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Lossy image compression algorithms play a cru-
cial role in various domains, including graphics,
and image processing. As image information den-
sity increases, so do the resources required for
processing and transmission. One of the most
prominent approaches to address this challenge
is color quantization, proposed by Orchard et al.
(1991). This technique optimally maps each pixel
of an image to a color from a limited palette,
maintaining image resolution while significantly
reducing information content. Color quantization
can be interpreted as a clustering problem
(Krishna etal. (1997), Wan (2019)), where image
pixels are represented in a three-dimensional
space, with each axis corresponding to the inten-
sity of an RGB channel. However, scaling of tra-
ditional algorithms like K-Means can be chal-
lenging for large data, such as modern images
with millions of colors. This paper reframes color
quantization as a three-dimensional stochastic
transportation problem between the set of image
pixels and an optimal color palette, where the
number of colors is a predefined hyperparameter.
We employ Stochastic Quantization (SQ) with a
seeding technique proposed by Arthur et al.
(2007) to enhance the scalability of color quanti-
zation. This method introduces a probabilistic el-
ement to the quantization process, potentially im-
proving efficiency and adaptability to diverse im-
age characteristics. To demonstrate the efficiency
of our approach, we present experimental results
using images from the ImageNet dataset. These
experiments illustrate the performance of our Sto-
chastic Quantization method in terms of compres-
sion quality, computational efficiency, and scala-
bility compared to traditional color quantization
techniques.

Keywords: non-convex optimization, stochastic
optimization, stochastic quantization, color quan-
tization, lossy compression.
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Introduction. Digital image representation in modern
video displays relies on additive color mixing, where the
intensity of three primary colors (Red, Green, and Blue) is
modulated at each pixel [1, 2]. In this system, each pixel is
encoded as a triplet of unsigned integers, with each element
corresponding to the intensity of a primary color. For in-
stance, an 8-bit display can represent 28 = 256 values per
RGB channel, yielding a total of 283=16 777 216 possible
colors. To efficiently store images produced by digital pho-
tography, compression algorithms have been developed to
balance data storage requirements and image quality. Many
of these algorithms fall into the category of lossy compres-
sion, where the compressed image experiences a reduction
in quality that cannot be fully recovered to its original state.

Color quantization, introduced by Orchard et al. [1], is
one approach to lossy image compression that reduces im-
age data without compromising the original resolution.
This method comprises two primary stages: (1) selecting an
optimal color palette of dominant colors present in the im-
age, and (2) mapping each pixel to the nearest color within
this optimal palette. This approach conceptualizes each
pixel as a point in three-dimensional space, with each axis
representing the intensity of one of the three primary col-
ors. Consequently, pixels with similar color shades cluster
more closely in this space. The original paper explores var-
ious techniques to address the color quantization problem,
including total squared error (TSE) minimization, binary
tree palette design, and the Linde-Buzo-Gray (LBG) algo-
rithm, among others. Krishna et al. [3] proposed a solution
to the color quantization problem utilizing the K-Means al-
gorithm [4] for optimal color palette selection, where clus-
ter centers represent optimal colors. This approach was fur-
ther investigated in subsequent works [5, 6].

However, a recent study [7] highlighted the limitations
of traditional clustering methods in solving quantization
problems, particularly their poor scalability for large da-
tasets. With the rapid increase in image resolution in mod-
ern video displays, this scalability bottleneck may signifi-
cantly impact the performance of these color quantization
methods.
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In this paper, we present a novel interpretation of color quantization within the domain of stochastic
programming, specifically as a non-convex stochastic transportation problem [8]. We employ the Stochastic
Quantization algorithm [9, 7] to determine the optimal color palette by minimizing the distance to the set of
colors in the original image.

We provide experimental results of this approach using test images from the ImageNet dataset [10],
implemented using a Python implementation of the Stochastic Quantization algorithm.

The problem setting. The transportation problem (see, e.g., [8, 9, 7]) is utilized to approximate one

discrete probability distribution {¢;} € = < R" with another discrete distribution containing fewer elements

{yx}eY <= R". The optimal positioning of each element {y;,..., y« } is determined by minimizing the Was-
serstein (Kantorovich—Rubinstein) distance:

I K
minyz{Yr---vYK}EYKCRnK minq:{%--wQK}ERE minxz{xijzo}zzd(éi’yk)rxik (1)
i=1k=1

subject to the constraints:
K K -
ink:pi! qu =1 1=1...,1. (2)
k=1 k=1

where p; >0, Z::l p; =1 represent normalized supply volumes, X, denote transportation volumes,

2
d(&,y) = ,/Z';:l‘gij - ykj‘ is the metric between elements in the objective function (1), Y cRR" is a

common constraint set for variables {y, ,k =1,....,K},and n,I,K e N, r >1. We chose the Euclidean norm
as a distance metric d(&;, Y, ), as the similar colors would have close primary colors magnitude, thus they

have small distance in Euclidean space between each other.
In the context of color quantization, the distribution {&;} represents a set of pixels from the original

image, while {y, } denotes an optimal color palette with the number of colors K set manually as a hyperpa-
rameter. Both {&;} and {y,} are subsets of the space {(x,Y,z) e73:0<x,y,z <255}, representing the
combined intensity of three primary colors for each image pixel. Prior to solving the problem (1), we nor-

malize the original pixel distribution {&} to the unit cube [0,1]°® c R®.

Stochastic Color Quantization. Paper [7] proposed a solution to the problem (1) by reformulating it
as a nonconvex non-smooth stochastic transportation problem:

miny:{)’L»-nyK}EYKCR”K F(yl""’yk)a (3)

[
FOY)=F(,-. )= Z pi Mingg ok d (& Vi)' == i~ p minyq <k d(§;, v,
i=1

where E;_, denotes the expected value over a set of image pixels {&;} with corresponding probabilities
{pi}.

To solve the stochastic transportation problem (3), we employed the Stochastic Quantization algorithm,
as discussed in [9] and [7]:
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y& D — g, (ylgt) _ptgﬁt)), k=1..,K,

g = FIED - y® 172 (yO _E0) k=K,
"l kzk®,

k® esSED,y®)= argmin, g dED,y"), t=041,...,

where y© =y, y®y, EY is a random element from the set {&,,i=1,...,1}, p, >0 is a learning rate

parameter, m, is the projection operator onto the set Y —R", r>1 is the degree of the norm, K is the
number of colors in the optimal palette, and t =0,1,... is the iteration number. To calculate the update for

the element ylﬁt) based on the gradient value glﬁt) we used Stochastic Gradient Descent (SGD) algorithm
[11] and its nonconvex nonsmooth extension from [12].
In contrast to traditional clustering algorithms such as K-Means [4], which updates all components yﬁ”

and uses all elements {&;} per iteration t, our approach processes only single component of y® and uses

one random element Ee{@l,...,gl} per iteration. This eliminates memory constraints and enhances scala-

bility for high-resolution images. Furthermore, paper [7] establishes local convergence conditions for the

algorithm (4) under specific initial conditions that is not typically guaranteed for traditional algorithms.
Given the non-convex nature of the problem, the initialization (seeding) of elements

y(o) ={y,.k=1...,K} plays a crucial role in the algorithm's convergence. While uniform sampling from

—

the original distribution = is the fastest seeding approach, it can compromise accuracy. We implemented
the seeding technique proposed in [13], where the selection probability of a new element in ylﬁo) is propor-

tional to its distance from previously selected elements {ylﬁo)}. The seeding algorithm proceeds as follows:

Sample the initial element yc()o) uniformly from =,

|
Select the next element i) with probability min,g I &; -y IIZ/ZminKs<k g —y@n2,
i1

Repeat step 2 until y© contains K elements.

The research [7] empirically demonstrates the efficiency of this seeding technique and compares the
convergence rates of modified versions of the algorithm (4) with adaptive learning rates.

Numerical Experiments. To evaluate the efficiency of Stochastic Color Quantization, we conducted
lossy compression experiments on a subset of images from the ImageNet dataset [10], varying in resolution
and stored in JPEG format. The algorithm was implemented in Python, utilizing NumPy [14] for efficient
CPU-based tensor operations. All experiments were executed on a virtual machine with a dual CPU core
and 8GB RAM. For reproducibility, we set the random seed to 42 and used consistent hyperparameter values
(p=0.001, r=3) across all experiments. The source code and experimental results are publicly available
in our GitHub repository [15].

The table presents the algorithm’s convergence time, the optimal value of the objective function (3),
and the Mean Squared Error (MSE) distortion metric between original and compressed images. To demon-
strate the algorithm’s performance, we applied it to a monochrome image labeled ILSVRC2012 val
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00023267 from the dataset. The original image (1200x1206 resolution, 248 distinct colors, 790.0KB) was
compressed to 207.4KB with an optimal palette of four colors: #707070, #3e3e3e, #d7d7d7, and #alalal
(see Figure). The algorithm converged in 17.7+0.2 seconds, achieving a transport value of F(y) = 129465.2
and a distortion of MSE = 0.0037. Additionally, we performed an experiment on the original colorful image
(135917 distinct colors, 1.4MB), which was compressed to 213.5KB with an optimal palette (#8c684a,
#ebd3a6, #513926, #c¢79967), convergence time 18.2+0.2 seconds, transport value F(y) = 170058.8, and a
distortion MSE = 0.0055.

TABLE. Comparison of the optimal transport value for images with different resolutions

Optimal color palette Image resolution
(K) 438x500 1200x1206 1606x2400
F(y) = 22275.6 F(y) = 170058.8 F(y) =419947.9
4 t =2.78+0.07 sec t=17.83+0.21 sec t =47.64+0.4 sec
MSE = 0.0043 MSE = 0.0056 MSE = 0.0049
F(y) = 14673.1 F(y) = 122733.9 F(y) = 265572.5
8 t = 2.9440.1 sec t=19.11+0.45 sec t =50.97+1.1 sec
MSE = 0.0019 MSE = 0.0029 MSE = 0.0019
F(y) = 12138.0 F(y) = 98810.9 F(y) = 205460.5
12 t =3.16+0.17 sec t = 20.55+0.83 sec t = 54.88+2.08 sec
MSE = 0.0013 MSE = 0.0018 MSE = 0.0012
F(y) = 9789.3 F(y) =71381.9 F(y) = 146528.3
24 t = 4.33+0.45 sec t = 28.36+2.75 sec t = 74.84+7.01 sec
MSE = 0.0009 MSE = 0.0010 MSE = 0.0005
F(y) = 8691.3 F(y) =59184.2 F(y) = 121956.2
36 t = 6.08+0.89 sec t = 39.42+5.83 sec t = 105.84+14.96 sec
MSE = 0.0007 MSE = 0.0007 MSE = 0.0004

FIGURE. Original image (left) compared with compressed image with lower quality and an optimal color palette
with 4 colors (right)
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Conclusions. This study introduces a scalable algorithm for solving the color quantization problem
without memory constraints, demonstrating its efficiency on a subset of images from the ImageNet dataset
[10]. The convergence speed of the algorithm can be further enhanced by modifying the update rule (4) with
alternative methods to Stochastic Gradient Descent (SGD) that incorporate adaptive learning rates, as ex-
plored in [7]. Moreover, the stochastic nature of the proposed solution enables the utilization of paralleliza-
tion techniques to simultaneously update the positions of multiple quants {y, .k =1,...,K}, potentially lead-

ing to significant performance improvements. This aspect of parallelization and its impact on algorithm
efficiency presents a topic for future research. The proposed method not only addresses the limitations of
existing color quantization techniques but also opens up new possibilities for optimizing image compression
algorithms in resource-constrained environments.
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Introduction. Lossy image compression algorithms play a crucial role in various domains, including
graphics, and image processing. As image information density increases, so do the resources required for pro-
cessing and transmission. One of the most prominent approaches to address this challenge is color quantization,
proposed by Orchard et al. (1991). This technique optimally maps each pixel of an image to a color from a limited
palette, maintaining image resolution while significantly reducing information content. Color quantization can
be interpreted as a clustering problem (Krishna et al. (1997), Wan (2019)), where image pixels are represented
in a three-dimensional space, with each axis corresponding to the intensity of an RGB channel.

The purpose of the paper. Scaling of traditional algorithms like K-Means can be challenging for large
data, such as modern images with millions of colors. This paper reframes color quantization as a three-dimen-
sional stochastic transportation problem between the set of image pixels and an optimal color palette, where the
number of colors is a predefined hyperparameter. We employ Stochastic Quantization (SQ) with a seeding tech-
nique proposed by Arthur et al. (2007) to enhance the scalability of color quantization. This method introduces
a probabilistic element to the quantization process, potentially improving efficiency and adaptability to diverse
image characteristics.

Results. To demonstrate the efficiency of our approach, we present experimental results using images from
the ImageNet dataset. These experiments illustrate the performance of our Stochastic Quantization method in
terms of compression quality, computational efficiency, and scalability compared to traditional color quantization
techniques.

Conclusions. This study introduces a scalable algorithm for solving the color quantization problem without
memory constraints, demonstrating its efficiency on a subset of images from the ImageNet dataset. The conver-
gence speed of the algorithm can be further enhanced by modifying the update rule with alternative methods to
Stochastic Gradient Descent (SGD) that incorporate adaptive learning rates. Moreover, the stochastic nature of
the proposed solution enables the utilization of parallelization techniques to simultaneously update the positions
of multiple quants, potentially leading to significant performance improvements. This aspect of parallelization
and its impact on algorithm efficiency presents a topic for future research. The proposed method not only ad-
dresses the limitations of existing color quantization techniques but also opens up new possibilities for optimizing
image compression algorithms in resource-constrained environments.

Keywords: non-convex optimization, stochastic optimization, stochastic quantization, color quantization,
lossy compression.
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CrucHeHHS 306pa>xeﬂnﬂ 3 BTpaTaMi 3a J0MOMOI'010 CTOXaCTUYHOI'0O KBAHTYBAHHHA
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BeTyn. AIropuTMu CTUCHEHHS 300paXKeHb 13 BTpaTaMH BiirparoTh BUPILIAAbHY POJb Y Pi3HUX 00IacTsIX,
BKJIIOYa04H Tpacdiky Ta 00poOKy 300paxeHb. 31 301IbIEHHAM LIUTLHOCTI iH(pOpMaLlii Ipo 300pakeHHs 3pocTa-
I0Th 1 pecypcHu, HeoOXiHI A1t 00poOku Ta nepeaadi. OMHUM i3 HAWBUAATHIMINX MIiAXOAIB IO BUPIIIEHHS M€l
poOJieMU € KBaHTyBaHHs KOJbOpiB, 3anponoHoBaHe Orchard et al. (1991). Lls TexHika ONTHMaIbHO HOETHYE
KOJKEH IiKceJb 300pakeHHs 3 KOIbOPOM 3 00MEXEHOI NaliTpu, 30epiralouu po3aiibHy 34aTHICTh 300paXKeHHS
IIpY 3HAYHOMY 3HIKEHHI BMicTy iH(opMmarii. KBaHTyBaHHS K0JIb0piB MOXKHA IHTEPIPETYBATH K IIpo0IeMy Kila-
crepusauii (Krishna et al. (1997), Wan (2019)), e nikceni 300paxeHHs IpeACTaBIIEHI B TPUBUMIPHOMY TPOC-
TOpi, JIe KOXKHA BiCh BiJNOBinae iHTeHCUBHOCTI KaHainy RGB.

Merta po6oTu. MaciitaOyBaHHS TPAIUIIIHHUX aITOPUTMIB, TakuX Ik K-Means, Moxe OyTH CKIIQIHUM IS
BEJIMKUX JIaHUX, TAKUX SIK Cy4acHi 300pakeHHsI 3 MUJIbIHOHAMHU KOJIBOPIiB. Y Miil CTATTI KBAHTYBaHHS KOJIbOPIB
PO3IIIAIA€THCS IK TPUBUMIPHA CTOXAaCTUYHA TPAHCIIOPTHA 3a71a4a MiX HaOOPOM ITiKCelliB 300payKeHHS Ta ONTH-
MaJILHOIO KOJIbOPOBOO MAITPOIO, JIe KUTBKICTh KOJBOPIB € MONEPEAHRO BU3HAUCHHUM TineprnapameTpoM. Mu BH-
KOPHUCTOBYEMO CTOXaCTHYHE KBaHTyBaHHs (SQ) i3 TEXHIKOO MOCIBY, 3anponoHoBanoto Arthur et al. (2007) mis
MIIBUIIICHHS MacIITabOBaHOCTI KBAaHTYBaHHS KOJbOpiB. Lleit MeToa BBOAUTH IMOBIPHICHUH €IEMEHT Yy MpoIecC
KBaHTYBaHHsI, MOTCHIIIHHO MOKPAIIYIOUN e(PEeKTHBHICTh 1 aJanTOBAaHICTh IO PI3HOMAHITHUX XapaKTEPUCTHK
300pakeHHS.

PesyabTaTn. [1106 npoaeMoHcTpyBaTu €()EKTHBHICTH HALIOTO TiIX0AY, MU TPEICTABIIIEMO EKCIIEPUMEH-
TaJbHI Pe3yJIbTaTH, BUKOPUCTOBYIOYH 300pakeHHs 3 Habopy naHux ImageNet. L{i ekcriepuMeHTH LIIOCTPYIOTh
€(eKTUBHICTh HAIIIOTO METOAY CTOXACTHYHOIO KBAHTYBAaHHS 3 TOUKH 30pYy SKOCTi CTUCHEHHS, e(h)eKTHBHOCTI
004uCIIeHb 1 MacIITa0OBaHOCTI MOPIBHAHO 3 TPAAUIIMHIMU METOAAMH KBAaHTYBAaHHS KOJIbOPIB.

Bucnosku. Ile nocnimxeHHs npencTaniise MacliTaOOBaHUN alNrOpUTM I BUPIMIEHHS NIPOOIeMU KBAHTY-
BaHHS KOJbOPiB 0€3 00MeXeHb IaM’sTi, AEMOHCTPYIOUH HOro eheKTUBHICTh Ha MiAMHOXKUHI 300paXeHb 13 Ha-
6opy nanux ImageNet. IlIBuaKicTh KOHBEPIeHIIT AITOPUTMY MOXHA JOAATKOBO IMiIBHUIINATH, MOAH(IKYBaBIIH
MPaBHJIO OHOBJICHHS 32 JOTIOMOTOI0 METO/IB, IbTEPHATUBHUX CTOXaCTHYHOMY IpadieHTHOMY criycky (SGD),
SIKi BKJFOYAIOTh aJalTHBHI IIBUIKOCTI HaBUaHHSA. KpiM TOro, CTOXaCTHYHUIA XapakTep 3alporoHOBAHOTO pi-
IIEHHS TO3BOJISIE BAKOPUCTOBYBATH METOIH PO3IAPaIeIOBAHHS ISl OTHOYACHOT'O OHOBIICHHS MO3HIIIH KUTBKOX
KBaHTIB, IO MOTEHLIITHO MOKEe TIPU3BECTH JI0 3HAYHOTO MiABUILEHHS MPOoXyKTHBHOCTI. Lleli acnekt po3mapae-
JIFOBaHHS Ta HOTO BIUIMB Ha €(EKTUBHICTH aITOPUTMY € TEMOIO ISl MalOyTHIX JOCHTIKeHb. 3alpOnoHOBaHHI
METOJ HE TUIbKH YCYBA€ OOMEKEHHS ICHYFOUHX METO/IiB KBAHTYBAHHS KOJIbOPIB, aliec i BiJIKPUBAE HOBI MOJXKJIH-
BOCTI JIJIsl ONITUMI3Alli{ aJIrOPUTMIB CTUCHEHHS 300paXKeHb Y CEpEIOBHIIAX 3 00OMEXKEHUMH PECypCaMHu.

KurouoBi cjioBa: Heonykiia ONTHMI3allis, CTOXaCTHYHA ONTUMI3allisl, CTOXaCTUYHE KBAHTYBAaHHS, KOJIbO-
POBE KBaHTYBaHHS, CTHCHEHHS 3 BTpaTaMH.
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