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Abstract 

Among the various methods so far proposed for genetic network inference, this study 
focuses on the random-forest-based methods. Confidence values are assigned to all of the 
candidate regulations when taking the random-forest-based approach. To our knowledge, all 
of the random-forest-based methods make the assignments using the standard variable 
importance measure defined in tree-based machine learning techniques. Therefore, the sum 
of the confidence values of the candidate regulations of a certain gene from the other genes, 
that are computed from a single random forest, is always restricted to a value of almost 1. We 
think that this feature is inconvenient for the genetic network inference that requires to 
compare the confidence values computed from multiple random forests. In this study we 
therefore propose an alternative measure, what we call ``the random-input variable 
importance measure,'' and design a new inference method that uses the proposed measure in 
place of the standard measure in the existing random-forest-based inference method. We 
show, through numerical experiments, that the use of the random-input variable importance 
measure improves the performance of the existing random-forest-based inference method by 
as much as 45.5% with respect to the area under the recall-precision curve (AURPC). 

Key Words: Genetic network inference; Random forest; Variable importance measure; Random-input variable 
importance measure 

Area of Interest: AI technologies and their applications



 

Chem-Bio Informatics Journal, Vol.22, pp.88-109 (2022) 

 90 

1. Introduction 

Advancements in high-throughput measurement technologies, such as DNA microarrays and 
RNA-seq using next-generation sequencers, have led to a huge amount of gene expression data. 
There is a great value in developing computational methods capable of extracting useful 
information from these data. The inference of genetic networks is conceived as one promising 
means for this purpose. In a genetic network inference problem, mutual regulations among genes 
are inferred from the measured gene expression data. Knowledge of the regulatory structure of the 
genetic network enables us to understand biological mechanisms. 

Various models, such as the boolean network model, the Bayesian network model, the Petri net 
model, the differential-equations-based model, and so on, have been used to describe genetic 
networks, and the inference methods based on individual models have been proposed [2, 6, 7, 14, 
17, 23, 25, 35, 38, 40]. With recent advances in machine learning techniques, several researchers 
have become interested in the inference methods based on the machine learning techniques [1, 22, 
31]. In this study, we narrow the focus to genetic network inference that uses the random forest, a 
kind of machine learning technique [4]. Huynh-Thu and colleagues first introduced the random 
forest into the field of the genetic network inference [15]. Their method, GENIE3, won the 
DREAM4 in silico multifactorial challenge (https://dreamchallenges.org/). Researchers, inclusive 
of the author and colleagues, have been attracted by the possibilities of GENIE3, and have therefore 
developed its extensions [16, 19, 20, 27, 29]. 

The random-forest-based inference methods train multiple random forests, each of which 
corresponds to each gene. Based on these random forests, the methods assign confidence values to 
all of the candidate regulations. Specifically, by analyzing the n-th random forest corresponding to 
the n-th gene, the inference methods compute the confidence values of the regulations of the n-th 
gene from the other genes. The random-forest-based methods then rank all of the candidate 
regulations according to their confidence values. To obtain the confidence values, all of the existing 
random-forest-based inference methods use the standard variable importance measure defined in 
tree-based machine learning techniques. In this measure, the sum of the confidence values of the 
regulations of a certain gene from the other genes, that are computed by one of the random forests 
trained, is restricted to a value of almost 1. Note that this condition is always satisfied regardless of 
the number of regulating genes. We thus believe that this restriction makes the importance scores 
relative, rather than absolute, within each random forest and is therefore inadequate for comparing 
the confidence values obtained from multiple random forests. 

As an alternative to the standard variable importance measure, this study proposes what we call 
the ``random-input variable importance measure,'' a new measure that is free from the 
abovementioned restriction. The removal of the restriction could make the importance scores 
absolute and the proposed measure is therefore suitable for comparing the confidence values 
obtained from multiple random forests. In this study, we thus use the proposed random-input 
variable importance measure in lieu of the standard one to compute the confidence values of all of 
the candidate regulations in the existing random-forest-based inference method. Last, we perform 
numerical experiments with artificial and real genetic network inference problems to confirm that 
the proposed measure can be effectively applied in the random-forest-based inference method. In 
this study, we use our measure only for the inference of genetic networks. However, we think that 
the proposed measure is capable of extracting more reliable information in other applications of 
random forests. 
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Figure 1. The framework of the random-forest-based inference method [19] and our proposal  

2. Random-forest-based inference method 

This study applies a new variable importance measure to the existing random-forest-based 
inference method. While any random-forest-based inference method could be used for this purpose, 
here we use an inference method we have proposed in an earlier paper [19]. We will begin, in this 
section, by explaining the method. Readers can find more detailed information on this method in 
our earlier paper [19] (see also Fig. 1). 

2.1 Model for describing genetic networks 

The method we use in this study represents a genetic network as a set of differential equations 
of the form  

( )n
n n n n

dX F X
dt

β−= −X ,  (n = 1, 2,  , N),        (1) 

where ( )1 1 1, , , , ,n n n NX X X X− − +=X   , mX  is the expression level of the m-th gene, N is the 
number of genes contained in the target network, nβ  (> 0) is a constant parameter, and nF  is a 
function of arbitrary form. 

The inference of a genetic network is achieved by obtaining a function nF  and a parameter nβ  
(n = 1, 2,  , N) that will produce time-courses consistent with the observed gene expression levels. 
The inference method we are using obtains them in the manner described below. 



 

Chem-Bio Informatics Journal, Vol.22, pp.88-109 (2022) 

 92 

2.2 Obtaining nF  and nβ  

The inference method [19] divides an inference problem of a genetic network consisting of N 
genes into N subproblems, each of which corresponds to one gene. By solving the n-th subproblem, 
the method obtains a reasonable approximation of the function nF  and a reasonable value for the 
parameter nβ . The remainder of this section will describe a method for obtaining nF  and nβ . 

The method used in this study obtains an approximation of the function nF  and a value for the 
parameter nβ  through the optimization of the one-dimensional function, 
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and 
k

m t
X  and 

k
m s

X  are the expression levels of the m-th gene at the k-th measurement of time-

series and steady-state experiments, respectively. TK  ( ≥ 2) and SK  ( ≥  0) are the numbers of 
measurements performed in the time-series and steady-state experiments, respectively. Note that, in 
the genetic network inference, 

k
m t

X 's and 
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m s
X 's are measured using biochemical techniques. 
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 are the time derivatives of the expression level of the n-th gene at the k-th 

measurement of the time-series and steady-state experiments, respectively. The time derivatives in 

the time-series experiments, 
k

n

t

dX
dt

’s, are directly estimated from the measured time-series of the 

gene expression levels using some smoothing technique, while the time derivatives in the steady-

state experiments, 
k

n

s

dX
dt

’s, are all set to zero. T
kw  and S

kw  are weight parameters for the k-th 

measurements in the time-series and steady-state experiments, respectively. Our earlier paper [19] 
showed that our random-forest-based inference method performs better when the constant 
parameters T

kw ’s and S
kw ’s are appropriately set. In order to determine these values, then, the 

methods that utilize the similarity between measurements have been proposed [19, 21]. 
( )ˆ ;n nF β⋅  is an approximation of the function nF  trained under the given nβ . The computation 

of the objective function (2) requires an approximation of the function nF , i.e., n̂F . The inference 
method [19] obtains an approximation of the function nF  using the random forest [4]. The random 
forest that approximates the function nF  is trained on the basis of the training data consisting of the 
following set of input-output pairs, 
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Note that, when trying to compute a value for the objective function (2), a value for the parameter 
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nβ  is always given. With this value given, we can train the random forest using the training data 
described above. Note also that, in order to keep consistency with the objective function (2), the 
random forest used in the method [19] tries to obtain an approximation of the function nF  that 
minimizes a weighted sum of the squared errors between the given output values and the output 
values computed from the model. 

A reasonable approximation of the function nF  and a reasonable value for the parameter nβ  are 
obtained through the optimization of the objective function (2). The random-forest-based inference 
method [19] uses the golden section search [30] to minimize the function (2). 

3. Assigning confidence values to regulations 

By analyzing the random forests that have been trained, the random-forest-based inference 
methods assign confidence values to all of the candidate regulations. The inference methods then 
rank all of the candidate regulations according to their confidence values. The methods obtain the 
confidence values of the regulations of the n-th gene from the other genes by analyzing the n-th 
random forest that approximates the function nF . Here, the approximation of the function nF  and 
the value for the parameter nβ  obtained through the optimization of function (2) are represented as 

*
n̂F  and *

nβ , respectively. 
The random-forest-based inference methods compute the confidence values using the variable 

importance measure. By using the variable importance measure, tree-based machine learning 
techniques such as the random forest, Extra-Trees [11], VR-Trees [24], and so on compute 
importance scores for all of the input variables. The importance score of a certain input variable 
represents the degree to which the variable contributes to the prediction of the output values. 

To our knowledge, all of the existing random-forest-based inference methods use the standard 
variable importance measure to compute the confidence values of the candidate regulations. In this 
section, therefore, we begin by describing the standard method of using the standard variable 
importance measure to compute the confidence values. We then propose a method that uses a new 
measure (see also Fig. 1). 

3.1 Standard variable importance measure 

As mentioned just above, the random-forest-based inference methods use the standard variable 
importance measure, that is defined only in tree-based machine learning techniques, to compute the 
confidence values of the candidate regulations. The random forest used by these inference methods 
consists of multiple regression trees. Each regression tree is trained by dividing the given training 
dataset into two subsets, each of which is then divided into two sub-subsets, and so forth, until 
stopping criteria are satisfied. When dividing a dataset into two subsets, the algorithm selects the 
input variable and the split point from the candidates so that the sum of the variances of the output 
values in the two subsets is minimized. In the standard variable importance measure, the 
importance score of a certain input variable represents the mean difference between the variance of 
the output values in the dataset that is divided by the input variable into two subsets and the sum of 
the variances of the output values in the subsets. When we use the standard variable importance 
measure, thus, we can compute the confidence value of the regulation of the n-th gene from the m-
th gene, ,

S
n mC , by 
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treeN  is the number of trees in the random forest *
n̂F , and ( )iV m  is a set of nodes that use the 

expression levels of the m-th gene to split the training examples in the i-th decision tree of *
n̂F . Lν  

and Rν  are the left and right child nodes of the node ν , respectively. T(ν ) and S(ν ) are sets of 
indices of the training examples generated from time-series and static gene expression data, 
respectively, and are allocated to the node ν . Note here that the inference method mentioned in the 
previous section needs to set values for the weight parameters, T

kw ’s and S
kw ’s. When computing 

the confidence values, therefore, the method also considers these values, as described above. 
When we use the standard variable importance measure, the sum of the confidence values of the 

candidate regulations of a certain gene from the other genes, that are computed from one of the 
random forests trained, is always restricted to a value of almost 1. The restriction could make the 
importance scores relative, rather than absolute. When we try to compare the confidence values 
computed from a single random forest, this feature of the standard variable importance measure 
will not hinder our investigation. We must note however that the random-forest-based inference 
methods must rank all of the regulations with respect to the confidence values computed from the 
multiple random forests. The use of the standard variable importance measure might therefore 
degrade the performance of the random-forest-based inference methods. 

3.2 Random-input variable importance measure 

If a certain input variable is irrelevant to the output, a change in the variable does not affect the 
output. When a certain input variable actually affects the output, therefore, the amount of 
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fluctuation of the output caused by a change in the variable could be larger. 
Based on this idea of using the fluctuation of the output to evaluate an input, we propose our 

new measure, the random-input variable importance measure, in this study (see Fig. 2). When using 
this random-input variable importance measure, the confidence value of the regulation of the n-th 
gene from the m-th gene, ,

R
n mC , is computed by 

( ), 0
0

1R
n m R

w

C WSE WSE
Sq

= − ,          (13) 
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( )

k

m
n t−X  and ( )

k

m
n s−X  are vectors constructed by changing the expression levels of the m-th gene in 

k
n t−X  and 

k
n s−X , respectively. Values for the expression levels of the m-th gene in ( )

k

m
n t−X  and 

( )

k

m
n s−X  are randomly drawn from [ mL , mR ], where 

minm mL S= ,            (16) 
maxm mR S= ,            (17) 

{ } { }1,2, , 1, 2, ,
k k

m m T m St s
S X k K X k K= = =   .       (18) 

Note that the confidence values computed according to the random-input variable importance 
measure depend strongly on the random numbers used. In order to reduce the effect of random 
numbers, the confidence values, ,

R
n mC ’s, are computed rndN  times by changing the random numbers, 

and their averages are used to rank the regulations. As the equations (16), (17) and (18) show, on 
the other hand, the proposed measure determines the ranges of the random variables according to 
the distribution of the gene expression levels. In this study, we assume that the gene expression data 
contain neither erroneous large nor small values. These erroneous values might make importance 
scores computed by the equation (13) unreliable. When using the proposed measure, thus, we 
should remove these erroneous values in advance. 

The sum of the confidence values of the regulations of a certain gene from the other genes, that 
are calculated according to the equation (13), is not restricted to 1. The removal of the restriction  

 

Figure 2. The concept of the random-input variable importance measure 
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could make the importance scores absolute and therefore the importance measure proposed in this 
study is suitable for comparing the confidence values obtained from multiple random forests. In this 
study, we thus use the random-input variable importance measure in place of the standard measure 
for the computation of the confidence values. The importance measure that uses permuted values, 
instead of using random values, in the proposed measure is equivalent to the permutation-based 
importance measure [10]. We should note here that, although we combined the random-forest-based 
inference method with the permutation-based importance measure in the section 4.4, it did not 
always outperform the original inference method. The poor performance would be caused by a 
reason that the permutation-based importance measure depends too much on the distribution of 
input variables. In the genetic network inference, what we try to know is a nature of the target 
function nF . As the nature of the function nF  is independent of the distribution of input variables, 
we should not depend much on the input distribution. 

4. Experiments with artificial gene expression data 

This section describes experiments we conducted with artificial genetic network inference 
problems to evaluate the performance of the proposed approach. 

4.1 Analysis of DREAM3 networks 

In this experiment, we compared the original random-forest-based inference method [19] with a 
modified version of the method that computes the confidence values of the regulations using the 
random-input variable importance measure proposed in this study. 

4.1.1 Experimental setup 

The two inference methods were applied to 5 artificial genetic network problems obtained from 
the DREAM3 in silico network challenges (http://dreamchallenges.org/): Ecoli1, Ecoli2, Yeast1, 
Yeast2 and Yeast3. The target networks of these problems consisted of 100 genes (N = 100). 

Each problem used here contained both time-series and static expression data of all 100 genes. 
The time-series data consisted of 46 datasets of gene expression levels obtained by solving a set of 
differential equations on the target network [32], and were polluted by internal and external noise. 
The datasets began from randomly generated initial values, and each gene in each set was assigned 
21 observations. The static data consisted of wild-type, knockout, and knockdown data. The wild-
type data contained the steady-state gene expression levels of the unperturbed network. The 
knockout and knockdown data contained the steady-state expression levels of every single-gene 
knockout and every single-gene knockdown, respectively. When trying to solve the n-th 
subproblem corresponding to the n-th gene, however, we removed the static data of the knockout 
and the knockdown of the n-th gene. The number of measurements of the time-series experiment, 

TK , was therefore 46×21 = 966, while that of the steady-state experiment, SK , was 1+100+100−2 
= 199. Noisy time-series data were provided as the observed data in the problems, so they were 
smoothed using a local linear regression [8], a data-smoothing technique. The same smoothing 
technique was used to estimate the time derivatives of the gene expression levels. This study 
inferred the genetic network only from the smoothed time-series of the gene expression levels, their 
estimated time derivatives, and the static gene expression data. 

The number of trees in the random forest, the number of input variables to be considered in 
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Figure 3. The values for the weight parameters, T
kw ’s, corresponding to each of the time-

series datasets of the DREAM3 problems 
 

each internal node of each tree, and the maximum height of each tree were set to 1000, 1
3

N − 
  

, 

and 32, respectively. These settings were determined according to the recommended values for the 
random forest [4], and our earlier study [19] also used them. Because the parameter to be estimated, 

nβ , was positive, we searched for its optimum value in a logarithmic space. The search area of 
log nβ  was [−10, 5]. Note that, in order to infer genetic networks, we must assign values to the 
weight parameters T

kw ’s and S
kw ’s. The weight parameters for the measurements in each of the 46 

time-series datasets were set at the values used in our earlier paper [19], namely, 0.6674 for the 10th 
measurement, 0.3348 for the 11th measurement, and 0.002174 for the last 10 measurements. The 
weight parameters for the other measurements in the time-series datasets and for the measurements 
in the static dataset were set to 1.0 and 1.1, respectively. Our earlier paper determined these values 
according to the guidelines for determining weight parameters [19]. The weight values assigned for 
each of the time-series datasets are shown in Fig. 3. The number of iterations required for 
statistically evaluating the confidence values computed based on the random-input variable 
importance measure, rndN , was set to 100. As the inference methods used here were stochastic, we 
performed 10 trials on each of the 5 problems by changing the seed for pseudo-random numbers. 

4.1.2 Results 

Table 1 lists performances of the original inference method [19] and the proposed approach that 
uses the random-input variable importance measure. The performance of the method was evaluated 
based on the area under the recall-precision curve (AURPC) (see Fig. 4). Note here that auto-
regulations/auto-degradations were disregarded in the evaluation of the performance. The table 
shows that the use of the random-input variable importance measure in place of the standard 
measure greatly improved the performance of the random-forest-based method. The improvement 
achieved by adopting the proposed measure was more than 8% with respect to the AURPC.  



 

Chem-Bio Informatics Journal, Vol.22, pp.88-109 (2022) 

 98 

Table 1. The performances of the proposed approach and the original random-forest-based 
inference method [19] on the DREAM3 problems 

 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 
 AVG AVG AVG AVG AVG 
 ± STD ± STD ± STD ± STD ± STD 
Inference method using random-input 0.61037 0.59094 0.60051 0.44873 0.34937 

variable importance measure ± 0.00711 ± 0.00559 ± 0.00283 ± 0.00368 ± 0.00242 
Random-forest-based  0.41918 0.54477 0.50083 0.39482 0.31291 

inference method [19] ± 0.00388 ± 0.00586 ± 0.00285 ± 0.00344 ± 0.00223 
AVG and STD represent the averaged AURPC and its standard deviation, respectively. 

 

 

Figure 4. A sample of the recall-precision curves obtained from the inference method using 
the random-input variable importance measure (red bold line) and the random-
forest-based inference method (blue dotted line) on the Ecoli1 problem 

 
The DREAM3 networks contain several genes that are not regulated by any gene. When we 

used the random-input variable importance measure, the sums of the confidence values computed 
from the random forest corresponding to a gene not regulated by other genes averaged about 1.5418 
± 0.1799, 1.5892± 0.1534, 1.6327± 0.1636, 1.5712± 0.1550 and 1.7345± 0.2474 on Ecoli1, Ecoli2, 
Yeast1, Yeast2, and Yeast3, respectively. When a gene was regulated by one or more other genes, 
on the other hand, the sums of the confidence values obtained from the random forest 
corresponding to the gene averaged about 1.9191 ± 0.8383, 2.0056 ± 0.5979, 2.0400 ± 0.7733, 
1.9814± 0.5858 and 1.8247± 0.4866 on Ecoli1, Ecoli2, Yeast1, Yeast2, and Yeast3, respectively.  
T h i s  f i n d i n g  i n d i c a t e s  t h a t  t h e  c o n f i d e n c e  v a l u e  o f  t h e  c a n d i d a t e  r e g u l a t i o n  o f  a n  u n r e g u l a t e d  g e n e 
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Table 2. The effect of a value for rndN  in the proposed approach on the Ecoli1 problem 
Random-forest-based Inference method using random-input variable importance measure 
inference method [19] rndN = 10 rndN = 20 rndN = 50 rndN = 100 rndN = 200 

Rank diff. Rank diff. Rank diff. Rank diff. Rank diff. Rank diff. 
± STDr ± STDr ± STDr ± STDr ± STDr ± STDr 
358.96 357.63 355.99 354.84 354.51 354.36 
± 7.53 ± 9.54 ± 9.46 ± 9.34 ± 9.46 ± 9.45 

The result of the random-forest-based inference method is also shown. The averaged difference between the place of 
each regulation ranked by the inference method in each trial and that obtained from the ranking with respect to the 
confidence values averaged over the 10 trails (Rank diff.) and its standard deviation (STDr) are shown. 

 
tends to be smaller. Note here that, when the standard variable importance measure is used, the 
confidence values computed from a single random forest always sum up to almost 1. The removal 
of the restriction imposed on the standard variable importance measure may help partly explain 
why the proposed approach outperformed the original inference method. Given this feature of the 
random-input variable importance measure, we believe that the measure is a more appropriate tool 
for comparing the confidence values obtained from the multiple random forests. 

Our experimental results indicate that, when the random-input variable importance measure is 
used, the ranking of the candidate regulations with respect to the confidence values computed from 
the multiple random forests is better. On the other hand, the ranking of the candidate regulations 
also seems to be slightly better when it is obtained from the confidence values of a single random 
forest. In each ranking obtained from each of the random forests trained, our approach averagely 
ranked the regulations actually contained in the gold-standard network as follows: 11.7th, 8.7th, 
10.9th, 21.4th, and 28.1th on Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3, respectively. Similarly, the 
original inference method averagely ranked the regulations as follows:12.9th, 8.8th, 11.8th, 22.1th, 
and 29.3th on Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3, respectively. This feature of the random-
input variable importance measure probably also contributed to the better performance of the 
proposed approach. 

As mentioned in the section 3.2, in order to reduce the effect of a stochastic nature of the 
variable importance measure proposed in this study, our inference method computes the importance 
scores rndN  times. In order to confirm the validity of our setting, i.e., rndN = 100, we performed 
another experiment here. In this experiment, we applied the proposed inference method with 

rndN =10, 20, 50, 100 and 200 to the Ecoli1 problem. We performed 10 trials on each rndN  setting 
by changing the seed for pseudo-random numbers. Because of the stochastic nature of the inference 
method, the obtained results were slightly different from each other. Table 2 shows the averaged 
difference between the place of each of the regulations in the ranking with respect to the confidence 
values averaged over the 10 trials and that in the ranking of each trial. As the table shows, the 
averaged difference of the places of the regulations decreases as a value for rndN  increases. This 
fact indicates that the effect of the randomness in the proposed inference approach decreases with 
an increase in rndN . The table also lists the result of the original random-forest-based inference 
method [19]. The averaged difference of the places of the regulations in the proposed approach was 
smaller than that in the original inference method. Note here that, while the output of the original 
inference method is affected by the randomness in the random forest, the output of the proposed 
approach is affected by the randomness in both the random forest and the random-input variable 
importance measure. The experimental results thus show that, when rndN  is set to 100, the 
fluctuation in the output caused by the random-input variable importance measure is almost 
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negligible. 

4.2 Analysis of DREAM4 networks 

Next, we compared the performance of the proposed approach with the performances of other 
genetic network inference methods on the DREAM4 problems. 

4.2.1 Experimental setup 

In this section, we describe the application of the proposed approach to 5 problems from the 
DREAM4 in silico network challenges. Similar to the DREAM3 problems, each of the target 
networks of these problems consisted of 100 genes. These networks were described using a model 
identical to the model in the DREAM3 networks [32]. 

Each problem contained both time-series and static expression data of all 100 genes. The time-
series data consisted of 10 sets of time-series of gene expression levels. Each time-series dataset 
consisted of the expression levels at 21 time points, and was polluted by internal and external noise. 
A dataset was constructed by applying a perturbation to the network at the first time point and 
removing the perturbation at the 11th time point. The perturbation affected the transcription rates of 
a different set of genes in each dataset. To take the perturbations into account explicitly, we added 
10 elements to the gene expression data, each corresponding to one of the perturbations. The i-th 
added element had a value of 1 for the measurements between the first and 10th time points in the i-
th time-series dataset generated by adding the i-th perturbation, and a value of 0 for the other 
measurements. The number of elements, N, was therefore 100+10 = 110. The static data consisted 
of wild-type, knockout, and knockdown data. When trying to solve the n-th subproblem 
corresponding to the n-th gene, we also removed the static data of the knockout and the knockdown 
of the n-th gene. The numbers of measurements of the time-series and steady-state experiments, i.e., 

TK  and SK , were thus 10×21 = 210 and 1+100+100 −2 = 199, respectively. The local linear  

Table 3. The performances of the inference methods on the DREAM4 problems 
 Network1 Network2 Network3 Network4 Network5 
 AVG AVG AVG AVG AVG 
 ± STD ± STD ± STD ± STD ± STD 
Inference method using random-input 0.53504 0.32987 0.42130 0.40323 0.30411 

variable importance measure ± 0.00331 ± 0.00325 ± 0.00400 ± 0.00291 ± 0.00263 
Random-forest-based  0.42797 0.28656 0.33930 0.34079 0.27199 

inference method [19] ± 0.00332 ± 0.00300 ± 0.00397 ± 0.00347 ± 0.00415 
dynGENIE3 [16] 0.34 0.22 0.32 0.34 0.22 

 −  −  −  −  −  
MCZ [12] 0.48 0.38 0.38 0.36 0.17 

 −  −  −  −  −  
dynGENIE3 + MCZ 0.60 0.43 0.47 0.52 0.37 

 −  −  −  −  −  
iRafNet [29] 0.552 0.337 0.414 0.421 0.298 

 −  −  −  −  −  
The AURPCs of the proposed approach, the original random-forest-based inference method [19], dynGENIE3 [16], 
MCZ [12], a combination of dynGENIE3 and MCZ, and iRafNet [29] are shown. 
 
regression [8] was used to smooth the given time-series data and to estimate the time derivatives of 
the gene expression levels. We inferred a genetic network using only the smoothed time-series of 
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the gene expression levels, their estimated time derivatives, and the static gene expression data. 
According to our earlier paper [19], the weight values for the 6th, 7th, 8th, 9th, and 10th 

measurements in each of the time-series datasets were set to 0.2, the weight values for the 17th, 
18th, 19th, 20th, and 21st measurements were set to 0.02, and the weight values for the 4th, 5th, 
15th and 16th measurements were set to 0.7333, 0.4667, 0.6733 and 0.3466, respectively. The 
values for the remaining T

kw ’s and S
kw ’s were set to 1.0 and 1.1, respectively. The other 

experimental conditions were unchanged from those used in the previous experiment. 

4.2.2 Results 

In this experiment, the performance of the inference method was also evaluated using the area 
under the recall-precision curve (AURPC). As mentioned previously, we inferred the regulations of 
the 100 genes from these genes and the 10 additional elements that represent 10 perturbations in 
this experiment. When we evaluated the performance of the method, however, we disregarded the 
regulations of the genes from the additional elements. In addition, we also disregarded the auto-
regulations/auto-degradations. The AURPCs of the proposed inference method on the 5 DREAM4 
problems were listed in Table 3. The table also shows the AURPCs of the original random-forest-
based inference method [19], dynGENIE3 [16], MCZ [12], a combination of dynGENIE3 and MCZ, 
and iRafNet [29]. The values of the AURPCs of dynGENIE3, MCZ, and the combination of 
dynGENIE3 and MCZ were taken from Huynh-Thu et al. [16], and the values of the AURPCs of 
iRafNet were taken from Petralia et al. [29]. 

The table shows that the proposed approach outperformed the original random-forest-based 
method [19] even on the DREAM4 problems.   In this experiment, the use of the random-input 
variable importance measure brought about an improvement of more than 11% with respect to the 
AURPC. As the table shows, on the other hand, the proposed approach performed better than 
dynGENIE3 and MCZ on most of the 5 problems. We must note here that, while dynGENIE3 was 
designed based on the random forest, MCZ is based on a very different concept. Huynh-Thu and 
colleagues [16] mentioned that potential performance improvements could be achieved by 
combining inference methods designed based on different concepts. The table shows that the 
combination of dynGENIE3 and MCZ performed quite well. The good performance of iRafNet, 
another random-forest-based inference method, seems to have resulted from a similar cause. 
Although the proposed approach did not always outperform iRafNet or the combination of 
dynGENIE3 and MCZ, we believe that we could improve the approach by combining it with a 
different kind of inference method, such as MCZ. However, MCZ requires static gene expression 
data of every single-gene knockout, that can hardly be expected in real experiments. We should also 
note again that the random-input variable importance measure proposed in this study can be applied 
to any random-forest-based inference method. By using the proposed measure in place of the 
standard variable importance measure, we could improve the performances of the other random-
forest-based inference methods. 

4.3 Analysis of random networks 

We then checked the performance of the proposed approach on problems with target networks 
described by a model different from that of the previous experiments. 
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4.3.1 Experimental setup 

In this experiment, we used the Vohradský’s model [36] to describe target networks. The  
Vohradský’s model is a set of differential equations of the form 

( )
1

2

,1
1 exp

n n
n nN

n n m mm

dX k k X
dt b w X

=

= −
+ − −∑

,  (n = 1, 2,  , N),      (19) 

where 1nk , 2nk , nb  and ,n mw  (m, n = 1, 2,  , N) are model parameters. We can change the structure 
of the network by changing the values of these parameters, and the structure adopted might 
influence the inference ability of the inference method used. We thus constructed 10 genetic 
network inference problems with different target networks and checked the performances of the 
proposed approach and the original random-forest-based inference method [19] on the constructed 
problems. These target networks were randomly constructed according to the procedure described 
in Kimura et al. [18]. Each of the networks consisted of 30 genes (N = 30). 

Each of the constructed inference problems had time-series and static data. The time-series data 
consisted of 10 time-series datasets of gene expression levels generated by solving a set of the 
differential equations (19) on the target model corresponding to the problem. The initial values of 
these sets were selected randomly from [0.0, 3.0]. Each dataset consisted of the expression levels at 
21 time points spaced apart by intervals of 0.2 time units. As the static data, we constructed steady-
state gene expression levels for the wild-type and every single-gene knockout. The measurement 
noise was simulated by adding 10% Gaussian noise to the computed gene expression data. As in the 
previous experiments, we disregarded the steady-state gene expression levels of the knockout of the 
n-th gene when trying to analyze the n-th gene. The numbers of measurements contained in the 
time-series and static data, TK  and SK , were therefore 10 × 21 = 210 and 1+30 − 1 = 30, 
respectively. 

We also determined values for the weight parameters according to our earlier paper [19]: The 
weight values for the last 6 measurements in each of the time-series datasets were set to 
( )1 6 10 0.01667×  ; the weight values for the 14th and 15th measurements were set to 0.6722 and 

0.3444, respectively; and the remaining weight values for the time-series datasets and static dataset 
were set to 1.0 and 1.1, respectively. The other experimental settings were identical to those used in 
the previous experiments. 

4.3.2 Results 

The AURPCs of the proposed approach and the original random-forest-based inference method 
were 0.70518 ± 0.05380 and 0.68207 ± 0.04622, respectively, on average. Our approach 
outperformed the original inference method on 8 of the 10 problems. In the two problems in which 
our approach underperformed the original method, the degradation caused by the use of the 
random-input variable importance measure was less than 0.44% with respect to the AURPC. 
Although the inference ability of the proposed approach was better, its computational cost was 
higher. The proposed approach and the random-forest-based inference method [19] averagely took 
99.1 min. and 31.0 min., respectively, on a workstation (Xeon Gold 6150 2.7GHz; a single-core 
use) to infer each of the networks described here. As it is important to extract more useful 
information from the limited amount of gene expression data, however, the higher computational 
cost of the proposed approach would be a little issue for concern. 

Our experimental results suggest that the improvement achieved by the proposed measure was 
independent of the model used to describe the target network. We thus think that the proposed 
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Table 4. The performances of the inference methods using the different importance measures 
on the DREAM3 problems 

 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 
 AVG AVG AVG AVG AVG 
 ± STD ± STD ± STD ± STD ± STD 
Inference method using random-input 0.61037 0.59094 0.60051 0.44873 0.34937 
     variable importance measure ± 0.00711 ± 0.00559 ± 0.00283 ± 0.00368 ± 0.00242 
Random-forest-based 0.41918 0.54477 0.50083 0.39482 0.31291 
        inference method [19] ± 0.00388 ± 0.00586 ± 0.00285 ± 0.00344 ± 0.00223 
Inference method using permutation- 0.44671 0.48297 0.50540 0.36573 0.28741 

based importance measure [10] ± 0.00497 ± 0.00664 ± 0.00412 ± 0.00475 ± 0.00195 
Inference method using random forest 0.31919 0.37120 0.38605 0.29975 0.25093 
permutation accuracy importance [33] ± 0.00309 ± 0.00357 ± 0.00203 ± 0.00340 ± 0.00231 

Table 5. The performances of the inference methods using the different importance measures 
on the DREAM4 problems 

 Network1 Network2 Network3 Network4 Network5 
 AVG AVG AVG AVG AVG 
 ± STD ± STD ± STD ± STD ± STD 
Inference method using random-input 0.53504 0.32987 0.42130 0.40323 0.30411 
     variable importance measure ± 0.00331 ± 0.00325 ± 0.00400 ± 0.00291 ± 0.00263 
Random-forest-based 0.42797 0.28656 0.33930 0.34079 0.27199 
        inference method [19] ± 0.00332 ± 0.00300 ± 0.00397 ± 0.00347 ± 0.00415 
Inference method using permutation- 0.51522 0.33839 0.39427 0.38847 0.33446 

based importance measure [10] ± 0.00301 ± 0.00256 ± 0.00483 ± 0.00317 ± 0.00313 
Inference method using random forest 0.45442 0.30109 0.34665 0.35207 0.28978 
permutation accuracy importance [33] ± 0.00181 ± 0.00204 ± 0.00427 ± 0.00166 ± 0.00357 
 
idea may work well even in real genetic network inference problems. 

4.4 Comparison with the other variable importance measures 

When the standard variable importance measure is used in the random-forest-based inference 
methods, the confidence values of the candidate regulations, that are computed from a single 
random forest, always sum up to almost 1. The random-input variable importance measure 
proposed in this study was developed to remove this restriction. This is not to say, that the measure 
we propose is the only variable importance measure free from the aforementioned restriction. In 
this section, we thus checked the performances of some other variable importance measures, i.e., 
the permutation-based importance measure [10] and the random forest permutation accuracy 
importance [33], that are free from the restriction. As mentioned previously, the permutation-based 
importance measure is equivalent to the measure that uses permuted values, instead of using 
random values, in the random-input variable importance measure proposed in this study. The 
random forest permutation accuracy importance is an algorithm similar to the permutation-based 
importance measure, but utilizes the feature of the random forest. The random forest permutation 
accuracy importance is therefore available only for the random forest. 

Similar to the proposed approach, we constructed two other inference methods by using the 
permutation-based importance measure and the random forest permutation accuracy importance, 
respectively, in place of the standard variable importance measure in the original random-forest-
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based inference method [19]. We then applied the constructed inference methods to the DREAM3 
and DREAM4 problems. The experimental results are listed in Tables 4 and 5. The experimental 
results indicate that, even when we simply introduce the importance measure free from the 
aforementioned restriction into the random-forest-based inference method, we do not always 
improve the performance of the inference method. The gene expression data often contain the 
measurements similar to each other. In our earlier study [19, 21], we found that the training 
examples similar to each other degrade the quality of the importance scores computed according to 
the standard variable importance measure. The poor performances of the inference methods with 
the other importance measures would be caused by a similar reason. 

5. Experiment with real gene expression data 

In the final experiment of this study, we used the proposed approach to analyze real gene 
expression data. 

5.1 Experimental setup 

In this experiment, we analyzed the expression data of 11 immediate early genes related to 
transcription, i.e., ATF3, EGR1, EGR2, EGR3, ETS2, FOS, FOSB, FOSL1, JUN, JUNB, and MYC. 
The time-series and static gene expression levels were obtained from the FANTOM5 dataset 
(http://fantom.gsc.riken.jp/5/) [9]. The time-series datasets consisted of sets of gene expression 
levels in the following cell types, measured at successive time points after exposing the cells to 
different external stimuli: Saos-2, MCF-7, ARPE-19, lymphatic endothelial, mesenchymal stem, 
and aortic smooth muscle cells. Table 6 shows detailed information on the time-series datasets used, 
and Fig. 5 shows a sample of them. As the static data, we used sets of gene expression levels for the 
Saos-2 and mesenchymal stem cells given as untreated controls. We also used the measurement at 
time 0 in each of the time-series datasets as static data. The numbers of measurements contained in 
the time-series and static data in this experiment, TK  and SK , were thus 102 (= 11+16+16+13+16+ 
10+10+10) and 10 (= 2+8), respectively. To account for the external stimuli explicitly, we added the 
following 8 elements to the gene expression data: `ascorbic acid and BGP,’ `EGF1,’ `HRG,’ `TGF-β 
and TNF-α,’ `VEGF,’ `IBMX, DEX and insulin,’ `FGF-2,’ and `IL-1B.’ Each added element 

Table 6. The experimental settings where real time-series datasets were measured 
Cell name Stimulus Measured time (min.) 
Saos-2 Ascorbic acid and BGP 0,15,30,45,60,80,100,120,150,180,240 
MCF-7 EGF1 0,15,30,45,60,80,100,120,150,180,210, 

240,300,360,420,480 
MCF-7 HRG 0,15,30,45,60,80,100,120,150,180,210, 

240,300,360,420,480 
ARPE-19 TGF-β and TNF-α 0,15,30,45,60,80,100,120,150,180,210, 

240,300 
Lymphatic endothelial VEGF 0,15,30,45,60,80,100,120,150,180,210, 

240,300,360,420,480 
Mesenchymal stem IBMX, DEX and insulin 0,15,30,45,60,80,100,120,150,180 
Aortic smooth muscle FGF-2 0,15,30,45,60,120,180,240,300,360 
Aortic smooth muscle IL-1B 0,15,30,45,60,120,180,240,300,360 
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Figure 5. The time-series of expression levels of a) ATF3, b) EGR1, c) EGR2, d) EGR3, e) 
ETS2, f) FOS, g) FOSB, h) FOSL1, i) JUN, j) JUNB and k) MYC in MCF7 cells 
stimulated by HRG 
Solid line: smoothed expression data used for inferring genetic networks. Plus symbol: measured 
gene expression data. 

 
corresponded to a stimulus applied to the cells. According to Kimura et al. [20], we considered the 
decomposition of the biochemical compounds used for stimulating the cells. One added element 

thus had a value of 480.9
t

 for the measurements in the time-series dataset obtained by applying the 
stimulus corresponding to the element, where t was the time (min.) elapsed after the cell stimulation. 
A value of 0 was assigned to the added element for the other measurements. The number of the 
total elements, N, was 11+8 = 19. By applying the proposed approach to the gene expression data 
described here, we inferred regulations of the 11 selected genes from these genes and the 8 
additional elements.  

5.2 Results 

The top 20 regulations with respect to the confidence values assigned by the proposed approach 
are listed in Table 7. Because of a stochastic nature of the inference methods applied here, the 
confidence values assigned by the methods were slightly different every trial. In this study, we 
therefore ranked the regulations using the confidence values averaged over 10 trials. On average, 
however, 94.5% of the top 20 regulations obtained in each trial were the same as those obtained 
from the averaged confidence values. According to the STRING database (https://string-db.org/) 
[34], the regulations written in a bold face font in the table seem to be reasonable, since the 
interactions between the proteins corresponding to the genes have reportedly been confirmed in 
human and/or other species. The regulations written in an italic font also appeared to be reasonable, 
given the suggestions from earlier reports [28, 39, 41]. Figs. 6 and 7 show the networks of the top 
30 regulations ranked by the proposed approach and the original inference method, respectively. 
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Table 7. The top 20 regulations ranked with respect to the confidence values computed by the 
proposed approach and the original inference method [19] 

Rank Inference method using random-input Random-forest-based 
 variable importance measure                     inference method [19] 
1 EGR1 ←  FOS EGR1 ←  FOS 
2 ATF3 ←  TGF-β and TNF-α FOS ←  HRG 
3 EGR2 ←  FOS ATF3 ←  TGF-β and TNF-α 
4 MYC ←  FOS EGR2 ←  HRG 
5 FOS ←  HRG JUNB ←  FOSB 
6 EGR3 ←  FOS EGR3 ←  EGR2 
7 JUNB ←  FOSB EGR3 ←  FOS 
8 EGR3 ←  EGR2 FOSL1 ←  ATF3 
9 FOSL1 ←  ATF3 EGR2 ←  FOS 
10 JUN ←  VEGF EGR1 ←  EGR2 
11 EGR2 ←  HRG MYC ←  FOS 
12 EGR1 ←  EGR2 JUNB ←  EGR2 
13 FOS ←  EGR2 EGR3 ←  EGR1 
14 ETS2 ←  EGR2 FOSB ←  JUNB 
15 JUN ←  FOSB JUN ←  VEGF 
16 JUNB ←  EGR2 ETS2 ←  EGR2 
17 EGR3 ←  EGR1 JUN ←  FOSB 
18 ATF3 ←  FOSB FOSL1 ←  FOSB 
19 FOSB ←  EGR2 FOSB ←  EGR2 
20 FOSL1 ←  FOSB ATF3 ←  JUN 

The regulations written in boldface and italic fonts have reportedly been confirmed in human and/or other species and 
are accordingly assumed to be reasonable. 

 
Table 7 also shows the top 20 regulations obtained from the original random-forest-based 

inference method [19]. As shown in the table, the top 20 regulations obtained from the proposed 
approach and the original inference method were similar to each other. In this experiment, the 
proposed approach did not always outperform the random-forest-based inference method with 
respect to the number of the regulations that have been already confirmed. For example, however, 
while our approach assigned an 18th-place ranking to the regulation of ATF3 from FOSB, the 
original method ranked it 41st. In spite of this much higher ranking assigned to the regulation of 
ATF3 from FOSB by the original method, we found no earlier reports proving the existence of this 
regulation. ATF3 and FOSB are known to be induced by cAMP and MAPK signaling, respectively 
(e.g., [26, 42]). In addition, the interaction between the cAMP and MAPK signaling pathways has 
been confirmed [37]. The regulation of ATF3 from FOSB might therefore reflect an indirect 
interaction between ATF3 and FOSB. Based on the facts just described, however, we think that it 
would be worthwhile to confirm the existence of a direct regulation of ATF3 from FOSB. 

6. Conclusion 

Several researchers have focused on random-forest-based inference methods. These methods 
assign confidence values to all of the candidate regulations. To our knowledge, all of the random-
forest-based methods use the standard variable importance measure to assign the confidence values. 
Our group believes however that the standard variable importance measure is detrimental to the  
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Figure 6. The network of the top 30 regulations obtained from the proposed approach 
Solid lines represent the top 20 regulations. Circles and squares represent the genes and external 
stimuli, respectively. 

 

 

Figure 7. The network of the top 30 regulations obtained from the original method [19] 
 

inference of genetic networks. In this study, we proposed a new measure, i.e., the random-input 
variable importance measure, as an alternative, and applied it to the existing random-forest-based 
inference method. We then showed, through numerical experiments, that the use of the random-
input variable importance measure in place of the standard measure can improve the performance 
of the random-forest-based inference method. 

Our experimental results suggest that the random-input variable importance measure proposed 
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in this study works well not only for comparing importance scores computed from multiple random 
forests but for comparing those computed from a single random forest. However, we have only 
confirmed its effectiveness on genetic network inference problems so far. In the future work, we 
plan to confirm its effectiveness on different kinds of problems. On the other hand, we think that 
the proposed measure relates to the feature selection (e.g., [5, 13]). This study however focused 
only on the drawbacks of the standard variable importance measure, and then proposed the new 
measure to overcome them. The use of state-of-the-art feature selection techniques might thus make 
the performance of the inference method better. 
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