
Performance Assessment of Diffusive Load Balancing for
Distributed Particle Advection

Ali Can Demiralp
RWTH Aachen

Kopernikusstrasse 6
52074, Aachen, Germany

Dirk Norbert Helmrich
Forschungszentrum Jülich GmbH

Wilhelm-Johnen-Strasse
52428, Jülich, Germany

Joachim Protze
RWTH Aachen

Kopernikusstrasse 6
52074, Aachen, Germany

Torsten Wolfgang Kuhlen
RWTH Aachen

Kopernikusstrasse 6
52074, Aachen, Germany

Tim Gerrits
RWTH Aachen

Kopernikusstrasse 6
52074, Aachen, Germany

ABSTRACT
Particle advection is the approach for extraction of integral curves from vector fields. Efficient parallelization of
particle advection is a challenging task due to the problem of load imbalance, in which processes are assigned
unequal workloads, causing some of them to idle as the others are performing compute. Various approaches to
load balancing exist, yet they all involve trade-offs such as increased inter-process communication, or the need
for central control structures. In this work, we present two local load balancing methods for particle advection
based on the family of diffusive load balancing. Each process has access to the blocks of its neighboring processes,
which enables dynamic sharing of the particles based on a metric defined by the workload of the neighborhood.
The approaches are assessed in terms of strong and weak scaling as well as load imbalance. We show that the
methods reduce the total run-time of advection and are promising with regard to scaling as they operate locally on
isolated process neighborhoods.

Keywords
Particle Advection, Distributed Algorithms, Load Balancing

1 INTRODUCTION
Particle advection is an important method for analysis
and visualization of vector fields. The idea is to place a
set of (often massless) particles within the vector field,
and integrate them over time using a numerical integra-
tion scheme such as the Runge-Kutta family of meth-
ods. Aside from its primary use for estimation of inte-
gral curves in vector data, it serves as a basis for various
feature extraction methods such as Lagrangian Coher-
ent Structures [HY00].

Modern vector datasets vary from several gigabytes to
the upper end of the terabyte range. Considering the
size of the data, and the number of particles necessary
to represent the domain, parallel compute becomes es-
sential and is in fact a standard tool for particle advec-
tion today [PCG+09, PRN+11].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Parallel particle advection suffers from the problem of
load imbalance, in which the vector field blocks and/or
the particle sets are distributed in an unfair way, leading
to some processes idling as others are performing com-
pute. This is economically undesirable as the idle pro-
cesses waste core-hours, yet are still paid for by the ap-
plication user in the form of allocated cluster resources
or currency. It is also desirable to have low advection
times in order to enable real-time adjustments to the
particle set and advection parameters. Due to these as-
pects, many recent approaches focus on the problem of
load balancing [ZGYP18, ZGH+18, BPNC19, BPC21].

Although a variety of load balancing approaches al-
ready exist, they invariably come with trade-offs. The
approach of [PCG+09] offers decent performance, yet
involves a task dispatching model that is challenging
to implement in a distributed environment. The ap-
proach in [ZGYP18] involves transmission of the vec-
tor field across processes which may cause significant
communication overhead. The approach presented in
[ZGH+18] involves a parallel K-D tree construction at
each round. The approach of [BPNC19] is shown to
maximize resource usage, however may involve a set
of serial communications until work is delivered to the
requesting process.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 6



In this work, we present a hybrid-parallel particle
advection system, coupled with a local load bal-
ancing method based on diffusive load balancing
[Boi90, Cyb89]. The processes load the blocks of their
first neighbors in addition to their own. This partial
redundancy enables efficient application of nearest-
neighbor family of diffusive load balancing algorithms
based on the framework defined by Cybenko [Cyb89].
We introduce two scheduling methods, considering
the requirements of the specific problem of particle
advection.

2 RELATED WORK
The approach presented in [PCG+09] is an earlier ap-
plication of hybrid parallelism to particle advection.
The processes are divided into groups, each contain-
ing a master load balancing process which dynamically
distributes the data and the particle subsets to the rest.
The method overcomes the scaling issues of a central
load balancer, by introducing multiple centers.

The recent approach presented in [ZGYP18] dynam-
ically adjusts the blocks assigned to the processes at
each round of advection. The method constructs a dy-
namic access dependency graph (ADG) from the num-
ber of transmissions between neighboring processes.
This information is combined with the particle sets to
resize and relocate the blocks assigned to the processes.

The dynamic K-D tree decomposition presented
in [ZGH+18] is an example of a hybrid approach,
combining static data parallelism with dynamic task
parallelism. In this method, each process statically
loads a larger data block than the region it is assigned
to. At each advection round, a constrained K-D tree
is constructed based on the current particle set, whose
leaves are used to resize the regions of the processes,
up to the boundary of their data blocks.

The approach presented in [BPNC19] adapts the
lifeline-based load balancing method to the context
of parallel particle advection. The method builds on
work requesting [MCHG13], in which processes with
low load ask processes with higher load to share (often
half of) their load. In contrast to random selection of
the process to request work from, this approach first
constructs a lifeline graph of processes. The requests
are not random, and made to the adjacent nodes in the
graph, which may forward the request recursively to
their neighbors.

3 METHOD
In this section, we first provide an overview of baseline
hybrid-parallel particle advection and a review of the
mathematical framework for diffusive load balancing as
defined in [Cyb89]. We then introduce two methods
that are based on diffusive load balancing.

3.1 Hybrid-Parallel Particle Advection
The approach to achieve hybrid parallelism is to
parallelize over data among the processes, and par-
allelize over the tasks among the threads of each
process. Within the context of particle advection, this
corresponds to distribution of the vector field blocks as
well as the related particle subsets to the processes, and
integrating the latter using an array of threads.

The following pseudocode outlines the kernel ran by
each process. We also provide two points of entry for
modular implementation of the load balancing algo-
rithms which will be discussed in the next section.

Algorithm 1: The advection kernel.

1 function Advect (p,v);
Input : Particles p and vector fields v
Output : Advected particles p′ and integral curves

i
2 while !check_completion(p) do
3 load_balance_distribute(p);
4 r = compute_round_in f o(p, i);
5 allocate_integral_curves(p, i, r);
6 integrate(v, p, p’, i, r);
7 load_balance_collect(r);
8 out_o f _bounds_distribute(p, r);
9 end

The outermost condition, check_completion, consists of
two global collective operations, a gather for retrieving
the current active particle counts of the processes, and
a broadcast that consists of a single Boolean evaluating
to true only when all gathered particle counts are zero.

The load_balance_distribute is a function that provides
the active particles (as well as the index of the process),
and expects the implementer to freely call global or
neighborhood collective operations to balance the load
of the process for the upcoming round.

The function compute_round_info generates the meta-
data to conduct an advection round, setting the range
of particles, tracking vertex offsets and strides for the
integral curves, as well as creating a mapping of out-of-
bound particles to the neighboring processes.

The allocate_integral_curves (re-)allocates the vertex
array of the integral curves, expanding it by the number
of particles to trace this round times the longest iteration
among those particles. Despite potentially wasteful us-
age of memory, one allocation per round is significantly
more efficient than using resizable nested vectors of
points. Besides, it is possible to prune the curves based
on a reserved vertex either at the end of each round or
after the advection kernel has finished, which may also
be done in parallel using the execution policies recently
introduced to the standard template library.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 7



The integrate iterates through the particles of the round,
sampling the corresponding vector field at the position
of the particle, and integrates the curve based on the
interpolated vector using a scheme such as the Runge-
Kutta family of methods.

The load_balance_collect is an optional function pro-
viding a way to recall the particles that have been
transmitted to other processes during load balancing.
In the case of diffusive load balancing, particles that
have gone out-of-bounds after being load balanced to a
neighboring process have to be returned to the original
process prior to the out-of-bounds distribution stage.
This is due to the fact that the neighboring process does
not have any information on or topological connection
to the neighbors of the original process except itself.

The out_of_bounds_distribute is the final stage, in
which particles reaching the boundary of a neighbor
during the round are transmitted to the corresponding
neighboring processes using local collectives.

3.2 Load Balancing
A set of processes arranged in a Cartesian grid may be
interpreted as a connected graph where the nodes are
the processes and the edges are the topological connec-
tions between the processes. Assume the processes are
labelled from 0 to n. Define wt as an n-vector quan-
tifying the work distribution, so that wt

i is the amount
of work to be done by process i at time t. The diffu-
sion model for dynamic load balancing as described by
Cybenko in [Cyb89] has the following form:

wt+1
i = wt

i +∑
j

αi j(wt
j −wt

i)+η
t+1
i − c (1)

where αi j are coupled scalars, evaluating to non-zero
only when process i and j are topologically connected.
Within a Cartesian grid, this corresponds to the immedi-
ate neighbors excluding the diagonals. The sum implies
that the processes i and j compare their workloads at
time t and transmit αi j(wt

j −wt
i) pieces of work among

each other. The work is transmitted from j to i if the
quantity is positive, and vice versa if negative. The term
η

t+1
i corresponds to new work generated at process i at

time t. The term c describes the amount of work per-
formed by the process between time t and t +1.

In the next section, we propose a method to compute
αi j dynamically based on several local averaging op-
erations, guaranteeing an improved distribution of the
workload. A central requirement for the following al-
gorithms for computation of αi j is the availability of
information from the first neighbors. Each process is
required to additionally have access to the data blocks
of its neighbors. We furthermore communicate the lo-
cal workload for the next round of particle advection to
all neighbors dynamically at the beginning of each load
balancing step.

Algorithm 2: The lesser mean assignment.

1 function LMA (load,neighbor_loads);
Input : Local workload amount load, and vector

of neighbors’ workload amounts
neighbor_loads.

Output : Vector of workload amounts to be sent to
each neighbor outgoing_loads.

2 contributors =
vector<bool>(neighbor_loads.size());

3 mean = load;
4 do
5 contributors.fill(false);
6 sum = load;
7 count = 1;
8 for i=0; i < neighbor_loads.size(); i++ do
9 if neighbor_loads[i] < mean then

10 contributors[i] = true;
11 sum += neighbor_loads[i];
12 count++;
13 end
14 end
15 mean = sum / count;
16 while There are neighbors above mean in

contributors;
17

18 outgoing_loads =
vector<uint>(neighbor_loads.size());

19 outgoing_loads.fill(0);
20 for i=0; i < neighbor_loads.size(); i++ do
21 if contributors[i] == true then
22 outgoing_loads[i] = mean -

neighbor_loads[i];
23 end
24 end
25 return outgoing_loads;

3.2.1 Lesser Mean Assignment

Lesser mean assignment (LMA), detailed in Algorithm
2 and illustrated in Figure 1, attempts to equalize the
workload of the local process and its lesser loaded
neighbors. Upon the transmission of neighbor work-
loads, the mean of the local process and any neighbor
with less load is computed. The mean is revised itera-
tively, removing any neighbors contributing to it which
have more workload than it. Finally, we transmit the
difference of each contributing neighbor from the mean
to the corresponding processes.

The method could be interpreted as a unidirectional
flow of workload from more to less loaded processes.
In contrast to the original load balancing approach by
Cybenko [Cyb89], which fixes the diffusion parameter
to 1− 2

dimensions+1 of the difference from each neighbor-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 8



Figure 1: An illustration of particles (loads) assigned to
a grid of processes. The lesser mean assignment bal-
ances the state (a) to state (b). Certain cases in which
a lesser loaded process is surrounded by greater loaded
processes such as (c) may lead to over-balancing as seen
in (d).

ing process, the method scans the whole neighborhood
for an optimal local distribution.
Due to unconditional flow of load from greater loaded
neighbors, the lesser loaded processes potentially suffer
from an issue of over-balancing, in which they receive
a large sum of particles when surrounded by greater
loaded neighbors. Since second-neighbor information
is not available, the greater loaded processes are unable
to take the neighborhood of the lesser loaded processes
into account. The issue potentially results in cases in
which the global maximum load increases, as seen in
the second row of Figure 1.

3.2.2 Greater-Limited Lesser Mean Assignment
Greater-limited lesser mean assignment (GL-LMA) is
detailed in Algorithm 3 and illustrated in Figure 2. It
introduces a preprocessing step to LMA, utilizing the
higher loaded neighbor information in an effort to pre-
vent the over-balancing effect.
The processes start by computing the mean of their own
load and any neighbor with greater load. The mean is
revised iteratively, omitting neighbors with lesser load,
ensuring that the local process is the only one with
less load than it. The processes then define their total
quota, that is the total number of particles they would
accept from their neighbors, as the difference between
the greater mean and their local load. Each neighbor is
assigned a part of this quota, proportional to their con-
tribution to the greater mean.

Algorithm 3: The greater limited lesser mean as-
signment.

1 function GLLMA (load,neighbor_loads);
Input : Local workload amount load, and vector

of neighbors’ workload amounts
neighbor_loads.

Output : Vector of workload amounts to be sent to
each neighbor outgoing_loads.

2 contributors =
vector<bool>(neighbor_loads.size());

3 mean = load;
4 do
5 contributors.fill(false);
6 sum = load;
7 count = 1;
8 for i=0; i < neighbor_loads.size(); i++ do
9 if neighbor_loads[i] > mean then

10 contributors[i] = true;
11 sum += neighbor_loads[i];
12 count++;
13 end
14 end
15 mean = sum / count;
16 while There are neighbors below mean in

contributors;
17

18 total_quota = mean - load;
19 quotas = vector<uint>(neighbor_loads.size());
20 quotas.fill(0);
21 for i=0; i < neighbor_loads.size(); i++ do
22 if contributors[i] == true then
23 quotas[i] = total_quota ·

neighbor_loads[i]/(sum− load);
24 end
25 end
26 neighborhood_all_gather(quotas);
27

28 outgoing_loads = LMA(load,neighbor_loads);
29 return pairwise_minimum(outgoing_loads,

quotas);

The quotas are transmitted to the associated neighbors,
through a local collective operation that we factor in as
neighborhood_all_gather in Algorithm 3. This func-
tion may be realized using MPI_Neighbor_allgather or
implemented manually as a series of local communica-
tions if MPI 3.0 is not available. Upon the transmission
of the quotas, the processes apply a round of LMA, but
limit the amount of outgoing particles by the quotas re-
ceived from the neighbors.

The approach requires a third local collective operation
in addition to the load and particle transmission stages,
yet effectively prevents the over-balancing effect LMA
is prone to. In an overview, each process first sets quo-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 9



Figure 2: The greater-limited lesser mean assignment
first declares quotas for the greater loaded neighbors,
limiting the flow as in (a, d), followed by lesser mean
assignment, balancing from (b, e) to (c, f). Cases that
lead to over-balancing are averted by the initial quota
process as seen in the second line, still providing a 20%
boost to round run-time.

tas for its greater loaded neighbors, and then sends par-
ticles to its lesser loaded neighbors. The approach indi-
rectly makes second neighbor information available to
the processes, since they are now partially aware of the
neighborhood of their lesser loaded neighbors through
the quota received from them.

4 PERFORMANCE
This section details the experiments we have conducted
to measure the runtime performance and scaling of the
presented load balancing algorithms. We first enumer-
ate and describe the variables of the particle advection
pipeline in Section 4.1, and then construct a series of
experiments by systematically varying them in Section
4.2. The metrics accompanying the measurements are
detailed in Section 4.3.

4.1 Variables
4.1.1 Number of Processes
The number of processes is an axis of measurement,
and is defined in terms of compute nodes rather than
cores in this work. The process count also controls the
number of partitions in a data-parallel sense; each pro-
cess is responsible for one partition in the baseline ap-
proach, and for seven partitions (in 3D) in the diffusive
load balancing approaches. Increasing the number of
nodes refines the domain partitioning, which acceler-
ates the compute.

4.1.2 Load Balancing Algorithm
A central variable is the load balancing algorithm. The
pipeline supports four methods which are no diffusion,
constant diffusion, lesser mean assignment and greater-
limited lesser mean assignment. Each experiment is

performed on all four methods regardless of measure-
ment context, in order to quantify the benefits and lim-
itations of the presented algorithms with respect to the
baseline.

4.1.3 Dataset

The dataset is a variable since the complexity of
the input vector field impacts the performance of
particle advection [PCG+09]. We have obtained three
datasets covering the domains of astrophysics, thermal
hydraulics and nuclear fusion from the Research Group
on Computing and Data Understanding at eXtreme
Scale at the University of Oregon. Each dataset con-
tains features which lead to distinct particle behavior as
seen in Figure 3. The datasets are identical to the ones
presented in [BPNC19], which we refer the reader to
for further detail.

4.1.4 Dataset Size

The size of the dataset is a separate variable. It is in
a linear relationship with the size of the partitions and
hence influences performance. We scale each dataset
to 10243, 15363, 20483 voxels, leading to 12.8GB,
43.4GB and 103GB floating-point triplets respectively.

4.1.5 Seed Set Distribution

The seed set distribution is another variable, as it has a
direct impact on load imbalance. The particles are uni-
formly generated within an axis-aligned bounding box
(AABB) located at the center of the dataset. Scaling
the AABB enables concentrating the particles towards
the center and vice versa. We limit the distributions
to uniform scaling by 0.25, 0.5 and 1.0 (the complete
dataset).

4.1.6 Seed Set Size

The seed set size is the final variable, which corre-
sponds to the amount of particles/work. It is controlled
through stride, a vector parameter describing the dis-
tance between adjacent particles in each dimension. A
stride of [1,1,1] implies one particle per voxel. We limit
the strides to [8,8,8], [8,8,4], [8,4,4], [4,4,4], a se-
quence which may be interpreted as cumulatively dou-
bling the amount of work across Z, Y and X.

The rest of the variables are fixed for all experiments:
The integrator is set to Runge-Kutta 4, with a constant
step size of 0.001. Maximum iterations per particle is
set to 1000. Note that these settings are independent
of the dataset size as long as the domain is scaled to
the [0,1] range in each dimension. Despite being ad-
justable, particles-per-round are set to 10 million in or-
der to reduce benchmark combinations.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 10



Figure 3: The astrophysics dataset (a) is a simulated magnetic field around a core-collapse supernova, with complex
trajectories concentrated near the center. The thermal hydraulics dataset (b) is a simulation featuring two sources
pumping water at different temperatures into a rigid box. The nuclear fusion dataset (c) is a simulation of the
magnetic field within a Tokamak device, consisting of many orbital trajectories. All datasets comprise several
GBs, streamlines are extracted by our approach and ray traced via [WJA+17]. Color indicates vector magnitude.

4.2 Experiments

We assess the strong and weak scaling of the system,
applying each algorithm to each dataset. Furthermore,
we record and present the per-round load imbalance of
the algorithms in a fixed setting. We finally scan the
parameter space, assessing the impact of each variable
in isolation.

4.2.1 Strong Scaling

The number of processes is varied among 16, 32, 64,
128. Every other variable is fixed: The dataset sizes are
set to 10243, the seed set distribution spans the whole
domain (uniform scaling of the AABB by 1.0) and
the stride is [4,4,4], leading to 16.78 million particles.
The experiment is performed independently for each
algorithm and dataset, leading to nodes · algorithms ·
datasets = 4 · 4 · 3 = 48 measurements. We record the
total duration of particle advection for each process.

4.2.2 Weak Scaling

The number of processes is varied among 16, 32, 64,
128 simultaneously with stride, which is varied among
[8,8,8], [8,8,4], [8,4,4], [4,4,4]. Both the number of
processes and the amount of work is doubled, as the
stride leads to 221, 222, 223 and 224 particles respec-
tively. The rest of the variables are fixed, identical to the
strong scaling benchmarks: The dataset sizes are 10243

and the particle distribution spans the whole dataset.
The experiment is performed independently for each
algorithm and dataset, leading to nodes · algorithms ·
datasets = 4 · 4 · 3 = 48 additional measurements. We
record the total duration of particle advection for each
process.

4.2.3 Load Balancing
The number of processes is fixed to 16. The dataset
sizes are set to 10243. The seed set distribution con-
tains half of the domain in each dimension (uniform
scaling of the AABB by 0.5) and the stride is set to
[4,4,4], yielding 16.78 million particles. The particles
are concentrated near the center of the dataset, leading
to significant load imbalance from the start. The exper-
iment is performed independently for each algorithm
and dataset, leading to algorithms ·datasets= 4 ·3= 12
measurements. We record the duration of each stage of
each round per-process.

4.2.4 Parameter Space
The number of processes is varied among 16, 32, 64,
128 in addition to one of: dataset complexity, dataset
size, seed distribution, seed stride. Each of the lat-
ter variables have at least three settings described in
Section 4.1, which are tested in isolation. Note that
when varying dataset size, we proportionally vary stride
in order to keep the particle count constant. When
fixed, the dataset is set to astrophysics, the dataset
size is set to 10243, the seed distribution is set to 1.0
and the seed stride is set to [4,4,4]. The experiment
is performed for each algorithm, leading to nodes ·
algorithms · (variables · variable_options) = 4 · 4 · (4 ·
3) = 192 measurements. We record the total duration
of particle advection for each process. Note that the
dataset complexity configurations are equivalent to the
strong scaling tests, yet are recorded separately and in-
cluded for comparison to other parameters.

4.3 Metrics
For each scaling measurement we compute the speedup
from the time measurements. The speedup is always

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 11



Figure 4: Strong (top) and weak (bottom) scaling benchmarks. Black lines are no diffusion, red lines are constant
diffusion, green lines are LMA, blue lines are GL-LMA. Datasets vary from left to right; astrophysics, thermal
hydraulics, nuclear fusion. Solid lines are total advection times, dashed lines are speedups.

defined in terms of nodes, rather than cores. It is fur-
thermore relative to the first measurement, since the
problem sizes often exceed the capabilities of the serial
application. That is, for the strong scaling benchmarks
ran on Ni < ... < N j nodes, speedup is defined as:

S(N) =
T (Ni)

T (N)

where T (N) is the duration of the application with N
nodes.

For the load balancing measurements, we compute the
load imbalance factor in each round as:

LIF =
loadmax

loadavg

which is equal to 1 when all processes have an equal
amount of work. The metric denotes the distance of the
current load distribution from the optimal state where
each process has exactly average workload.

5 RESULTS & DISCUSSION
This section presents the results accompanied by a com-
parative discussion on the performance of the four algo-
rithms under varying conditions.

The performance benchmarks are ran on the RWTH
Aachen CLAIX-2018 (c18m) compute cluster, which
offers up to 1024 nodes containing 2x24 Intel Skylake
Platinum 8160 cores, along with 192GB of memory per
node.

The tests are conducted using 16 to 128 nodes. The
nodes are exclusively reserved for the application, in
order to eliminate any effects due to resource consump-
tion of other processes. Each node is configured to run
one instance of the MPI application, which saturates
all 48 cores and the complete memory. The number
of cores and memory per node are fixed throughout the
tests.

5.1 Strong Scaling
The strong scaling benchmarks are presented as line
plots mapping node counts to total advection times in
the first row of Figure 4. The plots show asymptotic be-
havior, with the diffusive approaches consistently out-
performing the baseline. The LMA and GL-LMA dis-
play nearly identical performance implying that over-
balancing does not occur. Both approaches outperform
constant diffusion in 10 out of 12 cases. The excep-
tions are the 16 and 32 node runs on the nuclear fusion
dataset, which we attribute to the coarseness of domain

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 12



Figure 5: Gantt charts of round times per process. Green is active compute, orange is idle. Datasets vary from left
to right; astrophysics, thermal hydraulics, nuclear fusion. Load balancing algorithms vary from top to bottom; no
diffusion, constant diffusion, LMA, GL-LMA. Load imbalance factors are overlaid as line plots.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 13



Figure 6: Parameter space benchmarks. From left to right; dataset type, dataset size, seed distribution, seed set
size. Black lines are no diffusion, red lines are constant diffusion, green lines are LMA, blue lines are GL-LMA.
Solid lines are total advection times, dashed lines are speedups.

partitioning at low node counts. The total advection
times converge with increasing node counts.

The baseline yields a relative speedup of 2.07 for the
64 node run on the astrophysics dataset, significantly
lower than the diffusive approaches which provide a
minimum of 3.11. Irregularities regarding this configu-
ration also appear in the latter tests, which may indicate
a relationship to the domain partitioning for the given
node count.

5.2 Weak Scaling
The weak scaling benchmarks map node count - stride
pairs to total advection times as presented in the sec-
ond row of Figure 4. The astrophysics set leads to non-
constant behavior with the 64 node configuration, al-
though this effect is largely suppressed by the diffusive
load balancing approaches.

The thermal hydraulics dataset displays an increase in
total runtime with increasing nodes and work, becom-
ing apparent in the 128 node configuration. The dataset
penalties static domain partitioning, as it contains long
trajectories covering the whole domain. Refining the

domain subdivision leads to increased communication
across nodes, which negatively affect runtime, a pat-
tern which is also seen in Figure 5. The nuclear fusion
dataset displays constant behavior.

5.3 Load Balancing
The load balancing benchmarks are presented as Gantt
charts mapping per-stage advection times to the nodes
in Figure 5. Note that due to the seed distribution being
set to the center 0.5 of the dataset, the outer processes
are expected to initially idle. The GL-LMA nearly
halves the total time advection in the astrophysics
dataset, bringing 617 seconds down to 356. Similar
results are observed for the thermal hydraulics and
nuclear fusion datasets.
The LMA outperforms GL-LMA in cases where many
short rounds are involved. The per-round overhead of
the latter, along with the limits it applies, leads to longer
total advection times.

5.4 Parameter Space
The parameter space experiments are presented as line
plots in Figure 6 and are in agreement with the strong

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 14



scaling benchmarks. The LMA and GL-LMA achieve
the lowest advection time in 46 of the 48 measurements,
along with the highest speedups for all 16 configura-
tions.
The astrophysics and nuclear fusion datasets appear to
greatly benefit from increased process counts, yield-
ing relative speedups of 8.9 and 9.37 for the 128 node
setting whereas this is limited to 3.45 for thermal hy-
draulics. The dataset contains empty regions above and
below the box, which leads to uneven partitioning in the
associated axis.
Changes to dataset and seed set size display a constant
response to total advection time, yet seed distribution
appears to have a great effect as seen in the third col-
umn. LMA and GL-LMA are more resilient to increase
in locality, compared to the baseline and constant case.
Overbalancing occurs in the 32 node setting of the dens-
est seed set distribution, yet is averted by GL-LMA as
seen in the fourth column.

6 CONCLUSION
We have presented a distributed particle advection sys-
tem along with a local load balancing method based on
partial data replication among process neighborhoods.
Two local scheduling methods based on diffusive load
balancing have been applied to the problem of paral-
lel particle advection. The performance has been as-
sessed through strong and weak scaling benchmarks as
well as load imbalance metrics. The results are shown
to improve total runtime and are promising regarding
scaling, since the method exclusively operates on local
neighborhoods of processes, avoiding any global com-
munication.

7 ACKNOWLEDGEMENTS
The authors gratefully acknowledge the computing
time granted by the NHR4CES Resource Allocation
Board and provided on the supercomputer CLAIX at
RWTH Aachen University as part of the NHR4CES
infrastructure. The calculations for this research were
conducted with computing resources under the project
rwth0432.

8 REFERENCES
[Boi90] J. E. Boillat. Load balancing and poisson

equation in a graph. Concurrency: Pract.
Exper., 2(4):289–313, November 1990.

[BPC21] R. Binyahib, D. Pugmire, and H. Childs.
HyLiPoD: Parallel Particle Advection
Via a Hybrid of Lifeline Scheduling and
Parallelization-Over-Data. In Matthew
Larsen and Filip Sadlo, editors, Euro-
graphics Symposium on Parallel Graphics
and Visualization. The Eurographics As-
sociation, 2021.

[BPNC19] R. Binyahib, D. Pugmire, B. Norris, and
H. Childs. A lifeline-based approach for
work requesting and parallel particle ad-
vection. In 2019 IEEE 9th Symposium
on Large Data Analysis and Visualization
(LDAV), pages 52–61, Oct 2019.

[Cyb89] G. Cybenko. Dynamic load balancing
for distributed memory multiprocessors.
Journal of Parallel and Distributed Com-
puting, 7(2):279–301, 1989.

[HY00] G. Haller and G. Yuan. Lagrangian
coherent structures and mixing in two-
dimensional turbulence. Physica D:
Nonlinear Phenomena, 147(3):352–370,
2000.

[MCHG13] C. Müller, D. Camp, B. Hentschel, and
C. Garth. Distributed parallel particle ad-
vection using work requesting. In 2013
IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), pages
1–6, Oct 2013.

[PCG+09] D. Pugmire, H. Childs, C. Garth, S. Ahern,
and G. H. Weber. Scalable computation of
streamlines on very large datasets. In Pro-
ceedings of the Conference on High Per-
formance Computing Networking, Storage
and Analysis, pages 1–12, Nov 2009.

[PRN+11] T. Peterka, R. Ross, B. Nouanesengsy,
T. Lee, H. Shen, W. Kendall, and J. Huang.
A study of parallel particle tracing for
steady-state and time-varying flow fields.
In 2011 IEEE International Parallel Dis-
tributed Processing Symposium, pages
580–591, May 2011.

[WJA+17] I. Wald, G. Johnson, J. Amstutz,
C. Brownlee, A. Knoll, J. Jeffers, J. Gün-
ther, and P. Navratil. Ospray - a cpu ray
tracing framework for scientific visualiza-
tion. IEEE Transactions on Visualization
and Computer Graphics, 23(1):931–940,
Jan 2017.

[ZGH+18] J. Zhang, H. Guo, F. Hong, X. Yuan, and
T. Peterka. Dynamic load balancing based
on constrained k-d tree decomposition for
parallel particle tracing. IEEE Trans-
actions on Visualization and Computer
Graphics, 24(1):954–963, Jan 2018.

[ZGYP18] J. Zhang, H. Guo, X. Yuan, and T. Pe-
terka. Dynamic data repartitioning for
load-balanced parallel particle tracing.
In 2018 IEEE Pacific Visualization Sym-
posium (PacificVis), pages 86–95, April
2018.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.2 15




