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Abstract: This paper focuses on the continuous location-routing problem that
comprises of the location of multiple depots from a given region and determining
the routes of vehicles assigned to these depots. The objective of the problem is to
design the delivery system of depots and routes so that the total cost is minimal.
The standard location-routing problem considers a finite number of possible loca-
tions. The continuous location-routing problem allows location to infinite number
of locations in a given region and makes the problem much more complex. We
present a genetic algorithm that tackles both location and routing subproblems
simultaneously.
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1. Introduction

Logistic systems, their design and strategic decisions about them belong nowadays
to important parts of company management. Among problems within this area, the
routing of vehicles and location of facilities belong to the most common. Logistic
cost represent a large portion of company budget and a careful planning of these
operations can have significant economical impact for the companies. Research of
both of these problems in the field of operations research has attracted a lot of
attention for many decades and due to its complexity and number of variants it is
still very active nowadays.

The design of distribution system of delivering goods to customers, very often
seen in practice, consists of both location of depots and designing vehicle routes.
For a long time, these problems were tackled separately, especially due to their
complexity – they both belong to NP-hard problems. However, the optimal solution
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of this process when depots are located with simpler criterion and vehicle routes are
designed based on these fixed depots can differ significantly from the optimum of
the interconnected problem, called location-routing problem (LRP) [1]. In location-
routing problem, both subproblems are solved simultaneously, the vehicle routes
partly serve as a criterion for depot location. Recently, a standardisation of this
field was introduced and the performance of algorithms presented for LRP could
be compared on the same data instances. Most literature focuses on the discrete
variant in which the depots are selected from a given finite set of candidates.
Genetic algorithms provide a very general framework and thus we could extended
their use from the discrete (published in [2]) to the continuous variant, in which
the depots can be located anywhere within a given area (Fig. 1).

Fig. 1 Scheme of the discrete (a) and continuous (b) location routing problems. A
finite set of possible locations is given in the discrete problem, while the depots can
be located anywhere in the given area in the continuous problem.

Genetic algorithms (GA) have been employed to seek solutions to specific aca-
demic or real-life LRP problems, but up to now no GA approach has been presented
in the literature to solve continuous variant of LRP. The paper is going to focus
on the design of a novel genetic algorithm that would be specifically applicable to
continuous location-routing problems.

The solution of the continuous LRP consist of a set of selected depots from a
defined continuous area and a set of vehicle routes which define order of customers
on the routes and how the routes are associated with the selected depots. The
optimal solution minimises the objective function.

2. Mathematical formulation

We have adapted the formulation of discrete LRP used by Prodhon and Prins [3]
by substituting the discrete set of potential depots by a continuous rectangular
region. The continuous LRP (with uncapacitated depots and capacitated vehicles)
can be defined using the following notations:

R ⊂ IR2 rectangular region of potential depot nodes (x, y) : xLB ≤ x ≤ xUB ,
yLB ≤ y ≤ yUB ,

I set of opened depots, I = {(x1, y1), (x2, y2), . . . , (xm, ym)} from the
region R,
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J set of customers to be serviced, J = {(x1, y1), (x2, y2), . . . , (xn, yn)},
O(x, y) opening cost of a depot located in (x, y),
dj demand of customer j,
Q capacity of each vehicle,
C fixed cost per vehicle used,
ci,j travelling cost between depot i located in (xi, yi) and customer j defined

by Euclidean metric.

It is assumed that vehicles are shared by all depots (no depot has a specific
fleet) and the cij satisfy the triangle inequality. A solution of the problem consists
in determining which depot locations are chosen, i.e. determining of the set I,
assigning each customer to one depot and building vehicle routes for each depot
and its customers.

The following constraints must be satisfied: (i) each route begins and ends at the
same depot; (ii) each customer is served by a single vehicle (no split delivery); and
(iii) the total demand of customers visited by one vehicle fits the vehicle capacity.

Define binary variables zij = 1 if edge (i, j) is traversed from a location i to j
by a vehicle. The objective function FCLRP to be minimised can be formulated as
the sum of three terms

FCLRP = F1 + F2 + F3

1. the cost of opening of depots

F1 =
∑
i∈I

O(xi, yi)

2. the fixed cost of vehicles used

F2 = C
∑
i∈I

∑
j∈J

zij

3. and the cost of the routes

F3 =
∑

i∈I∪J

∑
j∈I∪J

cijzij

3. Solution methods

The research of methods for the continuous variant of LRP has been very scarce,
most literature focuses on the discrete variant and its solution based on use of ap-
proximate methods. The early heuristic methods called sequential methods solve
both subproblems separately, first they find the position of depots using the p-
median criterion and using fixed position of depots they solve a multi-depot vehi-
cle routing problem (e.g. [4]). Another group of heuristics that largely simplify the
problem is called clustering-based methods. First the customers are divided into
clusters, a cluster is created either for one depot or one route and each cluster is
tackled as a separate problem (e.g. Barreto et al. [5] and Chan et al. [6]). Later,
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more advanced heuristics have been presented that have incorporated information
transfer between location and routing part of LRP. In iterative methods, the prob-
lem is divided into location and routing part that are repetitively calculated and
the information is transferred between these parts (e.g. Perl and Daskin [7], Salhi
and Fraser [1]). Hierarchical heuristics follow the intuitive structure of the problem
in which the location part stands as a main problem and the routing part as a sub-
problem solved by a subroutine for each iteration of the algorithm (e.g. Nambiar
et al. [8], Melechovsky et al. [9]). A number of metaheuristics have also been pre-
sented for solving LRP (tabu search by Albareda-Sambola et al. [10]; iterative local
search by Derbel et al. [11]; variable neighborhood search by Jarboui et al. [12];
simulated annealing by Hashemi Doulabi and Seifi [13], Yu et al. [14]; GRASP by
Feo and Resende [15], Duhamel et al. [16]).

Regarding genetic algorithms, very few examples of use for location-routing
problem can be found in literature. Prodhon [17] uses a hybrid evolutionary algo-
rithm for the periodic location-routing problem. Genetic algorithm is hybridised
with local search procedure. Similar approach has recently been applied by Lopes
et al. [18] that also combines genetic algorithm with local search.

The continuous LRP can be found only very rarely in the literature. We can
mention use of self organising maps proposed by Schwardt and Dethloff [19] and
variable neighbourhood search for the continuous problem with pick up and deliv-
eries by Ghodsi and Amiri [20].

4. Genetic algorithm

Genetic algorithm is a method that is inspired in biological evolution. A population
of individuals is repeatedly modified using three operators – selection, crossover and
mutation. At each step, random parental solutions are selected from one generation
and combined to produce offsprings entering the next generation. Over multiple
generations of individuals, the solution converges towards an optimal solution. Ge-
netic algorithms have been applied to a large number of various optimisation prob-
lems, either on its own or in combination with other heuristic methods. We can
find their use in transportation engineering and logistics not only for subproblems
of LRP but also in different areas such as transportation, assignment, scheduling
problems and others (see e.g. [21–23]).

A genetic algorithm for continuous LRP introduced in this section is based on
the design of separate genetic algorithms for vehicle routing problem and facility
location problem and discrete capacitated location-routing problem (CLRP) that
we have proposed in [24] and [2]. We have considered LRP with limited vehi-
cle capacity with homogeneous vehicle fleet, deterministic data and one-objective
problem. In the following paragraphs the operators and other components of ge-
netic algorithm are explained, in particular with the focus on the changes needed
for the adaptation to the continuous LRP. A scheme of genetic algorithm is shown
in Fig. 2.
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Fig. 2 Scheme of genetic algorithm.

Encoding of the solutions

We have used a permutation encoding with positive integers for the routes and
pairs of coordinates (real numbers) for the depot location. Permutation encoding
ensures that values (customers) do not repeat in the individuals, each solution is
a permutation of the given set of values. The principle of the encoding is depicted
in Fig. 3.

Fig. 3 Example of the continuous LRP encoding. Two depots are chosen from the
given region and ten customers are visited on four routes that are assigned to the
selected depots.

Each individual of the population represents a complete solution to the LRP.
A set of depots from the given region is randomly chosen in the initialisation of
the algorithm. The number of depots can differ for individual solutions and it is
optimised over the generations of the algorithm. The customer routes are randomly
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created in the beginning of the algorithm as well while keeping the constraints of
capacity and permutation encoding – each value has to be present once in the solu-
tion. After creating these sequences of customers the selected depots are assigned
to them. For each depot and each route the sum of distances from the depot to
the first customer and from the last customer to the depot on a particular route is
calculated and the least costly assignment is made.

Crossover

Two types of crossover have been implemented, one for the list of depots and second
one for the route part. Based on the above described type of encoding with two
different parts we had to adapt the crossover that corresponds and reflects this
structure.

Both types of crossover are explained and described in Fig. 4 and 5.
For the depot crossover, an analogy of single-point crossover for different length

vectors is used. A different random point is selected in both parents. From these
parents the first part from the first parent and the second part from the second
parent is copied into the offspring.

For the route crossover, a random chain in one route is chosen from the first
parent and it is copied to a position in the second parent such that the customer
after which the chain is inserted is the one closest to the beginning of the copied
chain (described in [25]). Before the insertion, the values included in the copied

Fig. 4 An example of the depot crossover. A different random point is selected in
both parents. This point is depicted by the vertical line. From these parents the
first part from the first parent and the second part from the second parent is copied
into the offspring. The routes are copied from the first parent and the depots are
reassigned to them, for each route the sum of distances from the depot to the first
customer and from the last customer to the depot is calculated and the depot with
the shortest calculated distance is assigned to this particular route.
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Fig. 5 An example of the route crossover. Two parental solutions enter the
crossover. A random chain is selected from a random route in the first parent
(customers 5,9,10), the customers on the chosen chain are deleted from the second
parent and the chain is inserted to the position in the second parent after a cus-
tomer with the smallest distance to the first customer on the copied chain. The set
of selected depots is copied from the second parent. Afterwards, for each route a
depot is assigned such that the distance from this depot to the first customer and
from the last customer to the depot is minimal. In this example, the fourth route
of the offspring does not contain any customers, therefore it is deleted during the
check of solution validity.

chain are deleted from the second parent to avoid duplications. The list of depots
is copied from the second parent from which most of the solution is transferred to
the offspring.

Mutation

The mutation is also designed in two versions for the depot and route part, similarly
as in the case of crossover. The route mutation is performed by simple swap of two
customer points that are both selected randomly.

In the depot mutation, the new depot that replaces the old one in the individual
is selected randomly from the whole plane of possible depot locations. The depots
that are closer to the old one are given a higher probability of selection (Fig. 6).
The new position of the depot is given by an angle (α) and a radius (r). The angle
is chosen randomly with the uniform distribution, the radius is selected with the
normal (Gaussian) distribution to prefer closer locations. If the selected location
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otot

Fig. 6 A scheme of the depot mutation.

lies outside the given area it is replaced by the point with the same angle on the
boundary of the area.

Validity of the solution in terms of problem constraints is checked in a separate
procedure after all operators are applied.

Fitness function

The fitness function corresponds to the objective function of the problem that
minimises the total cost and reflects the characteristics of the tested data. The
fitness function consists of a fixed cost for placing a depot in the selected location
and a variable cost for opening a route (cost of a vehicle) and cost of the routes
given by travelled distance. In the chosen testing instance the cost of a depot
opening is the same for all location.

Elitism

Based on our previous testing of genetic algorithms for vehicle routing problem,
multi-depot vehicle routing problem and discrete LRP, we have included elitism
in the algorithm, i.e. the best individuals from the current generation are always
copied to the next generation.

Testing data

There are some standard testing instances for several variants of LRP, however,
none of these fit the continuous problem. We used Tuzun set which is used for
discrete LRP with capacitated vehicles and uncapacitated depots. For the purpose
of our problem, the possible depot locations were omitted and replaced by the
full rectangle with the boundaries covering all customer coordinates. We show
the analysis of the algorithm behaviour for one data file (No. 111112) and overall
results for all 35 files from Tuzun set.
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Results

Fig. 7 shows the results of the analysis of the best settings for the program. On
the vertical axis, a number of results (out of the total 1 million) is displayed that
have been within 3 % margin from the absolute best found fitness value over the
crossover and mutation (route and depot) probability parameter space. Based on
this data the following values were selected as the optimal setting for this variant
of the algorithm: route mutation probability 0.35, route crossover probability 0.99,
depot mutation probability 0.15 and depot crossover probability 0.07.

Low values of mutation and crossover related to depots suggest that the change
of the depot position very rarely brings solutions with better fitness. However, some
changes have to be enabled, otherwise only depots based on the first generation
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Fig. 7 Values of mutation and crossover probabilities that give the best results. On
the vertical axis the probability density function of results within 3 % gap from the
best result is displayed based on values of mutation and crossover probabilities.
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would be examined. On the other hand, the route crossover probability is close
to 1 which means that routes require a lot of relocations to find good solutions.

Estimation of the distribution function

We have run the algorithm with the above given setting 10 000 times to determine
the probability distribution function which best fits the results. What we get is
typically a non-symmetric distribution with a steeper rise and a softer decay. In
addition, there is a pivot point, whose existence is implied by the fact that the
fitness function does have some absolute minimum and so the distribution is only
defined on the interval (fmin,∞). In Fig. 8 the data distribution from 10 000 runs
is estimated with normal, chi2 and skew normal distribution.
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Fig. 8 Distribution of results fitted with several distribution functions. The figure
shows distribution for the file 111112 together with the normal (grey), χ2 (red) and
skew normal distribution (green) that best fit the data.

We have tested distributions using the Kolmogorov-Smirnov test for several
data files to compare the fits. χ2 and skew normal distribution have given similar
results while normal distribution has been far worse. We have chosen χ2 for further
analysis which better corresponds to our data by having the minimum value.

For a real life use of the algorithm we want to know how good results we obtain
from several runs of the program. For this purpose, we substitute cumulative dis-
tribution function of χ2 into cumulative distribution function of rth order statistics.
We would like to make conclusions about the minimum from multiple runs which
means we want to find cumulative distribution function for the first order statistics
(we have calculated this function numerically). Having results from ten runs of
the program we can use this cumulative distribution function to make for example
following conclusions (Fig. 9):

• the probability of the minimum (from ten runs) being smaller than the best
known result plus 3 % is 0.76;

• the probability of the minimum (from ten runs) being smaller than the best
known result plus 5 % is 1.0;
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Rybičková A. et al.: Genetic algorithm for the continuous location-routing problem

1500 1600 1700 1800 1900
Fitness function value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

10%5%

3%

cdf of the best fit
cdf of the first order statistic

Fig. 9 Cumulative distribution functions. The grey line represents the cumulative
distribution function of the chi2 best fit for our data and the orange line represents
cumulative distribution function of the first order statistic from ten runs of the
program. The orange points with dashed lines show the probability of the minimum
from ten runs to be smaller than the best known value plus 5 % and 10 %.

Example runs of the program

The behaviour of the algorithm is shown on several example runs.

The progress of minimum, maximum and average value of the fitness function is
displayed in Fig. 10, in which the whole run of the algorithm is depicted using the
values every 100 steps. The progress in the beginning is slower and the best solution
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Fig. 10 Progress of the average, minimum and maximum fitness value in the gen-
erations of the genetic algorithm during one run of the program showing values
each 100 iterations.
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changes continuously up to 15 000 iterations. After that only minor improvements
can be observed.

Also the influence of the number of iterations to the results has been tested.
It is displayed in Fig. 11. The minimum, maximum and average fitness from ten
runs is shown for the number of iterations ranging from 1 000 to 40 000 with 1 000
step to see if the number of iterations within one run is sufficient. No significant
decrease of results can be seen from the figure after 30 000 iterations and therefore
the number of iterations is selected correctly in respect to the convergence of the
program.
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Fig. 11 The minimum, maximum and average value of fitness function (each from
10 runs) based on the number of iterations for the selected combination of mutation
and crossover probabilities.

The results from 10 runs of the program for all data files from Tuzun set are
shown in the Tab. I compared to the best known results. The comparison is only
approximate as the Tuzun set is defined for discrete variant and has different op-
timum. In most cases, the continuous variant found solution which is better than
the best known result for the discrete problem. The wide range of percentage gap
is given by differences in data files, for some of them the optimum of discrete prob-
lem is close to where the unlimited continuous variant has found it; for others the
set of possible depot locations is restricted in a way that if we enable to locates
depot anywhere in the area the improvement is much greater. To illustrate this,
some of the results are shown in the maps in Fig. 12 where we compare results of
the presented algorithm (continuous LRP) to a genetic algorithm used for discrete
LRP. In datasets for which both variants give similar results, the customer points
and the depots are rather evenly spread over the area (top subfigures). On the
other hand in datasets, for which results of continuous variant improve over the
discrete variant, the customers are more clustered and the possible depot locations
are not optimally distributed with respect to the clusters of customers. In these
cases, continuous algorithm gives significantly better results as it has the freedom
to position the depots to the centre of the clusters (bottom subfigures).
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data set BKR CLRP difference [%] data set BKR CLRP difference [%]

111112 1468 1506 2.59 122222 1084 1063 −1.94
111122 1449 1449 0.00 123112 1973 1733 −12.16
111212 1396 1438 3.01 123122 1957 1784 −8.84
112112 1167 1082 −7.28 123212 1771 1213 −31.51
112122 1102 1004 −8.89 123222 1393 1240 −10.98
112212 793 705 −11.10 131112 1866 1921 2.95
112222 728 703 −3.43 131122 1841 1852 0.60
113112 1238 1127 −8.97 131212 1981 1888 −4.69
113122 1246 1189 −4.57 131222 1809 1807 −0.11
113212 902 833 −7.65 132112 1448 1312 −9.39
113222 1021 888 −13.03 132122 1444 1283 −11.15
121112 2281 2295 0.61 132212 1206 895 −25.79
121122 2185 2289 4.76 132222 931 902 −3.11
121212 2234 2250 0.72 133112 1699 1431 −15.77
121222 2259 2254 −0.22 133122 1401 1357 −3.14
122112 2101 1627 −22.56 133212 1199 1056 −11.93
122122 1709 1680 −1.70 133222 1152 1096 −4.86
122212 1467 1189 −18.95

Tab. I The results of the genetic algorithm for continuous LRP compared to the
best known results (BKR) for the testing instances (testing instances and BKR are
only for discrete variant). The results are calculated as the minimum from 10 runs
of the algorithm with optimal settings. Percentage difference is shown.

Fig. 12 Comparison of the results for discrete (left column) and continuous variant
(right column) for the same data files. Two data sets are shown. For the top figures
the results of both variants are similar given by the even distribution of customers,
in the bottom figures, the continuous variant enabled better positioning of the depots
and the fitness is much lower than for the discrete variant.
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5. Conclusions

The main objective of this research has been to present an efficient algorithm for
the continuous location routing problem. We have introduced a genetic algorithm
that has been based on a genetic algorithm previously used for the discrete variant
of LRP that we have adapted and extended to the continuous variant. Location-
routing problem in its continuous variant occurs only very rarely in the literature.
From the testing and analysis we can come to the conclusion that the algorithm
works good in terms of robustness and we can obtain usable results for real-life
applications.
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