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Abstract
This paper investigates the sensitivity of the dynamic Nelson-Siegel factor loadings to the

value of the shape parameter, l. It also analyses the multicollinearity problem and ad-

dresses how to mitigate this issue in the estimation process. First, we find that the selection

of a fixed l is not optimal due to the collinearity problems. Second, we observe a sub-

stantial difference between the forecasting performance of the traditional estimation pro-

cedures and that of the ridge regression approach. Finally, we implement a Monte Carlo

simulation exercise in order to study the statistical distribution of the estimates of the

model parameters and thus determine the extent to which they differ from the real values.

Furthermore, we find that multicollinearity between the factors of the NS model can, in

the case of ordinary least squares estimation with a fixed parameter l, result in greater

differences between the estimates and the actual parameter values. Ridge regression cor-

rects such differences and produces more stable estimates than the ordinary linear and

nonlinear least squares methods. 
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Sobre multicolinealidad y el valor del   
parámetro de forma en el modelo de
estructura temporal de Nelson y Siegel 

León, Angel 
Rubia, Antonio 
Sanchis-Marco, Lidia 

Resumen
Este artículo investiga la sensibilidad de las cargas factoriales del modelo dinámico de

Nelson y Siegel al valor del parámetro de forma l, y analiza el problema de la multicoli-

nealidad y cómo mitigarlo en el proceso de estimación. En primer lugar, se obtiene que

la selección de un l fijo no conduce a la optimalidad debido a que pudiera dar lugar a

problemas de multicolinealidad. En segundo lugar, se observa una diferencia sustancial

en los resultados de predicción entre los procedimientos tradicionales de estimación y el

método de regresión alomada (ridge regression). Finalmente, se implementa un ejercicio

de simulación de Monte Carlo con el fin de estudiar la distribución estadística de de las

estimaciones de los parámetros del modelo, para comprobar las diferencias respecto a

los valores reales. Se observa que la multicolinealidad entre las cargas factoriales del mo-

delo de NS puede dar lugar, en el caso de estimación mínimo cuadrática lineal con pa-

rámetro de forma fijo, a mayores diferencias entre las estimaciones y los valores reales

de los parámetros del modelo. La regresión alomada corrige estas diferencias y da lugar

a estimaciones más estables que los procedimientos de estimación, lineal o no lineal, mí-

nimo cuadráticos ordinarios. 

Palabras clave: 
Estructura temporal de los tipos de interés, curva de tipos de interés, Nelson-Siegel,

regresión alomada, predicción.
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n 1. Introduction

The term structure of interest rates refers to the relationship between bonds of dif-

ferent maturities. The estimation and forecasting of the term structure are of great

interest to both academics and practitioners, and gaining an understanding of what

moves bond yield is important for a number of reasons. First, yield forecasts provide

a basis for firms’ investment decisions, consumers’ savings decisions and also policy

decisions. Second, a model of the yield curve provides an insight into how movements

in the short term translate into longer-term yields, which is key when it comes to as-

sessing the impact of monetary policy. Finally, the evolution of the yield curve is im-

portant for derivative pricing and hedging strategies. There are different methods in

the literature to estimate the yield curve: the traditional no-arbitrage and affine equi-

librium models (see, among others, Vasicek, 1977; Cox et al., 1985; Hull and White,

1990) and the factor models (Nelson and Siegel, 1987; Svensson, 1997; Jakas, 2011).

In this article, we focus on the factor models, and specifically on the Nelson-Siegel

(NS hereafter) exponential components framework, which offers a number of advan-

tages for term-structure forecasting. Public organizations, investment banks and cen-

tral banks rely heavily on NS-type models to fit and forecast yield curves. In addition,

according to the BIS (2005) and the European Central Bank (2008), a wide range of

European central banks use this model for estimating zero-coupon yield curves. Fur-

thermore, similar to BIS III requirements, the Solvency II Directive sets out new regu-

lation that dictates a Solvency Capital Requirement (SCR) for the European insurance

market. Solvency II also provides a standard framework for a wide variety of risk man-

agement purposes. Within the context of this new regulation, practitioners and aca-

demics identify the NS model as an optimal and appropriate specification to

determine the capital requirement for interest rate risk (e.g., see Abeling, 2013), and

several extensions of this model have been proposed in recent years. The NS model

has grown more popular due to its parsimonious estimation using linear regression

when the shape parameter has been fixed, its ability to estimate yields for all maturi-

ties, the intuitive interpretations of the factors obtained and, lastly, because of its

good performance in out-of-sample forecasting, as shown by Diebold and Li (2006),

De Pooter et al. (2007), Rezende and Ferreira, (2011) and Molenaars et al., (2013,

2015), among others.

Diebold and Li (2006) dinamized the yield curve model proposed by Nelson and

Siegel, in terms of a state-space representation using a simple two-step approach and

fixing the shape parameter, l. More recent studies that implement this simple ordi-

nary least squares (OLS) regression approach as an approximation to the initial non-

linear problem include Li and Yue (2008) and Annaert et al. (2010). Those studies

acknowledge that the nonlinear estimation of the original NS model produces a num-
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ber of problems, including the sensitivity of the estimates of the NS model parameters

to the starting values used in the optimization process; the very unstable time series

of the estimated coefficients, with large standard errors; negative long-term rates;

and multicollinearity between the regressors (factor loadings) of the model (see Sec-

tion 2). Although these problems had previously been reported, no satisfactory solu-

tions can be found in the literature. The main limitation of most of the existent studies

is that they largely overlook the impact of l on the NS estimation resulting from its

external determination. We try to fill this gap by analysing the effect of fixing this pa-

rameter on the results of different NS estimation procedures using both real and sim-

ulated yield data. First, we use real data to analyse the correlation between the factor

loadings that depend on the l-parameter, in order to establish how multicollinearity

is conditional on this shape parameter. Next, we attempt to show that both the linear

and nonlinear NS estimation procedures used in the literature are affected by the

abovementioned problems (for specific values of the shape parameter), which can

be avoided using ridge regression. Then, we study the out-of-sample forecasting per-

formance of these three estimation procedures. Finally, using simulated data, we de-

termine the main descriptives that characterize the statistical distribution of the

parameters included in the NS model.

This analysis can be considered an extension of the very interesting recent work by

Annaert et al. (2013). Their study concentrates only on the implementation of the

ridge regression methodology using the Euro term structure database, without

analysing the goodness of the estimators. We fill this gap by implementing an in-

depth Monte Carlo simulation, something that has not been attempted in previous

studies. Furthermore, alternative econometric techniques, such as nonlinear least

squares, can be applied. In short, we can check how well the sample distribution of

the estimated parameters agree with the real values, depending on the degree of mul-

ticollinearity in the regressors.

The main contribution of this paper is to demonstrate that the OLS estimation of the

NS model is not suitable when the multicollinearity between the factor loadings is

high. Ridge regression emerges as a possible alternative which produces both better

estimates of the model parameters and better out-of-sample forecasting performance.

A simulation exercise allows us to examine this and also to offer a more complete

analysis of the distribution of the NS-estimated parameters for linear, nonlinear and

ridge regression.

The remainder of this paper is organized as follows. In section 2, we present the NS

Model. Section 3 sets out the NS estimation procedures we want to compare. Section

4 is devoted to the empirical analysis and includes the Diebold and Li (2006)

database, the estimation results and the forecasting analysis. Section 5 addresses the



Monte Carlo simulation study used to analyse the behaviour of the NS-estimated pa-

rameters conditional on the l value. Finally, we provide our conclusions in Section 6.

n 2. Modelling the term structure: Nelson and Siegel approach

The term structure of interest rates shows the relationship between the interest rates

and maturities of zero-coupon bonds without risk of default. Let Pt (t) denote the

price of a t-period discount bond, that is, the present value at time t of €1 receivable

t periods ahead

                                                          Pt (t)=e –tyt(t)                                                         (1)

where yt (t) denotes the continuously compounded zero-coupon nominal yield to ma-

turity t. We focus on the Nelson and Siegel (1987) forward rate curve, which can be

viewed as a constant plus a Laguerre function1. The yield curve is

                                             yt (t)= b1t F1t+ b2t F2t+b3t F3t                                            (2)

where

                                     F1t=1; F2t= 1–e –ltt ; F3t= 1–e –ltt – e –ltt                                    (3)

Therefore, Nelson and Siegel propose fitting the term structure using a flexible, smooth

parametric function2. They demonstrate that their proposed model is capable of cap-

turing many of the typically observed shapes that the yield curve adopts over time. Al-

though this model was in essence designed to be a static model which does not account

for the intertemporal evolution of the term structure, Diebold and Li (2006) show that

the coefficients can be interpreted as three latent dynamic factors. Thus, the time-vary-

ing parameters {b1t , b2t , b3t}are referred to as latent dynamic factors or factor realiza-

tions and they have an economic interpretation in the term structure. {F1t , F2t , F3t} are
termed factor loadings and are the weight functions of the dynamic coefficients. The

complete parameter set for the NS specification is qt= {b1t,b2t, b3t, lt} . The l parameter

is the shape parameter and governs the exponential decay rate; in other words, it de-

termines the location of the maximum or minimum curvature component.

1 A Laguerre function consists of a polynomial times an exponential decay term.
2Nelson and Siegel (1987) show that, empirically, the NS model fits the data well, as shown by Nelson and Siegel (1987), and it performs relatively
well in out-of-sample forecasting analysis (see, among others, Diebold and Li, 2006, and De Pooter et al., 2007). The functional form of the yield
curve proposed by Nelson and Siegel (1987) ensures a smooth curve rather than the saw-toothed one of the spline method, but it is still sufficiently
flexible to fit the generally observed shapes of yield curves (Sundaram and Das, 2010). However, from a theoretical viewpoint the NS yield curve
model is not necessarily arbitrage-free (e.g., see Bjork and Christensen, 1999, Coroneo et al., 2011) and does not belong to the class of affine yield
curve models (e.g., see Diebold et al., 2004). In this line of reasoning, Coroneo et al. (2011) study the extent to which the NS curves accord with
the no-arbitrage condition. They find that despite the lack of a theoretical arbitrage-free derivation, the NS model produces dynamically consistent
curves. Nevertheless, our main aim in this paper is not to analyse the theoretical properties of the NS model but to study the triangle shape
parameter multicollinearity-estimation procedure.
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The loading on b1t is F1t and is unity. It can thus be viewed as a long-term factor and

the dynamic factor b1t can be interpreted as the level factor. It holds that yt(∞)=b1t ≥ 0.
The loading on b2t is F2t , which is a decreasing function that starts at 1 for t =0 and
then decreases monotonically and quickly to 0. It may thus be viewed as a short-term

factor. Note that yt(0)=b1t+b2t > 0. The dynamic factor b2t is related to the slope of

the yield curve and is measured as: (i) the difference yt(∞)–yt(0)=–b2t , or (ii) the dif-

ference between the ten-year yield and the three-month yield. The loading on b3t is

F3t, which starts at 0, then increases and, finally, decays to 0. It may thus be viewed

as a medium-term factor. The dynamic factor b3t is closely related to the yield curve

curvature. Specifically, it is measured as: 2yt(2 year)– yt(3 year)– yt(10 year). 

n 3. Estimating the Nelson-Siegel model

The traditional procedures used to estimate the NS model parameters can be sum-

marized as follows: i) minimizing the sum of squared errors (SSE) using OLS over

a grid of pre-specified values of ls (Nelson and Siegel, 1987); ii) minimizing SSE

using linear regression conditional on a chosen fixed shape parameter l (Diebold

and Li, 2006; de Pooter, 2007; and Fabozzi et al., 2005) and iii) using nonlinear

optimization techniques (Cairns and Pritchard, 2001). Annaert et al. (2013) pro-

pose combining a grid search to determine the value of the optimal shape param-

eter with a ridge regression in order to solve some of the estimation problems

resulting from the traditional linear and nonlinear estimation of the model. More

specifically, we address the nature of the multicollinearity problem in the following

sections using both real and simulated data and extending the work of these au-

thors by analysing the statistical distribution of the estimated model parameters.

In the estimation analysis carried out in the empirical section we compare the per-

formance of the OLS regression after having set a value for the nonlinear estimation

and the grid search-ridge regression approach.

3.1. Linear regression with a fixed value of the shape parameter

The most widely used approach in the literature to estimate the NS model is fixing

the value for the shape parameter, l, so that the remaining parameters can be esti-

mated by OLS. In this method, the objective function is:

                                                   min S ( f (qi,ti) –yi)2                                                 (4)

where f (qi, ti) is the estimated yield in (2) and yi is the observed yield. N is the length

of the maturities vector. The parameter set is qt= {b1t , b2t , b3t } with the shape
parameter having been previously fixed so that the initial nonlinear model is
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transformed into a linear one. This estimation method is the most popular among

market practitioners due to its simplicity.

Diebold and Li (2006), using monthly data, find the value of the shape parameter

that maximizes the curvature component to be l = 0.0609. Fabbozi et al. (2005) set

it at 3 as the result of a grid search for the whole dataset. In this article, we have fixed

l at 0.0609 as in Diebold and Li (2006). The main advantages of this estimation ap-

proach are that it does not require starting values for the estimates and that it pro-

vides global optimal estimators. It does, however, suffer from the limitations

mentioned in Annaert et al. (2013) and outlined above. In addition, Annaert et al.

(2013) show that the fixed shape parameter might not be robust to different maturity

vectors. Indeed, the optimal shape parameter may also vary over time. In this article,

we compare the ridge regression with both traditional linear and nonlinear estimation,

which are used as benchmarks.

3.2. Nonlinear regression

There are a few studies which estimate the NS model using nonlinear optimization

(e.g., see Cairns and Pritchard, 2001), all of which produce very unstable estimates

of the model. As outlined above, in the next section we examine the problems of using

nonlinear procedures to estimate the NS model using both real and simulated data.

For this purpose, we use the MATLAB lsqcurvefit function, with the target function for
a specific day being (4).

Note that the estimated value of the model parameters can change in each period.

The main problem with this method is that the optimization problem is not convex

and has multiple local optima, as well as being very sensitive to the initial values. Ac-

cordingly, the nonlinear standard methods that are readily available in statistical pack-

ages are not appropriate for estimating the NS model.

3.3. Grid search with ridge regression

Due to the limitations of the two estimation methods set out above, we follow Annaert

et al. (2013) and their ridge regression approach by combining the grid search of the

shape parameter with the OLS regression to “free” the shape parameter. These authors

re-estimate the remaining parameters for the optimal l obtained in the grid search for

the days when the degree of multicollinearity3 among factor loadings is too high. In

order to do that, we have to define the collinearity measure we test in the ridge regres-

3We define multicollinearity through the concept of orthogonality. When the regressors are orthogonal or uncorrelated, all the eigenvalues of the
design matrix are equal to one and the design matrix is of full rank. If at least one eigenvalue is different from one, especially when equal to zero
or near zero, then no orthogonality exists, meaning that multicollinearity is present. (More details in Vinod and Ullah, 1981).
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sion estimations. We use the condition number, which is based on the eigenvalues of

the NS regressors and which, following Annaert et al. (2013), is defined as:

                                                       k(X)=
eigmax                                                          (5)

where X is the matrix of the regressors in (2) defined as a general regression model

(y=Xb+e) and eigmax and eigmin are the maximum and minimum eigenvalues respec-

tively of the regressors matrix X. If X, which includes F1t,F2t,F3t, presents multicollinear-

ity, that is to say the regressors are correlated, then the condition number will be

different from 1. The higher the difference between the two eigenvalues, the higher
the degree of multicollinearity. In this article, we follow the suggestion of Belsley

(1991) and use a condition number of 10, equivalent to a correlation coefficient
above 0.8, as a measure of the degree of multicollinearity. Then, if we detect collinear-

ity, we implement ridge regression to avoid the resulting instability in the OLS esti-

mates. This re-estimation results in a trade-off between the reduction in the variance

and the increase in the bias of the estimators; according to Kutner et al. (2004), esti-

mators with small variance are preferred to unbiased ones.

The ridge regression estimates vector is as follows:

                                                      b̂=[X’X+kI]–1 X’y                                                    (6)

where k is the ridge constant (small and positive), which can be estimated using an

iterative procedure searching for the lowest positive number that makes the new con-

dition number fall below the chosen threshold.

According to Annaert et al. (2013), this process can be implemented as follows: 

1. Perform a grid search based on the OLS regression to obtain the estimate of l

which generates the lowest mean squared error. 

2. Calculate the condition number for the ‘optimal’ l. 

3. Re-estimate the coefficients by using ridge regression only when the condition num-

ber is above a specific threshold (e.g., 10). The size of the ridge constant is chosen

using an iterative searching procedure that finds the lowest positive number, k,
which makes the recomputed condition number fall below the threshold. 

4. By adding a small bias, the correlation between the regressors will decrease and

so will the condition number.

In short, this method tries to correct the problems resulting from multicollinearity

between the factor loadings in the estimation of the NS model and also allows the

shape parameter to move freely over time.

15
 

  

A E S T I M AT I O
T   I E B

O
n m
ulticollinearity and the value of the shape param

eter in the term
 structure N

elson-Siegel m
odel.León, A., Rubia, A. and Sanchis-M

arco, L.
A
ESTIM

ATIO
, TH

E
IEB

IN
TERN

ATIO
N
A
L
JO
U
RN
A
L
O
F
FIN
A
N
C
E, 2018. 16: 8-29

eigmin



n 4. Empirical analysis

In this section, we estimate the NS model with a database consisting of time series of

cross sections, using the three estimation methods described in Section 3. We first present

the database, then we address the issue of multicollinearity and check for its presence

when using the benchmark OLS method, in order to justify the use of ridge regression.

4.1. Interest rate data base: Initial analysis

We use the same database as in Diebold and Li (2006)4, which contains the end-of-

month price quotes (bid-ask average) for U.S. Treasuries from January 1985 through

December 2000, taken from the CRSP (Center for Research in Security Prices) govern-

ment bond files. Maturities are fixed at months t =[3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48,
60, 72, 84, 96, 108, 120]. 

4.2. The collinearity problem

In this subsection, we study the correlation between the factor loadings of the NS model

for the same database as in Diebold and Li (2006), as well as their evolution over time,

in order to illustrate the collinearity problem in the OLS estimation procedure with a

fixed l value. Empirically, the three factors have been found to be only mildly correlated.

This result is also corroborated by studies that build on principal component analysis

(PCA) or assume zero correlations in factor analysis, yet still arrive at these factors, such

as that by Litterman and Scheinkman (1991). When estimating the NS model, for many

values of the l-parameter the correlation between the second and the third loading is

high (as is the condition number), thus the attribution of a particular yield curve shape

to the specific factor becomes difficult. 

n Figure 1. Correlation between factor loadings for 0<l<1 in the OLS estimation
of the NS model

4 This database is available at http://www.ssc.upenn.edu/~fdiebold/YieldCurve.html
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Figure 1 shows the correlation between the factor loadings for different values of l

ranging from 0 to 1 using the same maturities as in the Diebold and Li (2006) data-

base. We observe that the correlation coefficient is –1 for l = 0, and that it increases
abruptly to 1 as l grows (in fact, it practically reaches unity at l=0.4).  

In Diebold and Li (2006) the l-parameter is fixed at 0.0609 (for a monthly

database). For each cross-section of yields, they run an OLS regression, thus ob-

taining a time series of b-values. They then model the b-values as AR(1)-processes,
and use these specifications to predict future b-values and hence yield curves. Ac-

cording to our results, their l value is well-chosen, as it indicates only a weak pos-

itive correlation between the factor loadings. To show the consequences of high

correlation, we replicate some of the results of Diebold and Li (2006) using a crit-

ical lambda value, such as l = 0.9 (high correlation between the factor loadings). 

Table 1 depicts a summary of the main descriptive statistics of the factors of the

NS model for the OLS estimation procedure conditional on a shape parameter

ranging between 0.0609 and 0.9. The estimated parameters become more unstable

and much more volatile as the degree of multicollinearity increases. In short, the

potential multicollinearity problem in the OLS estimation depends on the value of

l, so fixing its value is not an optimal solution. At any rate, if we aim to meaningfully

estimate the parameters of the NS model, we need to restrict the l values to ranges

where practical identification is still possible: in this case between 0.06 and 0.1. An-
other more suitable solution to reduce the degree of multicollinearity and allow the

l parameter to be free is to use the ridge regression presented in subsection 3.3. The

estimation results (and their comparison) as well as the forecasting analysis are stud-

ied in subsections 4.3 and 4.4, respectively.

l Table 1. Estimates of the NS model parameters. Diebold and Li (2006)
database. OLS estimation with fixed shape parameter: l=0.0609 and l=0.9
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Factor Mean Std dev. Minimum Maximum

OLS with = 0.0609 (Diebold and Li, 2006)

1 7.5792 1.5242 4.4267 12.0887

2 -2.0983 1.6083 -5.6155 0.9190

3 -0.1623 1.6873 -5.2506 4.2327

OLS with  = 0.9 (Diebold and Li, 2006)

1 7.1136 1.4415 4.3669 11.6095

2 19.3637 17.296 -11.4131 59.9616

3 -29.2828 24.7262 -86.8997 13.6209



4.3. Estimation results

Table 2 lists the main descriptive statistics of the estimated parameters resulting

from the estimation methods detailed above. It can be observed that the nonlinear

estimation produces the estimates of the parameters with the largest standard de-

viation, indicating a high degree of instability. The estimated parameters for the

other models are more realistic and make more economic and statistical sense.

More specifically, the estimates resulting from the ridge regression estimation are

more stable, and have lower volatility than those provided by the linear regression

after having fit the shape parameter l (the procedure used in Diebold and Li, 2006).

In addition, as mentioned above, the ridge regression allows the shape parameter

to vary over time, which is more consistent with reality. Furthermore, this estimation

approach prevents numerical problems in the optimization process due to multi-

collinearity. In sum, the performance in estimating the parameters of the NS model

improves considerably when combining the grid search of the shape parameter with

the ridge regression approach.

In the next subsection, we analyse the in-sample and out-of-sample forecasting

ability of these three alternative estimation procedures in order to check whether

the ridge regression approach outperforms the other two traditional estimation

procedures.

l Table 2. Estimates of the NS model parameters with three alternative estimation
approaches. Diebold and Li (2006) database. 
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Factor Mean Std dev. Minimum Maximum

Non-linear regression

1 2.879 114.8458 -1472.8000 562.4165

2 3.3549 295.2528 -2610.9000 2706.2000

3 4.8221 296.3553 -2704.3000 2551.0000

0.1206 0.5112 -0.2113 5.7932

OLS with = 0.0609 (Diebold and Li, 2006)

1 7.5792 1.5242 4.4267 12.0887

2 -2.0983 1.6083 -5.6155 0.919

3 -0.1623 1.6873 -5.2506 4.2327

Lambda Grid search and ridge regression

1 5.0917 1.2064 2.5091 8.5853

2 1.0411 0.8449 -0.4338 3.6184

3 0.9513 0.3625 0.2189 2.1122

0.1099 0.1232 0.0101 0.596



4.4. Forecasting analysis

In order to compare the forecasting performance for the analysed estimation methods

we use the Mean Absolute Prediction Error (MAPE). For every month in our database

we estimate the NS model using the three competing procedures. Then, we employ

the estimated term structures to forecast the rates used in the estimation (in-sample

forecasting) and the contemporaneous yields (out-of-sample forecasting) using a

rolling window procedure. The estimation procedure with the lowest MAPE will be

the method with the best forecasting performance.

First, we focus on the in-sample forecasting analysis by computing the MAPE for the

three estimation procedures considered. According to the results in Annaert et al.

(2013), the linear regression with a fixed shape parameter outperforms the other two

competing methods for all maturities (see Table 3).

l Table 3. In-sample MAPE. Estimation of the NS model with alternative estimation
methods using the Diebold and Li (2006) database

Second, in order to investigate the ability of the estimation procedures to forecast

the long and short term of the term structure, we focus on the out-of-sample perfor-

mance test for a forecast horizon of one month. We compare the predicted rates for

every maturity to the actual interest rate using the MAPE criterion. The results are
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Maturity OLS D-L Nonlinear Grid-Ridge

3 0.0711 0.2268 0.6640

6 0.0301 0.1855 0.5060

9 0.0533 0.1791 0.3886

12 0.0667 0.1671 0.3174

15 0.0653 0.1536 0.3172

18 0.0548 0.1285 0.3726

21 0.0369 0.1085 0.4262

24 0.0414 0.1172 0.4616

30 0.0295 0.0877 0.6818

36 0.0515 0.0926 0.8405

48 0.0624 0.0816 1.1536

60 0.0716 0.0919 1.3227

72 0.0649 0.0863 1.5463

84 0.0471 0.0827 1.6364

96 0.0456 0.0862 1.7648

108 0.0533 0.0895 1.8466

120 0.0616 0.1064 1.8610



presented in Table 4. In the out-of-sample forecast, the grid search with conditional

ridge regression proposed by Annaert et al. (2013) outperforms the other models for

maturities higher than one year. Therefore, the ridge regression implementation can

also solve some estimation problems related to the collinearity between the factor

loadings in the important out-of-sample forecasting framework.

l Table 4. Out-of-sample MAPE. Estimation of the NS model with alternative
estimation methods using the Diebold and Li (2006) database

n 5. Simulation analysis

In this section, we carry out a Monte Carlo simulation exercise for the yield curve,

based on the database in Diebold and Li (2006). The main aim is to analyse the de-

viations of the simulated parameters from the actual ones, thus comparing the alter-

native estimation procedures in the presence of multicollinearity. We generate 1000

errors for the model (2) using normal distributions with mean 0 and a small standard

deviation. In the first stage, the error variance-covariance matrix will be diagonal as

in Diebold et al. (2006) and Diebold and Rudebusch (2013). We generate a simulated

yield curve database with these error distributions in order to obtain the statistical

distribution of the estimated parameters and identify multicollinearity. In the second
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Maturity OLS D-L Nonlinear Grid-Ridge

3 1.7696 1.5821 1.8687

6 1.8219 1.6785 1.8310

9 1.8314 1.7213 1.7637

12 1.8441 1.7575 1.6864

15 1.8417 1.7714 1.6099

18 1.8623 1.8032 1.5714

21 1.8878 1.8385 1.5394

24 1.9120 1.8709 1.5135

30 1.9151 1.8864 1.4403

36 1.9327 1.9102 1.3862

48 1.9695 1.9634 1.3166

60 2.0348 2.0451 1.3049

72 2.0240 2.0476 1.2534

84 2.0296 2.0656 1.2367

96 2.0409 2.0884 1.2038

108 2.0786 2.1357 1.1869

120 2.1492 2.2131 1.1769

   



stage, we use the Cholesky decomposition to obtain the error variance-covariance

matrix of the observed errors from the real dataset.

When using the diagonal error variance-covariance matrix, we first take a l value which

produces collinearity problems and compare the estimates resulting from the Diebold

and Li (2006) approach with a fixed l value, the nonlinear estimation and the grid

search with conditional ridge regression. Taking the maturity vector t of the database

used in the previous section and considering a grid of lambda values l ∈ (0,1) varying
by 0.001, we analyse the behaviour of the conditioning index (CI) (calculated as the
square root of the condition number defined in (5)) for the loading matrix X depending

on the value of l . In Figure 2, we show the evolution of this index conditional on the

value of l . From l = 0.05, the higher the value of l, the higher the value of the index.
However, two critical areas can be identified: one for values very close to zero and an-

other for values close to one. 

Figures 3 and 4 show how the factor loadings 2 and 3, respectively, evolve with the

value of the shape parameter l. In both Figures 3 and 4, it can be seen that the higher

the value of l, the higher the value of the factor loadings for long maturities. There-

fore, the values of the factor loadings are conditional on the value of lambda, with

the impact depending on the time to maturity.

n Figure 2. Conditioning index for a grid of l values
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n Figure 3. Evolution of the loading factor 2 for different values of l

n Figure 4. Evolution of the loading factor 3 for different values of l

In order to examine the collinearity issue, we select a ‘conflictive’ value of l resulting

in a high conditioning index, for example l = 0.01, with a CI value of 165.41. The data
we use are simulated data from the errors generated with normal distributions using

diagonal and nondiagonal variance-covariance. Table 4 of Diebold, et al. (2006) re-

ports the standard deviations of the errors of the yield estimates, which we use to set
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the diagonal values of the variance-covariance matrix in the first stage. The simulation

procedure entails the following steps: i) We generate 1000 random errors normally dis-

tributed for the 17 maturities considered; ii) The errors are computed as the product

of the random errors and the diagonal variance-covariance matrix of the abovemen-

tioned errors; iii) The new simulation data are the sum of the NS-estimated parameters

using the corresponding procedure (OLS with a fixed value for the shape parameter,

nonlinear regression and ridge regression) and the simulated errors from step ii).

Table 5 lists the descriptive statistics for the estimated parameters of the NS model for

the simulated data and the three competing estimation methods considered (for the

linear regression, the shape parameter was fixed at l = 0.01). As can be noticed, the
best estimates are those produced by the grid search with conditional ridge regression.

Whereas the estimates produced by the linear and (especially) nonlinear regression pro-

cedures are affected by multicollinearity, the ridge regression approach remedies this

problem and stabilizes the estimates. 

l Table 5.Descriptive statistics. Estimated parameters of the NS model using the
simulated database (errors set in the diagonal V-C matrix taken from Diebold et
al., 2006)

Table 6 shows the descriptive statistics of the estimates obtained when simulating

with the real covariance matrix of the estimated errors resulting from the NS model

estimation using the Diebold and Li (2006) database. As can be observed, the results

are very similar to those listed in Table 5. As outlined above, we next study the be-

haviour of the estimated parameters of the NS model, analysing the evolution of the
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Factor Mean Std dev. Minimum Maximum

Non-linear regression

1 10.4205 3.9541 -6.1644 11.4105

2 -433.4383 1779.0000 -18256.0000 6283.2000

3 397.6026 1775.2000 -6334.6000 18208.0000

3.9541 1.9397 0.0100 47.7567

OLS with = 0.01 (Diebold and Li, 2006)

1 -4.2450 1.1370 -8.2313 -0.8624

2 12.3624 1.1071 9.0685 16.2439

3 28.0432 1.6048 23.2707 33.6687

Grid search and Ridge regression

1 8.3023 0.0002 8.3017 8.3031

2 0.8102 0.0004 0.8084 0.8117

3 1.2307 0.0002 1.2301 1.2310

0.1010 0.0000 0.1010 0.1010



difference between the estimates obtained by simulation and the real values, depend-

ing on the degree of multicollinearity between the factor loadings and the value of

the shape parameter in the OLS estimation procedure with a fixed value of l .

l Table 6.Descriptive statistics. Estimated parameters of the NS model using the
simulated database (errors set in the nondiagonal V-C matrix taken from Diebold
et al., 2006)

More specifically, a value of 0.01 is set for l in the OLS estimates of the NS model

with the real database. Table 7 presents the descriptive statistics for these estimates,

to be compared with those obtained with the other two competing models (Tables 5

and 6). A substantial departure of the estimates from the true values can be observed

for the OLS method, and some of these deviations do not make economic sense; this

is the case with the b1 (long-term yield) negative values. We also study another rep-

resentative value of l (0.0609), the value used in Diebold and Li (2006). In this case,

more stable estimates are obtained and, from the comparison of Table 2 and Table

8 (which shows the descriptive statistics for the estimates obtained with the simulated

data and a nondiagonal covariance matrix for the errors, using the OLS method with

l=0.0609), it can be deduced that the departures from the actual parameter values

become smaller. Therefore, multicollinearity results in a substantial increase in the

departure of the estimates obtained by simulation from the real values; as such, the

sensitivity of the estimates to the value of l in the NS model can be clearly observed.

On the other hand, if we compare the results for the alternative methods presented

in Tables 5 and 6 (simulated data) with those listed in Table 2 (actual database) it

can be seen that it is the nonlinear that shows the greatest difference. Conversely, the
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Factor Mean Std dev. Minimum Maximum

Non-linear regression

1 5.0189 3.7776 -5.9209 10.6331

2 -1310.4000 3125.6000 -20563.0000 486.2568

3 1312.4000 3108.9000 -525.1691 20524.0000

0.9297 1.7272 0.0101 5.8641

OLS with = 0.01 (Diebold and Li, 2006)

1 -6.2669 1.1370 -10.2532 -2.8843

2 14.3307 1.1071 11.0368 18.2122

3 30.8988 1.6048 26.1263 36.5242

Grid search and Ridge regression

1 5.7115 0.3283 5.5742 8.6194

2 3.5979 0.3303 0.4356 3.7357

3 1.4672 0.2014 0.7574 2.0210

0.0121 0.0069 0.0101 0.1717



grid search combined with ridge regression strategy is the method that generates the

smallest differences; in addition, the estimates make economic sense. In short, the

use of ridge regression remedies the adverse effect of multicollinearity in the estima-

tion of the NS model parameters and, in addition, it allows the shape parameter to

range freely over time.

l Table 7. Descriptive statistics. Estimated parameters of the NS model with the
Diebold and Li (2006) database using OLS estimation with a fixed shape parameter

l Table 8. Descriptive statistics. Estimated parameters of the NS model obtained
with the simulated database (errors set in the nondiagonal V-C matrix taken from
Diebold et al., 2006) using OLS estimation with a fixed shape parameter

n 6. Concluding remarks

This article extends the study by Annaert et al. (2013) with an in-depth analysis of

the distribution of the estimates produced by the NS model conditional on the l

parameter. In a preliminary analysis, we study the out-of-sample forecasting per-

formance of three different approaches — the ridge regression method, nonlinear

optimization and OLS estimation — for the NS model. The empirical evidence in-

dicates that the ridge regression approach produces the best out-of-sample fore-

casting performance when maturities range between one and ten years.

Furthermore, we analyse the multicollinearity issue in the NS model factor loadings,

which explain the suitability of a time-varying l parameter. To that end, we carry

out a Monte Carlo simulation exercise, generating a yield database from the

Diebold and Li (2006) estimation errors in the NS model. The main results of this

simulation exercise are: i) when using the OLS method with external determination
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OLS with = 0.01 (Diebold and Li, 2006)

Factor Mean Std dev. Minimum Maximum

1 1.3015 4.6970 -9.9989 14.6009

2 4.3186 4.8297 -7.4617 15.7271

3 12.1117 9.2219 -12.6888 34.0332

OLS with = 0.0609 (Diebold and Li, 2006)

Factor Mean Std dev. Minimum Maximum

1 11.3751 0.0013 11.3715 11.3797

2 -3.6642 0.0013 -3.6702 -3.6595

3 1.0008 0.0053 0.9851 1.0160



of the shape parameter, multicollinearity results in unstable estimates that do not

make economic sense ; ii) a grid search with conditional ridge regression corrects

the problems resulting from collinearity between the factor loadings of the NS

model and, in addition, it allows for a free shape parameter; iii) the nonlinear pro-

cedure produces unstable parameter estimates due to optimization problems.

The results are interesting for policy-makers, forecasters and practitioners, enabling

them to draw ever more precise, stable and accurate determinations from the yield

curve information using the NS model. According to our findings, the estimation pro-

cedures used in the financial sector can be substantially improved by remedying the

collinearity problem and also allowing a variable shape parameter.

This paper can be extended using the Svensson model (1994), characterized by four

model parameters and two shape parameters, and other specifications such as the

NS model estimated in studies by De Potter (2007), Bliss (1997), Bjork and Chris-

tensen (1999) and Diebold, et al. (2008). Further interesting research would be to

allow for a time-varying setting for the dynamics of the beta parameters. This would

generate a dynamic model in line with Diebold, et al. (2006), who propose a new

framework of modelling the yield curve under a state-space system using the Kalman

filter. This new framework enables the VaR to be forecasted for portfolios of bond

returns, thus enabling an evaluation of the performance of the extended two-step ap-

proach in Diebold and Li (2006) (comparing their results with those driven by the

data generating process, the state-space system). 

Finally, we can assume that the true data generating process is driven by the dy-

namic NS model with multivariate stochastic volatility for the errors of the transi-

tion equation, following Koopman (2010) and Hautsch and Yang (2010). Hence,

the idea is to estimate the extended two-step Diebold and Li (2006) model and a

multivariate GARCH process for the system 3x1 vector time series with components

{bk,t}T
t=1. For instance, the popular parsimonious DCC model proposed by Engle

(2002) could be estimated. Other possible alternatives for modelling multivariate

GARCH can be seen in Engle (2009).
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