed in the HR space with 15 mem-
bers for all methods — again, Hybrid SRDA and MRDA use
(Nu, NL) = (5, 10) distribution. Correlation length scales
and variance in the EnKF-HR are our targets. The results for
the horizontal length scales are displayed in Fig. 7.

At each point the correlation length scale in the MRDA is
lower than that of the EnKF, and the variance is overestimated
at point B. The variance at this point is driven by eddies
passing along the domain’s southern border. The propagation
speed of the eddies, with the LR members, is slower than in
the HR and in the true run Barthélémy et al. (2022), and their
spatial dispersion increases the variance. The introduction of
noise with the integration of some members in LR results
in a reduction of the spatial correlation, and therefore, in a
reduction of the correlation length scales.

The mean values of the variance and the correlation length
scales in the SRDA and the Hybrid SRDA are much closer
to that of the EnKF. It was shown in Barthélémy et al. (2022)
that the NN is able to correct, to some extent, the LR model
error and, in particular, to correct the propagation speed of the
eddies. This results in a better estimation of the background
error covariance matrix, and therefore, we show that the NN
operator is also able to correct the correlation length scales
and variance of the covariance functions.

(23)

6.2 Properties of the hybrid SRDA

In Section 2.4 and Appendix A, we show that it is possible
to write down the Hybrid SRDA directly in the LR space
(LR Hybrid SRDA). Instead of having one NN operator that
interpolates the LR members to HR, this formulation uses 2

NN operators: one, Q, that corrects the model error in the
LR space, and another one, H, that stands for a non-linear
super-resolution observation operator.

If we compare the two versions of the Hybrid SRDA (in
HR and LR) at one assimilation cycle, their analysis error in
the LR space is nearly identical (up to the machine error of
the order of magnitude of 10_16), but there are differences
in the HR space analysis, of the order of 1072. These are
the consequences of inaccuracy in the NN downscaling step
from the LR to HR space after assimilation. These discrep-
ancies impact only marginally the performance of the LR
Hybrid SRDA, which shows overall somewhat comparable
mean RMSE with the Hybrid SRDA see Table 3. In the fol-
lowing, they will be considered equivalent.

An advantage of the LR form of the Hybrid SRDA is that
it allows the disentangling of the model error correction term
and the observation operator term. Mathematically speaking,
we can replace the operator Q in the equations (Appendix A)
by identity, in which case only the super-resolution obser-
vation operator gets effective (we note Hybrid SRDA4y), or
conversely only applying the model error correction term and
using linear spatial interpolation (noted Hybrid SRDA o) for
the observation operator. The standard Hybrid SRDA and the
Hybrid SRDA g perform nearly equivalently, while Hybrid
SRDA%; displays a larger RMSE in line with the MRDA,
which implies that the reduction of error between Hybrid
SRDA and MRDA is primarily due to the correction of the
LR dynamical model, see Table 3.

6.3 Tuning and robustness of the method

The Hybrid SRDA method requires tuning two additional
parameters compared to the standard EnKF: the ratio of Ng
and Ny, and the hybrid coefficient . Tuning data assimilation
parameters can become a bottleneck with expensive opera-
tional models. We aim here to assess the sensitivity of the
method to the choice of the method and try to guide on how
to estimate the optimal value.

As shown in Fig. 8 for computational resources equiv-
alent to 9 HR members, the Hybrid SRDA shows minor
sensitivity to the distribution of (Ng, Np) and less than
the MRDA. The method shows very stable performance if
the ratio N/ (Nyg + Nvp) is selected between 10 and 45%
(Fig. 9). This is the direct consequence of the reduction of
the LR model error with the NN, see Barthélémy et al. (2022),
that results in a reduction of the sampling error and limits the
sensitivity of the scheme to the ratio Ny / (Ny + Np). Insuch
a configuration, the Hybrid SRDA consistently outperforms
the MRDA with optimal settings. For low computational
resources, a ratio of about 10% is best to have sufficient LR
members to reduce sampling error. For more considerable
computational resources, a higher ratio of [30;45] % is opti-
mal. As such, we can conclude that the method is not sensitive
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Fig.7 Diagram showing the correlation length scale versus variance. The points represent the averaged values of the correlation length scales and
the variance, and the bars depict the confidence interval at 95%
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Table 3 RMSE of the Hybrid
SRDA, the different flavors of
the LR Hybrid SRDA, and the
MRDA

Fig.8 Time averaged RMSE of
the Hybrid SRDA and MRDA
with various combinations of
HR and LR members, all
equivalent to 9 HR members.
The EnKF-HR and the SRDA at
equivalent computational
resources are added for
reference

Fig.9 Mean RMSE for the
Hybrid SRDA for a different
ratio Ng/ (Ng + Np). The
optimal Hybrid SRDA and
optimal MRDA are added for
reference

Fig. 10 RMSE and spread
computed for the HR ensemble
with different values of the
hybridization coefficient «, for
(a) the Hybrid SRDA and (b) the
MRDA. In both cases

(Nu, NL) = (5, 10)

Hybridization coefficient a

(a)
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Fig. 11 Optimal hybridization

coefficient from a sensitivity

analysis (green line) and the

ratio N, /(Ny + NL) (red line)
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to fine-tuning the ratio of (Ny, N ) and that picking a value
within the interval [ 10; 45] % provides nearly optimal results.

The hybridization coefficient « is another critical para-
meter of the Hybrid SRDA method and weighs the relative
importance of the background error covariance from the HR
and the LR ensembles (14a). However, Fig. 10 shows for
computational resources equivalent to 7 HR members that
the hybridization coefficients have limited influence over the
RMSE for values between 0.1 and 0.9 for both the HR and the
LR ensembles. Outside of the interval [0.1; 0.9], the RMSE
increases until the scheme eventually diverges (not shown),
similarly to Fig. 2 in Rainwater and Hunt (2013). Still, we can
notice that the hybridization coefficient has more influence on
the ensemble spread than the RMSE. In this study, the optimal
value of the hybridization was set to ensure the DA system’s
reliability —i.e. that the spread matches the error of the ensem-
ble mean Anderson and Anderson (1999); Fortinetal. (2014).
For example, in the case of Fig. 10, the optimal value of «
is 0.6 for both the Hybrid SRDA and the MRDA. However,
another approach for estimating o« would be to compute it as
the ratio N1, /(Ny + NL) — this assumes that HR and LR emu-
lated members have the same quality and that sampling error
is the dominant source of error. Figure 11 displays the values
of o« computed with that formula, which matches the empiri-
cally tuned optimal values of «. It shows that the formula is a
good approximation of the optimal hybridization coefficient
o. We, therefore, again can conclude that the Hybrid SRDA is
robust to the setting of the « values and that values that opti-
mize the reliability of the system can be estimated based on
the ratio of (Ny, NL). Adaptive time-varying formulations
for estimating o (El Gharamti 2021; Ménétrier and Auligné
2015; Barthélémy et al. 2024) have been proposed and were
shown to improve the performance of the hybrid covariance
DA methods. The use of adaptive parameters has not been
explored here.
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7 Conclusion

In this work, we have extended the concept of super-reso-
lution data assimilation (SRDA, introduced by Barthélémy
et al. 2022) building on the mixed-resolution ensemble
data assimilation (MRDA) (Rainwater and Hunt 2013). We
have shown that including a few HR simulations in the
super-resolution ensemble mix is cost-effective. After the
assimilation step, the LR emulated members are scaled back
to the LR grid for the next integration cycle. While in Rain-
water and Hunt (2013), the downscaling step is performed
with a cubic spline interpolation operator, the Hybrid SRDA
uses a neural network that learns the mismatch between the
LR and HR models.

We have compared the DA methods’ performance at
an equivalent cost of model integration (i.e., the most
common configuration in operational data assimilation sys-
tems). While the SRDA works well for low computational
resources, its performance quickly saturates with increasing
computational cost due to inaccuracy in the NN operator and
rapidly performs poorer than the EnKF. The Hybrid SRDA,
on the contrary, shows a pronounced improvement as compu-
tational resources increase and outperforms all other schemes
(EnKF, MRDA, and SRDA). It shows that while the NN
operator substantially improves the LR members, it is still
preferable to use even a fraction of the available resources
to HR members when formulating the covariance and per-
forming the forecast. We demonstrate that the benefit of the
Hybrid SRDA over the MRDA is mainly related to the cor-
rection of the low-resolution dynamical model error. We also
show that the Hybrid SRDA performs best at an equivalent
analysis computational cost. In particular, it does not reduce
the correlation length scale of the covariance as in the MRDA.
The Hybrid SRDA requires tuning two new parameters com-
pared to the standalone EnKF — the ratio of the number of HR
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members versus LR members and the hybridization coeffi-
cient —, which can be cumbersome to estimate with expensive
systems. However, we show that the method is robust (with
little sensitivity to the parameters) and that the optimal value
of these parameters is easily predictable a priori.

As for the SRDA, the method’s applicability to a realis-
tic model remains to be demonstrated. One question is how
to balance the computing load on parallel architecture since
the runs of models at different resolutions are not equally
fast. We see that as a manageable challenge as the model’s
code parallelization is typically scaling well with increasing
computational resources, so it is possible to allocate more
CPU in the HR model so that it clocks at the same speed
as the LR model. For instance, we use this approach for the
supermodel Counillon et al. (2023), where we run in parallel
different ESMs with very different speeds. Another question
concerns multivariate systems: the method was tested with
an univariate QG model in this study. Will the NN operator
work just as well for a high-dimensional multivariate sys-
tem with irregular coastlines? Should we develop separate
NN for the emulation of each field (temperature, salinity...)
and/or vertical layer, or should we only develop one NN
that emulates all the variables together? Will the NN pre-
serve the covariances between the different variables? The
success of NNs emulating some of the most advanced fore-
casting models in NWP suggests that this is doable, Lam et al.
(2023). We are therefore confident that the Hybrid SRDA has
the potential to become applicable and competitive in future
operational forecasting systems, and we are currently testing
the approach in the field of climate predictions with the Nor-
wegian Climate Prediction Model Bethke et al. (2021), and
sea ice forecasting Xie et al. (2017).

Appendices
A Rewriting the Hybrid SRDA as a LR scheme
A.1 Statement
We assume that there exists two operators Q and H such that:

e Q: RXN 5 RLXN corrects the model error of the
LR ensemble E{;

o H : RN _ RPXN jg a super-resolution observation
operator that maps the LR ensemble to the location of the
HR observations.

The LR formulation of the Hybrid SRDA can be written
as follows:

X y=xt_ +Kb (d - foH) , (24a)

963
a f L huaf
Al y = ALy — ;K"HA], (24b)
xo= LK (48 ) (240)
a &t 1 paf
L=AL— EK Ay i, (244d)

where K" is the Kalman gain computed from the LR hybrid

. xh A
anomalies A and A :

-1

) (R
K —

= R , 25
Ng+ N, —1 NH+NL—1+ (25)

and where the hybrid anomalies are defined as:

Additionally, x| .y and Ap g stand for the mean and the
anomalies, respectively, of the HR ensemble upscaled to the

A Af - ~f
LR space. X/ ,A|,X;_ |, and Ay stand for the mean and
the anomalies of the ensembles obtained by application of
the operators Q and  to the LR ensemble E! :

AL=Q(E) - Q)
Ay =H (EtL) -H (Ei)

. & = O(E]).
® iHeL = H(Ei)’

A.2 Demonstration

If the upscaling operator U is linear or a cubic spline inter-
polation, applying U to the system of Egs. 12a-12b-12c-12d
leads to the following set of equations:

+ R) (d—Hxly), (27a)

a
XL<H =X

. UA" (HA")" / HA" (HA")"
LHT NG+ N — 1\ N+ N — 1

-1

+R> HAL,  (27b)

. 1 UA" (HAM) / HAP (HAM)T
Al g=Al - (HA') (H?)

ENH+NL71 Ny + N — 1

@ Springer



964

Ocean Dynamics (2024) 74:949-966

—1
R

. UA" (HA"M)" /[ HA" (HAD)
X =Uxf + (HA") ( (HA")

Ny+NL—1\Nyg+N_—1
(27¢)
-1

1 UA" (HAM)" [ HA" (HAM)'
A =UAL_, — - R| HAL_,. (27d
L Hel = 3 Nn+ N — 1 NH+NL—1+ et ( )
a _ a a _ a f _ f
where X7 _ = Uxy, Aj g = UAR, xp g = Uxp,

Al =UAL x* =Ux%_ A} = UAY_ |, and A" stands
for the hybrid anomalies as defined in Eq. 16.

xf;_; and Al are respectively the mean and the
anomalies of the LR ensemble EL; | downscaled to the HR
grid, we have: Ef; | = D (E} ). By linearity of the operators

U and H, we have:

Uxf;_, =UD(El), (28)
VA, = UD (E[ ) - UD (E)). (29)
Hx;_, = HD(El), (30)
HAL | =HD (EfL) —HD (E)). 31)

Following Barthélémy et al. (2022), we define the opera-
tors Q and H:

R"LXN RanN
Q: g (32a)
EiL — EL=UD(Ep)
R"LXN N RPXN
H: A 32b
{ EL > Eycr = HD (Ep) (320)

@ is an operator that maps the LR background ensemble
EfL to the LR space and can be interpreted as an operator
that corrects the LR model error, as a composition of the
operators D and U, plus some interpolation error. Note that
if the LR and the HR grids are overlapping then the operator
U acts as a sub-sampling operator and then the interpolation
error is null. In Eq. 32a, @ is defined as the composition of
the operators D and U, but it could be defined as an operator
that minimizes the mean absolute error between the output
of the LR version of the model and the training set upscaled
to the LR grid. Uxf{eL and UA{{<_L represent the mean and

. ~f
the anomalies of the corrected ensemble E; , we note:
Ul —E = 33
XHL = BL = X1, (33)

UA_ —E —E =A. 34)

‘H is an operator that maps the LR background ensem-
ble E£ to the HR observation space and can be interpreted
as a super-resolution observation operator. In Eq. 32b, H is

@ Springer

defined using the operator D, but it could also be defined
by proceeding to the super-resolution of the LR ensemble
EfL at the observation points. Hx]f_IHL and HA%eL represent
respectively the mean and the anomalies, at the HR obser-
vation points, of the downscaled LR ensemble E}i. In the
following, we note:

~f R
HX{%—L =Eq L = X{{<—L’ (35)

f Af A Af
HA | =By —Egp = Apr. (36)

On the other hand, U and H act by linearity on the hybrid
anomalies as follows:

[ 11—« o
UAM = /Ny + N — | UAL, UA! ,
H+ NL N —1 Ny — 1 THe<L
(37)
[ 1l -« f o ~f
=VNa+N_—1 Al _n AL |,
HH AL Ng—1 L<H NL—lLi|
(38)
HAD = /Ny + N | [ Y HAf
= H L Ny — 1 H: N —1 H<L |~
(39)
[ l—« £ o Af
=N N, —1 HA,,, A
v NH + NL N1 H‘/NL—I H<L
(40)
For the sake of simplicity, we note:
h  =h
UA"=A (41)
~h
HA" = A (42)

Replacing the terms lef_k_L, UAf_l(_L, foH<_L, HA£1<_L,
UA", and HA! in Eqs. 27a-27b-27¢-27d, we get Egs. 24a-
24b-24c-24d.
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