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ABSTRACT

A number of fungi have been shown to have negative effects on
plant-parasitic nematodes. Most of these fungi have been isolated
from soil, plant roots, or nematodes themselves. Fungi associated
with crops can provide a diverse pool of candidates to test for
antagonistic effects against plant parasites and other stressors.
We used a hierarchical two-tiered approach to evaluate the
efficacy and repeatability of 55 strains of fungi originally isolated as
foliar facultative endophytes from upland cotton (Gossypium
hirsutum) along with one commercial isolate of Beauveria
bassiana for in planta antagonistic effects on root-knot nematodes
(Meloidogyne incognita). All fungi were inoculated to cotton using a
seed treatment. The number of root galls was quantified 3 weeks
after egg inoculation of cotton seedlings. The majority of the fungi
tested reduced the number of root galls relative to those on
untreated control plants. To assess repeatability, 22 strains that
exhibited the strongest reductions in gall numbers were further

tested in replicate follow-up assays. Ninety-five percent (21/22) of
these retested strains significantly reduced galling in the follow-up
assay. Strains that reduced galling the most belonged to the
genera Alternaria, Chaetomium, Cladosporium, Diaporthe,
Epicoccum, Gibellulopsis, and Purpureocillium. On the contrary,
three strains in the genera Alternaria and Curvularia significantly
increased gall numbers. Our results indicate that a large proportion
of the fungal strains originally isolated from cotton as naturally
occurring foliar facultative endophytes are capable of reducing
root-knot nematode infection when applied back to the plant as a
seed treatment. These findings help establish a rich pool of
candidate fungi for further evaluation as novel biological control
tools against root-knot nematodes in cotton and other plants.

Keywords: agriculture, crop, nematology, rhizosphere and
phyllosphere, soil ecology

Endophytic fungi are key components of the phytobiome that can
affect plant_herbivore interactions through a number of non-
mutually exclusive mechanisms. These include production of
defense-related compounds (Faeth and Fagan 2002; Gurulingappa
et al. 2011; Hartley and Gange 2009; McGee 2002; Van der Putten
et al. 2001), regulating synthesis of phytohormones (Bilal et al.
2017; Duca et al. 2014) and potentially altering plant quality as a
nutritional resource (Bernays 1994; Jallow et al. 2004). To date,
most studies conducted on plant_fungus_herbivore systems have
focused on the effects of mycorrhizal fungi belowground (Gange
and West 1994; Koricheva et al. 2009) or foliar-colonizing fungi
aboveground, with particular emphasis in the latter case on a small
number of obligate grass endophytes (Cheplick and Faeth 2009).

Alternatively, the identity and ecological role (if any) of the vast
majority of facultative fungal endophytes that transiently associate
with plants is largely uncharacterized (Porras-Alfaro and Bayman
2011; Wani et al. 2015). Importantly, accumulating evidence sug-
gests that facultative fungal endophytes can play important protective
roles against invertebrate herbivores and promote plant health (Jaber
and Enkerli 2017; Jaber and Ownley 2018; Gange et al. 2019).
A better understanding of plant-fungus-nematode complexes could

benefit the development of ecologically based management tools for
important crop pests such as the root-knot nematodes, Meloidogyne
spp. (Perry et al. 2009). The use of beneficial fungi associated with
plants that may confer increased resistance or tolerance to nematodes
could provide an alternative to chemical applications for their control
(Cabanillas et al. 1988; Hallmann and Sikora 1996; Latch 1993;
Martinez-Beringola et al. 2013;Mendoza and Sikora 2009; Tian et al.
2014; Waweru et al. 2013). Certain beneficial strains of Fusarium
spp.,Pochonia chlamydosporia,Phialemonium inflatum,Piriformospora
indica, and Chaetomium globosum, have been reported to have an-
tagonistic effects on nematodes while being present in plants as endo-
phytes (Bajaj et al. 2015; Larriba et al. 2015; Martinuz et al. 2015; Yan
et al. 2011; Zhou et al. 2016; Zhou et al. 2018).
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A recent study of facultative fungal endophytes occurring in
commercial upland cotton (Gossypium hirsutum) recovered thou-
sands of isolates from surface-sterilized leaves or squares (de-
veloping flowers). These isolates were grouped into a total of 69
taxa based on morphology and ribosomal internal transcribed
spacer sequences (Ek-Ramos et al. 2013). Two of the recovered
strains, Chaetomium globosum TAMU 520 and Phialemonium
inflatum TAMU 490, have already been shown to have negative
effects in planta on root-knot nematodes when inoculated back to
cotton using a simple seed treatment (Zhou et al. 2016; Zhou et al.
2018). Here we report the testing of an additional 56 facultative
fungal endophyte strains for potential antagonistic effects against
root-knot nematodes in cotton under greenhouse conditions

MATERIALS AND METHODS

Of the 56 strains tested, 55 were originally cultured as endophytes
from surface-sterilized cotton foliage on potato dextrose agar and
V8 media as described in Ek-Ramos et al. (2013). The other was a
commercial isolate of the endophytic fungal entomopathogen,
Beauveria bassiana (BotaniGard 22WP, ARBICO Organics,
Tucson, AZ), an insect pathogen previously shown to have negative
effects on insects when inoculated to cotton (Lopez et al. 2014;
Lopez and Sword 2015). All fungi were liquid cultured in 1-liter
TriForest DuoCap Polycarbonate Erlenmeyer shaker flasks (Tri-
Forest Enterprises, Inc., Irvine, CA) containing 400 ml of potato
dextrose broth (PDB, HiMedia M403, Mumbai, India). The PDB
was sterilized at 121�C for 20 min and cooled down to room
temperature. Four milliliters of Penicillin/Streptomycin (penicillin
at 10,000 U ml

_1 and streptomycin at 10 mg ml
_1, P4333 Sigma-

Aldrich, St. Louis, MO) was added to each flask and mixed well. A
5 × 5 mm plug of each fungal isolate cultured on solid potato
dextrose agar was transferred to each flask containing the liquid
culture media and placed in an incubator shaker (Southwest Science
Inc., Roebling, NJ) at 28�C and 150 rpm for 2 to 3 weeks. Fungal
biomass was filtered using sterilized coffee filters and collected into
50-ml Falcon tubes. The wet biomasses were freeze-dried (Free-
Zone 6 Plus, Labconco, Kansas City, MO) and ground gently into
fine powder in a mortar and pestle. Ground dry biomasses were kept
refrigerated at 4�C.
A nematode susceptible cotton cultivar PhytoGen PHY499WRF

(Dow AgroSciences, Indianapolis, IN) (McPherson 2014; Reid
et al. 2012) was used for this study. Methyl cellulose (Sigma-
Aldrich, M7140-250G, 15cP viscosity) was used as a sticker to bind
fungal biomass to the seeds (Gurulingappa et al. 2010) by mixing
50 mg of ground dry-biomass with 1 ml of 2% methyl cellulose
solution, which was then finalized to a concentration of 105 CFUs
ml

_1. Approximately 200 seeds (acid delinted black seed without
fungicides or insecticides) were coated using 1 ml of either the
sticker solution alone (control) or the fungus-containing sticker
solution, and then dried at room temperature and finished with talc
powder (Sigma-Aldrich, Product Number 18654) to prevent
sticking. Seeds were planted and germinated in pasteurized sand
(steamed for 8 h at 72�C) in seed starter trays (each cell pot
measured 4 cm top diameter × 6 cm deep) in a plant growth facility
at 24�C (12 h light/12 h day photoperiod) until first true-leaf stage.
Root-knot nematode, Meloidogyne incognita, eggs were

extracted from infected tomato plants maintained on a monthly
basis in the greenhouse at Texas A&MUniversity (provided by J. L.
Starr) by agitating the roots in 0.6% NaOCl for 4 min and collected
on a sieve with a pore size of 25 µm (Hussey and Barker 1973). Egg
concentration in the extraction solution was quantified under a
microscope using a Neubauer hemocytometer (a modified method
of Gordon and Whitlock (1939)). Cotton seedlings at the first

true-leaf stage were inoculated by pipetting 2 ml of egg suspension
containing approximately 2,000 eggs directly to the soil at the base
of the plant. Plants were maintained in the greenhouse for 3 weeks
after nematode inoculation, and then carefully removed from pots
and washed free of soil from the roots. Root fresh weight was
measured and the total number of galls per root system was
quantified for each plant. Each treatment group contained a total of
15 replicate plants.
We used a hierarchical two-tiered approach to evaluate the ef-

ficacy and repeatability of observed negative effects on nematode
galling. We first performed a series of initial assays as described
above on all 56 fungal strains. In the second step, we conducted a
series of replicate follow-up assays on a reduced set of fungi
consisting only of those strains that exhibited the strongest re-
ductions in nematode galls in the first assays based on P values
below 0.05 in pairwise statistical comparisons between fungal
treatment and control plants (statistical tests described below).
Because of the large number of fungal strains involved in our study,

we could not test them all simultaneously. As such, the bioassays
were conducted across a total of eight different rounds (six initial and
two follow-up rounds), each with a corresponding control treatment
group grown for each round. All comparisons between treatment and
control plants were made only among plants grown within the same
bioassay round. The strains tested in each round are listed in Table 1.
All statistical analyses were performed using JMP Pro, Version

12.0.1 (SAS Institute Inc., Cary, NC). All data were tested for
normality and equality of variances. The observed frequency of
isolates with a mean number of galls either less than or greater than
that of the control in the initial assays (rounds 1 to 6) was compared
with the expected frequency of equal numbers under the null hy-
pothesis of no effect of fungal treatment using Fisher’s exact test.
For each of the eight independent rounds of assays, a one-way
analysis of variance (ANOVA) was performed to test for an overall
effect of fungal treatment on gall numbers per gram of root tissue
(a = 0.05). If a significant overall treatment effect was detected,
posthoc Dunnett’s tests were used to compare the mean of the
control against all the fungal treatments in pairwise comparisons
(a = 0.05). Values below a threshold of P = 0.05 in pairwise
comparisons from the initial assays were used to select isolates with
the strongest negative effects on root galling to be assessed for
repeatability in replicate follow-up bioassays.

RESULTS

Of the 56 fungal strains initially assayed in rounds 1 to 6, the
number of strains observed to reduce nematode galling relative to
the control treatment (77%) was significantly higher than would
have been expected by chance under the null hypothesis of no effect
of the fungal treatments (50%) (Fisher’s exact test, P = 0.0029) (Fig.
1; Table 1). This nonrandom negative effect is evident in the strong
skew of negative versus positive values in Figure 1, illustrating that
the majority of the fungal treatments reduced root galling relative to
the controls. Significant overall effects of fungal treatments on
nematode gall numbers were found in all six independent rounds
of initial bioassays (ANOVA round 1: F4, 70 = 7.63, P < 0.0001;
round 2: F5, 84 = 7.10, P < 0.0001; round 3: F12, 182 = 4.84, P <
0.0001; round 4: F10, 154 = 10.38, P < 0.0001; round 5: F10, 154 =
8.93, P < 0.0001; and round 6: F15, 224 = 4.05, P < 0.0001). Results
of pairwise comparisons between the individual fungal isolates and
their respective control groups are provided in Table 1. In contrast
to the general pattern, a minority of the tested strains increased the
number of galls in comparison with the controls. The increase in
gall number was statistically significant for three of the isolates
(Fig. 1; Table 1).
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TABLE 1
Number of galls produced by root-knot nematodes per gram of root tissue (mean ± SE) in each fungal seed treatment group

across eight bioassay roundsa

Bioassay Fungal seed treatment Mean ± SE P value

Round 1 Control 28.02 ± 2.81 –

Curvularia spicifera TAMU189 51.19 ± 6.03 0.0002

Acremonium alternatum TAMU505 36.97 ± 3.51 0.29

Cladosporium oxysporum TAMU534 29.01 ± 2.24 1.00

Curvularia protuberata TAMU105 25.23 ± 3.29 0.96

Round 2 Control 81.17 ± 14.90 –

Epicoccum layuense TAMU46 69.96 ± 23.48 0.94

Cladosporium antropophilum TAMU249 39.01 ± 3.64 0.047

Cladosporium sp. TAMU463 30.27 ± 2.37 0.011

Epicoccum nigrum TAMU194 8.47 ± 1.28 0.0001

Chaetomium globosum TAMU554 8.00 ± 1.24 0.0001

Round 3 Control 54.76 ± 5.31 –

Epicoccum nigrum TAMU89 48.02 ± 4.16 0.74

Epicoccum nigrum TAMU103 46.57 ± 3.42 0.51

Alternaria eichorniae TAMU53 40.77 ± 8.09 0.042

Epicoccum nigrum TAMU125 39.81 ± 1.96 0.024

Purpureocillium lavendulum TAMU239 39.71 ± 2.81 0.022

Chaetomium coarctatum TAMU333 38.48 ± 4.59 0.010

Alternaria eichorniae TAMU87 37.32 ± 3.44 0.0047

Epicoccum nigrum TAMU131 36.74 ± 2.41 0.0031

Diaporthe sp. TAMU137 31.76 ± 3.61 <0.0001

Epicoccum nigrum TAMU497 31.54 ± 3.71 <0.0001

Alternaria eichorniae TAMU452 29.85 ± 2.37 <0.0001

Chaetomium globosum TAMU560 28.94 ± 3.24 <0.0001

Round 4 Control 42.18 ± 4.32 –

Chaetomium globosum TAMU117 52.32 ± 4.64 0.20

Chaetomium piluliferum TAMU251 48.23 ± 3.30 0.76

Beauveria bassiana 39.49 ± 3.08 1.00

Epicoccum nigrum TAMU58 38.41 ± 2.95 0.98

Alternaria eichorniae TAMU129 35.54 ± 4.51 0.67

Chaetomium coarctatum TAMU356 31.50 ± 3.36 0.16

Chaetomium globosum TAMU559 28.57 ± 1.98 0.035

Gibellulopsis piscis TAMU488 24.30 ± 1.58 0.0020

Epicoccum nigrum TAMU100 21.19 ± 2.88 0.0002

Epicoccum nigrum TAMU128 19.43 ± 2.66 <0.0001

Round 5 Control 53.08 ± 4.27 –

Alternaria eichorniae TAMU179 74.84 ± 6.00 0.018

Alternaria eichorniae TAMU416 74.42 ± 5.62 0.021

Cladosporium tenuissimum TAMU494 70.22 ± 5.09 0.10

Epicoccum nigrum TAMU536 58.21 ± 5.61 0.99

Alternaria eichorniae TAMU529 57.99 ± 5.38 1.00

Filobasidiella sp. TAMU514 51.61 ± 5.89 1.00

Cladosporium sp. TAMU244 50.35 ± 3.57 1.00

Epicoccum nigrum TAMU32 45.99 ± 4.80 0.92

Chaetomium sp. TAMU110 32.61 ± 3.56 0.030

Cladosporium cladosporioides TAMU474 31.86 ± 3.56 0.022

(Continued on next page)
a Rounds 1 to 6 are the initial tests of all 56 isolates. Rounds 7 and 8 are the follow-up replicate tests of only the best performing isolates in the initial
assays. Each bioassay had its own corresponding untreated control for comparison. Pairwise statistical differences between treatments and the
control group were compared using Dunnett’s test (a = 0.05).
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The reductions in nematode galling observed in the initial series
of assays were highly repeatable. A total of 22 isolates with the
strongest negative effects based on P values of less than 0.05 in
pairwise comparisons in the initial bioassays were retested in
replicate follow-up bioassays in rounds 7 and 8 (Table 1). All of the
retested strains reduced root galling in both the initial and follow-up
assays (Fig. 2). Significant overall effects of fungal treatments on
nematode gall numbers were found in both of the follow-up
retesting rounds (round 7: F11, 168 = 16.75, P < 0.0001; and

round 8: F11, 168 = 17.38, P < 0.0001). In pairwise comparisons, 21
of the 22 (95%) retested strains significantly reduced root-knot
nematode galling across both replicate trials (Fig. 2; Table 1).
Although not strictly statistically significant at the a = 0.05 level,
the negative effect of Chaetomium globosum strain 559 when it was
retested was nearly significant at P = 0.056.
A taxonomic summary of the observed negative and positive

effects on nematode galling grouped by genera of fungi tested is
provided in Table 2.

TABLE 1 (Continued from previous page)

Bioassay Fungal seed treatment Mean ± SE P value

Round 6 Control 57.47 ± 3.25 –

Cladosporium antropophilum TAMU201 76.87 ± 8.38 0.13

Cladosporium sp. TAMU190 63.82 ± 7.13 1.00

Davidiella tassiana TAMU169 58.46 ± 6.34 1.00

Cladosporium cladosporioides TAMU193 54.84 ± 8.24 1.00

Chaetomium globosum TAMU355 48.91 ± 4.72 0.95

Chaetomium sp. TAMU317 46.16 ± 3.98 0.75

Cladosporium sp. TAMU415 45.99 ± 2.96 0.75

Cladosporium herbarum TAMU565 44.70 ± 6.76 0.60

Cladosporium cladosporioides TAMU517 44.65 ± 4.36 0.60

Gibellulopsis sp. TAMU508 44.60 ± 4.17 0.60

Fusicoccum sp. TAMU340 43.40 ± 5.62 0.48

Chaetomium sp. TAMU353 42.75 ± 4.36 0.42

Penicillium citrinum TAMU413 40.24 ± 5.52 0.24

Cladosporium sp. TAMU501 34.34 ± 3.46 0.038

Purpureocillium lavendulum TAMU424 33.60 ± 5.41 0.029

Repeats round 7 Control 44.49 ± 3.88 _

Chaetomium globosum TAMU559 34.86 ± 2.08 0.056

Gibellulopsis piscis TAMU488 33.86 ± 1.93 0.026

Epicoccum nigrum TAMU497 30.26 ± 2.28 0.0008

Cladosporium antropophilum TAMU249 28.69 ± 2.54 0.0001

Epicoccum nigrum TAMU100 22.49 ± 2.59 <0.0001

Epicoccum nigrum TAMU194 22.35 ± 2.63 <0.0001

Diaporthe sp. TAMU137 18.82 ± 2.70 <0.0001

Cladosporium sp. TAMU463 16.27 ± 2.05 <0.0001

Epicoccum nigrum TAMU128 13.85 ± 1.95 <0.0001

Chaetomium globosum TAMU560 12.79 ± 2.89 <0.0001

Alternaria eichorniae TAMU452 12.55 ± 1.62 <0.0001

Repeats round 8 Control 47.03 ± 3.57 –

Cladosporium sp. TAMU501 31.37 ± 2.70 <0.0001

Epicoccum nigrum TAMU125 27.00 ± 2.16 <0.0001

Epicoccum nigrum TAMU131 22.25 ± 2.43 <0.0001

Purpureocillium lavendulum TAMU424 22.03 ± 3.14 <0.0001

Cladosporium cladosporioides TAMU474 19.41 ± 1.83 <0.0001

Alternaria eichorniae TAMU53 18.66 ± 2.39 <0.0001

Alternaria eichorniae TAMU87 17.60 ± 1.94 <0.0001

Purpureocillium lavendulum TAMU239 15.45 ± 1.64 <0.0001

Chaetomium sp. TAMU110 14.44 ± 1.31 <0.0001

Chaetomium coarctatum TAMU333 14.40 ± 1.55 <0.0001

Chaetomium globosum TAMU554 14.14 ± 1.57 <0.0001
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DISCUSSION

Our results indicate that a large proportion of the fungi found to
occur naturally in commercial cotton as foliar endophytes are capable
of reducing root-knot nematode root gall formation when inoculated
back to the plant as a seed treatment. Importantly, this effect was

highly repeatable, with 95% of the isolates that were selected for
retesting based on their performance in the first assay exhibiting a
significant reduction in galling in a follow-up replicate assay.
Although all but one of the fungi evaluated here were originally

isolated from cotton as foliar endophytes, endophytic colonization
following reinoculation as a seed treatment was not assessed in this

Fig. 1. Treatment of cotton seeds with fungi originally isolated as foliar facultative endophytes can negatively affect root-knot nematode galling of
seedlings. Bars represent the percentage of change in mean number of galls relative to the untreated control treatment in the initial bioassays
(rounds 1 to 6). Symbol on each bar indicates a significant difference in number of root galls from the control treatment, *P < 0.05.
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study. As such, we cannot distinguish at this time between the non-
mutually exclusive possibilities of endophytic, epiphytic, or rhi-
zospheric effects as causal mechanisms underlying the observed
reductions in nematode galling. Using similar seed treatment in-
oculation protocols and experimental design to distinguish between
endophytic, epiphytic, and rhizospheric effects, Zhou et al. (2016)
and Zhou et al. (2018) concluded that the negative effects on root-
knot nematodes of two other cotton-derived fungal endophytes,
Chaetomium globosum TAMU520 and Phialemonium inflatum
TAMU490, were due to their effects as endophytes within the plant.
Further study is required to determine whether the activity of the
fungi tested here is definitively associated with endophytism and will
prove insightful in guiding follow-up hypothesis tests about the
mechanisms underlying their observed negative effects on nematodes.
Importantly, taxonomic group was not a reliable predictor of the

effects of the fungi on nematode galling. Among the strains from 14
fungal genera that we evaluated, 21 isolates from seven genera
including Alternaria, Chaetomium, Cladosporium, Diaporthe,
Epicoccum, Gibellulopsis, and Purpureocillium, consistently re-
duced root-knot nematode gall formation by root-knot nematodes
across replicated assays (Figs. 1 and 2). In contrast, there were three
isolates from the genera Alternaria and Curvularia that signifi-
cantly increased root-knot nematode galling in treated plants (Fig.
1; Table 2). While some isolates of Alternaria eichorniae were
among those that consistently reduced nematode galling, two other

A. eichorniae isolates had the opposite effect of significantly in-
creasing the number of galls. This example clearly illustrates the
importance of strain specificity in affecting the outcome of fun-
gus_plant_nematode interactions.
Our results provide multiple examples of previously unrecognized

plant_fungal_nematode interactions. Here we highlight several
strains that exhibited robust negative effects on root-knot nematode
galling (Fig. 2). Although the nematicidal activity of secondary
compounds from Alternaria species has been explored (Lou et al.
2016), our study is the first to illustrate the potential ecological
significance of specific Alternaria strains on nematodes in planta
using live plant assays, with both positive and negative effects on
root-knot nematode galling. Similarly, some Cladosporium strains
have been shown to produce secondary metabolites with nematicidal
or insecticidal properties (Qureshi et al. 2012; Singh et al. 2016), but
our results provide the first examples of negative in planta effects of
multiple strains on nematodes. The genus Diaporthe (asexual state
Phomopsis) includes endophytic species (Udayanga et al. 2011) that
can produce metabolites and have in planta effects that are deterrent
to insect herbivory (Claydon et al. 1985; McGee 2002), but we could
find no prior examples of in planta effects on nematodes. The same is
true for Epicoccum fungi whose filtrates have been shown to have
antinematode activity (Meyer et al. 2004), but had not previously
been tested in planta.Gibellulopsis fungi are largely considered plant
pathogens (Zare et al. 2007) and have been reported as asymptomatic

Fig. 2. Negative effects of cotton seed treatment with fungi originally isolated as foliar facultative endophytes on root-knot nematode galling was highly
repeatable across independent assays. Bars represent the percentage of change in mean number of galls relative to the untreated control treatment in
the follow-up replicate bioassays (rounds 7 and 8). Symbol on each bar indicates a significant difference in number of root galls from the control
treatment, *P < 0.05.
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endophytes (Khalmuratova et al. 2015), but previous reports of ef-
fects on nematodes are lacking.
Our finding of several Chaetomium and one Purpureocillium

isolate with repeatable negative effects on nematodes is consistent
with previous studies that have also demonstrated similar effects
using whole plant assays. Chaetomium strains have been demon-
strated to colonize plant tissues endophytically, with some exhibiting
antibiosis against nematodes or insects (Gange et al. 2012; Yan et al.
2011; Zhou et al. 2018). The species Chaetomium globosum in
particular has been frequently assessed for its antagonistic effects
against plant-parasitic nematodes (Hu et al. 2012; Meyer et al. 2004;
Nitao et al. 2002). Although Purpureocillium fungi have been found
as endophytes in plants other than cotton (Gong et al. 2017), it is
important to note that Purpureocillium lilacinum (formerly Paeci-
lomyces lilacinus) is a well-known nematode egg pathogen that has
been commercialized as a biological control agent for root-knot
nematode management and is assumed to act against nematodes
in the rhizosphere rather than as an endophyte (Brand et al. 2004;
Holland et al. 2003; Kalele et al. 2007).
In conclusion, we have shown that the naturally occurring cotton

fungal phytobiome harbors a diverse array of fungi with the po-
tential to negatively affect the performance of root-knot nematodes.
These findings help establish a rich pool of candidate fungi for
further evaluation as novel biological control agents against root-
knot nematodes in cotton and other plants. Several key questions
about the mechanistic basis of these interactions will require
continued research to elucidate the roles of endophytism versus
rhizospheric effects (Zhou et al. 2016; 2018), and the effects of
fungal secondary metabolites versus elicitation of plant induced
systemic responses (Kusari et al. 2012; Martinuz et al. 2013; Sikora

et al. 2008). Plant_fungal interactions can also be affected by
variation in specific genotype_genotype combinations of the plant
and fungus (Saikkonen et al. 2004). The importance of variation in
fungal strains was clearly apparent in our study, but we did not test
for the effects of variation in plant genotype. The idea that variation
in fungal genotypes, plant genotypes and local environments all
interact to affect ecological interactions is well known in studies of
plant-associated fungi and often referred to as context-dependency
(Davitt et al. 2011; Hartley and Gange 2009). Future studies to better
understand fungi_plant_nematode interactions, environmental ef-
fects, and the resulting consequences on plant performance will
provide insights that can be used to inform the further development of
novel ecologically based tools for nematode management.
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