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Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine learning (ML)
and neuroscience. Prior theoretical work has focused on RNNs with additive interactions. However, gating,
i.e., multiplicative, interactions are ubiquitous in real neurons and also the central feature of the best-
performing RNNs in ML. Here, we show that gating offers flexible control of two salient features of the
collective dynamics: (i) timescales and (ii) dimensionality. The gate controlling timescales leads to a novel,
marginally stable state, where the network functions as a flexible integrator. Unlike previous approaches,
gating permits this important function without parameter fine-tuning or special symmetries. Gates also
provide a flexible, context-dependent mechanism to reset the memory trace, thus complementing the memory
function. The gate modulating the dimensionality can induce a novel, discontinuous chaotic transition, where
inputs push a stable system to strong chaotic activity, in contrast to the typically stabilizing effect of inputs. At
this transition, unlike additive RNNs, the proliferation of critical points (topological complexity) is decoupled
from the appearance of chaotic dynamics (dynamical complexity). The rich dynamics are summarized in
phase diagrams, thus providing a map for principled parameter initialization choices to ML practitioners.
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I. INTRODUCTION

Recurrent neural networks (RNNs) are powerful
dynamical systems that can represent a rich repertoire of
trajectories and are popular models in neuroscience and
machine learning. In modern machine learning, RNNs
are used to learn complex dynamics from data with rich
sequential or temporal structure such as speech [1,2],
turbulent flows [3–5], or text sequences [6]. RNNs are
also influential in neuroscience as models to study the
collective behavior of a large network of neurons [7] (and
references therein). For instance, they have been used to
explain the dynamics and temporally irregular fluctuations
observed in cortical networks [8,9] and how the motor-
cortex network generates movement sequences [10,11].
Classical RNN models typically involve units that

interact with each other in an additive fashion—i.e., each

unit integrates a weighted sum of the output of the rest of
the network. However, researchers in machine learning
have empirically found that RNNs with gating—a form of
multiplicative interaction—can be trained to perform sig-
nificantly more complex tasks than classical RNNs [6,12].
Gating interactions are also ubiquitous in real neurons due
to mechanisms such as shunting inhibition [13]. Moreover,
when single-neuron models are endowed with more real-
istic conductance dynamics, the effective interactions at the
network level have gating effects, which confer robustness
to time-warped inputs [14]. Thus, RNNs with gating
interactions not only have superior information processing
capabilities, but they also embody a prominent feature
found in real neurons.
Prior theoretical work on understanding the dynamics

and functional capabilities of RNNs has mostly focused on
RNNs with additive interactions. The original work by
Sompolinsky, Crisanti, and Sommers [15] identifies a phase
transition in the autonomous dynamics of randomly con-
nected RNNs from stability to chaos. Subsequent work
extends this analysis to cases where the random connec-
tivity additionally has correlations [16], a low-rank struc-
tured component [17,18], strong self-interaction [19], and
heterogeneous variance across blocks [20]. The role of
sparse connectivity and the single-neuron nonlinearity is
studied in Ref. [9]. The effect of a Gaussian noise input is
analyzed in Ref. [21].
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In this work, we study the consequences of gating
interactions on the dynamics of RNNs. We introduce a
gated RNN model that naturally extends a classical RNN
by augmenting it with two kinds of gating interactions:
(i) an update gate that acts like an adaptive time constant
and (ii) an output gate which modulates the output of a
neuron. The choice of these forms for gates are motivated
by biophysical considerations (e.g., Refs. [14,22]) and
retain the most functionally important aspects of the gated
RNNs in machine learning. Our gated RNN reduces to the
classical RNN [15,23] when the gates are open and is
closely related to the state-of-the-art gated RNNs in
machine learning when the dynamics are discretized
[24]. We further elaborate on this connection in Sec. VIII.
We develop a theory for the gated RNN based on non-

Hermitian random matrix techniques [25,26] and the
Martin–Siggia–Rose–De Dominicis–Janssen (MSRDJ)
formalism [21,27–32] and use the theory to map out, in
a phase diagram, the rich, functionally significant dynami-
cal phenomena produced by gating.
We show that the update gate produces slow modes and a

marginally stable critical state. Marginally stable systems
are of special interest in the context of biological informa-
tion processing (e.g., Ref. [33]). Moreover, the network
in this marginally stable state can function as a robust
integrator—a function that is critical for memory capabil-
ities in biological systems [34–37] but has been hard to
achieve without parameter fine-tuning and handcrafted
symmetries [38]. Gating permits the network to serve this
function without any symmetries or fine-tuning. For a
detailed discussion of these issues, we refer the reader to
Ref. [39] (pp. 329–350) and Refs. [38,40]. Integratorlike
dynamics are also empirically observed in gated machine
learning (ML) RNNs successfully trained on complex
sequential tasks [41]; our theory shows how gates allow
for this robustly.
The output gate allows fine control over the dimensionality

of the network activity; control of the dimensionality can be
useful during learning tasks [42]. In certain regimes, this gate
can mediate an input-driven chaotic transition, where static
inputs canpusha stable systemabruptly to a chaotic state.This
behavior with gating is in stark contrast to the typically
stabilizing effect of inputs in high-dimensional systems
[21,43,44].Theoutputgatealsoleadstoanovel,discontinuous
chaotic transition, where the proliferation of critical points (a
static property) is decoupled from the appearance of chaotic
transients (a dynamical property); this is in contrast to the tight
linkbetween the twoproperties in additiveRNNsas shownby
WainribandTouboul [45].This transition is alsocharacterized
by a nontrivial state where a stable fixed point coexists with
long chaotic transients. Gates also provide a flexible, context-
dependent way to reset the state, thus providing a way to
selectively erase the memory trace of past inputs.
We summarize these functionally significant phenomena

in phase diagrams, which are also practically useful for ML

practitioners—indeed, the choice of parameter initialization
is known to be one of the most important factors deciding
the success of training [46], with best outcomes occurring
near critical lines [10,47–49]. Phase diagrams, thus, allow a
principled and exhaustive exploration of dynamically dis-
tinct initializations.

II. A RECURRENT NEURAL NETWORK
MODEL TO STUDY GATING

We study an extension of a classical RNN [15,23] by
augmenting it with multiplicative gating interactions.
Specifically, we consider two gates: (i) an update (or z)
gate which controls the rate of integration and (ii) an output
(or r) gate which modulates the strength of the output. The
equations describing the gated RNN are given by

_hiðtÞ ¼ σzðziÞ½−hiðtÞ þ RiðtÞ� þ Ihi ðtÞ; ð1Þ

where hi represents the internal state of the ith unit and
σð·ÞðxÞ ¼ ½1þ expð−αð·Þxþ βð·ÞÞ�−1 are sigmoidal gating
functions. The recurrent input to a neuron is RiðtÞ ¼P

N
j¼1 J

h
ijϕ½hjðtÞ� · σr½rjðtÞ�, where Jhij are the coupling

strengths between the units and ϕðxÞ ¼ tanhðghxþ βhÞ
is the activation function. ϕ and σz;r are parametrized by
gain parameters (gh; αz;r) and biases (βh;z;r), which con-
stitute the parameters of the gated RNN. Finally, Ih

represents external input to the network. The gating
variables ziðtÞ and riðtÞ evolve according to dynamics
driven by the output ϕ½hðtÞ� of the network:

τx _xiðtÞ ¼ −xiðtÞ þ
XN
j¼1

Jxijϕ½hjðtÞ� þ Ixi ; ð2Þ

where x ∈ fz; rg. Note that the coupling matrices Jz;r for z,
r are distinct from Jh. We also allow for different inputs Ir

and Iz being fed to the gates. For instance, they might be
zero, or they might be equal up to a scaling factor to Ih.
The value of σzðziÞ can be viewed as a dynamical time

constant for the ith unit, while the output gate σrðriÞ
modulates the output strength of unit i. In the presence of
external input, the r gate can control the relative strengths
of the internal (recurrent) activity and the external input Ih.
In the limit σz; σr → 1, we recover the dynamics of the
classical RNN.
We choose the coupling weights from a Gaussian

distribution with variance scaled such that the input to
each unit remains Oð1Þ. Specifically, Jh;z;rij ∼N ð0; N−1Þ.
This choice of couplings is a popular initialization scheme
for RNNs in machine learning [6,46] and also in models of
cortical neural circuits [15,20]. If the gating variables are
purely internal, then ðJz;rÞ is diagonal; however, we do not
consider this case below. In the rest of the paper, we analyze
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the various dynamical regimes the gated RNN exhibits and
their functional significance.

III. HOW THE GATES SHAPE THE
LINEARIZED DYNAMICS

We first study the linearized dynamics of the gated RNN
through the lens of the instantaneous Jacobian and describe
how these dynamics are shaped by the gates. The instanta-
neous Jacobian describes the linearized dynamics about an
operating point, and the eigenvalues of the Jacobian inform
us about the timescales of growth and decay of perturba-
tions and the local stability of the dynamics. As we show
below, the spectral density of the Jacobian depends on
equal-time correlation functions, which are the order
parameters in the mean-field picture of the dynamics,
developed in the Appendix C. We study how the gates
shape the support and the density of Jacobian eigenvalues
in the steady state, through their influence on the corre-
lation functions.
The linearized dynamics in the tangent space at an

operating point x ¼ ðh; z; rÞ is given by

δ _x ¼ DðtÞδx; ð3Þ

where D is the 3N × 3N-dimensional instantaneous
Jacobian of the full network equations. Linearization of
Eqs. (1) and (2) yields

D ¼

0
B@ ½σz�ð−1þ Jh½ϕ0σr�Þ D ½σz�Jh½ϕσ0r�

τ−1z Jz½ϕ0� −τ−1z 1 0

τ−1r Jr½ϕ0� 0 −τ−1r 1

1
CA; ð4Þ

where [x] denotes a diagonal matrix with the diagonal entries
given by the vector x. The term Dij ¼ δijσ

0
zðziÞ( − hiþP

j J
h
ijϕðhjÞσrðrjÞ) ¼ ½−σ0zðzÞh� þ ½σ0z ⊙ Jhðϕ ⊙ σrÞ�

ariseswhenwe linearize about a time-varying state and is zero
for fixed points. We introduce the additional shorthand
ϕ0ðtÞ ¼ ϕ0(hðtÞ) and σ0r=z ¼ σ0r=z(r=zðtÞ).
The Jacobian is a block-structured matrix involving

random elements (Jz;h;r) and functions of various state
variables. We need additional tools from non-Hermitian
random matrix theory (RMT) [26] and dynamical mean-
field theory (DMFT) [15] to analyze the spectrum of the
Jacobian D. We provide a detailed, self-contained deriva-
tion of the calculations in Appendix C (DMFT) and
Appendix A (RMT). Here, we state only the main results
derived from these formalisms.
One of the main results is an analytical expression for

the spectral curve, which describes the boundary of the
Jacobian spectrum, in terms of the moments of the state
variables. The most general expression for the spectral
curve [Appendix A, Eq. (A34)] involves empirical averages
over the 3N-dimensional state variables. However, for large
N, we can appeal to a concentration of measure argument to

replace these discrete sums with averages over the steady-
state distribution from the DMFT (cf. Appendix C)—
i.e., we can replace empirical averages of any function
of the state variables ð1=NÞPi Fðhi; zi; riÞ with hF½hðtÞ;
zðtÞ; rðtÞ�i, where the brackets indicate average over the
steady-state distribution. The DMFTþ RMT prediction for
the spectral curve for a generic steady-state point is given in
Appendix A, Eq. (A35). Strictly speaking, the analysis of
the DMFT around a generic time-dependent steady state is
complicated by the fact that the distribution for h is not
Gaussian (while r and z are Gaussian). For fixed points,
however, the distributions of h, z, and r are all Gaussian,
and the expression for the spectral curve reduces simplifies.
It is given by the set of λ ∈ C which satisfy

hϕ02i
�
hσ2ri þ

hϕ2ihσ0r2i
j1þ τrλj2

��
σ2z

jλþ σzj2
�

z
¼ 1: ð5Þ

Here, the averages are taken over the Gaussian fixed-point
distributions ðh; z; rÞ ∼N ð0;Δh;z;rÞ which follow from the
MFT [Eq. (C26)]. For example, hϕ02i ¼ Eh∼N ð0;ΔhÞ½ϕ0ðhÞ2�.
We make two comments on the Jacobian of a time-

varying state: (i) One might wonder if any useful informa-
tion can be gleaned by studying the Jacobian at a
time-varying state where the Hartman-Grobman theorem
is not valid. Indeed, as we see below, the limiting form of
the Jacobian in steady state crucially informs us about the
suppression of unstable directions and the emergence of
slow dynamics due to pinching and marginal stability in
certain parameter regimes (also see Ref. [50]). In other
words, the instantaneous Jacobian charts the approach to
marginal stability and provides a quantitative justification
for the approximate integrator functionality exhibited in
Sec. IV B. (ii) Interestingly, the spectral curve calculated
using the MFT [Eq. (5)] for a time-varying steady state not
deep in the chaotic regime is a very good approximation for
the true spectral curve (see Fig. 8 in Appendix A).
Figures 1(a)–1(d) show that the RMT prediction of the

spectral support (dark outline) agrees well with the numeri-
cally calculated spectrum (red dots) in different dynamical
regimes. As a consequence of Eq. (5), we get a condition
for the stability of the zero fixed point. The leading edge of
the spectral curve for the zero fixed point (FP) crosses the
origin when gh < 1þ e−βr . So, in the absence of biases,
gh > 2 makes the zero FP unstable. More generally, the
leading edge of the spectrum crossing the origin gives us
the condition for the FP to become unstable:

hϕ02iðhϕ2ihσ0r2i þ hσ2riÞ > 1 ⇒ unstable FP: ð6Þ

We see later on that the time-varying state corresponding
to this regime is chaotic. We now proceed to analyze how
the two gates shape the Jacobian spectrum via the equation
for the spectral curve.
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A. Update gate facilitates slow modes
and output gate causes instability

To understand how each gate shapes the local dynamics,
we study their effect on the density of Jacobian eigenvalues
and the shape of the spectral support curve—the eigenval-
ues tell us about the rate of growth or decay of small
perturbations and, thus, timescales in the local dynamics,
and the spectral curve informs us about stability. For ease
of exposition, we consider the case without biases in the
main text (βr;z;h ¼ 0); we discuss the role of biases in
Appendix H.
Figure 1 shows how the gain parameters of the update

and output gates—αz and αr, respectively—shape the
Jacobian spectrum. In Figs. 1(a)–1(d), we see that αz has
two salient effects on the spectrum: Increasing αz leads to
(i) an accumulation of eigenvalues near zero and (ii) a
pinching of the spectral curve for certain values of gh

wherein the intercept on the imaginary axis gets smaller
[Fig. 1(f); also see Sec. IVA]. In Figs. 1(a)–1(d), we also
see that increasing the value of αr leads to an increase in the
spectral radius, thus pushing the leading edge (maxReλi) to
the right and thereby increasing the local dimensionality of
the unstable manifold. This behavior of the linearized
dynamics is also reflected in the nonlinear dynamics,
where, as we show in Sec. V, αr has the effect of controlling
the dimensionality of full phase-space dynamics.
The accumulation of eigenvalues near zero with increas-

ing αz suggests the emergence of a wide spectrum of
timescales in the local dynamics. To understand this
accumulation quantitatively, it is helpful to consider the
scenario where αz is large and we replace the tanh
activation functions with a piecewise linear approximation.
In this limit, the density of eigenvalues within a radius δ of
the origin is well approximated by the following functional
form (details in Appendix B):

P½jλðDxÞj < δ� ∼ c0erf

�
c1
αz

�
; ð7Þ

where c0 and c1 are constants that, in general, depend on
ar, δ, and gh. Figure 1(e) shows this scaling for a specific
value of δ: The dashed line shows the predicted curve, and
the circles indicate the actual eigenvalue density calculated
using the full Jacobian. In the limit of αz → ∞, we get an
extensive number of eigenvalues at zero, and the eigenvalue
density converges to (see Appendix B)

μðλÞ ¼ ð1− fzÞδðλÞ þ fzð1− fhÞδðλþ 1Þ þ 4

πg2h
Ifjλj≤g2h=4g;

where fz ¼ hσzðzÞi is the fraction of update gates which are
nonzero and fh is the fraction of unsaturated activation
functions ϕðhÞ. For other choices of saturating nonlinear-
ities, the extensive number of eigenvalues at zero remains;
however, the expressions are more complicated. Analogous
phenomena are observed for discrete-time gated RNNs in
Ref. [51], using a similar combination of analytical and
numerical techniques [52].
In Sec. VA, we show that the slow modes, as seen from

linearization, persist asymptotically (i.e., in the nonlinear
regime). This can be seen from the Lyapunov spectrum
in Fig. 3(a), which for large αz exhibits an analogous
accumulation of Lyapunov exponents near zero.
In the next section, we study the profound functional

consequences of the combination of spectral pinching and
accumulation of eigenvalues near zero.

IV. MARGINAL STABILITY AND
ITS CONSEQUENCES

As the update gate becomes more switchlike (higher αz),
we see an accumulation of slow modes and a pinching of
the spectral curve which drastically suppresses the unstable

(a) (b)

(c) (d)

(e) (f)

FIG. 1. How gates shape the Jacobian spectrum. (a)–(d)
Jacobian eigenvalues (red dots) of the gated RNN in (time-
varying) steady state. The dark outline is the spectral support
curve predicted by Eq. (5). The bottom row corresponds to larger
αz, and the right column corresponds to large αr. (e) Cumulative
distribution function of Jacobian eigenvalues in a disk of radius
r ¼ 0.05 centered at the origin plotted against αz. Circles are
numerical density calculated from the true network Jacobian
(averaged over ten instances), and the dashed line is a fit from
Eq. (7). (f) Intercept of the spectral curve on the imaginary axis,
plotted against αz for three different values of gh ðαr ¼ 0Þ. For
network simulations, N ¼ 2000, gh ¼ 3, and τr ¼ τz ¼ 1 unless
otherwise stated, and all biases are zero.
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directions. In the limit αz → ∞, this can make previously
unstable points marginally stable by pinning the leading
edge of the spectral curve exactly at zero. Marginally stable
systems are of significant interest because of the potential
benefits in information processing—for instance, they can
generate long timescales in their collective modes [33,39].
Moreover, achieving marginal stability often requires fine-
tuning parameters close to a bifurcation point. As we see,
gating allows us to achieve a marginally stable critical state
over a wide range of parameters; this has been typically
highly nontrivial to achieve (e.g., Ref. [39], pp. 329–350,
and Ref. [33]). We first investigate the conditions under
which marginal stability arises, and then we touch on one of
its important functional consequences: the appearance of
“line attractors” which allow the system to be used as a
robust integrator.

A. Condition for marginal stability

Marginal stability is a consequence of pinching of the
spectral curve with increasing αz, wherein the (positive)
leading edge of the spectrum and the intercept of the
spectral curve on the imaginary axis both shrink with αz
[e.g., Fig. 1(f) and compare Figs. 1(a) and 1(c)]. However,
we see in Fig. 1(f) (via the intercept) that pinching does not
happen if gh is sufficiently large (even as αz → ∞). Here,
we provide the conditions when pinching can occur and,
thus, marginal stability can emerge. For simplicity, let us
consider the case where τr ¼ 1 and there are no biases.
Marginal stability strictly exists only for αz ¼ ∞. We

first examine the conditions under which the system can
become marginally stable in this limit, and then we explain
the route to marginal stability for large but finite αz, i.e.,
how a time-varying state ends up as a marginally stable
fixed point. For αz ¼ ∞, the spectral density has an
extensive number N½1 − hσzðzÞi� of zero eigenvalues,
and the remaining eigenvalues are distributed in a disk
centered at λ ¼ −1 with radius ρ. If ρ < 1, then the
spectral density has two topologically disconnected con-
figurations (the disk and the zero modes) and the system is
marginally stable. If ρ > 1, the zero modes get absorbed
in the interior of the disk and the system is unstable with
fast, chaotic dynamics. The radius ρ is given by
ρ2 ¼ 1

2
aþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bþ a2

p
< 1, where a ¼ hϕ02ihσzihσ2ri and

b ¼ hϕ02ihσzihϕ2ihσ0r2i. This follows from Eq. (5) by
evaluating the z-expectation value assuming σz is a binary
variable. Thus, the system is marginally stable in the limit
αz ¼ ∞ as long as

hϕ02iðhϕ2ihσ0r2i þ hσ2riÞ < hσzi−1: ð8Þ

The crucial difference between this expression and
Eq. (6) is that the rhs now has a factor of hσzi−1 which
can be greater than unity, thus pushing the transition to
chaos further out along the gh and αr directions, as depicted
in the phase diagram (Fig. 7). For concreteness, we report

here how the transition changes at αr ¼ 0. In this setting,
the transition to chaos moves from gh ¼ 2 to gh ⪅ 6.2, and
the system is marginally stable for 2 < gh ⪅ 6.2.
Having identified the region in the phase diagram that

can be made marginally stable for αz ¼ ∞, we can now
discuss the route to marginal stability for large but finite αz.
In other words, how does an unstable chaotic state become
marginally stable with increasing αz? Since the marginally
stable region is characterized by a disconnected spectral
density, evidently increasing αz must lead to singular
behavior in the spectral curve. This takes the form of a
pinching at the origin. We show that, for values of gh
supporting marginal stability, the leading edge λe of the
spectrum for the time-varying state gets pinched exponen-
tially fast with αz as λe ∼ e−cαz

ffiffiffiffi
Δh

p
(see Appendix B). This

accounts for the fact that, already for αz ¼ 15, we observe
the pinching in Fig. 1(c). In contrast, the parameters in
Fig. 1(d) lie outside the marginally stable region, and, thus,
there is no pinching, since the zero modes are asymptoti-
cally (in αz) buried in the bulk of the spectrum.
In summary, as αz → ∞ the Jacobian spectrum under-

goes a topological transition from a single simply con-
nected domain to two domains, both containing an
extensive number of eigenvalues. A finite fraction of
eigenvalues end up sitting exactly at zero, while the rest
occupy a finite circular region. If the leading edge of the
circular region crosses zero in this limit, then the state
remains unstable; otherwise, the state becomes marginally
stable. The latter case is achieved through a gradual
pinching of the spectrum near zero; there is no pinching
in the former case.
We emphasize that marginal stability requires more than

just an accumulation of eigenvalues near zero. Indeed, this
happens even when gh is outside the range supporting
marginal stability as αz → ∞, but there is no pinching and
the system remains unstable [e.g., see Fig. 1(d)]. We return
to this when we describe the phase diagram for the gated
RNN (Sec. VII). There, we see that the marginally stable
region occupies a macroscopic volume in the parameter
space adjoining the critical lines on one side.

B. Functional consequences of marginal stability

The marginally stable critical state produced by gating
can subserve the function of a robust integrator. This
integratorlike function is crucial for a variety of computa-
tional functions such as motor control [34–36], decision
making [37], and auditory processing [53]. However,
achieving this function has typically required fine-tuning
or special handcrafted architectures [38], but gating permits
the integrator function over a range of parameters and
without any specific symmetries in Jh;z;r. Specifically, for
large αz, any perturbation in the span of the eigenvectors
corresponding to the eigenvalues with a magnitude close
to zero is integrated by the network, and, once the input
perturbation ceases, the memory trace of the input is

THEORY OF GATING IN RECURRENT NEURAL NETWORKS PHYS. REV. X 12, 011011 (2022)

011011-5



retained for a duration much longer than the intrinsic time
constant of the neurons; perturbations along other direc-
tions, however, relax with a spectrum of timescales dictated
by the inverse of (the real part of) their eigenvalues. Thus,
the manifold of slow directions forms an approximate
continuous attractor on which input can effortlessly move
the state vector around. These approximate continuous
attractor dynamics are illustrated in Fig. 2. At time t ¼ 0, an
input Ih (with Ir ¼ Iz ¼ 0) is applied till t ¼ 10 (between
dashed vertical lines) along an eigenvector of the Jacobian
with an eigenvalue close to zero. Inputs along this slow
manifold with varying strengths (different shades of red)
are integrated by the network as evidenced by the excess
projection of the network activity on the left eigenvector uλ

corresponding to the slow mode; on the other hand, inputs
not aligned with the slow modes decay away quickly
(dashed black line). Recall that the intrinsic time constant
of the neurons here is set to one unit. The exponentially fast
(in αz) pinching of the spectral curve (discussed above in
Sec. IVA) suggests this slow-manifold behavior should
also hold for moderately large αz (as in Fig. 2). Therefore,
even though the state is technically unstable, the local
structure of the Jacobian is responsible for giving rise to

extremely long timescales and allows the network to
operate as an approximate integrator within relatively long
windows of time, as demonstrated in Fig. 2.
Of course, after sufficiently long times, the instability

causes the state to evolve and the memory is lost. Exactly
how long the memory lasts depends on the asymptotic
stability of the network, which is revealed by the Lyapunov
spectrum, discussed below in Sec. VA.

V. OUTPUTGATECONTROLS DIMENSIONALITY
AND LEADS TO A NOVEL CHAOTIC

TRANSITION

We thus far use insights from local dynamics to study the
functional consequences of the gates. To study the salient
features of the output gate, it is useful to analyze the effect
of inputs and the long-time behavior of the network through
the lens of Lyapunov spectra. We see that the output gate
controls the dimensionality of the dynamics in the phase
space; dimensionality is a salient aspect of the dynamics for
task function [42]. The output gate also gives rise to a novel
discontinuous chaotic transition, near which inputs (even
static ones) can abruptly push a stable system into strongly
chaotic behavior—contrary to the typically stabilizing
effect of inputs. Below, we begin with the Lyapunov
analyses of the dynamics and then proceed to study the
chaotic transition.

A. Long-time behavior of the network

We study the asymptotic behavior of the network and the
nature of the time-varying state through the lens of its
Lyapunov spectra. In this section, where we study the
effects of αz, our results are numerical except in cases
where αz ¼ 0 [e.g., in Fig. 3(d)]. Lyapunov exponents
specify how infinitesimal perturbations δxðtÞ grow or
shrink along the trajectories of the dynamics—in particular,
if the growth or decay is exponentially fast, then the rate is
dictated by the maximal Lyapunov exponent defined as
[54] λmax≔ limT→∞T−1 limkδxð0Þk→0 ln½kδxðTÞk=kδxð0Þk�.
More generally, the set of all Lyapunov exponents—the
Lyapunov spectrum—yields the rates at which perturba-
tions along different directions shrink or diverge and, thus,
provide a fuller characterization of asymptotic behavior.
We first numerically study how the gates shape the full
Lyapunov spectrum (details in Appendix D) and derive an
analytical prediction for the maximum Lyapunov exponent
using the DMFT (Sec. VA 1) [55].
Figures 3(a) and 3(b) show how the update (z) and output

(r) gates shape the Lyapunov spectrum. We see that, as the
update gets more sensitive (larger αz), the Lyapunov
spectrum flattens, pushing more exponents closer to
zero, generating long timescales. As the output gate
becomes more sensitive (larger αr), all Lyapunov exponents
increase, thus increasing the rate of growth in unstable
directions.

(a)

(b)

FIG. 2. Network in the marginally stable state functions as an
integrator. (a) Sample traces from a network with switchlike
update gates ðαz ¼ 30; gh ¼ 3Þ show slow evolution (time on
x axis is relative to τh). (b) An input is applied to the same
network in (a) from t ¼ 0 till t ¼ 10, either aligned with a slow
eigenvector uλ (red traces) or unaligned with slow modes (black
dashed trace). The plot shows the excess projection of the
network state on the left eigenvector uλ. Different shades of
red correspond to different input strengths. If the input is along
the slow manifold, the trace of the input is retained for a long time
after the cessation of input. [The traces in (a) are for the network
with an input along the manifold.].
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We can estimate the dimensionality of the activity in the
chaotic state by calculating an upper bound DA on the
dimension according to a conjecture by Kaplan and Yorke
[54]. The Kaplan-Yorke upper bound for the attractor
dimension DA is given by

DA¼Mþ
P

M
i¼1λi

jλMþ1j
; whereM¼max

j

�Xj
i¼1

λi≥0

�
; ð9Þ

where λi are the rank-ordered Lyapunov exponents. We see
in Fig. 3(c) that the sensitivity of the output gate (αr) can
shape the dimensionality of the dynamics—a more sensi-
tive output gate leads to higher dimensionality. As we see
below, this effect of the output gate is different from how
the gain gh shapes dimensionality and can lead to a novel
chaotic transition. Even more directly, if the r gate for
neurons i1…iK is set to zero, then the activity is constrained
to evolve in an N − K-dimensional subspace; however, the
r gate allows the possibility—i.e., the “inductive bias”—of
doing this dynamically.

1. DMFT prediction for λmax

We would also like to study the chaotic nature of the
time-varying phase by means of the maximal Lyapunov
exponent and characterize when the transition to chaos

occurs. We extend the DMFT for the gated RNN to
calculate the maximum Lyapunov exponent, and, to do
this, we make use of a technique suggested by Refs. [56,57]
and clearly elucidated in Ref. [21]. The details are provided
in Appendix E, and the end result of the calculation is the
DMFT prediction for λmax as the solution to a generalized
eigenvalue problem for κ involving the correlation func-
tions of the state variables:

½ðhσzi þ κÞ2 − ∂2
τ þ CσzðτÞ − hσzi2�χhðτÞ

¼ Cσ0zðτÞ½Cϕ·σrðτÞ − ChðτÞ�χzðτÞ

þ CσzðτÞ
∂Cϕ·σrðτÞ

∂Ch
χhðτÞ; ð10Þ

½ð1þ τz=rκÞ2 − τ2z=r∂2
τ �χz=rðτÞ ¼

∂CϕðτÞ
∂Ch

χhðτÞ; ð11Þ

where we denote the two-time correlation function
Cxðt; t0Þ≡ hxðtÞxðt0Þi for different (functions of) state
variables xðtÞ [see Eq. (C25) for more context]. The largest
eigenvalue solution to this problem is the required maximal
Lyapunov exponent [58]. Note that this is the analog of the
Schrödinger equation for the maximal Lyapunov exponent
in the vanilla RNN. When αz ¼ 0 (or small), the h field is
Gaussian, and we can use Price’s theorem for Gaussian
integrals to replace the variational derivatives on the rhs
of Eqs. (10) and (11) by simple correlation functions, for
instance, ∂CϕðτÞ=∂ChðτÞ ¼ Cϕ0 ðτÞ. In this limit, we see
good agreement between the numerically calculated maxi-
mal Lyapunov exponent [Fig. 3(c), dots] compared to
the DMFT prediction [Fig. 3(c), solid line] obtained by
solving the eigenvalue problem [Eqs. (10) and (11)]. For
large values of αz, we see quantitative deviations between
the DMFT prediction and the true λmax. Indeed, for large αz,
the distribution of h is strongly non-Gaussian, and there is
no reason to expect that variational formulas given by
Price’s theorem are even approximately correct. For more
on this point, see the discussion toward the end of
Appendix C.

2. Condition for continuous transition to chaos

The value of αz affects the precise value of the maximal
Lyapunov exponent λmax; however, numerics suggest that,
across a continuous transition to chaos, the point at which
λmax becomes positive is not dependent on αz (data not
shown). We can see this more clearly by calculating the
transition to chaos when the leading edge of the spectral
curve (for a FP) crosses zero. This condition is given by
Eq. (6), and we see that it has no dependence on αz or the
update gate. We stress that this condition [Eq. (6)] for the
transition to chaos—when the stable fixed point becomes
unstable—is valid when the chaotic attractor emerges
continuously from the fixed point [Fig. 3(c), αr ¼ 0, 2].
However, in the gated RNN, there is another discontinuous

(b)

(a) (c)

(d)

FIG. 3. Lyapunov spectra and dimensionality of the gated
RNN. (a),(b) The first 50 ordered Lyapunov exponents for a
gated RNN (N ¼ 2000) as a function of varying (a) αz and (b) αr.
The Lyapunov spectrum is calculated as described in Appendix D.
(c) The Kaplan-Yorke dimensionality of the dynamics as a
function of αr. (d) The maximal Lyapunov exponent λmax
predicted by the DMFT [solving Eqs. (10) and (11); solid line]
and obtained numerically using the QR method (circles; N ¼
2000 and αz ¼ 0). Note that the transition for αr ¼ 20 is sharp;
also cf. Fig. 5(c). τz ¼ τr ¼ 2.0 here.
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transition to chaos [Fig. 3(c), αr ¼ 20]: For sufficiently
large αr, the transition to chaos is discontinuous and occurs
at a value of gh where the zero FP is still stable (gh < 2with
no biases). To our knowledge, this is a novel type of
transition which is not present in the vanilla RNN and not
visible from an analysis that considers only the stability
of fixed points. We characterize this phenomenon in
detail below.

B. Output gate induces a novel chaotic transition

Here, we describe a novel phase, characterized by a
proliferation of unstable fixed points and the coexistence
of a stable fixed point with chaotic dynamics. It is the
appearance of this state that gives rise to the discontinuous
transition observed in Fig. 3(c). The appearance of this state
is mediated by the output gate becoming more switchlike
(i.e., increasing αr) in the quiescent region for gh. To our
knowledge, no such comparable phenomenon exists in
RNNs with additive interactions. The full details of the
calculations for this transition are provided in Appendix G.
Here, we simply state and describe the salient features. For
ease of presentation, the rest of the section assumes that all
biases are zero. The results in this section are strictly valid
only for αz ¼ 0. In Appendix G 3, we argue that they
should also hold for moderate αz.
This discontinuous transition is characterized by a few

noteworthy features.

1. Spontaneous emergence of fixed points

When gh < 2.0, the zero fixed point is stable. Moreover,
for

ffiffiffi
2

p
< gh < 2, when αr crosses a threshold value

α�r;FPðghÞ, unstable fixed points spontaneously appear in
the phase space. The only dynamical signature of these
unstable FPs are short-lived transients which do not scale
with system size (see Fig. 11). Thus, we have a condition
for fixed-point transition:ffiffiffi

2
p

< gh ≤ 2 and αr > α�r;FPðghÞ: ð12Þ

These unstable fixed points correspond to the emergence
of nontrivial solutions to the time-independent MFT.
Figure 4(a) shows the appearance of fixed-point MFT
solutions for a fixed gh, and Fig. 4(b) shows the critical
α�r;FPðghÞ as a function of gh. As gh → 2−, we see

that α�r;FP →
ffiffiffi
8

p
.

These spontaneous MFT fixed-point solutions are unsta-
ble according to the criterion Eq. (6) derived from RMT.
Moreover, in Appendix J, using a Kac-Rice analysis, we
show that in this region the full 3N-dimensional system
does indeed have a number of unstable fixed points
that grows exponentially fast with N. Thus, this transition
line α�r;FP represents a topological trivialization transition as
conceived by, e.g., Refs. [59,60]. Our analysis shows that
instability is intimately connected to the proliferation of

(a) (c)

(d)(b)

(e)

FIG. 4. The discontinuous dynamical transition. (a) Spontaneous appearance of nonzero solutions (dashed and solid red lines) to the
FP equations once αr crosses a critical value α�r;FPðghÞ at fixed gh. (b) The critical α�r;FPðghÞ as a function of gh. The vertical dashed line
represents left critical value gc ¼

ffiffiffi
2

p
, below which a bifurcation is not possible. (c) The critical DMFT transition curve α�r;DMFTðghÞ (red

curve) calculated using Eqs. (G8) and (G9). The FP transition curve from (b) is shown in black. The green dashed line corresponds to
gc ¼

ffiffiffiffiffiffiffiffi
8=3

p
, below which the dynamical transition is not possible. (d) Numerically calculated maximum Lyapunov exponent λmax as a

function of αr for two different values of gh. The dashed lines correspond to the DMFT prediction for the discontinuous transition from
(c). (e) Schematic of the bifurcation transition: For gh < 2 and αr < α�r;FP, the zero FP is the only (stable) solution (bottom left box); forffiffiffi
2

p
< gh < 2 and α�r;FP < αr < α�r;DMFT, the zero FP is still stable, but there is a proliferation of unstable FPs without any obvious

dynamical signature (top left); for
ffiffiffiffiffiffiffiffi
8=3

p
< gh < 2 and αr > α�r;DMFT, chaotic dynamics coexist with the stable FP and this transition is

discontinuous (top right); finally, for gh > 2.0, the stable FP becomes unstable, and only the chaotic attractor remains; this transition is
continuous (bottom right).
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fixed points. Remarkably, however, a time-dependent sol-
ution to theDMFTdoes not emerge across this transition, and
the microscopic dynamics are insensitive to the transition in
topological complexity, bringing us to the next point.

2. A delayed dynamical transition that shows
a decoupling between topological

and dynamical complexity

On increasing αr beyond α�r;FP, there is a second
transition when αr crosses a critical value α�r;DMFT. This
happens when we satisfy the condition for dynamical
transition:

ffiffiffi
8

3

r
< gh ≤ 2 and αr > α�r;DMFTðghÞ; ð13Þ

derived in Appendix G 2. Figure 4(c) shows how
α�r;DMFTðghÞ varies with gh. As gh → 2−, we see that

α�r;DMFT →
ffiffiffiffiffi
12

p
. Across this transition, a dynamical state

spontaneously emerges, and the maximum Lyapunov
exponent jumps from a negative value to a positive value
[Fig. 4(d)]. This state exhibits chaotic dynamics that coexist
with the stable zero fixed point. The presence of the stable
FP means that the dynamical state is not strictly a chaotic
attractor but rather a spontaneously appearing “chaotic set.”
On increasing gh beyond 2.0, for large but fixed αr, the
stable fixed point disappears, and the state smoothly
transitions into a full chaotic attractor that is characterized
above. This picture is summarized in the schematic in
Fig. 4(e). This gap between the proliferation of unstable
fixed points and the appearance of the chaotic dynamics
differs from the result of Wainrib and Touboul [45]
for purely additive RNNs, where the proliferation (topo-
logical complexity) is tightly linked to the chaotic dynam-
ics (dynamical complexity). Thus, for gated RNNs,
there appears to be another distinct mechanism for the
transition to chaos, and the accompanying transition is a
discontinuous one.

3. Long chaotic transients

For finite systems, across the transition the dynamics
eventually flow into the zero FP after chaotic transients.
Moreover, we expect this transient time to scale with the
system size, and, in the infinite system size limit, the
transient time should diverge in spite of the fact that
the stable fixed point still exists. This is because the
relative volume of the basin of attraction of the fixed point
vanishes as N→∞. In Appendix G [Figs. 11(c) and 11(d)],
we do indeed see that the transient time for a fixed gh scales
with system size [Fig. 11(c)] once αr is above the second
transition (dashed line) and not otherwise [see Figs. 11(a)
and 11(e), dashed lines].

4. An input-induced chaotic transition

The discontinuous chaotic transition has a functional
consequence: Near the transition, static inputs can push a
stable system to strong chaotic activity. This is in contrast to
the typically stabilizing effects of inputs on the activity of
random additive RNNs [21,43,44]. In Figs. 5(a) and 5(b), we
see that, when static input with variance σβh is applied to a
stable system (a) near the discontinuous chaotic transition (in
region 2 in Fig. 7), it induces chaotic activity (b); however, for
the same input when applied to the system in the chaotic state
[Fig. 5(c)], the dynamics are stabilized (d) as reported before.
This phenomenon for static inputs can be understood

using the phase diagram with nonzero biases, discussed in
Sec. VII. There, we see how the transition curves move
when a random bias βh is included. Near the classic chaotic
transition (αr ¼ 0), the bias moves the curve toward larger
gh, thus suppressing chaos. Near the discontinuous chaotic
transition α�r;DMFT, the bias pulls the curve toward smaller
values of αr, thus promoting chaos. Thus, inputs can have
opposite effects of inducing or stabilizing chaos within the
same model in different parameter regimes. This phenome-
non could, in principle, be leveraged for shaping the
interaction between inputs and internal dynamics.

VI. GATES PROVIDE A FLEXIBLE
RESET MECHANISM

Here, we discuss how the gates provide another critical
function—a mechanism to flexibly reset the memory trace

(a)

(b) (d)

(c)

FIG. 5. Input-driven chaos. (a),(b) Near the discontinuous
chaotic transition (in region 2 in Fig. 7), static input Ih (with
Ir ¼ Iz ¼ 0) can push a stable system (a) to chaotic activity (b).
(c),(d) In the purely chaotic state [(c), gh ¼ 3.0], input has the
familiar effect of stabilizing the dynamics (d). The elements of the
input vector Ih are random Gaussian variables with zero mean
and variance σ2βh .
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depending on external input or the internal state. This
function complements the memory function; a memory that
cannot be erased when needed is not very useful. To build
intuition, let us consider a linear network _h ¼ −hþ Jh,
where the matrix −1þ J has a few eigenvalues that are
zero, while the rest have a negative real part. The slow
modes are good for memory function; however, that fact
also makes it hard to forget memory traces along the slow
modes. This trade-off is pointed out in Ref. [61]. To be
functionally useful, it is critical that the memory trace can
be erased flexibly in a context-dependent manner. The r
gate allows this function naturally. Consider the same net,
but now augmented with an r gate: _h ¼ −hþ Jh ⊙ σr. If
the gate is turned off (σr ¼ 0) for a short duration, the state
h is reset to zero. One can actually be more specific: We
may choose a Jr ¼ −1uT with σr ¼ σ½JrϕðhÞ�, such that
the r gate turns off whenever ϕðhÞ gets aligned with u, thus
providing an internal-context-dependent reset.
Apart from resetting to zero, the z gate also allows the

possibility of rapidly scrambling the state to a random
value by means of the input-induced chaos. This phe-
nomenon is illustrated in Fig. 6, where the network in the
marginally stable state normally functions as a memory
(retains traces for long times, as in Fig. 2), but positive
inputs Iz (with Ih ¼ Ir ¼ 0) to the z gate above a
threshold strength even for a short duration can induce
chaos, thereby scrambling the state and erasing the
previous memory state (Fig. 6, bottom panel). The
mechanism for this scrambling can be understood by
appealing to Eq. (8). A finite input Iz with nonzero mean
is able to change hσðzÞi and, thus, push the critical line for

marginal stability in one way or the other. For instance, if
hIzi > 0, hσðzÞi > 1=2, which (for αr ¼ 0) moves the
transition to marginal stability to a smaller value of gh.
This implies that a marginally stable state can be made
chaotic in the presence of Iz with finite mean. This
mechanism for input-induced chaos actually appears to
be different from that explored in the previous section,
which occurs across the discontinuous chaotic transition.
We discuss this more in Sec. VII.
In summary, gating imbues the RNN with the capacity to

flexibly reset memory traces, providing an “inductive bias”
for context-dependent reset. The specific method of reset
depends on the task or function, and this can be selected,
e.g., by gradient-based training. This inductive bias for
resetting is found to be critical for performance in ML
tasks [62].

VII. PHASE DIAGRAMS FOR THE
GATED NETWORK

Here, we summarize the rich dynamical phases of the
gated RNN and the critical lines separating them. The key
parameters determining the critical lines and the phase
diagram are the activation and output-gate gains and the
associated biases: ðgh; βh; αr; βrÞ. The update gate does not
play a role in determining continuous or critical chaotic
transitions. On the other hand, it influences the discon-
tinuous transition to chaos for sufficiently large values of αz
(see Sec. G 3 for discussion). Furthermore, the update gate
has a strong effect on the dynamical aspects of the states
near the critical lines. There are macroscopic regions of the
parameter space adjacent to the critical lines where the
states can be made marginally stable in the limit of
αz → ∞. The shape of this marginal stability region is
influenced by βz and Iz.
Figure 7(a) shows the dynamical phases for the network

with no biases in the ðgh; αrÞ plane. When gh is below 2.0
and αr < α�r;FP, the zero fixed point is the only solution
(region 1). As discussed in Sec. V B, on crossing the fixed-
point bifurcation line [green line, Fig. 7(a)], there is a
spontaneous proliferation of unstable fixed points in the
phase space (region 2). This can occur only when gh >

ffiffiffi
2

p
.

The proliferation of fixed points is not accompanied by any
obvious dynamical signatures. However, if

ffiffiffiffiffiffiffiffi
8=3

p
<gh<2,

we can increase αr further to cross a second discontinuous
transition where a dynamical state spontaneously appears
featuring the coexistence of chaotic activity and a stable
fixed point (region 3). When gh is increased beyond the
critical value of 2.0, the stable zero fixed point becomes
unstable for all αr, and we get a chaotic attractor (region 4).
All the critical lines are determined by gh and αr, and αz has
no explicit role; however, for large αz there is a large region
of the parameter space on the chaotic side of the chaotic
transition that can be made marginally stable [thatched
region 5 in Fig. 7(a)].

FIG. 6. Gates provide a reset mechanism. Positive static inputs
are applied to the z gate when the RNN is in the marginally stable
state (gh ¼ 3.0, αr ¼ 2.5, and αz ¼ ∞Þ for 20 time units at times
indicated by dashed lines. The input induces chaos which rapidly
scrambles the network state, thus erasing the trace of the previous
memory; the bottom panel shows the normalized projection of the
state hðtÞ on the directions hð1;2;3Þ aligned with the state in
regions 1, 2, and 3.
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A. Role of biases and static inputs

Biases have the effect of generating nontrivial fixed
points and controlling stability by moving the edge of the
spectral curve. Another key feature of biases is the
suppression of the discontinuous bifurcation transition
observed without biases. This is explained in detail in
Appendix H. A particularly illuminating illustration of the
effects of a bias can be inferred from the critical line (red
dashed) for finite bias shown in Fig. 7. This curve,
computed using the FP stability criterion (6) combined
with the MFT equations [(C28)–(C30)], represents the
transition between stability and chaos for finite bias with
zero mean and nonzero variance. Equivalently, we may
think of this as the critical line for a network with static
input Ihi ∼N ð0; σ2hÞ (with Ir ¼ Iz ¼ 0). Along the gh axis,
we can observe the well-documented phenomena whereby
an input suppresses chaos. This corresponds to the region
gh > 2 which lies to the left of the red dashed critical line,
which is chaotic in the absence of input and flows to a
stable fixed point in the presence of input. However, this
behavior is reversed for gh < 2. Here, we see a significant
swath of phase space which is stable in the absence of input

but which becomes chaotic when input is present. Thus, the
stability-to-chaos phase boundary in the presence of biases
(or inputs) reveals that the output (r) gate can facilitate an
input-induced transition to chaos.

VIII. DISCUSSION

Gating is a form of multiplicative interaction that is a
central feature of the best-performing RNNs in machine
learning, and it is also a prominent feature of biological
neurons. Prior theoretical work on RNNs has considered
only RNNs with additive interactions. Here, we present the
first detailed study on the consequences of gating for RNNs
and show that gating can produce dramatically richer
behavior that have significant functional benefits.
The continuous-time gated RNN (gRNN) we study

resembles a popular model used in machine learning
applications, the gated recurrent unit (GRU) [see the note
below Eq. (C27)]. Previous work [51] looks at the
instantaneous Jacobian spectrum for the discrete-time
GRU using RMT methods similar to those presented in
Appendix A; however, this work does not go beyond time-
independent MFT and presents a phase diagram showing
only boundaries across which the MFT fixed points
become unstable [63]. In the present manuscript, we
illuminate the full dynamical phase diagram for our gated
RNN, uncovering much richer structure. Both the GRU and
our gRNN have a gating function which dynamically scales
the time constant, which in both cases leads to a marginally
stable phase in the limit of a binary gate. However, the
dynamical phase diagram presented in Fig. 7 reveals a
novel discontinuous transition to chaos. We conjecture that
such a phase transition should also be present in the GRU.
Also, Ref. [51] lacks any discussion of the influence of
inputs or biases. The present paper includes discussion of
the functional significance of the gates in the presence
of inputs. We believe these results, combined with the
refined dynamical phase diagram, can shed some light on
the role of analogous gates in the GRU and other gated ML
architectures. We review the significance of the gates in
more detail below.

A. Significance of the update gate

The update gate modulates the rate of integration. In
single-neuron models, such a modulation is shown to make
the neuron’s responses robust to time-warped inputs [14].
Furthermore, normative approaches, requiring time repar-
ametrization invariance in ML RNNs, naturally imply the
existence of a mechanism that modulates the integration
rate [64]. We show that, for a wide range of parameters, a
more sensitive (or switchlike) update gate leads to marginal
stability. Marginally stable models of biological function
have long been of interest with regard to their benefits for
information processing (cf. Ref. [33] and references
therein). In the gated RNN, a functional consequence of

FIG. 7. Phase diagram for the gated RNN. (a) (no biases) In
regions 1 and 2, the zero FP is the global attractor of dynamics;
however, in region 2, there is a proliferation of unstable FPs
without any asymptotic dynamical signatures. In region 3, the
(stable) zero FP coexists with chaotic dynamics. Note that the
plotted curve separating regions 2 and 3 is computed for αz ¼ 0
and remains valid for sufficiently small values of αz. In region 4,
the zero FP is unstable, and dynamics are chaotic. For all
parameter values in region 5, a previously unstable or chaotic
state can be made marginally stable when αz ¼ ∞. For any given
parameter values in region 5, there are infinitely many marginally
stable points in the phase space to which the dynamics converge.
The red dashed line indicates the critical transition between a
stable fixed point (below the line) and chaos (above the line) in
the presence of static random input (to the h variable) with
standard deviation σh ¼ 0.5. Note that, while chaos is suppressed
for small αr along the gh axis, for larger αr there are regions of
stable FPs that become chaotic with finite input. This leads to the
phenomenon of input-induced chaos.
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the marginally stable state is the use of the network as a
robust integrator—such integratorlike function is shown to
be beneficial for a variety of computational functions such
as motor control [34–36], decision making [37], and
auditory processing [53]. However, previous models of
these integrators often require handcrafted symmetries and
fine-tuning [38]. We show that gating allows this function
without fine-tuning. Signatures of integratorlike behavior
are also empirically observed in successfully trained gated
ML RNNs on complex tasks [41]. We provide a theoretical
basis for how gating produces these. The update gate
facilitates accumulation of slow modes and a pinching of
the spectral curve which leads to a suppression of unstable
directions and overall slowing of the dynamics over a range
of parameters. This is a manifestly self-organized slowing
down. Other mechanisms for slowing down dynamics have
been proposed where the slow timescales of the network
dynamics are inherited from other slow internal processes
such as synaptic filtering [65,66]; however, such mecha-
nisms differ from the slowing due to gating; they do not
seem to display the pinching and clumping, and they also
do not rely on self-organized behavior.

B. Significance of the output gate

The output gate dynamically modulates the outputs of
individual neurons. Similar shunting mechanisms are
widely observed in real neurons and are crucial for
performance in ML tasks [62]. We show that the output
gate offers fine control over the dimensionality of the
dynamics in phase space, and this ability is implicated in
task performance in ML RNNs [42]. This gate also gives
rise to a novel discontinuous chaotic transition where inputs
can abruptly push stable systems to strongly chaotic
activity; this is in contrast to the typically stabilizing role
of inputs in additive RNNs. In this transition, there is a
decoupling between topological and dynamical complexity.
The chaotic state across this transition is also characterized
by the coexistence of a stable fixed point with chaotic
dynamics—in finite size systems, this manifests as long
transients that scale with the system size. We note that there
are other systems displaying either a discontinuous chaotic
transition or the existence of fixed points overlapping with
chaotic (pseudo)attractors [19] or apparent chaotic attrac-
tors with finite alignment with particular directions [67];
however, we are not aware of a transition in large RNNs
where static inputs can induce strong chaos or the topo-
logical and dynamical complexity are decoupled across the
transition. In this regard, the chaotic transition mediated by
the output gated seems to be fundamentally different. More
generally, the output gate is likely to have a significant role
in controlling the influence of external inputs on the
intrinsic dynamics.
We also show how the gates complement the memory

function of the update gate by providing an important,
context- and input-dependent reset mechanism. The ability

to erase a memory trace flexibly is critical for function [62].
Gates also provide a mechanism to avoid the accuracy-
flexibility trade-off noted for purely additive networks—
where the stability of a memory comes at the cost of the
ease with which it is rewritten [61].
We summarize the rich behavior of the gated RNN via

phase diagrams indicating the critical surfaces and regions
of marginal stability. From a practical perspective, the
phase diagram is useful in light of the observation that it is
often easier to train RNNs initialized in the chaotic regime
but close to the critical points. This is often referred to as
the “edge of chaos” hypothesis [68–70]. Thus, the phase
diagrams provide ML practitioners with a map for prin-
cipled parameter initialization—one of the most critical
choices deciding training success.
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APPENDIX A: DETAILS OF RANDOM MATRIX
THEORY FOR SPECTRUM OF THE JACOBIAN

In this section, we provide details of the calculation
of the bounding curve for the Jacobian spectrum for both
fixed points and time-varying states. Our approach to the
problem utilizes the method of Hermitian reduction [25,26]
to deal with non-Hermitian random matrices.The analysis
here resembles that in Ref. [51], which also considers
Jacobians that are highly structured random matrices
arising from discrete-time gated RNNs.
The Jacobian D is a block-structured matrix constructed

from the random coupling matrices Jh;z;r and diagonal
matrices of the state variables. In the limit of large N, we
expect the spectrum to be self-averaging—i.e., the distri-
bution of eigenvalues for a random instance of the network
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approaches the ensemble-averaged distribution. We can,
thus, gain insight about typical dynamical behavior by
studying the ensemble- (or disorder-) averaged spectrum of
the Jacobian. Our starting point is the disorder-averaged
spectral density μðλÞ defined as

μðλÞ ¼ 1

3N
E

	X3N
i¼1

δðλ − λiÞ


; ðA1Þ

where the λi are the eigenvalues ofD for a given realization
of Jh;z;r and the expectation is taken over the distribution of
real Ginibre random matrices from which Jh;z;r are drawn.
Using an alternate representation for the Dirac delta
function in the complex plane [δðλÞ ¼ π−1∂ λ̄λ

−1], we
can write the average spectral density as

μðλÞ ¼ 1

π

∂
∂λ̄E

	
1

3N
Tr½ðλ13N −DÞ−1�



; ðA2Þ

where 13N is the 3N-dimensional identity matrix. D is
in general non-Hermitian, so the support of the
spectrum is not limited to the real line, and the standard
procedure of studying the Green’s function Gðλ; λ̄Þ ¼
ð3NÞ−1TrE½ðλ13N −DÞ−1� by analytic continuation is not
applicable, since it is nonholomorphic on the support.
Instead, we use the method of Hermitization [25,26] to
analyze the resolvent for an expanded 6N × 6N Hermitian
matrix H:

Gðη; λ; λ̄Þ ¼ E½ðη16N −HÞ−1�; ðA3Þ

H ¼
�

0 λ −D

λ̄ −DT 0

�
; ðA4Þ

and the Green’s function for the original problem is
obtained by considering the lower-left block of G:

Gðλ; λ̄Þ ¼ lim
η→i0þ

1

3N
TrG21ðη; λ; λ̄Þ: ðA5Þ

To make this problem tractable, we invoke an ansatz
called the local chaos hypothesis [57,71], which posits
that, for large random networks in steady state, the state
variables are statistically independent of the random
coupling matrices Jz;h;r (also see Ref. [72]). This implies
that the Jacobian [Eq. (4)] has an explicit linear dependence
only on Jh;z;r, and the state variables are governed by their
steady-state distribution from the disorder-averaged DMFT
(Appendix C). These assumptions make the random matrix
problem tractable, and we can evaluate the Green’s function
by using the self-consistent Born approximation, which is
exact as N → ∞. We detail this procedure below.
The Jacobian itself can be decomposed into structured

ðA;L; RÞ and random parts ðJ Þ:

D ¼

0
B@−½σz� D 0

0 −τ−1z 1 0

0 0 −τ−1r 1

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

þ

0
B@ ½σz� 0 0

0 τ−1z 1 0

0 0 τ−1r 1

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L

×

0
B@ Jh 0 0

0 Jz 0

0 0 Jr

1
CA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
J

0
B@ ½ϕ0σr� 0 ½ϕσ0r�

½ϕ0� 0 0

½ϕ0� 0 0

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

: ðA6Þ

At this point, we must make a crucial assumption:
The structured matrices A, L, and R are independent of
the random matrices appearing J . This implies that the
dynamics is self-averaging and that the state variables reach
a steady-state distribution determined by the DMFT and
insensitive to the particular quenched disorder J . This self-
averaging assumption leads to theoretical predictions
which are in very good agreement with simulations of
large networks, as presented in Fig. 1.
This independence assumption renders D a linear func-

tion of the random matrix J , whose entries are Gaussian
random variables. The next steps are to develop an
asymptotic series in the random components ofH, compute
the resulting moments, and perform a resummation of the
series. This is conveniently accomplished by the self-
consistent Born approximation (SCBA). The output of
the SCBA is a self-consistently determined self-energy
functional Σ½G� which succinctly encapsulates the resum-
mation of moments. With this, the Dyson equation for G is
given by

G−1 ¼ G−1
0 − Σ½G�; ðA7Þ

where the matrices on the right are defined in terms of
3N × 3N blocks:

G−1
0 ¼

�
η1 λ − A

λ̄ − AT η1

�
; ðA8Þ

Σ½G� ¼
�
LQ½RG22RT �L 0

0 RTQ½LTG11L�R

�
; ðA9Þ

and Q is a superoperator which acts on its argument as
follows:

Q½M� ¼

0
BB@

1
N TrM11 0 0

0 1
N TrM22 0

0 0 1
N TrM33

1
CCA: ðA10Þ

Here, we express the self-energy using the 3N × 3N
subblocks of the Green’s function G:

THEORY OF GATING IN RECURRENT NEURAL NETWORKS PHYS. REV. X 12, 011011 (2022)

011011-13



G ¼
�
G11 G12

G21 G22

�
: ðA11Þ

At this point, we have presented all of the necessary
ingredients for computing the Green’s function and, thus,
determining the spectral properties of the Jacobian. These
are the Dyson equation (A7), along with the free Green’s
function (A8) and the self-energy (A9). Most of what is left
is complicated linear algebra. However, in the interest of
completeness, we proceed to unpack these equations and
give a detailed derivation of the main equation of interest,
the bounding curve of the spectral density.
To proceed further, it is useful to define the following

transformed Green’s functions, which can be written in
terms of N × N subblocks:

G̃11 ≡ LTG11L ¼

0
B@ G̃11 G̃12 G̃13

G̃21 G̃22 G̃23

G̃31 G̃32 G̃33

1
CA; ðA12Þ

G̃22 ≡ RG22RT ¼

0
B@ G̃44 G̃45 G̃46

G̃54 G̃55 G̃56

G̃64 G̃65 G̃66

1
CA: ðA13Þ

Denote also the mean trace of these subblocks as

g̃ij ¼
1

N
Tr½G̃ij�: ðA14Þ

Then the self-energy matrix in Eq. (A9) is block
diagonal, i.e., Σ½G� ¼ bdiagðΣ11;Σ22Þ, with

Σ11 ¼

0
BB@

½σ2z �g̃44 0 0

0 τ−2z g̃55 0

0 0 τ−2r g̃66

1
CCA; ðA15Þ

Σ22 ¼

0
B@ ½ϕ0σr�2g̃11þ ½ϕ0�2ðg̃22þ g̃33Þ 0 ½ϕ0σr�½ϕσ0r�g̃11

0 0 0

½ϕ0σr�½ϕσ0r�g̃11 0 ½ϕσ0r�2g̃11

1
CA:

ðA16Þ

With the self-energy in this form, we are able to solve the
Dyson equation for the full Green’s function G by direct
matrix inversion:

G ¼
�
η − Σ11 λ − A

λ̄ − AT η − Σ22

�−1
; ðA17Þ

which can be carried out easily by symbolic manipulation
software. The rhs of Eq. (A17) is a function of g̃ii, whereas
the lhs is a function of the Green’s function before the
transformations (A12) and (A13). Thus, to get a set of

equations we can solve, we apply these same transforma-
tions to both sides of Eq. (A17) after solving the Dyson
equation. The final step is to take the limit η → 0,
recovering the problem we originally wished to solve.
The result of these manipulations is a set of six equations

for the mean traces of the transformed Green’s function
defined in Eq. (A14). In order to write these down, we
introduce some additional notation. The self-consistent
equations are of the form

g̃ii ¼
�
Γi

Γ

�
; ðA18Þ

where we denote hMi≡ N−1TrM for shorthand and i runs
from 1 to 6. Denote the state-variable-dependent diagonal
matrices as

p ¼ ½ϕ0�; q ¼ ½ϕσ0r�; r ¼ ½ϕ0σr�; ðA19Þ

and, because they appear frequently in the resulting
equations, define

X ¼ g̃11jλτr þ 1j2r2 þ ðg̃22 þ g̃33Þp2Z; ðA20Þ

Y ¼ D2g̃55 þ jλτz þ 1j2½σ2z �g̃44; ðA21Þ

Z ¼ jλτr þ 1j2 − g̃11g̃66q2: ðA22Þ

The denominator in Eq. (A18) is then given by

Γ ¼ jλτz þ 1j2jλþ σzj2Z − XY; ðA23Þ

and the numerators Γi are given by

Γ1 ¼ σ2z jλτz þ 1j2X; ðA24Þ

Γ2 ¼ D2X; ðA25Þ

Γ3 ¼ g̃11jλτz þ 1j2jλþ σzj2q2 − g̃11ðg̃22 þ g̃33Þp2q2Y;

ðA26Þ

Γ4 ¼ g̃66jλτz þ 1j2jλþ σzj2q2
þ ½jλτr þ 1j2r2 − g̃66ðg̃22 þ g̃66Þp2q2�Y; ðA27Þ

Γ5 ¼ Γ6 ¼ p2YZ: ðA28Þ

The numerators and denominator are all diagonal matri-
ces with real entries, which is why we use the simple
notation of a ratio when referring to matrix inversion.
Solving these equations gives us the g̃ii as implicit

functions of λ. They are, in general, complicated and resist
exact solution. However, the situation simplifies consid-
erably when we are looking for the spectral curve. In this
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case, we are looking for all λ ∈ C that satisfy the self-
consistent equations with g̃ii → 0.
We must take this limit carefully, since the ratio of these

functions can remain constant. For this reason, it is
necessary to define

x2 ¼ g̃22=g̃11; x3 ¼ g̃33=g̃11: ðA29Þ

We may do the same for g̃44, g̃55, and g̃66, but it turns out
that x2 and x3 are sufficient to compute the spectral curve.
Next, divide by g̃11 and send all g̃ii → 0, keeping the ratios
fixed. Applying this to the equation for g̃11 results in

1 ¼ lim
g̃ii→0

1

g̃11

�
Γ1

Γ

�
¼ γ1 þ γ2ðx2 þ x3Þ: ðA30Þ

Similarly, for g̃22 and g̃33, we get

x2 ¼ γ3 þ γ4ðx2 þ x3Þ; ðA31Þ

x3 ¼ γ5; ðA32Þ

where the coefficients γi, which are functions of λ, are
given by

γ1 ¼
�

σ2zr2

jλþ σzj2
�
; γ2 ¼

�
p2σ2z

jλþ σzj2
�
; γ5 ¼

hq2i
jλτr þ 1j2 ;

γ3 ¼
�

D2r2

jλτz þ 1j2jλþ σzj2
�
; γ4 ¼

�
D2p2

jλτz þ 1j2jλþ σzj2
�
:

The linear system of equations (A30)–(A32) is consis-
tent iff

ð1 − γ1Þð1 − γ4Þ ¼ γ2ðγ3 þ γ5Þ: ðA33Þ

In other words, γi must satisfy Eq. (A33) when g̃ii → 0.
This expression depends on λ and implicitly defines a curve
in C, which is the boundary of the support of the spectral
density.
Plugging in the explicit expression for γi, we get the

implicit equation for the spectral curve as all λ ∈ C that
satisfy�
1 −

�
r2σ2z

jλþ σzj2
���

1 −
�

D2p2

jλτz þ 1j2jλþ σzj2
��

¼
�

σ2zp2

jλþ σzj2
���

D2r2

jλτz þ 1j2jλþ σzj2
�
þ hq2i
jλτr þ 1j2

�
:

ðA34Þ

For large systems, we can replace the empirical traces of
the state variable by their averages given by the DMFT
variances. Then, the equation for the curve for a general
steady state is given by

�
hσ2ri þ

hϕ2σ0r2i
j1þ τrλj2

��
ϕ02σ2z

jλþ σzj2
�

þ 1

j1þ τzλj2
�

D2ϕ02

jλþ σzj2
�

¼ 1: ðA35Þ

For fixed points, we have D ¼ 0, which makes
γ3 ¼ γ4 ¼ 0. The equation for the spectral curve simplifies
to that which is quoted in the main text [Eq. (5)]:

1 ¼
�

r2σ2z
jλþ σzj2

�
þ hq2i
jλτr þ 1j2

�
σ2zp2

jλþ σzj2
�
: ðA36Þ

1. Jacobian spectrum for the case αr = 0

In the case when αr ¼ 0, it is possible to express the
Green’s function [Eq. (A5)] in a simpler form. Recall that

Gðλ; λ̄Þ ¼ lim
η→i0þ

1

3N
trG21ðη; λ; λ̄Þ: ðA37Þ

Let Ỹ ¼ D2 þ σ2rσ
2
z jλτz þ 1j2. Then, the Green’s function is

given by

Gðλ; λ̄Þ ¼ 1

3

� jλτz þ 1j2ðλ̄þ σzÞ
jλτz þ 1j2jλþ σzj2 − ξðλ; λ̄Þp2Ỹ

�
ðA38Þ

þ 1

3

�ðλ̄þ τ−1z Þðjλþ σzj2 − ξðλ; λ̄Þp2σ2zÞ
jλþ τ−1z j2jλþ σzj2 − ξðλ; λ̄Þp2Ỹ

�
ðA39Þ

þ 1

3

1

λþ τ−1r
; ðA40Þ

FIG. 8. Jacobian spectrum at a time-varying state. Red dots are
the Jacobian eigenvalues for the full network in a (time-varying)
steady state, and the spectral curve of the Jacobian is calculated
using moments from (i) the full state vectors (blue curve) or using
the variances from the fixed-point MFT (green). Surprisingly, the
agreement is reasonably good. For network simulations,
N ¼ 1000, gh ¼ 2.5, αr ¼ 1, αz ¼ 15, and all biases are zero.

THEORY OF GATING IN RECURRENT NEURAL NETWORKS PHYS. REV. X 12, 011011 (2022)

011011-15



where ξðλ; λ̄Þ is defined implicitly to satisfy the equation

1 ¼
�

p2Ỹ

jλτz þ 1j2jλþ σzj2 − ξðλ; λ̄Þp2Ỹ

�
: ðA41Þ

The function ξðλ; λ̄Þ acts as a sort of order parameter for
the spectral density, indicating the transition on the com-
plex plane between zero and finite density μ. Outside the
spectral support, λ ∈ Σc, this order parameter vanishes,
ξ ¼ 0, and the Green’s function is holomorphic:

Gðλ; λ̄Þ ¼ 1

3

��
1

λþ σz

�
þ 1

λþ τ−1z
þ 1

λþ τ−1r

�
; ðA42Þ

which, of course, indicates that the density is zero since
μðλÞ ¼ ∂ λ̄Gðλ; λ̄Þ. Inside the support λ ∈ Σ, the order
parameter ξ ≠ 0, and the Green’s function consequently
picks up nonanalytic contributions, proportional to λ̄. Since
the Green’s function is continuous on the complex plane, it
must be continuous across the boundary of the spectral
support. This must then occur precisely when the holo-
morphic solution meets the nonanalytic solution, at ξ ¼ 0.
This is the condition used to find the boundary curve above.

APPENDIX B: SPECTRAL CLUMPING AND
PINCHING IN THE LIMIT αz → ∞

In this section, we provide details on the accumulation of
eigenvalues near zero and the pinching of the leading
spectral curve (for certain values of gh) as the update gate
becomes switchlike (αz → ∞). To focus on the key aspects
of these phenomena, we consider the case when the reset
gate is off and there are no biases (αr ¼ 0 and βr;h;z ¼ 0).
Moreover, we consider a piecewise linear approximation—
sometimes called “hard” tanh—to the tanh function
given by

ϕlinðxÞ ¼

8>><
>>:

1 x > 1=gh;

ghx jxj ≤ 1=gh;

−1 x < −1=gh:
ðB1Þ

This approximation does not qualitatively change the
nature of the clumping.
In the limit αz → ∞, the update gate σz becomes binary

with a distribution given by

Pðσz ¼ xÞ ¼ fzδðx − 1Þ þ ð1 − fzÞδðxÞ; ðB2Þ

where fz ¼ hσzi is the fraction of update gates that are open
(i.e., equal to one). Using this, along with the assumption
that D ≈ 0—which is valid in this regime—we can simplify
the expression for the Green’s function [Eqs. (A38)–(A42)]
to yield

Gðλ; λ̄Þ ¼ 1 − fz
λ

þ fzð1 − fhÞ
1

λþ 1
þ 1

λþ τ−1z

þ ð1þ λ̄Þ
g2hσðβrÞ2

Ifjλj<g2hσðβrÞ2g; ðB3Þ

where fh is the fraction of hard tanh activations that are not
saturated. In the limit of small τz and βr ¼ 0, we get the
expression for the density given in the text:

μðλÞ ¼ ð1− fzÞδðλÞ þ fzð1− fhÞδðλþ 1Þ þ 4

πg2h
Ifjλj≤g2h=4g:

ðB4Þ

Thus, we see an extensive number of eigenvalues at zero.
Now, let us study the regime where αz is large but not

infinite. We would like to get the scaling behavior of the
leading edge of the spectrum and the density of eigenvalues
contained in a radius δ around the origin. We make an
ansatz for the spectral edge close to zero λ ∼ e−cαz

ffiffiffiffi
Δh

p
,

where c is a positive constant. With this ansatz, the equation
for the spectral curve reads

Z
Dz

σzð
ffiffiffiffiffiffi
Δz

p
· zÞ2

jλ0e−cαz
ffiffiffiffi
Δh

p
þ σzð

ffiffiffiffiffiffi
Δ2

z

p
Þj2 ¼

σrðβrÞ−2
hϕ0ð ffiffiffiffiffiffi

Δh
p

· hÞ2i : ðB5Þ

In the limit of large αz and βr ¼ 0, this implies

erfc

�
cffiffiffi
2

p
�
≈

4

hϕ0ð ffiffiffiffiffiffi
Δh

p
· hÞ2i : ðB6Þ

If this has a positive solution for c, then the scaling of the
spectral edge as λ ∼ e−cαz

ffiffiffiffi
Δh

p
holds. Moreover, whenever

there is a positive solution for c, we also expect pinching
of the spectral curve, and in the limit αz → ∞ we have
marginal stability.
Under the same approximation, we can approximate the

eigenvalue density in a radius δ around zero as

P½jλðDÞj < δ� ¼ 1

2πi

I
C
dzGðzÞ; ðB7Þ

where we choose the contour along z ¼ e−cαz
ffiffiffiffi
Δh

p þiθ for θ ∈
½0; 2πÞ and δ ¼ e−cαz

ffiffiffiffi
Δh

p
. In the limit of large αz (thus,

δ ≪ 1), we get the scaling form described in the main text:

P½jλðDÞj < δ� ≈ 1

2
erfc

�
−

logðδÞ
αz

ffiffiffiffiffiffiffiffi
2Δh

p
�
: ðB8Þ

APPENDIX C: DETAILS OF THE DYNAMICAL
MEAN-FIELD THEORY

The DMFT is a powerful analytical framework used to
study the dynamics of disordered systems, and it traces its
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origins to the study of dynamical aspects of spin glasses
[73,74] and has been later applied to the study of random
neural networks [9,15,21,75]. In our case, the DMFT
reduces the description of the full 3N-dimensional (deter-
ministic) ordinary differential equations (ODEs) describing
ðh; z; rÞ to a set of three coupled stochastic differential
equations for scalar variables ðh; z; rÞ.
Here, we provide a detailed, self-contained description of

the dynamical mean-field theory for the gated RNN using
the Martin–Siggia–Rose–De Dominicis–Janssen formal-
ism. The starting point is a generating functional—akin
to the generating function of a random variable—which
takes an expectation over the paths generated by the
dynamics. The generating functional is defined as

ZJ ½b̂;b� ¼ E

	
exp

�
i
XN
j¼1

Z
b̂jðtÞTxjðtÞdt

�

; ðC1Þ

where xjðtÞ≡ ½hjðtÞ; zjðtÞ; rjðtÞ� is the trajectory and
b̂jðtÞ ¼ ðb̂hj ; b̂zj; b̂rjÞ is the argument of the generating
functional. We also include external fields bj ¼
ðbhj ; bzj; brjÞ, which are used to calculate the response
functions. The measure in the expectation is a path integral
over the dynamics. The generating functional is then used
to calculate correlation and response functions using the
appropriate (variational) derivatives. For instance, the two-
point function for the h field is given by

hhiðtÞhiðt0Þi ¼
δ2

δb̂hi ðt0Þδb̂hi ðtÞ
ZJ ½b̂;b�

����
b¼0

: ðC2Þ

Up until this point, things are quite general and do not
rely on the specific form of the dynamics. However, for
large random networks, we expect certain quantities such
as the population averaged correlation function Ch ≡
N−1P

ihhiðtÞhiðt0Þi to be self-averaging and, thus, not
vary much across realizations. Thus, we can study the
disorder averaged (over J ), the generating functional
Z̄ ¼ hZJ iJ , and approximate Z̄ with its value evaluated

at the saddle point of the action. This approximation gives
us the single-site DMFT picture of dynamics described in
Eqs. (C19) and (C20).
To see how this all works, we start with the equations of

motion (in vector form)

τz _z ¼ −zþ JzϕzðhÞ; ðC3Þ

τr _r ¼ −rþ JrϕrðhÞ; ðC4Þ

_h ¼ σzðzÞ ⊙ ( − hþ fJh½σrðrÞ ⊙ ϕhðhÞ�g); ðC5Þ

where ⊙ stands for elementwise multiplication.
To write down the MSRDJ generating functional, let us

discretize the dynamics (in the Itô convention). Note that in
this convention the Jacobian is unity.

hiðtþ 1Þ − hiðtÞ ¼ σz;iðtÞf−hiðtÞ
þ
X
j

Jhijσr;jðtÞϕjðtÞ þ bhi ðtÞgδt;

τz½ziðtþ 1Þ − ziðtÞ� ¼
�
−ziðtÞ þ

X
j

JzijϕðtÞ þ bzi ðtÞ
�
δt;

τr½riðtþ 1Þ − riðtÞ� ¼
�
−riðtÞ þ

X
j

JrijϕðtÞ þ bri ðtÞ
�
δt;

where we introduce external fields in the dynamics fbhi ðtÞg,
fbzi ðtÞg, and fbri ðtÞg. The generating functional is given by

ZJ ½b̂;b� ¼ E

	
exp

�
i
XN
j¼1

X
t

b̂jðtÞTxjðtÞδt
�


; ðC6Þ

where b̂¼ðb̂hj ; b̂zj; b̂rjÞ, b ¼ ðbhj ; bzj; brjÞ, and xjðtÞ≡ ½hjðtÞ;
zjðtÞ; rjðtÞ�; also, the expectation is over the dynamics
generated by the network. Writing this out explicitly, with δ
functions enforcing the dynamics, we get the following
integral for the generating functional:

ZJ ½b̂;b� ¼
Z Y

i;t

Y
k;t0

Y
m;t00

dhiðtÞdzkðt0Þdrmðt00Þ · exp
�
i

�X
i;t

b̂hi ðtÞhiðtÞ þ b̂zi ðtÞziðtÞ þ b̂ri ðtÞriðtÞ
�
δt

�

× δ

�
hiðtþ 1Þ − hiðtÞ þ

�
hiðtÞσz;iðtÞ − σz;iðtÞ

	X
j

Jhijσr;jðtÞϕjðtÞ


− bhi ðtÞ

�
δt

�

× δ

�
zkðt0 þ 1Þ − zkðt0Þ þ

1

τz

�
zkðt0Þ þ

X
l

Jzklϕlðt0Þ þ bzkðt0Þ
�
δt

�

× δ

�
rmðt00 þ 1Þ − rmðt00Þ þ

1

τr

�
rmðt00Þ þ

X
n

Jrmnϕnðt00Þ þ brmðt0Þ
�
δt

�
: ðC7Þ
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Now, let us introduce the Fourier representation for the δ function; this introduces an auxiliary field variable, which as
we see allows us to calculate the response function in the MSRDJ formalism. The generating functional can then be
expressed as

ZJ ½b̂;b� ¼
Z Y

i;t

Y
k;t0

Y
m;t00

dhiðtÞ
dĥiðtÞ
2π

dzkðt0Þ
dẑkðt0Þ
2π

drmðt00Þ
dr̂mðt00Þ

2π

× exp

	
−i
X
i;t

ĥiðtÞ½hiðtþ 1Þ − hiðtÞ − fhðhi; zi; riÞδt − bhi ðtÞδt� þ i
X
i;t

b̂hi ðtÞhiðtÞδt



× exp

	
−i
X
k;t0

ẑkðtÞ
�
zkðt0 þ 1Þ − zkðt0Þ − fzðhk; zkÞ

δt
τz

− bzkðt0Þ
δt
τz

�
þ i
X
k;t0

b̂zkðt0Þzkðt0Þδt



× exp

	
−i
X
m;t00

r̂mðt00Þ
�
rmðt00 þ 1Þ − rmðt00Þ − frðhm; rmÞ

δt
τr
− brmðt00Þ

δt
τr

�
þ i
X
m;t00

b̂rmðt00Þrmðt00Þδt


; ðC8Þ

where the functions fh;z;r summarize the gated RNN
dynamics

fhðhi; zi; riÞ ¼ σz;iðtÞ
�
−hiðtÞ þ

X
j

Jhijσr;jðtÞϕjðtÞ
�
;

fzðhk; zkÞ ¼ −zkðt0Þ þ
X
l

Jzklϕlðt0Þ;

frðhm; rmÞ ¼ −rmðt00Þ þ
X

Jrmnϕnðt00Þ:

Let us now take the continuum limit δt → 0 and formally
define the measures Dhi ¼ limδt→0

Q
t dhiðtÞ. We can then

write the generating functional as a path integral:

ZJ ½b̂;b� ¼
Z Y

i

DhiDĥiDziDẑiDriDr̂i exp

�
−S½x̂;x�

þ i
Z

dt½b̂ðtÞTxðtÞ þ bðtÞT x̂ðtÞ�
�
; ðC9Þ

where b̂¼ðb̂hi ;b̂zi ; b̂ri Þ, x¼ðhi;zi;riÞ, x̂ ¼ ðĥi; ẑi=τz; r̂i=τrÞ,
and the action S which gives weights to the paths is
given by

S½x̂;x� ¼ i
X
i

Z
dtĥiðtÞ½∂thiðtÞ − fhðhi; zi; riÞ�

þ i
X
k

Z
dtẑkðtÞ

	
∂tzkðtÞ −

fzðhk; zkÞ
τz




þ i
X
k

Z
dtr̂mðtÞ

	
∂trmðtÞ −

frðhm; rmÞ
τr



:

ðC10Þ

The functional is properly normalized, so ZJ ½0;b� ¼ 1. We
can calculate correlation functions and response functions
by taking appropriate variational derivatives of the

generating functional Z, but first we address the role of
the random couplings.

1. Disorder averaging

We are interested in the typical behavior of ensembles of
the networks, so we work with the disorder-averaged
generating functional Z̄; ZJ is properly normalized, so
we are allowed to do this averaging on ZJ . Averaging over
Jhij involves the following integral:

Z
dJhij

ffiffiffiffiffiffi
N
2π

r
exp

�
−
NðJhijÞ2

2

þ i · Jhij

Z
dtĥiðtÞσz;iðtÞϕjðtÞσr;jðtÞ

�
;

which evaluates to

exp

�
−ð1=2NÞ ·

	Z
dtĥiðtÞσz;iðtÞϕjðtÞσr;jðtÞ



2
�
;

and similarly for Jz and Jr we get terms

exp

�
−ð1=2NÞ ·

�Z
dtẑkðtÞϕlðtÞ

�
2

τ−2z

�
;

exp

�
−ð1=2NÞ ·

�Z
dtr̂mðtÞϕnðtÞ

�
2

τ−2r

�
:

The disorder-averaged generating functional is then
given by

Z̄½b̂;b� ¼
Z Y

i

DhiDĥiDziDẑiDriDr̂i exp
�
−S̄½x̂;x�

þ i
Z

dt½b̂ðtÞTxðtÞ þ bðtÞT x̂ðtÞ�
�
; ðC11Þ
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where the disorder-averaged action S̄ is given by

S̄½x̂;x� ¼ i
X
i

Z
dtĥiðtÞ½∂thiðtÞ þ hiðtÞσz;iðtÞ� þ

1

2N

X
i;j

�Z
dtĥiðtÞσz;iðtÞϕjðtÞσr;jðtÞ

�
2

þ i
X
k

Z
dtẑkðtÞ

�
∂tzkðtÞ þ

zkðtÞ
τz

�
þ 1

2N

X
k;l

�Z
dt

ẑkðtÞ
τz

· ϕlðtÞ
�

2

þ i
X
m

Z
dtr̂mðtÞ

�
∂trmðtÞ þ

rmðtÞ
τr

�
þ 1

2N

X
m;n

�Z
dt

r̂mðtÞ
τr

· ϕnðtÞ
�

2

: ðC12Þ

With some foresight, we see the action is extensive in the system size, and we can try to reduce it to a single-site
description. However, the issue now is that we have nonlocal terms (e.g., involving both i and j), and we can introduce the
following auxiliary fields to decouple these nonlocal terms:

Cϕσrðt; t0Þ ≔
1

N

X
i

ϕiðtÞϕiðt0Þσr;iðtÞσr;iðt0Þ;

Cϕðt; t0Þ ≔
1

N

X
k

ϕkðtÞϕkðt0Þ: ðC13Þ

To make the C’s free fields that we integrate over, we enforce these relations using the Fourier representation of δ
functions with additional auxiliary fields:

δ

�
NCϕσrðt; t0Þ −

X
i

ϕiðtÞϕiðt0Þσr;iðtÞσr;iðt0Þ
�

¼
Z

N
π
dĈϕσrðt; t0Þ exp

	
−
i
2
Ĉϕσrðt; t0Þ

�
N · Cϕσrðt; t0Þ

−
X
i

ϕiðtÞϕiðt0Þσr;iðtÞσr;iðt0Þ
�


;

δ

�
NCϕðt; t0Þ −

X
k

ϕkðtÞϕkðt0Þ
�

¼
Z

N
π
dĈϕðt; t0Þ exp

	
−
i
2
Ĉϕðt; t0Þ

�
N · Cϕðt; t0Þ −

X
k

ϕkðtÞϕkðt0Þ
�


:

This allows us to make the following transformations to decouple the nonlocal terms in the action S̄:

1

2N

X
i;j

½ĥiðtÞσz;iðtÞϕjðtÞσr;jðtÞ�2 →
1

2

X
i

Z
dtdt0ĥiðtÞσz;iðtÞCϕσrðt; t0Þĥiðt0Þσz;iðt0Þ;

1

2N

X
k;l

�Z
dt

ẑkðtÞ
τz

· ϕlðtÞ
�

2

→
1

2

X
k

Z
dtdt0

ẑkðtÞ
τz

Cϕðt; t0Þ
ẑkðt0Þ
τz

;

1

2N

X
m;n

�Z
dt

r̂mðtÞ
τr

· ϕnðtÞ
�

2

→
1

2

X
m

Z
dtdt0

r̂mðtÞ
τr

Cϕðt; t0Þ
r̂mðt0Þ
τr

:

We see clearly that the Cϕσr and Cϕ auxiliary fields which represent the (population-averaged) ϕσr − ϕσr and ϕ − ϕ
correlation functions decouple the sites by summarizing all the information present in the rest of the network in terms of
two-point functions; two different sites interact only by means of the correlation functions. The disorder-averaged
generating functional can now be written as

Z̄½b̂;b� ¼
Z

DĈDC expð−N · L½Ĉ;C; b̂;b�Þ;

L ¼ i
2

Z
dtdt0½Cðt; t0ÞTĈðt; t0Þ� −W½Ĉ;C; b̂;b�;

exp ðN ·WÞ ¼
Z Y

i

DhiDĥiDziDẑiDriDr̂i × exp

�
i
Z

dt½bðtÞTĥðtÞ þ b̂ðtÞThðtÞ� − Sd½ĥ;h; fC; Ĉg�
�
; ðC14Þ
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where C ¼ ðCh; Cz; CrÞ and Ĉ ¼ ðĈh; Ĉz; ĈrÞ. The site-
wise decoupled action Sd contains only terms involving a
single site (and the C fields). So, for a given value of Ĉ
and C, the different sites are decoupled and driven by the
sitewise action

Sd½ĥ;h; fC; Ĉg� ¼ i
Z

dt½ĥðtÞT∂thðtÞ þ ĥτðtÞThðtÞ�

þ 1

2

Z
dtdt0ĥτðtÞTDCðt; t0Þĥτðt0Þ

−
i
2

Z
dtdt0SxðtÞTDĈðt; t0ÞSxðt0Þ;

ðC15Þ
where

ĥτðtÞ ¼ ðĥiσz;i; ẑi=τz; r̂i=τrÞ;
ĥðtÞ ¼ ðĥi; ẑi; r̂iÞ;
Sx ¼ ðϕiσr;i;ϕi;ϕiÞ;

DCðt; t0Þ ¼ Diag½Cϕσrðt; t0Þ; Cϕðt; t0Þ; Cϕðt; t0Þ�;
DĈðt; t0Þ ¼ Diag½Ĉϕσrðt; t0Þ; Ĉϕðt; t0Þ; Ĉϕðt; t0Þ�:

2. Saddle-point approximation for N → ∞
So far, we do not make any use of the fact that we are

considering large networks. However, noting that N
appears in the exponent in the expression for the disor-
der-averaged generating functional, we can approximate it
using a saddle-point approximation:

Z̄½b̂;b� ≃ eN·L0½b̂;b;C0;Ĉ0�
Z

DQ̂DQe−N·L2½Q̂;Q;b̂;b�:

We approximate the action L in Eq. (C14) by its saddle-
point value plus a Hessian term: L ≃ L0 þ L2 and the Q
and Q̂ fields represent Gaussian fluctuations about the
saddle-point values C0 and Ĉ0, respectively. At the saddle-
point the action is stationary with respect to variations;
thus, the saddle-point values of C fields satisfy

C0
ϕσr

ðt; t0Þ ¼ 1

N

XN
i¼1

hϕiðtÞσr;iðtÞϕiðt0Þσr;iðt0Þi0;

Ĉ0
ϕσr

ðt; t0Þ ¼ 1

N

XN
i¼1

hĥiðtÞσz;iðtÞĥiðt0Þσz;iðt0Þi0

¼ δ2hσz;iðtÞσz;iðt0Þi0
δbiðtÞδbiðt0Þ

¼ 0;

C0
ϕðt; t0Þ ¼

1

N

XN
k¼1

hϕkðtÞϕkðt0Þi0;

Ĉ0
ϕðt; t0Þ ¼ 0: ðC16Þ

In evaluating the saddle-point correlation function in the
second line, we use the fact that equal-time response
functions in the Itô convention are zero [29]. This is perhaps
the first significant point of departure from previous studies
of disordered neural networks and forces us to confront the
multiplicative nature of the z gate. Here, h� � �i0 denotes
averages with respect to paths generated by the saddle-point
action; thus, these equations are a self-consistency con-
straint. With the correlation fields fixed at their saddle-point
values, if we neglect the contribution of the fluctuations (i.e.,
ignore L2), then the generating functional is given by a
product of identical sitewise generating functionals:

Z̄½b̂;b� ¼ Z0½b̂;b�N; ðC17Þ

where the sitewise functionals are given by

Z0½b̂;b� ¼
Z

DhDĥDzDẑDrDr̂

× eði
R

dt½bðtÞT ĥðtÞþb̂ðtÞThðtÞ�−Sd½ĥ;h;fC0;0g�Þ; ðC18Þ

where C0 ¼ ðC0
ϕσr

; C0
ϕÞ.

The sitewise decoupled action is now quadratic with the
correlation functions taking on their saddle-point values.
This corresponds to an action for each site containing three
scalar variables driven by Gaussian processes. This can be
seen explicitly by using a Hubbard-Stratonovich transform
which makes the action linear at the cost of introducing
three auxiliary Gaussian fields ηh, ηz, and ηr with corre-
lation functions C0

ϕσr
ðt; t0Þ, C0

ϕðt; t0Þ, and C0
ϕðt; t0Þ, respec-

tively. With this transformation, the action for each site
corresponds to stochastic dynamics for three scalar varia-
bles given by

_hðtÞ ¼ −σzðzÞ · hðtÞ þ σzðzÞ · ηhðtÞ; ðC19Þ

τz _zðtÞ ¼ −zðtÞ þ ηzðtÞ; ðC20Þ

τr _rðtÞ ¼ −rðtÞ þ ηrðtÞ; ðC21Þ

where the Gaussian noise processes ηh, ηz, and ηr
have correlation functions that must be determined self-
consistently:

hηhðtÞ · ηhðt0Þi ¼ hϕðtÞσrðtÞ · ϕðt0Þσrðt0Þi;
hηzðtÞ · ηzðt0Þi ¼ hϕðtÞ · ϕðt0Þi;
hηrðtÞ · ηrðt0Þi ¼ hϕðtÞ · ϕðt0Þi:

The intuitive picture of the saddle-point approximation is as
follows: The sites of the full network become decoupled,
and they are each driven by a Gaussian processes whose
correlation functions summarize the activity of the rest of
the network “felt” by each site. It is possible to argue about
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the final result heuristically, but one does not have access to
the systematic corrections that a field theory formulation
affords.
We comment here on the unique difficulty that gating

presents to an analysis of the DMFT. While rðtÞ and zðtÞ
are both described by Gaussian processes in the DMFT,
the multiplicative σzðzÞ interaction in Eq. (C19) spoils the
Gaussianity of hðtÞ. Note that rðtÞ is always Gaussian and
uncorrelated to hðtÞ. In order to try solving for the
correlation functions, we need to make a factorization
assumption, justified numerically in Fig. 10. The story
simplifies at a fixed point, where h ¼ ηh (since σz > 0), and
is, thus, Gaussian and independent of r.
In order to solve the DMFT equations, we use a

numerical method described in Ref. [76]. Specifically,
we generate noise paths ηh;z;r starting with an initial guess
for the correlation functions and then iteratively update the
correlation functions using the mean-field equations till
convergence. The classical method of solving the DMFT
by mapping the DMFT equations to a second-order ODE
describing the motion of a particle in a potential cannot be
used in the presence of multiplicative gates. In Fig. 9, we
see that the solution to the mean-field equations agrees well
with the true population-averaged correlation function;
Fig. 9 also shows the scale of fluctuations around the
mean-field solutions (Fig. 9, thin black lines).
The correlation functions in the DMFT picture such as

Chðt; t0Þ ¼ hhðtÞhðt0Þi are the order parameters and corre-
spond to the population-averaged correlation functions in
the full network. These turn out to useful in our analysis of
the RNN dynamics in some analyses. Qualitative changes
in the correlation functions correspond to transitions
between dynamical regimes of the RNN.
In general, the non-Gaussian nature of h makes it

impossible to get equations governing the correlation func-
tions. However, when αz is not too large, Eqs. (C19) and
(C20) can be extended to get equations of motions for the
correlation functions Ch, Cz, and Cr, which proves useful
later on. This requires a separation assumption between the h
and σz correlators, which seems reasonable for moderate αz
(see Fig. 10). “Squaring” Eqs. (C19) and (C20), we get

½−∂2
τ þ CσzðτÞ�ChðτÞ ¼ CσzðτÞCσrðτÞCϕðτÞ; ðC22Þ

½−τ2z∂2
τ þ 1�CzðτÞ ¼ CϕðτÞ; ðC23Þ

½−τ2r∂2
τ þ 1�CrðτÞ ¼ CϕðτÞ; ðC24Þ

where we use the shorthand σzðtÞ≡σz½zðtÞ�, ϕðtÞ≡ ϕ½hðtÞ�,
and denote the two-time correlation functions as

Cxðt; t0Þ ¼ hxðtÞxðt0Þi; ðC25Þ

where x ∈ fh; z; r; σz; σr;ϕg and the expectation here is
over the random Gaussian fields in Eqs. (C19)–(C21). We

FIG. 9. Validating the DMFT. We show the comparison
between the population-averaged correlation functions CϕðτÞ≡
hϕðtÞϕðtþ τÞi obtained from the full network simulations of a
single instantiation in steady state (purple line) and from solving
the DMFT equations (red line) for three distinct parameter values.
The lag τ is relative to τh (taken to be unity). Thin black lines are
the time-averaged correlation functions for individual neurons
sampled from the network, to show the scale of fluctuations
around the population-averaged correlation functions. N ¼ 5000
for all the panels.

FIG. 10. The validity of the approximation Chσz ¼ ChCσz for
two values of αz. The correlation functions are calculated
numerically in a network with n ¼ 1000, gh ¼ 3.5, and αr ¼ 0.
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assume that the network reaches steady state, so that the
correlation functions are only a function of the time differ-
ence τ ¼ t − t0. The role of the z gate as an adaptive time
constant is evident in Eq. (C22).
For time-independent solutions, i.e., fixed points,

Eqs. (C22)–(C24) simplify to read

Δz ≡ hz2i ¼
Z

Dxϕð
ffiffiffiffiffiffi
Δh

p
xÞ2 ¼ Δr; ðC26Þ

Δh ≡ hh2i ¼
Z

DxDyϕð
ffiffiffiffiffiffi
Δh

p
xÞ2σrð

ffiffiffiffiffiffi
Δr

p
yÞ2; ðC27Þ

where we use Δ instead of C to indicate fixed-point
variances and Dx is the standard Gaussian measure. It is
interesting to note that these mean-field equations can be
mapped to those obtained in Ref. [51] for the discrete-
time GRU.
We also make use of the MFTwith static random inputs.

For completeness, we include the resulting equations here.
With Ih;z;ri ∼N ð0; σ2h;z;rÞ, the MFT time-independent sol-
ution satisfies

Δz ¼
Z

Dxϕð
ffiffiffiffiffiffi
Δh

p
xÞ2 þ σ2z ; ðC28Þ

Δr ¼
Z

Dxϕð
ffiffiffiffiffiffi
Δh

p
xÞ2 þ σ2r ; ðC29Þ

Δh ¼
Z

DxDyϕð
ffiffiffiffiffiffi
Δh

p
xÞ2σrð

ffiffiffiffiffiffi
Δr

p
yÞ2 þ σ2h: ðC30Þ

APPENDIX D: DETAILS OF THE NUMERICS
FOR THE LYAPUNOV SPECTRUM

The evolution of perturbations δxðtÞ along a trajectory
follow the tangent-space dynamics governed by the
Jacobian

∂tδxðtÞ ¼ DðtÞδxðtÞ: ðD1Þ

So, after a time T, the initial perturbation δxð0Þ is given by

δxðtÞ ¼ Uðt; 0Þδxð0Þ; Uðt; 0Þ ¼ T ½e
R

t

0
dsDðsÞ�; ðD2Þ

where T ½� � �� is the time-ordering operator applied to the
contents of the bracket. When the infinitesimal perturba-
tions grow (shrink) exponentially, the rate of this expo-
nential growth (decay) is dictated by the maximal
Lyapunov exponent defined as [54]

λmax ≔ lim
T→∞

1

T
lim

kδxð0Þk→0
ln
kδxðTÞk
kδxð0Þk : ðD3Þ

For ergodic systems, this limit is independent of almost all
initial conditions, as guaranteed by the Oseledets multipli-
cative ergodic theorem [54]. Positive values of λmax imply
that the nearby trajectories diverge exponentially fast, and
the system is chaotic. More generally, the set of all Lyapunov
exponents—the Lyapunov spectrum—yields the rates at
which perturbations along different directions shrink or
diverge and, thus, provides a fuller characterization of
asymptotic behavior. The first k-ordered Lyapunov expo-
nents are given by the growth rates of k linearly independent
perturbations. These can be obtained as the logarithms of the
eigenvalues of the Oseledets matrix, defined as [54]

MðtÞ ¼ lim
t→∞

½Uðt; 0ÞTUðt; 0Þ�1=2t: ðD4Þ

However, this expression cannot be directly used to calculate
the Lyapunov spectra in practice, since MðtÞ rapidly
becomes ill conditioned. We instead employ a method
suggested by Ref. [77] (also cf. Ref. [78] for Lyapunov
spectra of RNNs). We start with k orthogonal vectors Q0 ¼
½q1;…; qk� and evolve them using the tangent-space dynam-
ics [Eq. (D1)] for a short time interval t0. Therefore, the new
set of vectors is given by

Q̂ ¼ Uðt0; 0ÞQ0: ðD5Þ

We now decompose Q̂ ¼ Q1R1 using a QR decomposition,
into an orthogonal matrix Q1 and a upper-triangular matrix
R1 with positive diagonal elements, which give the rate of
shrinkage or expansion of the volume element along the
different directions. We iterate this procedure for a long time,
t0 × Nl, and the first k-ordered Lyapunov exponents are
given by

λi ¼ lim
Nl→∞

1

Nlt0

XNl

j¼1

lnRj
ii; i ∈ f1;…; kg: ðD6Þ

APPENDIX E: DETAILS OF THE DMFT
PREDICTION FOR λmax

The starting point of the method to calculate the DMFT
prediction for λmax is two replicas of the system x1ðtÞ and
x2ðtÞ with the same coupling matrices Jh;z;r and the same
parameters. If the two systems are started with initial
conditions which are close, then the rate of convergence
or divergence of the trajectories reveals the maximal
Lyapunov exponent. To this end, let us define dðt; sÞ ≔
N−1P

i½x1i ðtÞ − x2i ðsÞ�2 and study the growth rate of dðt; tÞ.
In the large N limit, we expect population averages like
C12ðt; sÞ ≔ N−1P

i x
1
i ðtÞx2i ðsÞ to be self-averaging (like in

the DMFT for a single system) [79], and, thus, we can write

dðt;sÞ¼C11ðt;tÞþC22ðs;sÞ−C12ðt;sÞ−C21ðt;sÞ: ðE1Þ
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For trajectories that start nearby, the asymptotic growth
rate of dðtÞ is the maximal Lyapunov exponent. In order to
calculate this using the DMFT, we need a way to calculate
C12—the correlation between replicas—for a typical
instantiation of systems in the large N limit. As suggested
by Ref. [21], this can be achieved by considering a joint
generating functional for the replicated system:

Z̃J ½b̂1;b̂2;b1;b2�¼E

	
exp

�
i
X2
μ¼1

XN
j¼1

Z
b̂μ
j ðtÞTxμ

j ðtÞdt
�


:

ðE2Þ

We then proceed to take the disorder average of this
generating functional—in much the same way as a single
system—and this introduces correlations between the state
vectors of the two replicas. A saddle-point approximation
as in the single system case (cf. Appendix C) yields a
system of coupled stochastic differential equations (SDEs)
(one for each replica), similar to Eq. (C20), but now the
noise processes in the two replicas are coupled, so that
terms like hη1hðtÞη2hðt0Þi need to be considered. As before,
the SDEs imply the equations of motion for the correlation
functions

½−∂2
τ þ Cμν

σz ðτÞ�Cμν
h ðτÞ ¼ Cμν

σz ðτÞCμν
ϕ ðτÞCμν

σr ðτÞ; ðE3Þ

½−τ2z∂2
τ þ 1�Cμν

z ðτÞ ¼ Cμν
ϕ ðτÞ; ðE4Þ

½−τ2r∂2
τ þ 1�CrðτÞ ¼ Cμν

ϕ ðτÞ; ðE5Þ

where μ; ν ∈ f1; 2g are the replica indices. Note that the
single-replica solution clearly is a solution to this system,
reflecting the fact that marginal statistics of each replica is
the same as before. When the replicas are started with initial
conditions that are ϵ-close, we expect the inter-replica
correlation function to diverge from the single-replica
steady-state solution, so we expand C12 to linear order
as C12

h;z;rðt; sÞ ≈ Ch;z;rðt − sÞ þ ϵχ̃h;z;rðt; sÞ. From Eq. (E1),
we see that dðt; tÞ ∼ ϵχ̃ðt; tÞ, and, thus, the growth rate of χ̃
yields the required Lyapunov exponent. To this end, we
make an ansatz χ̃h;z;r ¼ eκTχðτÞ, where 2T ¼ tþ s,
2τ ¼ t − s, and κ is the DMFT prediction of the maximum
Lyapunov exponent that needs to be solved for. Substituting
this back into Eq. (E3), we get a generalized eigenvalue
problem for κ as stated in the text [Eqs. (10) and (11)].

APPENDIX F: CALCULATION OF MAXIMAL
LYAPUNOV EXPONENT FROM RMT

The DMFT prediction for how gates shape λmax (via
the correlation functions) is somewhat involved; thus, we
provide an alternate expression for the maximal Lyapunov
exponent λmax, derived using RMT which relates it to the

relaxation time of the dynamics. The starting point to get
λmax is the Oseledets multiplicative ergodic theorem, which
guarantees that [80]

λmax ¼ lim
t→∞

1

2t
log

kχðtÞk2
N

ðF1Þ

¼ lim
t→∞

1

2t
log

1

N
Tr½χðtÞχðtÞT �; ðF2Þ

where χðtÞ ¼ T e
R

t

0
dt0Dðt0Þ and D is the Jacobian. For the

vanilla RNN, the Jacobian is given by

D ¼ −1þ J½ϕ0ðtÞ�: ðF3Þ

We expect the maximal Lyapunov exponent to be inde-
pendent of the random network realization and, thus,
equal to its value after disorder averaging. Furthermore,
to make any progress, we use a short-time approximation

for χðtÞ ≈ e
R

t

0
dt0Dðt0Þ. Defining the diagonal matrix

RðtÞ ¼ R t ½ϕ0ðt0Þ�dt0, these assumptions give

1

N
Tr½χðtÞχðtÞT � ≈ e−2t

�
1

N
TreJRðtÞeRðtÞJT

�
ðF4Þ

¼ e−2t
X∞
n¼0

1

ðn!Þ2
�
1

N
TrRðtÞ2

�
n
; ðF5Þ

where the second line in Eq. (F5) follows after disorder
averaging over J and keeping only terms to leading order in
N. Next, we may apply the DMFT to write

1

N
TrRðtÞ2 ¼

Z
t
dt0dt00

1

N

XN
i¼1

ϕ0
iðt00Þϕ0

iðt0Þ ðF6Þ

≈
Z

dt0dt00Cϕ0 ðt0; t00Þ: ðF7Þ

In steady state, the correlation function depends only on the
difference of the two times, and, thus, we can writeZ

dt0dt00Cϕ0 ðt0; t00Þ ≈
Z

2t

0

du
2

Z
t

0

dτCϕ0 ðτÞ≡ t2τR; ðF8Þ

where we define the relaxation time for the Cϕ0 correlation
function

τR ≡ 1

t

Z
t

0

dτCϕ0 ðτÞ: ðF9Þ

Substituting Eq. (F8) in Eq. (F4), we get

1

N
Tr½χðtÞχðtÞT � ¼ e−2tI0ð2t ffiffiffiffiffi

τR
p Þ; ðF10Þ
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which for long times behaves like exp ½2ð ffiffiffiffiffi
τR

p − 1Þt�. By
inserting this into Eq. (F1), we obtain a bound for the
maximal Lyapunov exponent for the vanilla RNN:

λmax ≥
ffiffiffiffiffi
τR

p
− 1; ðF11Þ

where τR ≡ 1

t

Z
t

0

dτCϕ0 ðτÞ: ðF12Þ

This formula relates the asymptotic Lyapunov exponent to
relaxation time of a local correlation function in steady
state. It is interesting to note that the bound also follows by
applying the variational theorem to the potential energy
obtained from the Schrödinger equation that arises in
computing the Lyapunov exponent using DMFT (e.g.,
see Refs. [15,32]). Specifically, if one uses the potential
obtained in these works VðτÞ ¼ 1 − Cϕ0 ðτÞ, and assumes a
uniform “ground state wave function,” the variational
theorem implies that the true ground state energy E0 is
upper bounded E0 ≤ limT→∞ð1=TÞ

R T=2
−T=2 VðτÞdτ≡ 1 − τR,

which consequently implies the bound (F11).
Now we present the derivation for the mean-squared

singular value of the susceptibility matrix for the gated
RNN with αz ¼ 0 and βz ¼ −∞. In this limit, σz ¼ 1, and
the instantaneous Jacobian becomes the 2N × 2N matrix

Dt ¼ −12N þ
�
Jr 0

0 Jh

��
0 Pt

Qt Rt

�
≡ −12N þ ĴSt;

ðF13Þ
Qt ¼ ½ϕðhÞ ⊙ σ0rðrÞ�; Pt ¼ ½ϕ0ðhÞ�; ðF14Þ

Rt ¼ ½ϕ0ðhÞ ⊙ σrðrÞ�; ðF15Þ

where h ¼ hðtÞ and r ¼ rðtÞ are time dependent.
Let us define the quantity of interest

σ2χ ¼
�

1

2N
Tr½χðtÞχTðtÞ�

�
ðF16Þ

¼ e−2t
�

1

2N
TreĴŜteŜ

T
t Ĵ

T

�
; ðF17Þ

where we additionally define Ŝt ¼
R
t dt0St and the inte-

gration is performed elementwise. Expanding the expo-
nentiated matrices and computing moments directly, one
finds that the leading order in N moments must have an
equal number of Ĵ and ĴT . Thus, we must evaluate

cn ¼
�

1

2N
Tr½ðĴŜtÞnðŜTt ĴTÞn�

�
: ðF18Þ

The ordering of the matrices is important in this
expression. Since all of the Ĵ appear to the left of ĴT ,
the leading-order contributions to the moment come from

Wick contractions that are “noncrossing”—in the language
of diagrams, the moment is given by a “rainbow” diagram.
Consequently, we may evaluate cn by induction. First, the
induction step. Define the expected value of the matrix
moment

ĉn ¼ hðĴŜtÞnðŜTt ĴTÞni ðF19Þ

¼ hĴ½ŜtðĴŜtÞn−1ðŜTt ĴTÞn−1ŜTt �ĴTi ðF20Þ

¼
�
an1 0

0 bn1

�
þOðN−1Þ: ðF21Þ

We wish to determine an and bn. Next, define

gP ¼ 1

N
Tr
Z

t
dt0dt00Pt0Pt00 ; ðF22Þ

gQ ¼ 1

N
Tr
Z

t
dt0dt00Qt0Qt00 ; ðF23Þ

gR ¼ 1

N
Tr
Z

t
dt0dt00Rt0Rt00 : ðF24Þ

Now we can directly determine the induction step at the
level of matrix moments by Wick contraction of the
rainbow diagram:

ĉn ¼ hĴŜtðĴŜtÞn−1ðŜTt ĴTÞn−1ŜTt ĴTi ðF25Þ

¼ hĴŜtĉn−1ŜTt ĴTi þOðN−1Þ ðF26Þ

¼
�
bn−1gP1 0

0 ðan−1gQ þ bn−1gRÞ1
�
þOðN−1Þ:

ðF27Þ

This implies the following recursion for the diagonal
elements of ĉn:

an ¼ gPbn−1; bn ¼ gRbn−1 þ gQan−1: ðF28Þ

The initial condition is given by observing that ĉ0 ¼ 1,
which implies a0 ¼ b0 ¼ 1. The solution to this recursion
relation can be written in terms of a transfer matrix�

an
bn

�
¼
�

0 gP
gQ gR

�n� 1

1

�
; ðF29Þ

which implies the moment cn ¼ 1
2
ðan þ bnÞ is given by

cn ¼
1

2
ð 1 1 Þ

�
0 gP
gQ gR

�n� 1

1

�
: ðF30Þ
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To evaluate this, we use the fact that the eigenvalues of
the transfer matrix are

v� ¼ 1

2


gR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4gPgQ

q �
; ðF31Þ

which are real valued. The eigenvectors are

v� ¼
�
−
v∓
gQ

; 1

�
: ðF32Þ

Then, defining l ¼ ð1; 1Þ, the moment can be written

cn ¼
1

2
lTðvnþvþvTþ þ vn−v−vT−Þl ðF33Þ

¼ 1

2

�
1 −

v−
gQ

�
2

vnþ þ 1

2

�
1 −

vþ
gQ

�
2

vn−: ðF34Þ

The final expression for the mean-squared singular value
is then

σ2χ ¼ e−2t
X∞
n¼0

cn
ðn!Þ2 : ðF35Þ

After resumming this infinite series, we wind up with an
expression in terms of the modified Bessel function:

σ2χ ¼
1

2
e−2t

	�
1−

v−
gQ

�
2

I0ð2 ffiffiffiffiffiffi
vþ

p Þþ
�
1−

vþ
gQ

�
2

I0ð2
ffiffiffiffiffiffi
v−

p Þ


:

ðF36Þ

In the steady state, we approximate these expressions by
assuming the correlation functions are time-translation
invariant. Thus, we may write, for instance,

gR ¼
Z

dtdt0RtRt0 ≈ t2
1

t

Z
dτCRðτÞ ¼ t2τR; ðF37Þ

and similarly for gQ and gP. Then, the eigenvalues of the
transfer matrix become

v� ¼ t2
1

2


τR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2R þ 4τPτQ

q �
: ðF38Þ

At late times, using the asymptotic behavior of the
modified Bessel function, the moment becomes

σ2χ ∼ exp ð−2tþ 2
ffiffiffiffiffiffi
vþ

p Þ; ðF39Þ

which gives the Lyapunov exponent

λL ≥

 
τR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2R þ 4τPτQ

q
2

!1=2

− 1; ðF40Þ

where the relaxation times τA, τR, and τQ are defined as,
respectively,

τR ¼ lim
t→∞

1

t

Z
t

0

dτCϕ0 ðτÞCσrðτÞ; ðF41Þ

τA ¼ lim
t→∞

1

t

Z
t

0

dτCϕ0 ðτÞ; ðF42Þ

τQ ¼ lim
t→∞

1

t

Z
t

0

dτCϕðτÞCσ0rðτÞ: ðF43Þ

APPENDIX G: DETAILS OF THE
DISCONTINUOUS CHAOTIC TRANSITION

In this section, we provide the details for the calculations
involved in the discontinuous chaotic transition.

1. Spontaneous emergence of fixed-points

For gh < 2.0 and small αr, the zero fixed point is the
globally stable state for the dynamics and the only solution
to the fixed-point equations [Eq. (C26)] for Δh. However,
as we increase αr for a fixed gh, two additional nonzero
solutions to Δh spontaneously appear at a critical value
α�FPðghÞ as shown in Fig. 4(a). Numerical solutions to the
fixed-point equations reveal the form of the bifurcation
curve α�r;FPðghÞ and the associated value of Δ�

hðghÞ. We see
that α�r;FPðghÞ increases rapidly with decreasing gh, dividing
the parameter space into regions with either one or three
solutions forΔh. The correspondingΔ�

hðghÞ vanishes at two
boundary values of gh—one at 2.0 and another, gc, below
1.5, where α�r → ∞. This naturally leads to the question of
whether the fixed-point bifurcation exists for all values
of gh below 2.0.
To answer this, we perturbatively solve the fixed-point

equations in two asymptotic regimes: (i) gh → 2− and
(ii) gh → gþc . Details of the perturbative treatment are in
Appendix I 2. For gh ¼ 2 − ϵ, we see that the perturbative
problem undergoes a bifurcation from one solution
(Δh ¼ 0) to three when αr crosses the bifurcation threshold
α�rð2.0Þ ¼

ffiffiffi
8

p
, and this is the left limit of the bifurcation

curve in Fig. 4(b). The larger nonzero solution for the
variance at the bifurcation point scales as

Δ�
h≈ðα2r−8Þ ·ξ0þξ1ϵ for αr→α�r;FPð2Þ¼

ffiffiffi
8

p
; ðG1Þ

where ξ0 and ξ0 are positive constants (see Appendix I 2).
At the other extreme, to determine the smallest value

of gh for which a bifurcation is possible, we note from
Fig. 4(b) that in this limit αr → ∞, and, thus, we can look
for solutions to Δh in the limit: Δh ≪ 1 and αr → ∞ and
αr

ffiffiffiffiffiffi
Δh

p
≫ 1. In this limit, there is a bifurcation in the

perturbative solution when gh > g�h ¼
ffiffiffi
2

p
, and, close to
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the critical point, the fixed-point solution is given by
(see Appendix I 2)

Δ�
hð

ffiffiffi
2

p þÞ ∼ g2h − 2

2g4h
for gh →

ffiffiffi
2

p þ: ðG2Þ

Thus, in the region gh ∈ ð ffiffiffi
2

p
; 2Þ, there exist nonzero

solutions to the fixed-point equations once αr is above a
critical value α�rðghÞ. These solutions correspond to unsta-
ble fixed points appearing in the phase space.

2. Delayed dynamical transition shows a decoupling
between topological and dynamical complexity

The picture from the fixed-point transition above is that.
when gh is in the interval ð ffiffiffi

2
p

; 2Þ, there is a proliferation
of unstable fixed points in the phase space provided
αr > α�r;FPðghÞ. However, it turns out that the spontaneous
appearance of these unstable fixed points is not accom-
panied by any asymptotic dynamical signatures—as mea-
sured by the Lyapunov exponents (see Fig. 4) or by the
transient times (see Fig. 11). It is only when αr is increased
further beyond a second critical value α�r;DMFTðghÞ that we
see the appearance of chaotic and long-lived transients.
This is significant in regard to a result by Wainrib and
Touboul [45], where they show that the transition to chaotic

dynamics (dynamical complexity) in random RNNs is
tightly linked to the proliferation of critical points (topo-
logical complexity), and, in their case, the exponential
rate of growth of critical points (a topological property) is
the same as the maximal Lyapunov exponent (a dynamical
property).
Let us characterize the second dynamical transition curve

given by α�r;DMFTðghÞ [Fig. 4(c), red curve]. For ease
of discussion, we turn off the update gate ðαz ¼ 0Þ and
introduce a functional Fψ for a 2D Gaussian average of a
given function ψðxÞ:

Fψ ½Chð0Þ; ChðτÞ� ¼ E½ψðz1Þψðz2Þ�; ðG3Þ

where

�
z1
z2

�
∼N ð0;ChÞ; Ch ¼

�
Chð0Þ ChðτÞ
ChðτÞ Chð0Þ

�
:

ðG4Þ

The DMFT equations for the correlation functions then
become

1

4
ChðτÞ − ∂2

τChðτÞ ¼
1

4
Fϕ½Chð0Þ; ChðτÞ�Fσr ½Crð0Þ; CrðτÞ�;

CrðτÞ − τ2r∂2
τCrðτÞ ¼ Fϕ½Cϕð0Þ; CϕðτÞ�: ðG5Þ

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 11. Transient times at the bifurcation transition. Transient times (τT , relative to τh) as a function of gh, αr, and system size N.
Dashed plot lines correspond to situations where αr < α�r;DMFTðghÞ. Dashed vertical lines are critical values of αr or gh. (a) τT vs N for
gh ¼ 1.775 and (b) τT vs gh for N ¼ 500; the dashed line indicates gh such that α�r;DMFTðghÞ ¼ 40. (c) τT vs αr for gh ¼ 1.775; the
dashed vertical line is α�r;DMFTð1.775Þ. (d) τT vs gh for αr ¼ 30; the dashed line is gh such that α�r;DMFTðghÞ ¼ 30. (e) τT vsN for αr ¼ 30;
dashed plot lines correspond to situations where 30 < α�r;DMFTðghÞ. (f) τT vs αr for N ¼ 500; the dashed vertical line is α�r;DMFTð1.85Þ.
Transient times are averaged over 2000 instances of random networks.
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We further make an approximation that τr ≪ 1, which, in
turn, implies CrðτÞ ≈ CϕðτÞ. This approximation turns out
to hold even for moderately large τr. With these approx-
imations, we can integrate the equations for ChðτÞ to arrive
at an equation for the variance C0

h ≡ Chð0Þ. We do this by
multiplying by ∂τChðτÞ and integrating from τ to ∞, and
we get

1

2
_ChðτÞ2 ¼

1

4

ðChÞ2
2

−
1

4

Z
C0
h

0

dChFϕðCh; C0
hÞFσrðCϕ; C0

ϕÞ:

ðG6Þ

Using the boundary condition that _Chð0Þ ¼ 0, we get the
equation for the variance:

1

8
Chð0Þ2 −

1

4

Z
C0
h

0

dChFϕðCh; C0
hÞFσrðCϕ; C0

ϕÞ ¼ 0: ðG7Þ

Solving this equation gives the DMFT prediction for the
variance for any gh and αr. Beyond the critical value of αr,
two nonzero solutions for C0

h spontaneously emerge. In
order to use Eq. (G7) to find a prediction for the DMFT
bifurcation curve α�r;DMFTðghÞ, we need to use the additional
fact that at the bifurcation point the two solutions coincide,
and there is only one nonzero solution. To proceed, we can
view the lhs of Eq. (G7), as a function of αr, gh, and C0

h:
F ðgh;αr; C0

hÞ. Then, the equation for the bifurcation curve
is obtained by solving the following two equations for C0;�

h
and α�r :

F ðgh;α�r ; C0;�
h Þ ¼ 0; ðG8Þ

∂F ðgh; αr; C0
hÞ

∂C0
h

����
α�r ;C

0;�
h

¼ 0: ðG9Þ

To get the condition for the dynamical bifurcation
transition, we need to differentiate the lhs of Eq. (G7)
[F ðgh; αr; C0

hÞ] with respect to C0
h and set it to 0. This

involves terms like

∂Fψ ðC0
h; C

0
hÞ

∂C0
h

;
∂FψðC0

h; 0Þ
∂C0

h

: ðG10Þ

We give a brief outline of calculating the first term. It is
easier to work in the Fourier domain:

FψðC0
h;ChÞ

¼E

	Z
dk
2π

Z
dk0

2π
ψ̃ðkÞe−kz1 ψ̃ðk0Þe−k0z2




¼
Z

dk
2π

Z
dk0

2π
ψ̃ðkÞψ̃ðk0Þexp

	
−
C0
h

2
ðk2þk02Þ−ChðτÞkk0



:

ðG11Þ

This immediately gives us

∂FψðC0
h; C

0
hÞ

∂C0
h

¼
Z

Dxψ

� ffiffiffiffiffi
c0h

q
x

�
ψ 00
� ffiffiffiffiffi

c0h

q
x

�

þ
Z

Dxψ 0
� ffiffiffiffiffi

c0h

q
x

�
2

;

∂Fψ ðC0
h; 0Þ

∂C0
h

¼
Z

Dxψ

� ffiffiffiffiffi
c0h

q
x

�Z
Dxψ 00

� ffiffiffiffiffi
c0h

q
x

�
:

ðG12Þ

Using this fact, we can calculate the derivative of
F ðgh; αr; C0

hÞ as a straightforward (but long) sum of
Gaussian integrals. We then numerically solve Eqs. (G8)
and (G9) to get the bifurcation curve shown in Fig. 4(c).
Figure 4(d) shows the corresponding variance at the
bifurcation point C0;�

h (red curves). We note two salient
points: (i) The DMFT bifurcation curve is always above the
fixed-point bifurcation curve [black, in Fig. 4(a)], and
(ii) the lower critical value of gh which permits a dynamical
transition [dashed green curve in Figs. 4(a) and 4(b)]
is smaller than the corresponding fixed-point critical
value of

ffiffiffi
2

p
.

We now calculate the lower critical value of gh and
provide an analytical description of the asymptotic behav-
ior near the lower and higher critical values of gh. From the
red curve in Fig. 4(c), we know that, as gh tends toward the
lower critical value, α�r;DMFT → ∞ and C0

h → 0. So, we can
approximate σr as a step function in this limit, and Fσr is
approximated as

FσrðC0
ϕ; CϕÞ ≈

1

4
þ 1

2π
tan−1

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
; ðG13Þ

where x ≔
ChðτÞ
Chð0Þ

≈
CϕðτÞ
Cϕð0Þ

: ðG14Þ

The DMFT equation then reads

4ẍ ¼ x − g2hx

	
1

4
þ 1

2π
tan−1

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�

þO½Chð0Þ2



:

Integrating this equation, we get

2_x2 ¼ x2

2

�
1−

g2h
4

�
þ g2h
8π

h
ð1− 2x2Þ sin−1ðxÞ− x

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p i
;

which has OðChð0Þ2Þ corrections. From the boundary
condition _Chð0Þ ¼ 0, we know that as x → 1 then
_x → 0. We thus find that these boundary conditions are
consistent only to leading order in Chð0Þ when gh is equal
to its critical value:

THEORY OF GATING IN RECURRENT NEURAL NETWORKS PHYS. REV. X 12, 011011 (2022)

011011-27



g�h ¼
ffiffiffi
8

3

r
; ðG15Þ

which indicates that Chð0Þ must vanish as gh →
ffiffiffiffiffiffiffiffi
8=3

p þ.
In the other limit when gh → 2−, we see that α�r remains

finite and C0;�
h → 0. We assume that, for gh ¼ 2 − ϵ, C0

h has
a power-series expansion

C0
h ¼ c0 þ c1ϵþ c2ϵ2 þ � � � : ðG16Þ

We also expand Fϕ and Fσr to O½Chð0Þ2�:

Fϕ ≈ g2hChðτÞ − 2g4hC
0
h · ChðτÞ þ 5g6hðC0

hÞ2 · ChðτÞ ðG17Þ

and look for values of αr which permit a nonzero value for
c0 in the leading-order solutions to the DMFT. We find that
the critical value of αr from the perturbative solution is
given by

α�r;DMFTð2Þ ¼
ffiffiffiffiffi
12

p
: ðG18Þ

The DMFT prediction for the dynamical bifurcation
agrees well with the full network simulations. In Fig. 4(e),
we see that the maximum Lyapunov exponent experiences
a discontinuous transition from a negative value (network
activity decays to fixed point) to a positive value (activity is
chaotic) at the critical value of αr predicted by the DMFT
(dashed vertical lines).

3. Influence of update gate
on the discontinuous transition

Here, we comment briefly on the possible influence of
the z gate on the discontinuous dynamical phase transition
given by the curve α�r;DMFT. Assuming Eq. (C22) is valid
(discussed in more detail toward the end of Appendix C),
we may rewrite the DMFT equation for the two-point
correlation functions as

1

2
_ChðτÞ2 ¼

Z
ChðτÞ

0

FσzðC0
ϕ; CϕÞQðCh; C0

hÞ; ðG19Þ

where

QðCh; C0
hÞ ¼ Ch − FϕðCh; C0

hÞFσrðCϕ; C0
ϕÞ: ðG20Þ

Noting that a time-dependent solution corresponds to a
nonzero solution for Chð0Þ and satisfies the boundary
condition _Chð0Þ ¼ 0 then requires

F αz ≡
Z

C0
h

0

dChFσzðCϕ; C0
ϕÞQðCh; C0

hÞ ¼ 0; ðG21Þ

where we define a new “potential” function which is related
to that defined above by

F αz jαz¼0 ¼ F ¼ 1

4

Z
C0
h

0

dChQðCh;C0
hÞ: ðG22Þ

We leave the arguments ðgh; αr; C0
hÞ implicit, for ease of

presentation. We proceed to bound the new potential by
establishing bounds on Fσz . To be explicit, we have

Fσz ¼ hσzðτÞσzð0Þi ¼ hσzðτÞσzð0Þic þ hσzi2; ðG23Þ

which we express as the sum of a connected component
(indicated by a subscript c) and a disconnected component.
We can consider two limiting behaviors. When the corre-
lation time tends to zero, the connected component van-
ishes and (at zero bias βz ¼ 0)

Fσz ≈ hσzi2 ¼
1

4
: ðG24Þ

Increasing the correlation time can serve only to increase
the two-point function, since σ ≥ 0. In the extreme limit of
very long correlation time, we have that

Fσz ≈ hσ2zð0Þi ≤
1

2
: ðG25Þ

The inequality is saturated at αz ¼ ∞, when σz becomes a
step function of its argument. Therefore, the two-point
correlation function of the update gate is bounded above
and below:

1

4
≤ Fσz ≤

1

2
; ðG26Þ

and this bound is uniform in the sense that it holds for all
values of the argument 0 ≤ Ch ≤ C0

h < ∞. Consequently,
we are able to bound the potential

1

4
F ≤ F αz ≤

1

2
F : ðG27Þ

It follows immediately that the derivative is similarly
bounded. Consequently, the zeros of F αz and ∂F αz=∂C0

h

coincide with the zeros of F and ∂F=∂C0
h, respectively.

As a result, the discontinuous transition, determined by
Eqs. (G8) and (G9), remain unchanged for values of αz
for which Eq. (C22) is valid. Thus, for moderately
large αz [approximately 10, where Eq. (C22) is valid],
the critical line for the discontinuous transition remains
unchanged.

APPENDIX H: THE ROLE OF BIASES

We thus far describe the salient dynamical aspects for the
gated RNN in the absence of biases. Here, we describe the
role of the biases βh (bias of the activation ϕ) and βr (bias of
the output gate σr). We first note that, when βh ¼ 0, zero is
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always a fixed point of the dynamics, and the zero fixed
point is stable provided

−1þ ϕ0ð0Þσrð0Þ < 0; ðH1Þ

where ϕðxÞ ¼ tanhðghxþ βhÞ. This gives the familiar
gh < 2 condition when βr ¼ 0 [81]. Thus, in this case,
there is an interplay between gh and βr in determining the
leading edge of the Jacobian around the zero fixed point
and, thus, its stability. In the limit βr → −∞, the leading
edge retreats to −τ−1r . When βh > 0, zero cannot be a fixed
point of the dynamics. Therefore, βh facilitates the appear-
ance of nonzero fixed points, and both βr and βh determine
the stability of these nonzero fixed points.
To gain some insight into the role of βh in generating

fixed points, we treat the mean-field FP equations
[Eq. (C26)] perturbatively around the operating point gc
where the zero fixed point becomes unstable [Eq. (H1)].
For small βh and ϵ ¼ gh − gc, we can express the solution
Δh as a power series in ϵ, and we see that to leading
order the fixed-point variance behaves as (details in
Appendix I 1)

Δh ≈
� βhþϵ

g2cð2−g2ca1Þ g2ca1 < 2;

ðg2ca1 − 2Þf1 þ ϵ · f2 g2ca1 > 2;
ðH2Þ

where a1 ¼
α2r
16

½ϕð1Þ
0 ðβr=2Þ2 þ ϕ0ðβr=2Þϕð2Þ

0 ðβr=2Þ�; ðH3Þ

where ϕ0 ≡ tanh and f2ðαr; βrÞ and f2ðαr; βrÞ are constant
functions with respect to ϵ. Therefore, we see that the bias
βh gives rise to nonzero fixed points near the critical point
which scale linearly with the bias. In Fig. 12(e), we show
this linear scaling of the solution for the case when βh ¼ ϵ,
and we see that the prediction (lines) matches the true
solution (circles) over a reasonably wide range.
More generally, away from the critical gc, an increasing

βh gives rise to fixed-point solutions with increasing
variance, and this can arise continuously from zero, or it
can arise by stabilizing an unstable, time-varying state
depending on the value of βr. In Fig. 12(a), we see how
the Δh behaves for increasing βh for different βr, and we
can see the stabilizing effect of βh on unstable solutions
by looking at its effect on the leading spectral edge
[Fig. 12(b)]. In Fig. 12(c), we see that an increasing βr
also gives rise to increasingΔh. However, in this case, it has
a destabilizing effect by shifting the leading spectral edge to
the right. In particular, when βh ¼ 0, increasing βr desta-
bilizes the zero fixed point and give rise to a time-varying
solution. We note that, when βh ¼ 0, varying βr cannot
yield stable nonzero FPs. The combined effect of βh
and βr can been seen in Fig. 12(f), where the nonzero
solutions to the left of the orange line indicate unstable
(time-varying) solutions. We choose the parameters to
illustrate an interesting aspect of the biases: In some cases,
increasing βh can have a nonmonotonic effect on the
stability, wherein the solution becomes unstable with
increasing βh and is then eventually stabilized for suffi-
ciently large βh.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 12. The role of biases. (a) FP solutions as a function of increasing βh; different shades of green correspond to different values of
βr. Dashed lines correspond to FP solutions that are unstable (time-varying states). (b) The leading edge of the spectrum corresponding
to the FP solutions calculated in (a); the FP solution is unstable when the leading edge is positive. (c) Similar to (a) but for βr; different
shades of blue correspond to different values of βh. (d) Similar to (b) but for βr. (e) FP solutions near critical gc where the zero FP
becomes unstable (circles) compared with the perturbative solution predicted by Eq. (H2) (solid lines). (f) FP solution as a function of βr
and βh. The orange line indicates the stability line—i.e., regions on top of the orange line correspond to unstable or time-varying states.
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1. Effect of biases on the phase boundaries

In Figs. 13(a) and 13(b), we look at how the critical line
for the chaotic transition, in the αr − gh plane, changes as
we vary βh (a) or βr (b). Positive values of βr (“open”
output gate) tend to make the transition line less dependent
on αr [Fig. 13(b)], and negative values of βr have a
stabilizing effect by requiring larger values of gh and αr
to transition to chaos. As we see above, higher values of βh
have a stabilizing effect, requiring higher gh and αr to make
the (nonzero) stable fixed point unstable. In both cases, the
critical lines for marginal stability [Figs. 13(a) and 13(b),
dashed lines] are also influenced in a similar way. In
Figs. 13(c) and 13(d), we see how the stability-to-chaos
transition is affected by αr (c) and βr (d). Consistent with
the discussion above, larger αr and βr have a destabilizing
effect, requiring a larger βh to make the system stable.

APPENDIX I: DETAILS OF THE PERTURBATIVE
SOLUTIONS TO THE MEAN-FIELD EQUATIONS

1. Perturbative solutions for the fixed-point
variance Δh with biases

In this section, we derive the perturbative solutions for
the fixed-point variance Δh with finite biases, near the
critical point where the zero fixed point becomes unstable.
Recall that fixed-point variances are obtained by solving

Δz ≡ hz2i ¼
Z

Dxϕð
ffiffiffiffiffiffi
Δh

p
xÞ2 ¼ Δr; ðI1Þ

Δh ≡ hh2i ¼
Z

DxDyϕð
ffiffiffiffiffiffi
Δh

p
xÞ2σrð

ffiffiffiffiffiffi
Δr

p
yÞ2: ðI2Þ

The expansion we seek is perturbative inΔh. So, expanding
the gating and activating functions about their biases under
the assumption Δr ≈ g2hΔh, we have a series expansion to
OðΔ2

hÞ:

hσrð
ffiffiffiffiffiffi
Δr

p
xÞ2ix ¼ a0 þ a1g2hΔh þ a2g4hΔ2

h;

a0 ¼
1

4
½1þ ϕ0ðβr=2Þ�2; ðI3Þ

a1¼
α2r
16

h
ϕð1Þ
0 ðβr=2Þ2þϕ0ðβr=2Þϕð2Þ

0 ðβr=2Þþϕð2Þ
0 ðβr=2Þ

i
;

ðI4Þ

a2 ¼
α4r
256

h
12ϕð2Þ

0 ðβr=2Þ2 þ 4ϕ0ðβr=2Þϕð4Þ
0 ðβr=2Þ

þ 16ϕð1Þ
0 ðβr=2Þϕð3Þ

0 ðβr=2Þ þ ϕð4Þ
0 ðβr=2Þ

i
; ðI5Þ

where we use the following identities involving the
derivatives of tanh:

ϕ0ðxÞ ¼ tanhðxÞ; ðI6Þ

ϕð1Þ
0 ðxÞ ¼ 1 − ϕ0ðxÞ2; ðI7Þ

ϕð2Þ
0 ðxÞ ¼ −2ϕ0ðxÞ½1 − ϕ0ðxÞ2�; ðI8Þ

ϕð3Þ
0 ðxÞ ¼ 2½1 − ϕ0ðxÞ2�½3ϕ0ðxÞ2 − 1�; ðI9Þ

ϕð4Þ
0 ðxÞ ¼ −8ϕ0ðxÞ½1 − ϕ0ðxÞ2�½3ϕ0ðxÞ2 − 2�: ðI10Þ

This gives us to OðΔ2
hÞ

Δh ≈ ½c0 þ c1Δh þ c2Δ2
h�hσrð

ffiffiffiffiffiffi
Δr

p
xÞ2ix; ðI11Þ

c0 ¼ ϕ0ðβhÞ2; ðI12Þ

c1 ¼ g2h½ϕð1Þ
0 ðβhÞ2 þ ϕð2Þ

0 ðβhÞϕ0ðβhÞ�; ðI13Þ

c2 ¼ g4h

	
1

4
ϕ0ðβhÞϕð4Þ

0 ðβhÞ

þ ϕð1Þ
0 ðβhÞϕð3Þ

0 ðβhÞ þ
3

4
ϕð2Þ
0 ðβhÞ2



; ðI14Þ

and, therefore,

(c) (d)

(b)(a)

FIG. 13. How the biases alter the transition between stability
and chaos. (a) Critical lines indicating boundaries for stability
(solid lines) or marginal stability (dashed lines) for different
values of βh. (b) Similar to (a) but for different values of βr. (c),(d)
How the boundaries of stability (solid lines) or marginal stability
(dashed lines) change as we vary αr (c) or βr (d).
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Δh≈ ðc0þ c1Δhþ c2Δ2
hÞða0þa1g2hΔhþa2g4hΔ2

hÞ: ðI15Þ

To proceed further, we study the solutions to this equation
for small deviations for a critical value of gh. Which critical
value should we use? Recall that the zero fixed point
becomes unstable when

−1þ ϕ0ð0Þσrð0Þ ¼ 0: ðI16Þ

Therefore, we expand around this operating point and
our small parameter ϵ ¼ gh − gc, where gc ¼ σrð0Þ−1.
We make an ansatz that we can express Δh as a power
series in ϵ:

Δh ¼ ϵηðd0 þ d1ϵþ d2ϵ2Þ; ðI17Þ

where η is the exponent for the prefactor scaling and needs
to be determined self-consistently. To get the scaling
relations for Δh, we need to expand the coefficients in
the Taylor series for Δh in terms of ϵ. We note that
c0 ¼ tanhðβhÞ2, and, therefore, these approximations make
sense only for small βh. How small should βh be relative to
ϵ? We make the following ansatz:

βh ¼ β0ϵ
δ; ðI18Þ

and, thus, if δ > 1=2, then c0 ∼ β20ϵ
2δ increases slower

than ϵ.
We now express the coefficients for small βh:

c0 ≈ β20ϵ
2δ; ðI19Þ

c1 ≈ g2hð1 − 2β2hÞ; ðI20Þ

c2 ≈ g4hð−2þ 17β2hÞ: ðI21Þ

After solving Eqs. (I15)–(I19) self-consistently in terms
of the expansion parameter ϵ, we get the following
perturbative solution for δ ≤ 1:

Δh ≈

8<
:

2β0ϵ
δ

g2cð2−g2ca1Þ g2ca1 < 2;

ðg2ca1 − 2Þf1 þ ϵ · f2 g2ca1 > 2;
ðI22Þ

where a1 ¼
α2r
16

½ϕð1Þ
0 ðβr=2Þ2 þ ϕ0ðβr=2Þϕð2Þ

0 ðβr=2Þ�: ðI23Þ

f2ðαr; βrÞ and f2ðαr; βrÞ are constant functions (with
respect to ϵ). Therefore, we see a linear scaling with the
bias βh.

2. Perturbative solutions for the fixed-point variance Δh
in the bifurcation region with no biases

The perturbative treatment of the fixed-point solutions
in this case closely follows that described above. For
gh ¼ 2 − ϵ, we can express Δh as a power series in ϵ
(Δh ¼ c0 þ c1ϵþ c2ϵ2) and look for a condition that
allows for a nonzero c0 corresponding to the bifurcation
point. Since we expect, Δh to be small in this regime, we
can expand Δr as

Δr ≈ g2hΔh − 2g4hΔ2
h þ

17

3
g6hΔ3

h þOðΔ4
hÞ; ðI24Þ

and, similarly, we can also approximate

hσrð
ffiffiffiffiffiffi
Δr

p
xÞ2ix ≈

1

4

	
1þ α2r

4
Δr −

α4r
8
Δ2

r



: ðI25Þ

Now, equating coefficient of powers of ϵ, we get that either
c0 ¼ 0 or

c0 ¼
3ðα2r − 8Þ

2ð−136þ 24α2r þ 3α4rÞ
; ðI26Þ

which is a valid solution when αr ≥
ffiffiffi
8

p
. This is the

bifurcation curve limit near gh ¼ 2−.
In the other limit, α�r → ∞ and Δ�

h → 0. We can work in
the regime where αr

ffiffiffiffiffiffi
Δh

p
≫ 1 to see what values of gh

admit a bifurcation in the perturbative solutions. The
equation [to OðΔ2

hÞ] is given by

Δh ≈
1

2
½g2hΔh − 2g4hΔ2

h�: ðI27Þ

Thus, we get a positive solution for Δh, when gh >
ffiffiffi
2

p
,

and, to the leading order, the solution scales as

Δ�
hð

ffiffiffi
2

p þÞ ∼ g2h − 2

2g4h
for gh →

ffiffiffi
2

p þ: ðI28Þ

3. ChðτÞ near critical point

Here, we study the asymptotic behavior ofChðτÞ near the
critical point gh ¼ 2.0 for small αz. For simplicity, we set
the biases to be zero. In this limit, we can assume that ChðτÞ
and CϕðτÞ are small. Let us begin by approximating CσzðτÞ.
We get, up to OðC3

zÞ,

CσzðτÞ ¼ g0 þ g1CzðτÞ þ g3CzðτÞ3; ðI29Þ

where g0 ¼
1

4
; ðI30Þ

g1 ¼
α2z
16

−
α4z
32

Czð0Þ þ
5α6z
256

Czð0Þ2; ðI31Þ
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g3 ¼
α6z
384

−
α8z
192

Czð0Þ: ðI32Þ

This can be obtained, for instance, by expanding σz½zðtÞ�
and taking the Gaussian averages over the argument zðtÞ in
the steady state. The relation between CϕðτÞ and CzðτÞ, in
general, does not have a simple form; however, when
gh ∼ 2, we expect the relaxation time τR ≫ 1, and there-
fore, we can approximate CzðτÞ ≈ CϕðτÞ. We can then
approximate Cϕ as

CϕðτÞ ¼ g0 þ g1ChðτÞ þ g3ChðτÞ3; ðI33Þ

where g0 ¼ 0 ðfor βh ¼ 0Þ; ðI34Þ

g1 ¼ g2h − 2g4hChð0Þ þ 5g6hChð0Þ2; ðI35Þ

g3 ¼
2

3
g6h −

16

3
g8hChð0Þ: ðI36Þ

Note that this also gives us an approximation for Cϕð0Þ.
Putting all this together, the equation governing ChðτÞ,

½−∂2
τ þ CσzðτÞ�ChðτÞ ¼

1

4
CσzðτÞCϕðτÞ; ðI37Þ

becomes [up to OðC3
hÞ]

∂2
τChðτÞ ≃ a1ChðτÞ þ a2ChðτÞ2 þ a3ChðτÞ3; ðI38Þ

where a1 ¼
1

16
ð4 − ΓÞ; ðI39Þ

a2 ¼
α2z
64

ð4 − ΓÞΓ; ðI40Þ

a3 ¼ −
g6h
24

; ðI41Þ

Γ ¼ g2h − 2g4hChð0Þ þ 5g6hChð0Þ2: ðI42Þ

Integrating with respect to τ gives

½∂τChðτÞ�2 ¼ 2

�
a1
2
ChðτÞ2 þ

a2
3
ChðτÞ3

þ a3
4
ChðτÞ4 þ const

�
: ðI43Þ

The boundary conditions are

∂τChð0Þ ¼ 0; lim
τ→∞

∂τChðτÞ ¼ 0: ðI44Þ

The second condition implies the constant is 0. And the first
condition implies

a1
2
þ a2

3
Chð0Þ þ

a3
4
Chð0Þ2 ¼ 0: ðI45Þ

From this, we can solve for Chð0Þ (neglecting terms higher
than quadratic) to get a solution that is perturbative in the
deviation ϵ from the critical point (gh ¼ 2þ ϵ). To the
leading order, the variance grows as

Chð0Þ ≈
1

8
ϵþOðϵ2Þ; ðI46Þ

and the αz enters the timescale-governing term a1 only at
Oðϵ2Þ. At first, it might seem counterintuitive that αz,
which effectively controls the dynamical time constant in
the equations of motion, should not influence the relaxation
rate to leading order. However, this result is for the
dynamical behavior close to the critical point, where the
relaxation time is a scaling function of ϵ. Moving away
from this critical point, the relaxation time becomes finite,
and the z gate, and, thus, αz, should have a more visible
effect.

APPENDIX J: TOPOLOGICAL COMPLEXITY
VIA KAC-RICE FORMULA

The arguments here are similar to those presented in
Ref. [82], which use a self-averaging assumption to express
the topological complexity (defined below) in terms of a
spectral integral. Let us begin.
The goal is to estimate the total number of fixed points

for a dynamical system _x ¼ GðxÞ. The Kac-Rice analysis
proceeds by constructing the integral over the state space x
whose integrand has delta-functional support only on the
fixed points:

N ¼
Z

dxE½δ(GðxÞ)jdetDj�; ðJ1Þ

where D ¼ ∂G=∂x is the instantaneous Jacobian. The
expectation value here is over the random coupling matri-
ces. The average number of fixed points is related to the so-
called topological complexity C via the definition

N ¼ exp ðNCÞ:

We seek a saddle-point approximation of this quan-
tity below.
For the gated RNN, the state space x ¼ ðh; z; rÞ, and the

fixed points satisfy

σzðziÞð−hi þ ηhi Þ ¼ 0; ðJ2Þ

−zi þ ηzi ¼ 0; ðJ3Þ

−ri þ ηri ¼ 0; ðJ4Þ
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where for notational shorthand we introduce ηhi ¼P
j J

h
ijϕðhjÞσrðrjÞ and ηr=zi ¼Pj J

r=z
ij ϕðhjÞ, anticipating

the mean-field approximation to come. Notice that only the
first equation for h provides a nontrivial constraint. Once h
is found, the second and third equations can be used to
determine z and r, respectively. Notice, furthermore, that,
since σðziÞ > 0, the solutions hi to the first equation do not
depend on zi. Indeed, the dependence on σðzÞ can be
factorized out of the Kac-Rice integral. This requires noting
first that, for the fixed point Jacobian, Eq. (A6) implies that
the Jacobian can be written (setting τr ¼ τz ¼ 1 for
simplicity)

D ¼ Að−1þ JRÞ ðJ5Þ

and that the determinant can be factorized:

det jDj ¼ det jAj × det j − 1þ JRj ðJ6Þ

¼
�Y

i

σðziÞ
�
det j − 1þ JRj: ðJ7Þ

The product of σðziÞ produced by the determinant is
canceled by the product of delta functions, using the fact
that σðziÞ > 0 and the transformation law

Y
i

δ½σðziÞð−hi þ ηhi Þ� ¼
1Q

iσðziÞ
Y
i

δ½−hi þ ηhi �: ðJ8Þ

So we see that what evidently matters for the topological
complexity is the fixed-point Jacobian:

Dfp ¼ −1þ JR; ðJ9Þ

whose eigenvalues we denote by λi for i ¼ 1;…; N and
with the spectral density

μ̂ðzÞ ¼ 1

N

X
i

δð2Þðz − λiÞ: ðJ10Þ

The preceding analysis is all basically to show that we
could easily have set αz ¼ 0 and gotten the same answer;
i.e., the z gate does not influence the topological properties
of the dynamics. For αz ¼ ∞, the situation changes
drastically, and the analysis likely needs to be significantly
reworked. Indeed, in this limit, we most likely do not have
discrete fixed points anymore, so the very notion of
counting fixed points no longer makes sense.
Having introduced the spectral density, we can rewrite

the Kac-Rice integral as

N ¼
Z Y

x∈fh;rg
dxE

h
δðNÞðx − ηxÞeN

R
d2zμ̂ðzÞ log jzj

i
: ðJ11Þ

Note that, since the spectral density of Dfp is indepen-
dent of z, the integral over z is trivial to perform and leaves
only h and r in the integrand.
So far, everything is exact. We begin now to make some

approximations. The first crucial approximation is that the
spectral density is self-averaging. The RMT analysis in the
previous sections shows us furthermore that the spectral
density depends only on macroscopic correlation functions
of the state variables. Let us denote the spectral integral
factor

Iðx;J Þ ¼ exp

�
N
Z

d2zμ̂ðzÞ log jzj
�
; ðJ12Þ

by which we mean that it depends on the particular
realization of the random coupling J and the state vector
x. The self-averaging assumption implies that

Iðx;J Þ ≈ E½Iðx;J Þ�≡ ĪðxÞ; ðJ13Þ

i.e., this factor does not depend on the particular realization
of J but just on the state vector. Equivalently, we are
assuming that the spectral density μ̂h;rðzÞ depends only on
the configurations h and r and not the particular realization
Jh;r. This allows us to pull this factor outside of the
expectation value:

N ≈
Z Y

x∈fh;rg
ĪðxÞE½δðNÞðx − ηxÞ�: ðJ14Þ

Now we give some nonrigorous arguments for how one
might evaluate the remaining expectation value. In order to
carry out the average over Jh and Jr, we utilize the Fourier
representation of the delta function to write

E

	Z
dx̂eix̂ðx−ηxÞ



ðJ15Þ

¼
Z

dxdx̂E

	
exp

X
i;j

fiĥi½hi − JhijϕðhjÞσrðrjÞ� ðJ16Þ

þ ir̂i½ri − JrijϕðhjÞ�g


; ðJ17Þ

which upon disorder averaging yieldsZ
dxdx̂ exp

�X
i

�
iĥihi þ ir̂iri −

1

2
ĥ2i Ĉϕσr −

1

2
r̂2i Ĉϕ

��
;

ðJ18Þ

where we define
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Ĉϕσr ¼
1

N

X
i

ϕðhiÞ2σrðriÞ2; Ĉϕ¼
1

N

X
i

ϕðhiÞ2: ðJ19Þ

This is where we make our second crucial assumption:
that the empirical averages appearing in Eq. (J19) converge
to their average value

Ĉϕσr → Cϕσr ¼ Eh;r

	
1

N

X
i

ϕðhiÞ2σrðriÞ2


; ðJ20Þ

Ĉϕ → Cϕ ≡ Eh

	
1

N

X
i

ϕðhiÞ2


: ðJ21Þ

This means we are assuming the strong law of large
numbers. With this essential step, the integral in Eq. (J18)
evaluates to

1ffiffiffiffiffiffiffiffiffiffiffi
2πΔh

p 1ffiffiffiffiffiffiffiffiffiffiffi
2πΔr

p exp ð−jjhjj2=2Δh − jjrjj2=2ΔrÞ ðJ22Þ

¼
YN
i¼1

PhðhiÞPrðriÞ; ðJ23Þ

where Δh ¼ Cϕσr and Δr ¼ Cϕ—which are just the time-
independent (fixed-point) MFT equations (C26).
Returning to the expression for the complexity, this

series of approximations gives us

N ≈
Z YN

i¼1

dhidriPhðhiÞPrðriÞĪðr;hÞ: ðJ24Þ

Let us now describe our derivation more intuitively. We
start with the formal expression for the Kac-Rice formula,
which uses the delta functional integrand to find fixed
points and counts them with the weighting factor related to
the Jacobian. Our first assumption allows us to simplify the
calculation involving the Jacobian, since we argue that this
term is self-averaging. The second assumption allows us to
deal with the remaining expectation value of the delta
functions. The expectation value adds a number of delta
functions (however many there may be for that Jh=r) for
each configuration of the connectivity. For continuously
distributed connectivity, this implies that the expectation
value smears out the delta functions and results in a smooth
distribution. What should this distribution be? Well, we
know from the mean-field analysis that the state vectors are
distributed as Gaussians at a fixed point. Furthermore,
the mean-field theory becomes exact for large N.
Therefore, we should expect that, in this limit, the delta
functions are smeared out into the Gaussian distributions
determined by the MFT. This is what our derivation shows.
The final step is to recall that the spectral density

depends on the state vectors only via empirical averages.
For instance, in the absence of an r gate, the spectral

density depends on the empirical average Ĉϕ0 . Again
invoking the strong law of large numbers, we may argue
that the self-averaging goes a step further and that

N ≈
Z Y

i

dPhðhiÞdPrðriÞ exp
�
N
Z

d2zμ̂h;rðzÞ log jzj
�

ðJ25Þ

≈ exp

�
N
Z

d2zμ̄ðzÞ log jzj
�
; ðJ26Þ

where

μ̄ðzÞ ¼ Eh;r½μ̂h;rðzÞ� ¼
Z

dhdrPðhÞPðrÞμ̂h;rðzÞ: ðJ27Þ

This is precisely the spectral density we study in a
preceding Appendix and the one for which we obtain an
explicit expression for the spectral curve. These approx-
imations give us the topological complexity

C ¼
Z

d2zμ̄ðzÞ log jzj: ðJ28Þ

Now we take a closer look at the spectral density. The
eigenvalues of Dfp form a circular droplet of finite radius ρ
and centered on −1. Therefore, the eigenvalues have the
form λ ¼ −1þ reiθ, and the spectral density is a function
only of r. The value of the radius is found from Eq. (5) by
removing the z gate (i.e., setting αz ¼ 0). After some
algebraic steps, we find for the radius

ρ2 ¼ 1

2


C1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ 4C2

q �
; ðJ29Þ

C1 ¼ Cϕ0Cσr ; C2 ¼ Cϕ0Cσ0rCϕ: ðJ30Þ

Using these facts, we can write the topological
complexity as

C ¼
Z

rdrdθμ̄ðrÞIfr<ρg log jreiθ − 1j ðJ31Þ

¼
�
2π
R ρ
1 rdr log rμ̄ðrÞ ≥ 0; for ρ > 1;

0; for ρ < 1;
ðJ32Þ

where Ifr<ρg is the indicator function which is one for r < ρ
and vanishes for r > ρ. Thus, we see that the topological
complexity is zero for ρ < 1. This is precisely the fixed-
point stability condition derived in the main text [Eq. (6)].
Conversely, the topological complexity is nonzero for
ρ > 1, which corresponds to unstable fixed points. Thus,
we see, under our set of reasonable approximations,
unstable MFT fixed points correspond to a finite
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topological complexity and, consequently, to a number
of “microscopic” fixed points that grows exponentially
with N.
The final missing ingredient, necessary to show that

region 2 in the phase diagram has an exponentially growing
number of fixed points, is to show that the MFT fixed
points which appear after the bifurcation are indeed
unstable. At the moment, we lack any analytical handle
on this. However, we confirm numerically that, along the
bifurcation curve, the fixed points are unstable and that
increasing the variance Δh serves only to increase ρ.
However, is it possible for the lower branch, on which
Δh decreases with αr? Evidently not, since Δh scales with
αr in such a way thatCσ0r ends up growing like α

2
r , thus once

again increasing ρ. Therefore, we conclude that the MFT
fixed points appearing after the bifurcation are always
unstable, with ρ > 1. This concludes our informal proof of
the transition in topological complexity between regions 1
and 2 in the phase diagram in Fig. 7.
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