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ABSTRACT
Stability study of stationary solutions of the viscous Burgers equation using
Fourier mode stability analysis for the stationary solutions u, = D, where

D is constant and u, =u,(x),0< x<1, in two cases is analyzed. Firstly
when the wave amplitude A is constant and secondly when the wave
amplitude A is variable. In the case of constant amplitude, the results found
to be: The solution u, = D is always stable while the solution u, = u,(x) is
conditionally stable. In the case of variable amplitude, it has been found that
the solutions u, = D and u, =u,(x),0< x <1 are conditionally stable.
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1. Introduction

Consider a system of any nature whatsoever that exists in a state S.
We say that S is stable, in one sense or another, if small perturbations or
changes in the system do not drastically affect the state S. For example, the
solar system currently exists in a time—dependent state in which the planets
move about the sun in an orderly fashion. It is known that if a small
additional celestial body is introduced into the system, then the original state
is not disturbed to any significant degree. We say that the original state is
stable to small perturbations. Similar questions of stability arise in every
physical problem [19]. The notorious Burgers equation was the subject of
interest study in different fields such as analytical solutions, numerical
solutions, mathematical modeling, fluid mechanics, stability and
bifurcation. Roy and Baker [27] presented and derived the numerical results
using a nonlinear subgrid embedded (SGM) finite element basis for 1D,
2Dand 3D verification/benchmark linear and nonlinear convection—
diffusion problems such as Burgers equation in steady state.

Burns et al [8] considered the numerical stationary solutions for a
viscous Burgers equation on the interval (0,1) with Neumann boundary

conditions. Roy and Fleming [28] developed a nonlinear subgrid embedded
(SGM) finite element basis for generating multidimensional solutions for
convection—dominated computational fluid dynamics (CFD) applications
and they applied them to a stationary Burgers equation. Balogh and Krstic
[4] considered the viscous Burgers equation under recently proposed
nonlinear boundary conditions and they showed that it guarantees global

asymptotic stabilization and semi global exponential stabilization in H!
sense. Balogh et al [5] studied the stationary solutions of a one—parameter
family of boundary control problems for a forced viscous Burgers equation.
They assumed that the forcing term possesses a special symmetry. Allen et
al [2] studied numerically the equilibrium solutions of Burgers equation.
Moller [23] studied and conducted some numerical experiments on the 1D
viscous Burgers equation in linear and nonlinear cases with the same
stationary solution.

Di Francesco and Markowich [11] studied the large time behavior

for the viscous Burgers equation with initial data in L'(R). They reduced

the rescaled Burgers equation to the linear Fokker—Planck equation and then
employed well known results concerning the decay in relative entropy and
in Wassertstein metric towards stationary solutions for the Fokker—Planck
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equation. Holm and Staley [14] studied the exchange of stability in the
dynamics of solitary wave solutions under changes in the nonlinear balance
in a 1+1 evolutionary PDE related both to shallow water waves and
turbulence such as Burgers equation.

Bakhtin [3] considered the existence and uniqueness of stationary
solutions for 3D Navier—Stokes system in the Fourier space with regular
forcing given by a stationary in time stochastic process satisfying a
smallness condition. The method of constructing stationary solutions is
actually applicable for the Burgers equation. Kowalczyk et al [17] studied in
details the linear stability analysis of homogeneous solutions to some
aggregation models such as in viscid Burgers like equations. Konicek et al
[16] derived a new approximate solution of the inhomogeneous Burgers
equation for real fluid in stationary state regime using Prandtl’s technique
and verified the validity of the approximate solution by comparison with the
numerical one. Roy [26] examined the numerical solutions to 1D Burgers
equation in unsteady and steady states.

In this paper, the stability of stationary solutions of viscous Burgers
equation using Fourier mode stability analysis is investigated.

2. The Mathematical Model

One of the famous nonlinear diffusion equations is the generalized
Burgers—Huxley (gBH) equation [30]:
u +au’u,—eu, = Au 1—u5)(u‘5—a) )
where «, 5,6, and a are constant parameters
a>0,>20,0>0,e>0,-1<a<l
where < is the diffusion coefficient and in fluid flow problems it represents
the viscosity and is the reciprocal of the Reynolds number.

Equation (1) is an extended form of the famous Huxley, Newell—-
Whitehead (NW) and Burgers equations [12]. When « =0, equation (1) is
reduced to the generalized Huxley or generalized Fitzhugh—Nagumo (gFN)
equation.

ut—euxxzﬂu(l—u‘s)(uﬁ—a) 2
Huxley equation is a particular case of Eqg.(1) and (2) when
a=0,0=1and 6 =1, respectively [22].

U—eu, =Aul-u)u-a) 3)
which describes nerve pulse propagation in nerve fibers and wall motion in
liquid crystals. The parameter a arises in genetics and other fields, the case
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with 0 <a <1 is what the geneticists refer to as the heterozygote inferiority
case [15]. Manaa and Moheemmeed studied the stability [20] and the
numerical solution [21] of this case.

The standard real Newell-Whitehead (rNW) equation is a special
case of Eq. (2) and (3) when a=-1,6 =1and & =1, respectively.
ut—euxxzﬂu(l—uz) (4)

Newell and Whitehead examined this equation in 1969 [24].

When g =0, Eq. (1) is reduced to the generalized Burgers equation
u +au’u,—eu, =0 (5)

The well known viscous Burgers equation is a special case of Eq.(1)
and (5) when =0, 6=1and 6 =1 ,respectively [18].
u,+auu,—<cu, =0 (6)

Burgers equation provides remarkable system that has been studied
for some time by Bateman in 1915 and was extensively developed by
Burgers in 1940 and 1948 as a simplified fluid flow model which,
nonetheless, exhibits some of the important aspects of turbulence. It was
later derived by Lighthill in 1956 as a second—order approximation to the
one-dimensional unsteady Navier—Stokes equation [5]. The Burgers
equation can be seen as a reduction of the Navier— Stokes equation to the
case of a single space dimension. In this equation, « controls the
nonlinearity and e stands for viscosity. It is perhaps the simplest nonlinear
differential second order equations, and it has been considered to describe
different physical problems such as sound waves in viscous media, the far
field of wave propagation in nonlinear dissipative systems, shock waves,
magnetohydrodynamic waves in media with finite electrical conductivity,
nonlinear heat diffusion and viscous effects in gas dynamics [6]. The study
of the viscous Burgers equation is naturally related to that of the in viscid
Burgers equation [11]:

u, +auu, =0 (7)
The heat equation corresponds to the linearized Burgers equation
u-<u, =0 )]

It is known that nonlinear diffusion equations (3) and (6) play
important roles in nonlinear physics. They are of special significance for
studying nonlinear phenomena. If we take 6=1 and a=0, f#0,

equation (1) becomes the following Burgers—Huxley (BH) equation:
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u +auu,—eu, =Aul-u)u-a) 9)
Equation (9) shows a prototype model [30] for describing the

interaction between reaction mechanisms, convection effects and diffusion

transport. Also, Burgers equation is a particular case of following

convection-reaction—diffusion equation.

ut+au5ux—euxxz,8u(l—u5) (10)
The equation (10) is the generalized Burgers—Fisher (gBF) equation,

the generalized Burgers and Burgers equations correspond to the cases

p=0 and pg=0, 6=1, respectively. When « =0, equation (10) is

reduced to the generalized Fisher equation

U—eu, = Mull-u’) (11)

when & =1, We have Fisher—-Kolmogorov—Petrovskii—Piskunov (Fisher—
KPP) or Fisher equation [13]:

u—€u,, :,BlJ(l—u ) 12)
The case 6 =1in Eq.(10) is the Burgers—Fisher equation [30]:
u, +ouu,—eu, = Aul-u) 13)

There is another Burgers type equation named the generalized
Burgers—Korteweg—de Vries equation [31]:

u +au’u,—eu’u, +m, =0 14
t X XX XXX

where «,0 and z are positive real numbers. It reduces to the generalized
Burgers and Burgers equations for =0, =0 and z=0, y=0 ,

o =1, respectively. It also reduces to the generalized Korteweg—de Vries
(gKdV) and standard Korteweg—-de Vries (KdV) equations for e=0 and

e=0, 6 =1, respectively.

u +au’u +m, =0 (15)

u, +auu, +m,, =0 (16)
The Burgers—Korteweg—de Vries or Burgers—KdV equation [18] is

special case of Eq. (14) when 6 =1and =0 .

u, +auu,—euu, +1,, =0 a7

which reduces to the Burgers and KdV equations when y =0 ande=0,

respectively.

23



Mohammad A. Moheemmeed

3. Introduction to the Burgers Type Equations

Burgers type equations are famous nonlinear equations which,
appear in different scientific fields and play significant role in the study of
the nonlinear evolution equations in applied mathematics. Satsuma—
Burgers—Huxley (SBH) equation [9], [10] considers another type of the
Burgers type equation with reaction term:

u, —(1-3elu,—eu, =(1-e)(-u +bu+d) (18)
where b,d=0 . Burgers equation corresponds to the case €=1. When

e=1/3, SBH equation reduces to Fitzhugh—Nagumo—Kolmogorov—
Petrovskii—Piskunov (FN-KPP) equation, which arises in population
dynamics and other fields

D T AT

u, (3)”“ (3)( u +bu+d) 19)
The case =0, corresponds to the first order equation

u, —uu, =(~u®+bu+d) (20)

One of the important models related to both shallow water waves
and to turbulence is the b—equation [14]:
m, +um, +bmu,—em, =0 (21

Evolutio  Convectio  Stretching  Viscosit
with m=u-o? u, ,b=0,¥1,¥2,¥3,...The equation (21) contains a
family of equations. For b=0, o =0,equation (21) is reduced to Burgers

equation. The case b=2 restricts (21) to the Cammassa—Holm (CH)
equation
m, +um, +2mu,—em, =0 (22)

The case b =3 is the Degasperis—Procesi (DP) equation
m, +um, +3mu,—em, =0 (23)
Let us consider the generalized Burgers equation (5), this equation is
named generalized since it contains the quantity u® in the convection term
au’u, . We can get another generalized Burgers equations by changing the

properties of the nonlinear term a:u’u, . The generalizations of Burgers and
Burgers—Huxley equations, for which only relaxation of the assumption of
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weak nonlinearity is made. This means that no change in the original
equations is made to introduce other effects, like including a new term to
describe dispersion for instance, but just changing the nonlinear properties
of the original system, for the generalized Burgers equation, for example,
the consideration of the dynamics of diffusion in media where nonlinearity
is not just restricted to the simplest case. If we replace the nonlinear term

au’u, in (5), we get another generalized Burgers equation [6]:
u, +g(u)u,—eu, =0 (24)

where g(u) is a smooth function of U. The Burgers equation (6) is
obtained with the linear function g(u)= a u. Like the Burgers equation (6),

the generalized Burgers equation (24) also combines nonlinearity and
diffusion, but now nonlinearity is controlled by g(u) and may vary

according to the model one considers, note that the Burgers equation is

defined with the simplest nontrivial function g=g(u). If we take

g(u)=3au? in (24), we get:

u, +3au’u,—eu, (25)
This equation is named the modified Burgers equation, since it

contains nothing but the change u — 3u® in its nonlinear term. Equation
(24) can be written in the form:
u +f,—eu, =0 (26)

and for f = f(u), we get:
ut+£ux—euxx =0 (27)
du

This form is interesting since it allows a natural extension to systems
where two or more configurations interact with each other. The equation

(27) can be extended to the system of two coupled Burgers type equations
u +f,—eu,=0

_ (28)
V,+0,— €V, =0

where u=u(x,t) and v=v(x,t) are the two interacting configurations. For
f=1f(u,v) and g=g(u,v), we can write (28) as:
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u, + fu +fv,—eu, =0
(29)

Vi + g Uy + gvvx_gvxx =0

The generalized Burgers equation (24) can be further extended to the
following form

ut+:—fux—euxxzﬂh(u) or u +f—eu, =/, (30)
u

where f =f(u)and h=h(u) are smooth functions. Equation (30)

represents another generalized Burgers—Huxley or generalized Burgers—
Fisher equations, which differ from the equations (1) and (10) by changing
the nonlinear term. If we take f(u)=nh(u) this is very interesting since we

can relate the equation (30) to relativistic 1+1 dimensional systems of
scalar fields, and so we can get different equations and solutions given in

terms of different functions f = f(u) . If we take f(u)=h(u)=ulz—u?) in
(30), we have:
ut+(a—3u2)ux—euxx:,Bu(a—uz) (3D
which is named the modified Burgers—Huxley (mBH) equation. Equation
(30) can be further generalized to the case where several configurations
interact with each other. In the case of two configurations u(x,t) and
v(x,t), equation (30) is extended to the following system of pair of coupled
Burgers—Huxley equations [6]:
u, + fu, +fv—eu, =4fu,v)
v+ fv, +fu-ev, =4 f(u,v)}
If KdV and Burgers—Huxley equations are added, we get the
generalized KdV-Burgers—Huxley (gKdVBH) equation [7]:
u, +f, +g, +ru, =h(u) (33)
where f, g and h are smooth functions in u. It contains several interesting
particular cases. For h(u):O, it corresponds to the generalized KdV-
Burgers (gKdVB) equation:
u+f +9,+yru,=0 or u +fu +9g,U,+yu, =0 (34)
For f=f(u,v) and g=g(u,v), we get the
standard (KdVB) equation (17). The (KdV) and Burgers equations were
first added [7] to describe properties of waves in liquid—filled elastic tubes.

(32)
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For t(u)=au®, g(u)=-cu and n(u)=o0, it represents the modified KdVB
(mKdVB) equation:
u, +3au’u —eu, +yu, =0 (35)

For g trivial, i.e. g=0, we get the generalized KdV—Huxley

(gKdVH) equation since it is similar to the generalized BH equation but
with diffusion term present in the BH case changed by the dispersion term
present in the KdV case. The equation (34) can also be extended to a system
of coupled gKdVB equations in the form [7]:

u+f +g9, +yru, =0
v+ +T, + v, =O}

Here f = f(u,v)and g = g(u,v) are odd in u and even in v, and
f = f(u,v)and g =g(u,v) are even in uand odd in v, in order to preserve
the symmetries in the (u ,v) space of the original equations. These smooth
functions allow us to write the above equations in the form:

(36)

2
Ug + fuly + fyVy + gylxx + 9y Vxx + 9uu (Ux)

2
+2QyUxVyx + gvv(Vx) +7Uxxx =0

) ] 2 @37)
vi + fylyx + fyvx + Gulxx + GyVxx + Guu (Ux)
) -

+2QyyUxVx + gvv(Vx) +7Uxxx =0

The nonlinear differential equations in the generic form [25]:
u, +P(ul,—eu, +yu, =Au) (38)
with polynomial functions defined as:

Np
P(u)=>"pu, (39)

i=0

Np
Alu)=> au (40)

i=0

The general form of equation (38) allows the identification of
several interesting cases. For instance, the gkdVBH equation is recovered
from Eq.(38) for

%: p(u) , g(u)=g,—eu, and h(u)=A(u) .
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Furthermore, the standard KdVB equation corresponds to identifying
P(u)=au, and A(u)=0 , and the modified KdVB equation [25] requires
P(u)=3au?,and A(u)=0, with the particular case =0 accounting
respectively for the standard and modified KdV equations:

u, +3au’u, +m,, =0 (41

Equation (41) represents the mKdV equation. On the other
hand, the BH equation represents the situation in which
P(u)=au, y=0,and A(u)=h(u) .

u, +auu,—eu, =h(u) (42)
with the case h(u)=0 corresponding to the standard Burgers equation |,
which has an important connection with the deterministic Kardar—Parisi—
Zhang (KPZ) equation in one spatial dimension, known to provide the
evolution of the profile of a growing interface or a domain wall of general
nature. Eq.(42) sometimes is named the inhomogeneous Burgers equation or
Burgers equation with reaction term [29] but when h(u)=0 it is named the
homogeneous Burgers equation.

4. The Non-dimensional Transformations

For non-dimensional form, we introduce the following non-
dimensional quantities:
x’:i , t’:a—t , 0<x<L

L L

By substituting these dimensionless quantities in (6), we get:

ut,+uux,—iux,x,:0 , 0<x'<1

Re
Here al./ € represents the Reynolds number if we set Re = al/ € and omit
the primes in the equation in above, we get:

1
u +uu, ——u, =0 43
t X Re XX ( )

u(0,t)=a , ul,t)=—a, 0<x<1l , a>0

The equation (43) with the boundary conditions represents the non-
dimensional Burgers equation in x and t.
5. Fourier Mode Stability Analysis

Let the solution of equation (43) has the following form [19]:

28



Stability Study of Stationary...

u(x,t)=u,(x)+u,(x,t) (44)
where u,(x) is the steady state solution and u,(x,t) is the disturbance or

perturbation .
Substitute (44) in (43), with its boundary condition, we have:

2 2
%+(ul+u2 du, o, ) 1 d uzl—iaujzo (45)
ot dx  ox Re dx Re ox
2 2
ou du au du ou d-u o-u
= —2+ul—1+u1—2+u2—1+u2 Z—L 1—i 2:0
ot dx OX dx & Re g2 Re ;2
If we separate the two cases, we obtain the following two equations:
2
<3u2+ulau2+u2 dul+u26u2_i6 uj:O (46)
ot OX dx ox Re ox

du, 1 d?u,

—_1_ = = 47
Ydx Re dx? 47
u(0)=a, uy@)=-a , 0<x<1
By linearizing equation (46), we have:

u u du “u
au, oy du 10, @)

+
o T ax  2dx Re ox?
Equation (47) represents the stationary or steady state viscous Burgers
equation. The analytical solution of equation (47) is:
u, () = al({L—e2 09 )14 e2R09)) L Ofe ) |, a>0 (49)
where O(e’aRe) is the order of exponentially small error terms [23] in

satisfying the boundary conditions . Equation (49) represents the steady
state or stationary solution of Burgers equation. Under certain boundary
conditions, the solution of the viscous Burgers equation, Eq. (6) approaches
a unique stationary solution, u,(x), if the initial conditions u(x,0) are

sufficiently close. The equilibrium solution takes the form of a viscous
shock located at the center of the domain.

The rate of convergence is determined by the eigen values x; of the
associated linearized problem.
— 1, =0 ")>0, —bRe> 11, > u; >.. (50)
where b > 0 is a constant independent of € . The solution will approach the
steady state approximately as e“*', hence for small values of <, this will
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become an extremely slow process. The equation (47) has another constant
solution u, =D , D is constant. The unsteady state solution of Burgers

equation after dimensionalizing and scaling by « is [26]:
u(x,t)=—(2 e / L)sinh(ex/ L))/(cosh(ax/ L)+ exp(- a? e t/1?)) (51)
5.1. Stability Analysis in the Case of Constant Amplitude

We assume that the perturbation has the following form [19]:
u,(x,t)= Agkt) (52)
A>0,k>0,c=c, +ic, , i=+/—1
where Ais the wave amplitude , k is the wave, number c is the wave
velocity . If ¢, <0 the disturbance will decay as t — oo and the solution is
stable, but if ¢, >0 the disturbance will grow as t — o and the solution is
unstable. The case c, =0, gives the neutral stability curve, which separates
between the stable and unstable regions, c, is called the stability indicator
22].
[Sub]stitute (52) in (48), and after some mathematical manipulation, we get:

—ic, +c,=—u i—E%—L
7Y kdx Re
Equating the real and imaginary parts , we have :

€=U

c, = —Kkz +Re %]/ K Re} (53)
dx

Now, we shall study the following two cases:

(@) When u, =D, where D is constant, this leads to % =0, substitute in
X

(53), we get:

¢, =—(k/Re)<0 (54)
Hence, the constant stationary solution u, = D is always stable.

(b) When u,(x)=u,(x)= a((l—eaRe(X‘o'S))/ 1+ eaRe(x‘O's)) as shown in Fig.(1),

then % — _(2a2 ReeaRe(x—O.S) /(1+ eaRe(x_o,s))Z)
X
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-0.4

Figure (1) shows the stationary solution u, = u,(x) when
a=1, Re=1, 0<x<1

Here, in above we neglect the error term since it is small [23].
For simplicity, we put % =—f(x) in (53), we have:
X

¢, =—|(k? —Re f(x))/kRe| (55)

where f(x)= (Za2 Re g?Re(x-05) /(1+ eaRe(X’°'5))2)> 0
From Equation (55), we have
(i) If k? <Re f(x), then c, > 0 and the solution is unstable.

(i) If k*> > Re f(x), then ¢, <0 and the solution is stable.
(iii) If k? =Re f(x), then c, =0, which gives the neutral stability curve as
shown in Fig. (2):

k=,/Re f(x)= \/ (Z(a Re)?g2Rex-09) f (1 + gaRe(x-05) )2 ) (56)
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Unstable Region

0705

Stable Region

0635 -

Figure (2)
The neutral stability curve in (56) for the stationary solution u, = ul(x)
when a=1, Re=1, 0<x<1

5.2. Stability Analysis in the Case of Variable Amplitude
We assume the disturbance to have the following form [19], [1]:

u,(x,t)= A(x)e*t) (57)
Substitute (57) in (48), and neglect the imaginary part in the
resulting equation, we have:

A"(x)—Reu, A'(x) - (kz +Re % +Reke, jA(x) =0 (58)
Equation (58) can be written in the following form:
A"(x)—Reu, A'(x)— 1A(x) =0 (59)

AD)=a , Al)=-a

A=k? +Reh+Rekc2
dx

The characteristic equation of Eq. (59) is:
m? —Reu,m—-A=0 (60)
which has the following solutions:
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m, :(Reu1 —J(Reu, ¥’ +4l) /2 (62)

mZ::(Reul+ (Reulf-+4zj/2 (62)

According to the sign of A Eg. (59) has the following three
analytical solutions:
MIFf A>0 ie. A=H , H>0, then (61) and (62) become:

m, = (Reu1 —J(Reu, f’ +4H )/2

m, :(Reul ++/(Reu, )’ +4H )/2

The general solution of Eq. (59) in this case is:
A(x)= Be™ + Ce™*

Now, we have the following two cases:

(@) When u, =D , D is constant by using the boundary conditions, we get:
B+C=a }

63
Be™ +Ce™ =-a (3

By solving the algebraic system (63), we have:
B= —a((1+ e™ )/(eml —-e™ )) , C= a((1+ e™ )/(e”‘l —e™ )) , eMze™
A= are e e b (e ) 6
(b) When u, = u,(x) = alfL— %29 )1+ e*™(-09)) )
L0)=all—e=®)lre=®)) |, u,@)=allL-e" ™ )fr+eo)

(0)= (Reu() (Reul(O))2+4Hj/2 , m2(0)=[Reu1(o)+ (Reul(O))2+4H)/2

m, (1) = [Reu (1) +/(Reu, (V) +4H j/z , mz(l):(Reul(l)Jr (Reu, (1)) +4H ]/z
By using the boundary conditions, we obtain:

B =-alfl+e™W (e —emz(l))s/ L C=allL+em®)en® —em®)) | eml) £ gml)

In this case the general solution has the form:

A(x)=(a/(e™® —em®))(L+em™® e — (14 e™® fm) (65)

(i) If A=0,then m; =0, m, =Reu,
The general solution is:

A(x)=B+Cef

o

3
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By using the boundary conditions, we get:
B+C=a
B+Cef" = —a} (60)
By solving the system (66), we have:
B=-alll+e™ )/i-e™)) , c=(a/fi—e™)) , e™ =1
(@) When u, = D, the general solution is:
A(x)=-al(1+e®°)l1-e™C )+ (2asfL—e™P >, eFP %1
(b) When u, = a(({1—e*"(-°%))/1+ e2R¢(°%)) the general solution is:
A(x)=-a(fl+e™O)f1—e™ 0 )+ (2a/(1-eTuO)eTeu®x | gReul 41
The caseA=0 is the case of the constant amplitude, which is

discussed in (5.1).
(iii) If A<0,let A=—R , R >0, then we have the following cases:

(1) When (Reu, ) > 4R, then the solution as in the case (i).
(2) When, (Reu, )’ = 4R then the general solution is:

Reuyx Re ux
A(x)=Be 2 +Cxe 2
By using the boundary conditions, we obtain:

Reu; Re u; Reu; Reu; Reuyx
B=a , C:—a((lJre 2 }/e 2 J , Alx)=a 1—[(1+e 2 J/e 2 Jx e 2

(@) When u, = D, then the general solution is:

ReD)  ReD Re Dx
A(x)=a 1—([1+e 2 j/e 2 Jx}e 2

(b) When u, = a((l— eaRe(X‘O'S))/(1+ eaRe("‘o's))), then
Reulﬁ) Reul(l) Reulx

Alx)=a|1-||14e 2 |/e 2 |x|e 2

(3) When (Reu, ) <4R, let (Reu,)* —4R=-E , E >0, then
m, =(Reul—\/Ei)/2 , m, =(Reul+ E i)/2
The general solution is:
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A(x)=Be 2 cos((\/E/ 2)><)+ C ey sin((\/Elz)x)

By using the boundary conditions, we have:

Re u;
B=a , ae 2 (cos(\/E/2)+ C sin(\/Elz))= —a
For simplicity and to determine the value of c,, we take C=1,a=1 and
after some mathematical manipulation, we get:

E= (s.in‘l(e’Re”1 —1))2

E =(sin*(e ™ —1)f =4R-(Reu, )’ = 4(k2 + Re%+ Re kczj—(Reul)2 =

C, = —{(4k2 +4 Re% - (sin‘l(e’R‘“‘1 —1))2 —(Re ul)zj/4k Re} (67)
Equation (67) has the following three cases:

(i) If 4k? +4Re% < (sin‘l(e‘Re”l —1))2 +(Reu,)’, then ¢, >0 and the
solution is unstable.

(ii) If 4k?+ 4Re‘i']|ix1 > (sin(e™" —1)f +(Reu,)?, then c, <0 and the
solution is stable.

(iii) If 4k? +4Re% = (sin‘l(e‘Reul —1))2 +(Reu,)’, then ¢, =0 , which
gives the neutral stability curve:

k= \/[(sin‘l(eRe“l ~1)f +(Reu, } —4Re%)/4 (68)

(sin (e —1)f +(Reu, ) > 4Re%

Now, we shall apply the results in above to the following two cases:
(a) When u,(x)=D , D is constant, we have

C, = —l(4k2 —(sin"*(e*® —1)f" —(Re D)’ )/4k ReJ (69)
From equation (69), we have the following three cases:

(i) If 4k? <(sin(e™**® —1)f + (Re D)?, then ¢, >0 and the solution is
unstable.
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(i) If 4k? > (sin"(e="° —1)) +(Re D)?, then c, <0 and the solution is

stable.

(iii) If 4k? =(sin"(e™"® -1)f +(Re D)?, then c, =0, which gives the

neutral stability curve as shown in Fig. (3):
k = \/((sin‘l(e‘ReD ~1)f +(Re DY’ )/4

15

11
Unstable Region

05

o

ot

a5l Stable Region

-1

Figure (3)
The neutral stability curve in (70) for the stationary solution
u(x)=D when D=1, Re=1, 0<x<1

(b) When u, = ul(x) = ((1_ eRe(X—O.S))/((1+ eRe(x-O_S))))’ we have
C, = —{[4k 2 +4Re dUJ)EX) _ (sin -1 (e*Re u(x) _ 1))2 B (Re U, (X))2 j | 4k Re}

From equation (71), we have the following three cases:

(70)

(71

(i) If 4k*+4 Redudl—)((x) < (sin‘l(e‘Reul(X) —1))2 +(Reu,(x))*, then ¢, >0

and the solution is unstable.

(i) If 4k*+ 4Redl;1—(x) > (sin‘l(e‘Reul(X) —1))2 +(Reu,(x))*, then ¢, <0

X
and the solution is stable.
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2
(iii) If 4k2+4Redu1(x)=(sin_1(e_Reul(X)— D +(Reu1(x))2, then ¢, =0,

dx
which gives the neutral stability curve

k= \/((sinl(e‘Re“l(x) ~1)f + (Reu,(x)* —4Re d“dl—)((x)jm (72)
(sin (e Feut) — 1))2 +(Reu,(x))? >4Re dudl—)EX)

6. Conclusions

The main conclusions from this study in the case of constant
amplitude are:
(1) The steady state solution u, = D, where D is constant, is always stable.

(2) The stationary solution u, = u,(x)= a({l—e®¢9)/(1+ e2F(-09))) is
stable if k*> (Z(a Re)? g2Re(x-09) /(1+ eaRe(X‘o's))z) i.e. the solution
u, =u,(x) in above is conditionally stable and the neutral stability curve is:

Kk = \/(Z(a Re)? paRe(x-05) /(1+ eaRe(x—o.s))Z)
The results in the case of variable amplitude are:
(1) The equilibrium solution u, = D, where D is constant, is stable if:

ak? > Re(sin(e® —1)f +(Re D)’ and the neutral stability curve is:

k= \/((sin‘l(e‘ReD ~1) +(Re DY’ )/4

(2) The equilibrium state solution u, = u, (x) = ({L—e™"°% )(1+e™°9)) is
stable if 4k? +4Redljjl—)((x) > (sin‘l(e‘Reul(X) —1))2 +(Reu,(x))* and the neutral

stability curve is:

k = \/{[sin _1(e—Reu1(x) —1))2 + (Re ul(x))2 —4Re du;)fx)] /4

(sin 71(e_Reu1(X) —l)jz + (Re ul(x))2 > 4Re dul(x)

dx
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