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1. PREFACE

The general framework of optical coherence theory is now well estab-
lished and has been described in numerous publications (see Beran &
Parrent, 1964; Born & Wolf, 1999; Goodman, 1985; Mandel & Wolf, 1995;
Marathay, 1982; Perina, 1985; Schouten & Visser, 2008; Troup, 1967; Wolf,
2007b). In this article, we provide an overview of recent advances, both
theoretical and experimental, that have been made in a number of areas
of classical optical coherence. These advances have been spurred on by
the introduction of the space-frequency representation of partially coher-
ent fields, to be discussed in Section 2, and an increased emphasis on the
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spatial coherence properties of wave fields. The fundamental experiment
to measure spatial coherence is, of course, Young’s double-slit experiment,
which still provides many insights to this day; recent developments will
be discussed in Section 3.

A number of important optical processes are influenced by the coher-
ence properties of the wave field. Results relating to the propagation of
partially coherent wavefields are too numerous to be comprehensively
covered here, but Section 4 highlights some of the significant results relat-
ing to optical beams. In Section 5, the influence of coherence on focusing
is summarized and reviewed. In Section 6, the scattering of partially
coherent wave fields, and its relation to inverse scattering problems, is
discussed.

In recent years, it has been shown that spatial correlation functions have
interesting topological properties associated with their phase singulari-
ties; these properties and the relevant literature are discussed in Section 7.
The coherent mode representation and its applications are described
in Section 8. Several techniques for the numerical simulation of wave
fields with a prescribed statistical behavior are explained in Section 9.
Many novel applications of partially coherent fields are described in the
concluding Section 10.

As noted, optical coherence is a mature field of study, and a single
review article cannot comprehensively cover all of the important devel-
opments. This article is restricted to results from the classical theory
of optical coherence, and excludes discussion of the quantum theory.
A number of other developments are discussed only in the context of
the specific topics mentioned earlier. Among these are correlation-induced
spectral changes and the relatively recent unified theory of coherence and
polarization. “Correlation-induced spectral changes” refers to the impor-
tant observation that the spectrum of a partially coherent wave field can
change on propagation or scattering; a thorough review of research on
the phenomenon was undertaken by Wolf and James (1996). The “unified
theory of coherence and polarization” refers to a new formulation of the
electromagnetic theory of optical coherence that has been used, among
other things, to characterize the changes in the state and degree of polar-
ization of electromagnetic fields on propagation; the fundamental results
are reviewed by Wolf (2007b).

The topics discussed in this review are unified, in part, by the realiza-
tion that the ability to manipulate the spatial coherence of a wave field
provides an additional degree of control over the properties of that wave
field. Many of the advances in optical coherence have come from the
design of fields with unusual structural properties that are optimized for
different applications.
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2. THE SPACE-FREQUENCY REPRESENTATION

Optical coherence theory is the study of the statistical properties of light
and their influence on the observable characteristics of optical fields. The
beginnings of coherence theory can be traced back to Verdet (1865), who
estimated the spatial coherence of sunlight on the Earth’s surface, and
van Cittert (1934) and Zernike (1948), who calculated the evolution of the
spatial coherence of light propagating from an incoherent source.1

The modern theory of optical coherence, as championed by Wolf and
others, began with the study of the mutual coherence function 0(r1, r2, τ)
of wide-sense statistically stationary optical fields, defined as

0(r1, r2, τ) = 〈U∗(r1, t1)U(r2, t2)〉, (2.1)

where the time difference τ ≡ t2 − t1 and the angle brackets represent time
averaging or, equivalently for ergodic fields, ensemble averaging. The field
U(r, t) is typically taken to be scalar, with polarization effects neglected,
but the formalism can be readily extended to the fully electromagnetic
case, as discussed in detail in Wolf (2007b). It was shown by Wolf (1955)
that the mutual coherence function satisfies a pair of wave equations in
free space, namely, (

∇
2
1 −

1
c2
∂2

∂τ 2

)
0(r1, r2, τ) = 0, (2.2)

(
∇

2
2 −

1
c2
∂2

∂τ 2

)
0(r1, r2, τ) = 0, (2.3)

where ∇2
i is the Laplacian with respect to the Cartesian coordinates of

position vector ri and c is the speed of light. From these equations one
can see that the statistical properties of light evolve in a well-defined way
on propagation, and much of the research in optical coherence theory has
involved the study of the consequences of these equations of evolution.

Just as it is possible to study the behavior of deterministic wave fields
in the time domain or the frequency domain, it is also possible to study
the behavior of partially coherent wave fields in either time or frequency.
The cross-spectral density function W(r1, r2,ω) is defined as the temporal

1More details on the history of optical coherence theory can be found in Born and Wolf (1999), section
10.1, and Wolf (2001). Reprints of a number of classic articles can be found in Mandel and Wolf (1990).
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Fourier transform of the mutual coherence function with respect to the
time variable τ , i.e.,

W(r1, r2,ω) =
1

2π

∞∫
−∞

0(r1, r2, τ)e−iωτdτ . (2.4)

The cross-spectral density will then satisfy a pair of Helmholtz equations,(
∇

2
1 + k2

)
W(r1, r2,ω) = 0, (2.5)(

∇
2
2 + k2

)
W(r1, r2,ω) = 0, (2.6)

where k = ω/c is the wave number of light corresponding to frequency
ω. This pair of elliptic partial differential equations for the cross-spectral
density function is, in general, easier to solve than the pair of hyperbolic
wave equations for the mutual coherence function; the mutual coherence
function can, however, be readily determined by taking an inverse Fourier
transform of the cross-spectral density.

The cross-spectral density is commonly written in terms of two other
functions, the spectral density S(r,ω) and the spectral degree of coherence
µ(r1, r2,ω), as

W(r1, r2,ω) =
√

S(r1,ω)
√

S(r2,ω)µ(r1, r2,ω). (2.7)

The spectral density S(r,ω) represents the intensity of the wave field at
position r and frequency ω, and it may be written in terms of the cross-
spectral density function as

S(r,ω) ≡W(r, r,ω). (2.8)

The spectral degree of coherence µ(r1, r2,ω) is a measure of the degree
of correlation of the field at the two positions r1 and r2 and at frequency
ω, and may be written in terms of the cross-spectral density function and
spectral density as

µ(r1, r2,ω) ≡
W(r1, r2,ω)

√
S(r1,ω)S(r2,ω)

. (2.9)

It can be shown that the absolute value of the spectral degree of coherence
is restricted to the values

0 ≤ |µ(r1, r2,ω)| ≤ 1, (2.10)
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where 0 represents complete spatial incoherence, and 1 represents full spa-
tial coherence. The physical significance of µ(r1, r2,ω) will be discussed in
more detail in Section 3.

An important milestone in the development of coherence theory in the
space-frequency domain was the observation by Wolf (1982) that the cross-
spectral density itself may be represented as a correlation function derived
from an ensemble of monochromatic realizations of the field. This can be
proven by first noting that the cross-spectral density is Hermitian, i.e.,

W(r2, r1,ω) =W∗(r1, r2,ω), (2.11)

and that it is non-negative definite, such that∫
D

∫
D

W(r1, r2,ω)f ∗(r1)f (r2)d2r1d2r2 ≥ 0, (2.12)

where f (r) is an arbitrary square-integrable function and, for a secondary
source with a field propagating from z = 0, the domain of integration
D is the source plane. Assuming that the cross-spectral density is also
square-integrable over this domain, it represents a Hilbert–Schmidt ker-
nel; by Mercer’s theorem2, it may be expanded in a series of orthogonal
functions of the form

W(r1, r2,ω) =
∑

n
λn(ω)φ

∗
n(r1,ω)φn(r2,ω), (2.13)

where the eigenvalues λn(ω) and the eigenfunctions φn(r,ω) satisfy the
integral equation∫

D

W(r1, r2,ω)φ(r1,ω)d2r1 = λn(ω)φn(r2,ω). (2.14)

The summation, in general, may be over multiple indices, and may be a
finite or infinite sum. The eigenvalues are non-negative, and the eigen-
functions are orthogonal and typically taken to be orthonormal. Equa-
tion (2.13) represents what is now known as the coherent mode representation
of the cross-spectral density, to be discussed further in Section 8.

The coherent mode representation may be used to construct an ensem-
ble of monochromatic wave fields whose second-order average reproduces

2Mercer’s theorem and Hilbert–Schmidt kernels are introduced in the theory of integral equations; see,
for instance, Moisewitsch (1977).
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a given cross-spectral density. To do so, we introduce an ensemble of fields
defined by

U(r,ω) =
∑

n
an(ω)φn(r,ω), (2.15)

where the coefficients an are random variables. We choose these variables
such that the average of them over the entire ensemble of fields (denoted
by 〈· · · 〉ω) satisfies the condition

〈a∗n(ω)am(ω)〉ω = λn(ω)δnm. (2.16)

It then follows that the cross-spectral density function may be written as

W(r1, r2,ω) = 〈U∗(r1,ω)U(r2,ω)〉ω. (2.17)

On substitution from Equation (2.15) into Equation (2.17), we readily find
that Equation (2.13) is satisfied. Furthermore, on substitution from Equa-
tion (2.17) into Equations (2.5) and (2.6), it follows that the individual
realizations U(r,ω) each satisfy the Helmholtz equation and represent
valid monochromatic, and therefore coherent, wave fields.

This result, which seems very formal and almost trivial at first glance,
is perhaps one of the most useful results in modern coherence theory,
because it implies that a valid cross-spectral density can be found by any
suitable averaging process over a set of monochromatic realizations. This
is used, for instance, in the “beam wander” model discussed in Section 7.

It is to be noted that it is possible to extend the space-frequency
theory to higher-order correlation functions, as done by Wolf (1986b)
and Agarwal and Wolf (1993); the formalism becomes significantly more
complicated, however.

The theory of optical coherence has developed rapidly with the intro-
duction of the space-frequency representation. Perhaps the most signif-
icant result to arise as yet is the theory of correlation-induced spectral
changes, in which the degree of spatial coherence of a source can affect
the properties of the radiated spectral density. The results arising from
this theory are too numerous to be included here; a comprehensive review
was provided some time ago by Wolf and James (1996).

At its heart, the theory of optical coherence may be said to be the optics
of observable quantities. Although traditional optics focuses on the behavior
of wave fields U(r, t) that are not directly observable, coherence theory
describes the behavior of second-order and higher moments of the wave
field such as the mutual coherence function and the cross-spectral density
function, which can be measured through interference experiments. An
early discussion of this point of view was given by Wolf (1954).
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3. PARTIALLY COHERENT FIELDS IN YOUNG’S EXPERIMENT

The state of coherence of a wave field is intimately related to its ability
to form an interference pattern. The relation between the visibility of the
fringes that are produced in Young’s celebrated experiment (see Young,
1804 and Young, 1807) and the state of coherence of the field at the two
pinholes was first studied by Zernike (1938).3 To see this relation in the
space-frequency domain, let us first consider the case of a partially coher-
ent, scalar wave field that impinges on an opaque screen A with two
identical small apertures at positions Q(r′1) and Q(r′2). (See Figure 1.) The
field at a point P(r) on the observation screen B is given by the formula

U(r,ω) = K1U(r′1,ω)+ K2U(r′2,ω), (3.1)

where

Ki = −
ikA
2π

exp(ikRi)

Ri
(i = 1, 2) (3.2)

is the propagator that relates the field at Q(r′i) to the field at P(r). Here A is
the area of each pinhole, Ri denotes the distance from Q(r′i) to P, and k is
the wave number associated with the angular frequency ω. It follows from
Equation (3.1) that the spectral density of the field at P equals

S(r,ω) = |K1|
2 S(r′1,ω)+ |K2|

2 S(r′2,ω)

+ 2
√

S(r′1,ω)S(r′2,ω)Re
{
K∗1K2µ12(ω)

}
, (3.3)

z

R2

R1

O

P(r)
Q(r ′1)

Q(r ′2)

Incident partially 
coherent field

FIGURE 1 Young’s interference experiment with partially coherent light. The
perforated screen is situated in the plane z = 0, and the origin O of the coordinate
system is taken in between the two pinholes.

3 A historical overview of the role of Young’s experiment in the development of coherence theory was
given by Wolf (2007a).
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where

µ12(ω) =
〈U∗(r′1,ω)U(r′2,ω)〉√

S(r′1,ω)S(r′2,ω)
(3.4)

is the spectral degree of coherence of the field at the two pinholes. Equa-
tion (3.3) is the so-called spectral interference law for partially coherent
fields.

In the often occurring case that |K1| ≈ |K2| = K and S(r′1,ω) ≈ S(r′2,ω) =
S(ω), and on writing

µ12(ω) = |µ12(ω)| eiφ , (3.5)

and

K∗1K2 = K2eik(R2−R1), (3.6)

Equation (3.3) reduces to

S(r,ω) = 2K2S(ω)
{
1+ |µ12(ω)| cos[φ + k(R2 − R1)]

}
. (3.7)

In the immediate neighborhood of the observation point P on the plane
B, the phase factor k(R2 − R1) will take on all values between 0 and 2π ,
whereas K remains approximately unchanged. Hence, in the vicinity of P,
the maximum spectral density equals

Smax(ω) = 2K2S(ω) (1+ |µ12(ω)|) , (3.8)

and the minimum spectral density equals

Smin(ω) = 2K2S(ω) (1− |µ12(ω)|) . (3.9)

Suppose now that the two pinholes are covered by narrow-band filters,
centered around the frequency ω. If we define the spectral visibility (or
“sharpness”) of the interference fringe that is formed near P as

V(P,ω) =
Smax(ω)− Smin(ω)

Smax(ω)+ Smin(ω)
, (3.10)

it immediately follows that

V(P,ω) = |µ12(ω)| . (3.11)
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Hence, as derived by Mandel & Wolf (1976), the visibility of the fringes
that are produced in Young’s interference experiment is a direct measure of the
modulus of the spectral degree of coherence of the field at the two pinholes.

It is readily seen from Equation (3.7) that, in general, the spectral den-
sity of the field that is observed on the screen B differs from that of
the field at the pinholes. This is due to (a) the appearance of the wave
number k in the propagators Ki and (b) the modulus and phase of the
spectral degree of coherence µ12(ω). Such spectral changes were analyzed
in James and Wolf (1991a,b) for both filtered and broadband thermal light.
In the latter case, significant spectral changes may occur. Experimental
observations of spectral changes in a double-slit setup were presented by
Santarsiero and Gori (1992). It is clear that Equation (3.7) can also be used
to determine the spectral degree of coherence of the field at the apertures
by comparing the spectral density in the far zone with that at the perfo-
rated screen. Such a study was carried out by Kandpal, Vaishya, Chander,
Saxena, and Joshi (1992), and Kandpal and Vaishya (2000).

Another consequence of the spectral interference law, as expressed by
Equation (3.3), is that the state of coherence of the field in the region of
superposition may be different from that at the two pinholes. One might
expect that when the incident field is partially coherent, i.e., 0 < |µ12(ω)| <

1, the same holds true for the field on the observation screen B. This turns
out not always to be the case. Extending the work of Ponomarenko and
Wolf (1999), it was predicted by Schouten, Visser, and Wolf (2003) that
at certain pairs of points the light is fully coherent, i.e., |µ(r1, r2,ω)| = 1,
regardless of the state of coherence of the light at the two pinholes. The
other extreme, namely the complete absence of coherence can also occur.
This was demonstrated by Schouten, Gbur, Visser, and Wolf (2003) who
found that at certain pairs of observation points µ(r1, r2,ω) = 0. This
means that at these points, the spectral degree of coherence is singular.
It is important to realize that such a coherence singularity occurs in a six-
dimensional (r1, r2)-space, in contrast to the classical phase singularities
that are found in two or three dimensions. A fuller discussion of coherence
singularities is presented in Section 7.

Next we turn our attention to Young’s experiment with stochastic,
electromagnetic beams. A study by Wang and Lü (2002) described how
covering the apertures with linear polarizers can lead to changes in the
spectral density and the state of polarization. Their work was based
on the “beam coherence-polarization matrix” approach as developed by
Gori (1998). Here we concentrate on the recently developed “unified the-
ory of coherence and polarization,” described in Wolf (2003b) and Wolf
(2003a). In that theory, the state of coherence and polarization of a random
beam is characterized by the electric cross-spectral density matrix, which is
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defined as

W(r1, r2,ω) =
[

Wxx(r1, r2,ω) Wxy(r1, r2,ω)
Wyx(r1, r2,ω ) Wyy(r1, r2,ω)

]
, (3.12)

where

Wij(r1, r2,ω) = 〈E∗i (r1,ω)Ej(r2,ω)〉, (i, j = x, y). (3.13)

Here Ei(r,ω) is a Cartesian component of the electric field at a point spec-
ified by a position vector r at frequency ω, of a typical realization of
the statistical ensemble representing the beam. A method to determine
the elements of the matrix W(r1, r2,ω) is described by Roychowdhury
and Wolf (2004). Several observables can be derived from knowledge of
the cross-spectral density matrix. The spectral density is given by the
expression

S(r,ω) = Tr W(r, r,ω), (3.14)

where Tr denotes the trace. The degree of coherence η(r1, r2,ω) of the field
is defined as

η(r1, r2,ω) =
Tr W(r1, r2,ω)

[Tr W(r1, r1,ω)Tr W(r2, r2,ω)]1/2 . (3.15)

In a manner quite similar to that for the spectral degree of coherence of
scalar wave fields (see Section 2), one can show that

0 ≤ |η(r1, r2,ω)| ≤ 0, (3.16)

with the extreme values 0 and 1 corresponding to complete incoherence
and complete coherence, respectively. The sharpness of the interference
fringes that are produced in Young’s experiment are related to the mod-
ulus of η(r1, r2,ω) in complete analogy to the scalar case described in the
first part of this section. The absence of off-diagonal matrix elements in the
definition of the spectral degree of coherence reflects a generalization of
the classical Fresnel-Arago interference laws, according to which mutually
orthogonal components of the electric field do not give rise to interference.
A third observable is the (spectral) degree of polarization P(r,ω). This is
defined as the ratio of the spectral density of the polarized part of the
beam and its total spectral density (see Born & Wolf, 1999). One can show
that

P(r,ω) =

√
1−

4Det W(r, r,ω)

[Tr W(r, r,ω)]2 , (3.17)

where Det denotes the determinant.
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As pointed out in Wolf (2003a), the elements of the electric cross-
spectral density matrix change as the beam propagates. It is therefore to
be expected that the observable quantities S(r,ω), η(r1, r2,ω), and P(r,ω),
which are derived from the matrix, will also change on propagation.
Examples of such correlation-induced changes are discussed in Section 4.

Within the present context, that of Young’s experiment, we need to
know the electric field at two points P(r1) and P(r2), both located on the
observation screen depicted in Figure 1. It is given by the expressions

Ex(r1,ω) = K11Ex(r′1,ω)+ K21Ex(r′2,ω), (3.18)

Ey(r1,ω) = K11Ey(r′1,ω)+ K21Ey(r′2,ω), (3.19)

Ex(r2,ω) = K12Ex(r′1,ω)+ K22Ex(r′2,ω), (3.20)

Ey(r2,ω) = K12Ey(r′1,ω)+ K22Ey(r′2,ω), (3.21)

with the propagators Kij defined as

Kij = −
ikA
2π

eikRij

Rij
, (i, j = 1, 2), (3.22)

and where Rij denotes the distance from the pinhole Q(r′i) to the point
P(rj). As was shown by Roychowdhury and Wolf (2005b), substitution
from Equations (3.18)–(3.21) into definition (3.12) yields the cross-spectral
density matrix in the region of superposition, expressed entirely in terms
of that matrix at the two pinholes. They applied this formalism to the case
of incident Gaussian Schell-model beams (see Section 4) and found that
the degree of polarization of the field on the observation screen depends
on (1) the position of observation, (2) the degree of polarization of the inci-
dent light, and (3) the degree of coherence of the field at the pinholes. The
degree of coherence of the field that is observed, however, only depends on
the degree of coherence of the incident field. Another striking prediction
made by Roychowdhury and Wolf is that light that is completely unpo-
larized at the pinholes may become partially polarized across the fringe
pattern. Experimental confirmation of this prediction was presented in
Gori, Santarsiero, Borghi, and Wolf (2006). A further study of the observ-
able quantities in the region of superposition was presented by Li, Lee,
and Wolf (2006).

Generalizing the work concerning scalar fields of Schouten et al. (2003),
it was shown by Agarwal, Dogariu, Visser, and Wolf (2005) that there
exist special pairs of points at which the field is spatially fully coherent,
irrespective of the state of coherence and polarization of the field that is
incident at the two pinholes.
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4. THE EVOLUTION OF PARTIALLY COHERENT BEAMS

In was noted in Section 2 that coherence functions obey certain propaga-
tion equations: the mutual coherence function 0(r1, r2, τ) satisfies a pair
of wave equations and the cross-spectral density function W(r1, r2,ω) sat-
isfies a pair of Helmholtz equations. The coherence functions therefore
have a well-defined behavior as they propagate; however, other properties
derived from those coherence functions are not solutions of a differential
equation and can evolve in nontrivial and unexpected ways on propa-
gation. Among the properties that can change on propagation are the
spectrum and the spectral degree of coherence of a wave field, defined by
Equations (2.8) and (2.9), respectively, as well as the state of polarization
and degree of polarization of an electromagnetic wave field.

Of particular interest is the propagation and evolution of partially
coherent beams, i.e., wave fields that are highly directional. Partially
coherent beams can be generated, for instance, by the distortion of a
fully coherent laser beam, using a rotating ground-glass plate or a liquid
crystal spatial light modulator. Numerous articles have been published on
the behavior of partially coherent beams, in fact, more than can reasonably
be covered here. In this section, we highlight some of the most significant
results and discuss their theoretical foundations.

We consider first a partial coherent scalar wave field propagating from
the plane z = 0 into the half-space z > 0; in the plane z = 0, the cross-
spectral density has the form W0(ρ1, ρ2,ω), where ρ1 and ρ2 represent
transverse coordinates in the plane. Using the space-frequency represen-
tation of partially coherent wave fields, it can be readily shown that the
cross-spectral density at points r1 and r2 in the half-space may be written
in integral form as

W(r1, r2,ω) =
∫∫

W0(ρ
′

1, ρ′2,ω)G∗(ρ′1, r1,ω)G(ρ′2, r2,ω)d2ρ′1d2ρ′2, (4.1)

where G(ρ′, r,ω) is the free-space propagator for the Helmholtz equation.
The propagator may be written as

G(ρ′, r,ω) =
1

2π
∂

∂z

(
eiks

s

)
, (4.2)

with s ≡ |r− ρ′| and r = (ρ, z).
If we assume for the moment that the field is highly directional, it fol-

lows that the cross-spectral density must be negligible outside of a narrow
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cone centered on the z-axis. The propagator may then be approximated by
its paraxial form,

G(ρ′, r,ω) = −
ik

2πz
exp[ik[(x− x′)2 + (y− y′)2]/2z]. (4.3)

It is to be noted that there is no precise criterion for what constitutes a
“beamlike” wave field. For a monochromatic wave field, a beam condition
is typically formulated using the angular spectrum representation of the
wave field. With this representation, the field in the half-space z > 0 can
be written as

U(r,ω) =
∫

a(k⊥) exp[ik · r] d2k, (4.4)

where k = (k⊥, kz), |k| = k, and

kz =

√
k2 − k2

⊥
. (4.5)

The quantity a(k⊥) is the angular spectrum of the wave field, defined as

a(k⊥) =
1

(2π)2

∫
U0(ρ

′,ω) exp[−ik⊥ · ρ′] d2ρ′, (4.6)

where U0(ρ,ω) is the wave field in the plane z = 0. Equation (4.4)
expresses the field as a coherent superposition of plane waves propagat-
ing into the positive half-space. For |k⊥| ≤ k, the quantity kz is real-valued,
and the plane wave has a constant amplitude on propagation. For |k⊥| > k,
however, kz is imaginary and the plane wave decays exponentially in the
z-direction; it is an evanescent wave. The total wave of Equation (4.4) is
said to be beamlike if

|a(k⊥)| ≈ 0 unless |k⊥|� k. (4.7)

A similar definition exists, almost by analogy, for a partially coherent
field. We introduce the angular spectrum of the cross-spectral density
function as

A(k1⊥, k2⊥) =
1

(2π)2

∫∫
W0(ρ

′

1, ρ′2,ω) exp[ik1⊥ · ρ
′

1]

× exp[−ik2⊥ · ρ
′

2] d2ρ′1d2ρ′2. (4.8)
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The cross-spectral density may be written in terms of plane waves as

W(r1, r2,ω) =
∫∫

A(k1⊥, k2⊥) exp[−ik1 · r1] exp[ik2 · r2] d2k1⊥d2k2⊥.

(4.9)

It can be shown (for details see, for instance, section 5.6.3 of Mandel &
Wolf, 1995) that the field will be beamlike if

|A(k⊥, k⊥)| ≈ 0 unless |k⊥|� k. (4.10)

A number of special classes of fields have been used because of their
analytic simplicity and their relevance to physically realizable optical
fields. The first of these is produced by a so-called Schell-model source
(Schell, 1961), for which the spectral degree of coherence is a function of
the spatial difference variable alone, i.e.,

µ0(r1, r2,ω) = µ0(r2 − r1,ω). (4.11)

The most analytically tractable class of partially coherent sources are
known as Gaussian Schell-model sources, for which the spectral density and
spectral degree of coherence in the plane z = 0 are both of Gaussian shape,
namely

S0(ρ,ω) = A2e−ρ
2/2σ 2

S , (4.12)

µ0(ρ
′,ω) = e−ρ

′2/2σ 2
µ . (4.13)

Here A represents the amplitude of the wave, σS represents the width
of the source and σµ represents the transverse correlation length of the
source; all quantities are in general frequency dependent. It can be readily
shown that the spectral density and spectral degree of coherence retain
a Gaussian form on propagation. An early study of the directionality of
beams produced by such sources was done by Foley and Zubairy (1978).

When the width of the spectral degree of coherence function is much
narrower than the width of the spectral density function, one may fur-
ther approximate a Schell-model source by using the quasi-homogeneous
approximation, such that

W0(r1, r2,ω) ≈ S0

(
r1 + r2

2
,ω
)
µ0(r2 − r1,ω). (4.14)

A study of the propagation characteristics of Gaussian quasi-
homogeneous beams was undertaken by Collett and Wolf (1980); the
concept of quasi-homogeneity is also used to describe scatterers, and it
will be further discussed in Section 6.
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Directionality is often assumed to require a high degree of spatial
coherence, as in a laser, and it would seem to exclude the possibility of
beamlike fields from quasi-homogeneous sources. It was shown in Collett
and Wolf (1978) and Wolf and Collett (1978) that one can create partially
coherent sources of nearly any degree of spatial coherence that produce
the same directionality as a laser. The far-field spatial coherence properties
of such laser-equivalent sources was studied in Shirai and Wolf (2002).

The earliest studies of the evolution of partially coherent fields inves-
tigated the change in spatial coherence on propagation; most notable are
those of van Cittert (1934) and Zernike (1948), who investigated the coher-
ence of light emanating from a spatially incoherent planar source. More
generally, it has been shown by Friberg and Wolf (1983) that there exist
reciprocity relations between the intensity and spatial coherence of the
source and the spatial coherence and intensity of the radiation in the
far zone, respectively. Another investigation of the reciprocal relationship
between source and far zone has been undertaken by Friberg, Visser, and
Wolf (2000).

Although typically the spatial coherence of a field increases on propa-
gation, it was shown by Devaney, Friberg, Kumar, and Wolf (1997) that it is
possible to produce fields whose spatial coherence decreases on propaga-
tion through the mechanism of phase conjugation. Furthermore, Pedersen
and Stamnes (2000) used a radiometric approach to show that if on prop-
agation an increase of the intensity occurs, i.e., when the light is being
concentrated, the spatial degree of coherence decreases.

An unusual class of spatially coherent beams are the so-called non-
diffracting or Bessel beams; a review of the subject was presented
by Bouchal (2003). It was shown by Turunen, Vasara, and Friberg
(1991) that fields that have Bessel correlations can also possess a degree
of propagation-invariance, or even revivals of spatial coherence on
propagation.

We have already noted that the spectrum of light of a partially coherent
field can change on propagation, even in free space, a phenomenon known
as a correlation-induced spectral change. An early study of the spectral
changes of beams on propagation was done by Dac̆ić and Wolf (1988).

One can readily extend the formalism of partially coherent scalar beams
to partially coherent electromagnetic beams. Within the paraxial limit, the
electric and magnetic fields will be completely transverse to the direction
of propagation, formally chosen as the z-axis. The second-order coherence
properties of the electromagnetic beam can then be characterized by the
2× 2 cross-spectral density matrix,

W(r1, r2,ω) =
[
〈E∗x(r1,ω)Ex(r2,ω)〉 〈E∗x(r1,ω)Ey(r2,ω)〉
〈E∗y(r1,ω)Ex(r2,ω)〉 〈E∗y(r1,ω)Ey(r2,ω)〉

]
, (4.15)
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where Ex(r,ω) and Ey(r,ω) are monochromatic realizations of the x and
y-components of the electric field, respectively. Each component of this
matrix can be propagated using Equation (4.1) for a scalar partially
coherent wave field.

At any point in the wave field, the degree of polarization is defined by
the following expression, previously noted in Section 3,

P(r,ω) =

√
1−

4Det{W(r, r,ω)}
[Tr{W(r, r,ω)}]2 , (4.16)

where Det indicates the determinant and Tr the trace of the cross-spectral
density matrix. The value P = 0 indicates a completely unpolarized field,
while the value P = 1 indicates a completely polarized field.

When the correlation and polarization properties of the source are
spatially-varying, it is possible for the degree of polarization of the light
field to change on propagation; this seems to have first been observed
by James (1994), and was later discussed by Agrawal and Wolf (2000),
well before a unified theory of coherence and polarization was intro-
duced by Wolf (2003b) (and discussed in detail in Wolf, 2007b). This
unified theory was used by Wolf (2003a) to study the correlation-induced
changes in coherence, polarization, and spectrum of a partially coherent
electromagnetic beam. The far zone behavior of these properties in quasi-
homogeneous electromagnetic beams was investigated by Korotkova,
Hoover, Gamiz, and Wolf (2005). It has also been shown by Korotkova
and Wolf (2005) that the state of polarization (ellipticity, orientation and
handedness of the polarization ellipse) of an electromagnetic beam may
change on propagation in free space. A further study of the changes in the
degree of polarization was done by Salem and Wolf (2008).

There is a well-known theorem due to Stokes (1852) regarding the
decomposition of an arbitrary beam into polarized and unpolarized
components, in which he states,

. . . it is always possible to represent the given group by a stream of common
light combined with a stream of elliptically polarized light independent of the
former.

It has recently been shown that this assertion is incorrect (Wolf, 2008): the
decomposition of a beam into a polarized part and an unpolarized part
was further shown by Korotkova, Visser, and Wolf (2008) to be a local,
rather than global, property of the field (i.e., the decomposition may be
different at different points).

From the definition (4.16) of the degree of polarization, it is to be
noted that it depends only on the diagonal elements (r1 = r2 = r) of the
cross-spectral density matrix. This implies that there are many different
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coherence matrices that can produce the same degree of polarization; in
particular, Visser, Kuebel, Lahiri, Shirai, and Wolf (2009) demonstrated
that completely unpolarized beams may have a variety of coherence prop-
erties. Gbur and James (2000) used a similar observation to theoretically
construct three-dimensional unpolarized primary radiation sources that
produce nearly fully polarized fields.

Additional effects can arise when a partially coherent electromagnetic
beam propagates through a homogeneous and isotropic weakly scatter-
ing medium such as the turbulent atmosphere. The effect of atmospheric
turbulence on beam propagation can be made analytically tractable by
treating the scattered wave field by a perturbative approximation such
as the Born or Rytov series. A more direct connection to the earlier
equations of this section may be made by using the so-called extended
Huygens–Fresnel principle, in which the effect of turbulence is treated as
a perturbation of the free-space Green’s function. Equation (4.1) can then
be written in the form,

W(r1, r2,ω) =
∫∫

W0(ρ
′

1, ρ′2,ω)Cψ (ρ′1, ρ′2, r1, r2)

× G∗(ρ′1, r1,ω)G(ρ′2, r2,ω)d2ρ′1d2ρ′2, (4.17)

where ψ(ρ, r) is the phase distortion induced by the turbulence on the
field on propagation from ρ to r, and

Cψ (ρ′1, ρ′2, r1, r2) = 〈exp[ψ∗(ρ′1, r1)] exp[ψ(ρ′2, r2)]〉T (4.18)

is the correlation function of that phase distortion. The average 〈· · · 〉T
is an ensemble average over realizations of the atmospheric turbulence,
and this average is, in general, independent of the ensemble average of
the wave field. The calculation of Cψ is nontrivial and requires a num-
ber of simplifying, sometimes dubious, assumptions; details can be found
in Lutomirski and Yura (1971) and the book by Andrews and Phillips
(2005). Equation (4.17) can be used to propagate each component of
the cross-spectral density matrix to study the effects of turbulence on
polarization.

Polarization changes of beams in turbulence were first studied by
Roychowdhury, Ponomarenko, and Wolf (2005) and Salem, Korotkova,
Dogariu, and Wolf (2004); it was surprisingly shown that the degree of
polarization tends to its initial value after propagation over a sufficiently
long distance. The far zone behavior of the degree of polarization was
investigated by Korotkova, Salem, and Wolf (2004). Changes in the state
of polarization in turbulence, and its return to the initial state, were dis-
cussed by Korotkova, Salem, Dogariu, and Wolf (2005). Spectral changes of
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electromagnetic beams in turbulence were considered by Korotkova, Pu,
and Wolf (2008).

Propagation through other types of random media have also been con-
sidered; Gao and Korotkova (2007) considered the changes of polarization
on propagation through tissue.

Discussions of the behavior of the scintillation of partially coherent
beams in turbulence will be considered in Section 10.

5. FOCUSING OF PARTIALLY COHERENT WAVE FIELDS

The classical theory of focusing deals with monochromatic wave fields
that can be scalar or vectorial in nature; an excellent overview is given by
Stamnes (1986). In the present section, we examine the focusing of partially
coherent scalar fields. In particular, the effect of the state of coherence of
the field in the exit pupil on the distribution of the spectral density and
the coherence properties of the field in the focal region will be discussed.
In addition, the focal shift phenomenon will also be addressed.

We consider first a monochromatic, spherical wave of frequency ω that
emerges from a circular aperture with radius a, and which converges
toward a geometrical focus O (see Figure 2). The field in the focal region
is, according to the Huygens–Fresnel principle (see Born & Wolf, 1999,
chapter 8), given by the expression

U(r,ω) = −
i
λ

∫
S

U(0)(r′,ω)
eiks

s
dS. (5.1)

Here U(0)(r′,ω) is the field on the wavefront S that fills the aperture,
k = ω/c = 2π/λ is the wave number associated with frequency ω, with
c the speed of light and λ the wavelength. Furthermore, s = |r′ − r|
denotes the distance from a point of integration Q(r′) to the observa-
tion point P(r). From Equation (5.1), one can derive the so-called Debye

FIGURE 2 Illustrating the focusing configuration. The origin of a right-handed
cartesian coordinate system is taken at the geometrical focus O.
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integral (see Born & Wolf, 1999, chapter 8)

U(r,ω) = −
i
λ

∫
�

a(s,ω)eiks·r d�, (5.2)

where � is the solid angle subtended by the aperture at the geometri-
cal focus, which is spanned by the real unit vectors s = (sx, sy, sz > 0). The
amplitude function a(s,ω) is assumed to be real, apart from a possible con-
stant phase factor. The Debye integral expresses the field in the focal region
as a superposition of plane waves, with direction-dependent amplitudes.
Equations (5.1) and (5.2) are valid provided that λ � a � f , where f is
the radius of curvature of the wavefront. In addition, the Fresnel number
N = a2/λf must be large compared with unity.

The above two expressions can both be generalized to deal with par-
tially coherent fields. Recall the definition (2.17) of the cross-spectral
density function of the field at a pair of points r1 and r2,

W(r1, r2,ω) = 〈U∗(r1,ω)U(r2,ω)〉ω. (5.3)

On substituting from Equation (5.1) into Equation (5.3) and interchanging
the order of integration and ensemble averaging, we obtain the following
formula for the cross-spectral density in the focal region,

W(r1, r2,ω) =
1
λ2

∫∫
S

W(0)(r′1, r′2,ω)
eik(s2−s1)

s1s2
dS1 dS2, (5.4)

where

W(0)(r′1, r′2,ω) = 〈U(0)∗(r′1,ω)U(0)(r′2,ω)〉ω (5.5)

denotes the cross-spectral density of the field in the exit pupil, and

s1 = |r′1 − r1|, (5.6)

s2 = |r′2 − r2|. (5.7)

The spectral density S(r,ω) =W(r, r,ω) in the focal region is then given by
the expression

S(r,ω) =
1
λ2

∫∫
S

W(0)(r′1, r′2,ω)
eik(s′2−s′1)

s′1s′2
dS1dS2, (5.8)
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with

s′1 = |r
′

1 − r|, (5.9)

s′2 = |r
′

2 − r|. (5.10)

Alternatively, one can use the angular correlation function defined as

A(s1, s2,ω) = 〈a∗(s1,ω)a(s2,ω)〉ω. (5.11)

On substituting from Equations (5.2) and (5.11) into Equation (5.3), we
obtain the expression

W(r1, r2,ω) =
1
λ2

∫∫
�

A(s1, s2,ω)eik(s2·r2−s1·r2) d�1d�2. (5.12)

Expression (5.12) is known as the generalized Debye integral. The spectral
density S(r,ω) =W(r, r,ω) in the focal region is now given by the formula

S(r,ω) =
1
λ2

∫∫
�

A(s1, s2,ω)eikr·(s2−s1) d�1d�2. (5.13)

Equations (5.4) and (5.8) allow one to study the state of coherence and the
spectral density of the field in the focal region for a given cross-spectral
density W(0)(r′1, r′2,ω) of the field in the aperture. Alternatively, Equa-
tions (5.12) and (5.13) can be used for the same purpose when the angular
correlation function A(s1, s2,ω) of the field in the aperture is known.

To specify the position of an observation point near the geometrical
focus we use the dimensionless Lommel variables, which are defined as

u = k
(

a
f

)2
z, (5.14)

v = k
(

a
f

)√
x2 + y2. (5.15)

Friberg and Turunen (1988) studied the imaging of Gaussian Schell-
model sources by generalizing the familiar ABCD ray-transfer formalism.
They derived expressions for the size and position of the image waist.
Wang, Friberg, and Wolf (1997) used the generalized Debye integral, Equa-
tion (5.12), to calculate the axial spectral density distribution of focused,
partially coherent cylindrical waves with a Gaussian angular correlation
function. They noticed that the peak intensity decreases as the coherence
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of the field in the aperture is reduced. Also, the focal spot size was seen to
increase in that case. The effect of the state of coherence on the full three-
dimensional spectral density near focus was examined by Visser, Gbur,
and Wolf (2002). Starting from Equation (5.4), the field in the exit pupil
was assumed to be of the Gaussian Schell-model type, i.e.,

W(0)(ρ′1, ρ′2,ω) = S(0)(ω)e−(ρ
′

2−ρ′1)
2/2σ 2

g. (5.16)

Here S(0)(ω) denotes the spectral density and σg the effective coherence
length of the field in the aperture. Furthermore, ρ′ = (x′, y′) is the two-
dimensional projection, considered as a two-dimensional vector, of the
position vector r′ of the point Q onto the xy-plane (see Figure 2). It was
shown for such fields that the spectral density distribution is symmetric
about the geometrical focus. Also, the maximum spectral density, which
occurs at the geometrical focal point, decreases when σg decreases. The
intricate focal field structure that is typical of coherent fields gradually
disappears when σg becomes smaller than the aperture radius a. In addi-
tion, the maximum spectral density decreases with decreasing coherence
length. These trends can be seen from Figures 3 and 4. The focusing
of twisted anisotropic Gaussian-Schell model beams was examined by
Cai and Lin (2003). The coupling of partially coherent light into a pla-
nar waveguide was discussed by Saastamoinen, Kuittinen, Vahimaa, and
Turunen (2004).

It was noted by Visser et al. (2002) that cross-spectral density func-
tions that are not positive for all values of their spatial arguments may
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FIGURE 3 Contours of constant spectral density of a fully coherent field in the
neighborhood of the geometrical focus. Positions are indicated using Lommel
variables as defined in Equations (5.14) and (5.15) (Adapted from Visser, Gbur, &
Wolf, 2002).
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FIGURE 4 Contours of constant spectral density of a converging partially coherent
Gaussian Schell-model field with σg/a = 0.25, in the neighborhood of the geometrical
focus. The normalization is equal to that used in Figure 3. (Adapted from Visser, Gbur
and Wolf, 2002.)

produce a spectral density distribution that is still symmetric about the
focal plane, but with a maximum that does not coincide with the geomet-
rical focus. Following up on this observation, cross-spectral densities of
the type

W(0)(r′1, r′2,ω) = S(0)(ω)J0[β(r2 − r1)], (5.17)

were studied by Gbur and Visser (2003a), Pu, Nemoto, and Liu (2004), and
van Dijk, Gbur, and Visser (2008). In Equation (5.17), S(0)(ω) denotes the
(uniform) spectral density of the aperture field, J0 is the Bessel function of
zeroth order, and β is, roughly speaking, the inverse effective coherence
length. Using a coherent mode decomposition (see Section 8), it was cal-
culated how the spectral density distribution in the focal region changes
as the parameter aβ, with a the aperture radius, is varied. It was indeed
found that the spectral density at focus can be a local minimum, rather
than a maximum, when aβ < 1. This is illustrated in Figure 5. An experi-
mental observation of such a partially coherent “bottle beam” was made
by Pu, Dong, and Wang (2006).

Thus far, we have discussed focusing configurations for which the
Fresnel number N = a2/λf � 1. For systems with N ≈ 1, the location of
maximum spectral density is no longer at the geometrical focus, but it
occurs closer toward the aperture. This so-called focal shift phenomenon
is described in detail in Stamnes (1986). Lü, Zhang, and Cai (1995) and
later Friberg, Visser, Wang, and Wolf (2001) analyzed this effect for con-
verging partially coherent fields. It was found that the focal shift depends
not just on the Fresnel number, as it does for fully coherent fields, but also
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FIGURE 5 Example of the three-dimensional normalized spectral density distribution
near focus, produced by a converging, Bessel-correlated field. The minimum at the
geometrical focus is clearly visible. (Adapted from van Dijk, Gbur, & Visser, 2008.)

on the state of coherence. Experimental confirmation of these predictions
was reported by Wang, Cai, and Korotkova (2009).

It has long been known that the focusing and diffraction of poly-
chromatic light generally results in spectral changes. In studying the
diffraction of partially coherent light, Pu, Zhang, and Nemoto (1999) noted
that the spectrum can, in fact, change very rapidly under a gradual change
of system parameters. Such “spectral switches” on diffraction were stud-
ied in more detail by Pu and Nemoto (2000) and Pu and Nemoto (2002).
Similar spectral switches that arise on focusing were investigated by Gbur,
Visser, and Wolf (2002a), Gbur, Visser, and Wolf (2002b), and Visser and
Wolf (2003); it was pointed out that the switches can be associated with the
phase singularities of coherent waves (to be discussed in Section 7). These
spectral anomalies at focus were experimentally measured by Popescu
and Dogariu (2002), and the connection between phase singularities and
spectral changes was described further by Foley and Wolf (2002). The spec-
tral changes associated with the focusing of high-order Bessel beams was
discussed by Hu and Pu (2006).

The above-mentioned studies dealt exclusively with spectral densities
(intensities) of focused, partially coherent fields. The coherence proper-
ties of such fields were studied by Fischer and Visser (2004). It was found
for Gaussian-correlated fields that, depending on the effective coherence
length of the field in the aperture, the effective width of the spectral
degree of coherence can be either larger or smaller than that of the spec-
tral density distribution. Moreover, the spectral degree of coherence was
shown to possess phase singularities, even though such singularities are
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not present in the aperture field (see also Section 7). The coherence prop-
erties of focused, Bessel-correlated fields were analyzed by van Dijk et al.
(2008).

In this section, we have restricted ourselves to scalar waves, but we
do mention that a few studies have been devoted to the focusing of par-
tially coherent electromagnetic fields, e.g., Zhang, Pu, and Wang (2008),
Foreman and Török (2009), Salem and Agrawal (2009a), and Salem and
Agrawal (2009b).

6. SCATTERING OF PARTIALLY COHERENT WAVE FIELDS BY
RANDOM AND DETERMINISTIC MEDIA

The scattering of wave fields by a particulate medium such as, for exam-
ple, a colloidal suspension, is a problem of fundamental importance. The
seminal work by Mie (1908) laid the groundwork for an entire field of
study. Here we review the scattering of partially coherent fields from both
deterministic and random media. Also, the role of coherence in inverse
problems is explained.

We consider first a fully coherent field, propagating in free space, that is
incident on a deterministic scatterer. The total field U(r,ω) can be written
as the sum of the incident field, U(i)(r,ω), and the scattered field, U(s)(r,ω),
i.e.,

U(r,ω) = U(i)(r,ω)+U(s)(r,ω). (6.1)

Here r denotes the position and ω the frequency. The total field satisfies
the following integral equation (see Born & Wolf, 1999, section 13.1):

U(r,ω) = U(i)(r,ω)+
∫
V

F(r′,ω)U(r′,ω)G(r− r′,ω)d3r′, (6.2)

where V is the volume occupied by the scatterer,

F(r,ω) =
k2

4π

[
n2(r,ω)− 1

]
(6.3)

is the scattering potential and n(r,ω) the refractive index. Furthermore,

G(r− r′,ω) =
eik|r−r′|

|r− r′|
(6.4)

is the outgoing free-space Green’s function associated with the Helmholtz
operator. For weak scatterers, i.e., scatterers whose refractive index differs



Scattering of Partially Coherent Wave Fields by Random and Deterministic Media 309

only slightly from unity, we may approximate the total field U(r′,ω) in
the integral of Equation (6.2) by the incident field U(i)(r′,ω). This so-called
first-order Born approximation yields the expression

U(r,ω) = U(i)(r,ω)+
∫
V

F(r′,ω)U(i)(r′,ω)G(r− r′,ω)d3r′. (6.5)

We notice that Equation (6.5) involves an ordinary integral, and is there-
fore typically easier to solve than an integral equation of the form of
Equation (6.2).

Let us now consider the case where the incident field is not fully coher-
ent, but partially coherent. Such a field is characterized by a cross-spectral
density function (see Section 2)

W(i)(r1, r2,ω) = 〈U(i)∗(r1,ω)U(i)(r2,ω)〉ω. (6.6)

Because the incident field is random, the scattered field, represented by
the last term of Equation (6.5), will also be random. Its cross-spectral
density function

W(s)(r1, r2,ω) = 〈U(s)∗(r1,ω)U(s)(r2,ω)〉ω (6.7)

can readily be found by substituting from Equation (6.5) into Equa-
tion (6.7) and interchanging the order of averaging and integration. The
resulting expression is

W(s)(r1, r2,ω) =
∫∫
V

F∗(r′1,ω)F(r′2,ω)W(i)(r′1, r′2,ω)

× G∗(r1 − r′1,ω)G(r2 − r′2,ω)d3r′1d3r′2. (6.8)

Expression (6.8) pertains to the scattering of a partially coherent field by
a deterministic scatterer. It can easily be generalized to scatterers whose
refractive index, and hence also their scattering potential F(r,ω), is a
random function of position. This is achieved by replacing the product
F∗(r′1,ω)F(r′2,ω) by the correlation function

CF(r′1, r′2,ω) = 〈F∗(r′1,ω)F(r′2,ω)〉F, (6.9)

where the symbol 〈. . .〉F denotes an average taken over an ensemble of
scatterers. On making use of Equation (6.9) and again interchanging the



310 The Structure of Partially Coherent Fields

order of averaging and integration, we obtain the formula

W(s)(r1, r2,ω) =
∫∫
V

CF(r′1, r′2,ω)W(i)(r′1, r′2,ω)

× G∗(r1 − r′1,ω)G(r2 − r′2,ω)d3r′1d3r′2. (6.10)

The radiant intensity (the rate at which the field radiates energy at fre-
quency ω in direction s per unit solid angle) of the scattered field in a
direction specified by the unit vector s equals

J(rs,ω) = r2W(s)(rs, rs,ω), (6.11)

= r2
∫∫
V

CF(r′1, r′2,ω)W(i)(r′1, r′2,ω)

× G∗(rs− r′1,ω)G(rs− r′2,ω)d3r′1d3r′2. (6.12)

Equation (6.12) brings into evidence that the radiant intensity depends on
both the statistical properties of the scatterer [represented by the function
CF(r′1, r′2,ω)] and those of the incident field [represented by the function
W(i)(r′1, r′2,ω)]. Using the above formalism, Jannson, Jannson, and Wolf
(1988) studied how the degree of coherence of the incident field affects
the directionality of the field scattered by a Gaussian-correlated medium.
They found that the effective angular width of the radiant intensity
increases as the correlation length of the scatterer decreases. Furthermore,
the radiant intensity was found to be more peaked in the forward direc-
tion for a fully coherent beam than for a partially coherent field. Gori,
Palma, and Santarsiero (1990) confirmed experimentally that for a planar
random medium (in their case, a rotating ground-glass plate), the width
of the radiant intensity distribution of the scattered field indeed increases
when the spectral degree of coherence of the incident field decreases.

An important class of scatterers is formed by so-called quasi-
homogeneous media. These were introduced by Carter and Wolf (1988), who
defined the degree of spatial correlation of the scattering potential [given
by Equation (6.9)] as

µF(r1, r2,ω) ≡
CF(r1, r2,ω)

√
IF(r1,ω)IF(r2,ω)

. (6.13)

Here the quantity IF(r,ω) ≡ CF(r, r,ω) represents the average value of the
second moment of the scattering potential. Just as for the spectral degree
of coherence of a wave field, one can show that

0 ≤ |µF(r1, r2,ω)| ≤ 1. (6.14)
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The extreme values |µF(r1, r2,ω)| = 1 and µF(r1, r2,ω) = 0 correspond to
complete correlation and the total absence of correlation, respectively. As
discussed by Silverman (1958), for many scatterers such as fluids, plasmas,
or the atmosphere, the degree of spatial correlation of the scattering poten-
tial will depend only on the two positions r1 and r2 through the difference
r2 − r1. We can then write

µF(r1, r2,ω) = gF(r2 − r1,ω) (6.15)

A scatterer is said to be quasi-homogeneous if the function gF(r,ω) varies
much faster with r than the function IF(r′,ω) varies with r′. Carter and
Wolf (1988) studied the scattering of a monochromatic plane wave by a
quasi-homogeneous medium. They showed that, within the validity of the
first-order Born approximation, the far zone field satisfies two reciprocity
relations, namely

J(rs,ω) = ĨF(0,ω)g̃F[k(s− s0),ω], (6.16)

µ(rs1, rs2,ω) = ĨF[k(s2 − s1),ω]/ĨF(0,ω). (6.17)

Here s0 is the direction of propagation of the incident field, and ĨF(K,ω)
and g̃F(K,ω) are the three-dimensional spatial Fourier transforms of
IF(r,ω) and gF(r,ω), respectively. Equation (6.16) states that the radiant
intensity is proportional to the Fourier transform of the degree of spatial
correlation of the scattering potential. Equation (6.17) states that degree of
coherence is proportional to the Fourier transform of the second moment
of the scattering potential. It is to be noted that these relations are similar
to the reciprocity relations satisfied by the fields of quasi-homogeneous
beams, which are mentioned in Section 4.

Fischer and Wolf (1994) described how these two reciprocity relations
can be used to reconstruct both the correlation function gF(r,ω), and the
second moment IF(r,ω) of the scattering potential of a quasi-homogeneous
medium from far-zone field data. Fischer and Cairns (1995) showed that
by using pulses, rather than an incident monochromatic plane wave, the
second moment of the dielectric susceptibility of a quasi-homogeneous
medium can be reconstructed from far-zone intensity measurements
alone. A theory of diffraction tomography for quasi-homogeneous media
was later developed by Fischer and Wolf (1997), and generalized by Fischer
(1998). Visser, Fischer, and Wolf (2006) examined how radiation generated
by a quasi-homogeneous source (discussed in Section 4) is scattered by a
quasi-homogeneous medium. They derived reciprocity relations for both
the spectral degree of coherence and the spectral density of the field in
the far zone. Recently, an “Ewald-sphere construction” for determining
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the structure of random media was proposed by Lahiri, Wolf, Fischer, and
Shirai (2009).

The scattering of a two-dimensional electromagnetic field by a slit or a
groove was studied by Huttunen, Friberg, and Turunen (1995). By using
a coherent mode decomposition (see Section 8), the scattered field can be
considered as an incoherent superposition of the field scattered by each
individual mode. A strong decrease in the directionality of the scattered
radiant intensity with decreasing spatial coherence was found.

As discussed in Section 4 (see also Wolf & James, 1996), the spectral
density of the field that is generated by a partially coherent source can
change on propagation, even when this propagation takes place in free
space. Because of the well-known analogy that exists between radiation
and scattering, one might expect that a similar effect will arise when a
polychromatic wave is scattered by a medium whose dielectric suscep-
tibility is a random function of position. Wolf, Foley, and Gori (1989)
showed that, within the validity of the first-order Born approximation,
this is indeed the case. In particular, if the two-point correlation function
CF(r′1, r′2,ω) of Equation (6.9) is a Gaussian, and if the spectrum of the inci-
dent light has a Gaussian profile, then the spectral density of the scattered
field may be effectively blue-shifted or red-shifted, depending on the scat-
tering angle. The analysis was extended to multiple scattering using the
Rytov approximation by Shirai and Asakura (1995). Zhao, Korotkova, and
Wolf (2007) discussed how the observation of these spectral changes in the
far zone of the scatterer may be used to determine the correlation function
of its scattering potential.

The spectral changes described above involve what may be referred to
as a redistribution of the spectral density, in that light of different frequen-
cies is scattered in different directions; no new frequencies are generated
by the scattering. When the scattering medium is itself explicitly vary-
ing in time, however, it is possible to get true changes of the spectrum
on scattering, including Doppler-like frequency shifts. This latter possibil-
ity was first introduced by Wolf (1989), and suggested by James, Savedoff,
and Wolf (1990) as a possible explanation for some observed anomalies
in quasar spectra. These Doppler-like shifts were further investigated by
James and Wolf (1990).

Inverse scattering techniques have been developed that exploit the rela-
tionship between coherence and scattering. Baleine and Dogariu (2004a)
developed the “variable coherence tomography” method. In this app-
roach, the spatial coherence properties of the incident beam are tuned
such that two separate volumes are created in which the field is strongly
correlated. The correlation function of the scattering potential can then
be determined by recording the spectral density of the scattered field in
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a single direction. An experimental demonstration of this method was
presented by Baleine and Dogariu (2004b).

A general expression for the rate at which energy is removed by scat-
tering and absorption from a partially coherent beam that is incident
on a deterministic scatterer was derived by Carney, Wolf, and Agarwal
(1997). Their result can be considered as a generalization of the optical
cross-section theorem. This generalization was applied to derive an energy
theorem for partially coherent beams by Carney and Wolf (1998), and
it was used as the basis for a new diffraction tomography technique by
Carney and Wolf (2001).

The scattering of a partially coherent wave field by a sphere, i.e., a
generalization of the so-called Mie scattering, has been considered by sev-
eral authors. Greffet, Cruz-Gutierrez, Ignatovich, and Radunsky (2003)
applied the results from Carney et al. (1997) to study rotationally invariant
scatterers. Using the Wigner transform, they showed that the extinction
cross section does not depend on the coherence of the incident field. van
Dijk, Fischer, Visser, and Wolf (2010) generalized the method of partial
waves to the case of partially coherent fields. They predicted that when
the correlation length of the incident field is comparable with or is smaller
than the radius of the sphere, the angular distribution of the radiant
intensity depends strongly on the degree of coherence. The occurrence
of coherence vortices (see Section 7) in Mie scattering was studied by
Marasinghe, Premaratne, and Paganin (2010). By varying the so-called
“pointing stability” of the incident field, such singularities were found to
be created or annihilated.

An inverse problem of fundamental importance is the determination of
crystalline structures from diffraction experiments. Because of the small
distances involved, one uses X-rays rather than radiation in the visible
spectrum. The basis of this method, for which knowledge of both the
phases and amplitudes of the diffracted beams is necessary, was provided
by Laue (1912). This approach, however, suffers from a serious limita-
tion because of the inability to measure these phases. It was explained
in Wolf (2009) and Wolf (2010) that the phase of any physically realiz-
able wave field is a meaningless concept due to the inherent fluctuations
that the field undergoes. He pointed out that for a spatially coherent
beam (which is not necessarily the same as a monochromatic beam,
as was noted earlier by Roychowdhury and Wolf (2005a)), there exists
an “equivalent” monochromatic beam whose phase can be determined
from correlation measurements as in Young’s two-slit experiment (see
Section 3). Because spatially coherent X-ray beams can indeed be gener-
ated, as was shown by Liu et al. (2001), such an experiment can indeed be
carried out. Knowledge of this phase then, together with the amplitude
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of the diffracted beams, allows one to reconstruct the crystal’s structure
unambiguously.

Interesting effects can also arise from the scattering of partially coherent
wave fields from crystalline structures. Such effects were considered by
Dus̆ek (1995) and Sinha, Tolan, and Gibaud (1998).

7. PHASE SINGULARITIES OF COHERENCE FUNCTIONS

Researchers have long noticed that the phase of a wave field has an
unusual behavior in the neighborhood of its zeros of amplitude; an early
instance of this was described by Sommerfeld (1964) in his textbook on
optics. Looking at the structure of a wave field consisting of plane waves
of different frequency and direction, he noted that in most regions the field
behaves locally like a plane wave, the exception being the behavior in the
neighborhood of zeros. He concluded,

However, just because the amplitude vanishes there, they do not produce any
stronger effect than other points of varying intensity.

This view changed in the mid-1970s with the publication of an article
by Nye and Berry (1974), in which it was noted that the zeros of wave
fields and their phase have a well-defined structure that is analogous to
dislocations in crystal structures. These zeros are generally referred to as
phase singularities, and the study of these and comparable phenomena is
now its own subfield, referred to as singular optics. Several review articles
have been published on the subject, such as Soskin and Vasnetsov (2001)
and Dennis, O’Holleran, and Padgett (2009), and singular optics is also
discussed in the book by Nye (1999).

Philosophically, singular optics is distinct from other fields of optics in
that it emphasizes the study of “common” or “generic” features of wave
fields over the study of “possible” features, the latter of which require spe-
cial circumstances, such as rotational symmetry, to occur. For instance,
the most commonly-described interference experiment is Young’s two-
pinhole experiment, illustrated in Figure 6, and previously discussed in
Section 3. The (approximate) zeros of the interference pattern observed
on the screen are lines, which correspond to zero surfaces in three-
dimensional space. If an interference experiment is done with three or
more pinholes, however, the interference pattern has a fundamentally dif-
ferent behavior, also illustrated in Figure 6: the zeros on the measurement
screen are points, which correspond to lines of zeros in three-dimensional
space. These zero lines are said to be the typical, or generic, features of
interference patterns; for instance, laser speckle patterns contain a large
number of these zero lines.

A typical example of a phase singularity is present in a Laguerre–Gauss
laser mode of azimuthal order m = 1 and radial order n = 0 propagating
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FIGURE 6 (a) Young’s two-pinhole experiment. (b) The intensity of light observed on
the measurement screen. (c) Young’s three-pinhole experiment. (d) The intensity of
light observed on the measurement screen. The zeros form a hexagonal pattern.

in the z-direction, which in the waist plane z = 0 has the form

U1
0(ρ,φ, 0) =

√
2U(0) ρ

w0
eiφ exp[−ρ2/w2

0], (7.1)

where (ρ,φ) are polar coordinates in the transverse (x, y)-plane, w0 is the
width of the beam in the waist plane and U(0) is the field amplitude. The
phase and intensity of this mode are illustrated in Figure 7. It can be seen
that there is a zero of intensity on the central axis ρ = 0, and that the
phase increases continuously by 2π as one traverses a closed path coun-
terclockwise around the axis; for this reason, such phase singularities are
commonly referred to as optical vortices.

More generally, it has become clear that nearly every property of a
wave field that can be characterized by a spatially dependent amplitude
and phase can also have singularities of that phase and associated generic
features. For instance, vortices of the Poynting vector have been observed
(see, for instance, Braunbek & Laukien, 1952; Boivin, Dow, & Wolf, 1967;
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FIGURE 7 The (a) intensity and (b) phase of a Laguerre–Gauss beam of order m = 1,
n = 0 in the waist plane z = 0.

Schouten, Visser, Gbur, Lenstra, & Blok, 2003), where the “phase” is, in
this case, the direction of power flow. For inhomogeneously polarized
light, singularities of the ellipticity and orientation axis of the polariza-
tion ellipse can arise; see, for instance, Nye (1983b), Nye (1983a), and
Schoonover and Visser (2006).

Coherence functions of wave fields also possess spatially varying
amplitude and phase structures, albeit more complicated ones, and it
was natural for researchers to investigate the properties of such corre-
lation vortices (also referred to as coherence vortices). Most studies have
centered on singularities of the cross-spectral density function, i.e., regions
in (r1, r2)-space such that W(r1, r2,ω) = 0, and the phase structure of the
cross-spectral density in the neighborhood of such regions. A complete
description of the behavior of zeros requires the analysis of the cross-
spectral density in six variables, (r1, r2), a difficult prospect, and most
research to date has involved studying lower-dimensional projections of
the correlation function.

The earliest article on this subject seems to be that of Schouten et al.
(2003), who studied singularities of the cross-spectral density of Young’s
interference experiment. It is to be noted, however, that these singularities
are not generic features of the cross-spectral density.

Soon after, a number of authors approached the idea of correlation
singularities from different viewpoints. Freund (2003), in the context of
studying singularities of bichromatic optical fields, noted that correlation
singularities could arise in correlations between orthogonal polarizations
of the field. Gbur and Visser (2003b) studied the structure of correlation
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singularities in partially coherent beams in the special case in which
one of the observation points is fixed, i.e., the behavior of W(r1, r2) as
a function of r2. Bogatyryova et al. (2003) performed a theoretical and
experimental investigation of a class of partially coherent vortex beams,
and observed singularities in the spectral degree of coherence. Palacios,
Maleev, Marathay, and Swartzlander (2004) experimentally studied cor-
relation singularities of the so-called cross-correlation function, the case
such that r2 = −r1; this work was soon followed up with a theoret-
ical analysis by Maleev, Palacios, Marathay, and Swartzlander (2004).
An experimental observation of the fixed point correlation singularities,
which possess a vortex structure and have been dubbed correlation vortices,
was undertaken by Wang, Duan, Hanson, Miyamoto, and Takeda (2006).

A characteristic example of a correlation singularity can be derived
from the Laguerre–Gauss beam of Equation (7.1) using the so-called beam
wander model, introduced by Gbur, Visser, and Wolf (2004b). A partially
coherent vortex beam is modeled by a Laguerre–Gauss beam with a cen-
tral axis that is a random function of position; the cross-spectral density in
the plane z = 0 is defined as

W(ρ1, ρ2,ω) =
∫

U1∗
0 (ρ1 − ρ′, 0)U1

0(ρ2 − ρ′, 0) f (ρ′)d2ρ′, (7.2)

where

f (ρ′) =
1

δ
√
π

e−ρ
′2/δ2

(7.3)

is the probability density of the position of the central axis, and δ char-
acterizes the average variance of the beam wander. This integral can be
evaluated analytically, and takes on the form

W(ρ1, ρ2,ω) =
2
√
π |U(0)

|
2

w6
0A3δ

exp[−(ρ1 − ρ2)
2/w4

0A] exp[−(ρ2
1 + ρ

2
2)/δ

2w2
0A]

×

{[
γ 2(x1 + iy1)+ (x1 − x2)+ i(y1 − y2)

]
×

[
γ 2(x2 − iy2)− (x1 − x2)+ i(y1 − y2)

]
+ w4

0A
}

, (7.4)

where γ ≡ w0/δ, ρ ≡ (x, y) and

A ≡

(
2

w2
0
+

1
δ2

)
. (7.5)
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The typical projections of correlation singularities are exhibited by this
simple model. For instance, a plot of the cross-spectral density when r1
is fixed and r2 is varied is shown in Figure 8. It can be seen that a pair
of correlation vortices are present, one associated with the original opti-
cal vortex of the Laguerre–Gauss beam and one that travels from the
point at infinity. Figure 9 shows the cross-spectral density for the case
when r2 = −r1. It can be seen that the correlation singularity is a zero ring
centered on the origin, referred to as a ring dislocation; the phase jumps dis-
continuously by π across the boundary of the singularity. It is to be noted
that these two very different behaviors – correlation vortex and ring dislo-
cation – are different manifestations of the general correlation singularity
in all variables r1, r2.
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FIGURE 8 The (a) amplitude and (b) phase of the cross-spectral density W(r1, r2,ω),
with r1 fixed. Here w0 = 1.0 mm, δ = 0.6 mm, x1 = 0.1 mm, and y1 = 0.1 mm. The phase
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The presence of correlation singularities in a variety of optical systems
has been noted. Fischer and Visser (2004) observed singularities of the
correlation function in the focusing of partially coherent light, and Mot-
sek, Kivshar, Shih, and Swartzlander (2005) noted such singularities in a
nonlinear photorefractive crystal. Far-zone characteristics of Schell-model
vortex beams were studied by Liu and Lü (2007), and correlation vortices
in superpositions of vortex beams were studied by Cheng and Lü (2008).
The behavior of correlation vortices in the focusing of partially coherent
vortex beams was considered by Liu, Yang, Rong, Wang, and Yan (2010).

Because of the complexity of correlation singularities, a significant
amount of effort has been directed toward characterizing them and their
propagation and conservation properties. Wang and Takeda (2006) intro-
duced the idea of a “coherence current” and a conservation law of
coherence. Swartzlander and Hernandez-Aranda (2007) made an analogy
between Rankine vortices of fluid dynamics and correlation singulari-
ties. Gbur and Swartzlander (2008) described the complete structure of a
correlation vortex in a single transverse plane, a “surface” in the four trans-
verse coordinates. Ren, Zhu, and Duan (2008) characterized the behavior
of correlation vortices using their topological characteristics. Maleev and
Swartzlander (2008) investigated the evolution of a correlation singularity
on propagation, as did van Dijk and Visser (2009). The topology of cor-
relation singularities in the far zone of a quasi-homogeneous source was
studied by van Dijk, Schouten, and Visser (2009).

It can be shown that there is a strong relationship between the corre-
lation vortices of a partially coherent field and the optical vortices of the
corresponding fully coherent field. This relationship seems to have been
first noted by Gbur et al. (2004b), an article which also elaborates on the
concept of spectral changes related to vortices. Gbur and Visser (2006)
demonstrated that this relationship holds for variable coherence fields in
any linear optical system. Additional work by Gu and Gbur (2009) inves-
tigated the behavior of higher-order vortices and topological reactions of
such vortices.

Gbur et al. (2004b) also observed that zeros of intensity are not generic
features of partially coherent fields, but it is still possible to specially
prepare fields that are partially coherent and possess such zeros. Gbur,
Visser, and Wolf (2004a) determined conditions under which complete
destructive interference can be achieved with a partially coherent field
in a three-pinhole interferometer; these results were confirmed experi-
mentally both acoustically by Basano and Ottonello (2005) and optically
by Ambrosini, Gori, and Paoletti (2005). The phase structure of such
nongeneric fields, including both phase and coherence singularities, was
studied theoretically by Gan and Gbur (2007). Extending the relationship
between different classes of singularities further, Visser and Schoonover
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(2008) demonstrated that it is possible to smoothly transform between
phase, correlation, and polarization singularities in Young’s interferom-
eter, a process referred to as a “cascade” of singularities.

It is also possible to introduce correlation singularities of temporal
coherence functions, such as the mutual coherence function 0(r1, r2, τ).
Swartzlander and Schmit (2004) introduced and experimentally studied
singularities of the function 0(r, r, τ), with variable position r and fixed τ .
The resulting singularities have the form of vortices.

Recently, there have been some studies of the polarization singu-
larities of partially coherent beams; this is discussed in Chernyshov,
Felde, Bogatyryova, Polyanskii, and Soskin (2009) and Chernyshov, Fel’de,
Bogatyreva, Polyanskii, and Soskin (2009).

8. THE COHERENT MODE REPRESENTATION

The coherent mode representation introduced by Wolf (1982)4 is the
expansion of the cross-spectral density function of a partially coher-
ent source or partially coherent field into a diagonal representation of
orthogonal modes, of the form

W(r1, r2,ω) =
∑

n
λn(ω)φ

∗
n(r1,ω)φn(r2,ω), (8.1)

where the eigenvalues λn(ω) are non-negative quantities. The modes
φn(r,ω) are orthogonal with respect to a given domain; for a primary radi-
ation source, the domain is typically taken to be the volume of the source,
while for a secondary planar source, the domain is the planar area of the
source. The index n may represent multiple indices of summation; the
mode decomposition of a field in a region of three-dimensional space,
for instance, usually requires two summation indices, while the mode
decomposition of a source in three-dimensional space typically requires
three.

The coherent mode representation has become an excellent tool for
computationally evaluating the propagation of a wave field. Before its
introduction, finding the evolution of the cross-spectral density of a wave
field on propagation through an optical system required the evaluation of
an integral of the form

W(r1, r2,ω) =
∫∫

W0(r′1, r′2,ω)G∗(r1, r′1,ω)G(r2, r′2,ω)d2r′1d2r′2, (8.2)

4It is worth noting that a very similar representation was introduced earlier for the mutual intensity
function by Gori (1980).
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where the integrations are over the input plane of the optical system,
W0(r1, r2,ω) is the cross-spectral density of the field on this input plane,
and G(r, r′,ω) is the Green’s function of the optical system.

A numeric solution to this equation would require the evaluation of a
four-fold complex integral, a very difficult prospect. Using the coherent
mode representation for the field on the input plane, Equation (8.2) may
be written as

W(r1, r2,ω) =
∑

n
λn(ω)

[∫
φn(r′1,ω)G(r1, r′1,ω)d2r′1

]∗
×

[∫
φn(r′2,ω)G(r2, r′2,ω)d2r′2

]
. (8.3)

The four-fold integral has been reduced to a sum over the product of
identical two-fold integrals. Typically a partially coherent field can be rep-
resented to a good approximation by a small number of modes; this is
illustrated in Figure 10 using the eigenvalues of a Bessel-correlated field.
By using the coherent mode representation, the propagation of the cross-
spectral density can be evaluated by the determination of a relatively small
number of two-fold integrals.

Research related to the coherent mode representation can be broadly
broken into four parts: extensions of the basic theory, the determination of
mode representations for model fields or sources, methods for determin-
ing the mode representation for arbitrary fields, and application of the
mode representation to wave propagation problems.

One of the first extensions of the basic theory was by Starikov (1982),
who used the representation to define an effective number of degrees of
freedom of the source. Wolf (1986a) derived a number of theorems for
modes of spatially bandlimited wave fields.
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FIGURE 10 Eigenvalues λn versus n for a J0-correlated field such as described by
Equation (5.17).
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The original coherent mode calculations were done for scalar wave
fields, but there have been a number of extensions of the theory to fully
electromagnetic wave fields. The earliest of these was by Pask and Stacey
(1988), who used electromagnetic plane waves as the mode functions. The
first general theory for characterizing an electromagnetic coherent mode
representation was presented much later by Gori et al. (2003). At about the
same time, Tervo, Setälä, and Friberg (2004) constructed a representation
based on their theory of coherence for electromagnetic waves; another rep-
resentation was provided by Kim (2005). Kim and Wolf (2006) introduced
a scalar mode representation of an electromagnetic wave field, using a
biorthogonal expansion of modes.

A number of alternatives to the original scalar coherent mode represen-
tation have also been suggested. Sung, Kim, and Park (1996) introduced a
“P-representation” of the cross-spectral density, based on analogy with
the expansion of a density operator in coherent state vectors. Withington,
Hobson, and Berry (2004) introduced a representation based on an over-
complete set of Gabor basis functions. Martinsson, Lajunen, and Friberg
(2007) have suggested the use of “communication modes” of a linear
optical system, namely the functions arising from the singular value
decomposition of the propagation kernel.

It is, in general, quite difficult to derive the coherent mode represen-
tation for a particular wave field; there has been much success, however,
in deriving the modal representation for a variety of model wave fields,
particularly beams. The most important of these, Gaussian Schell-model
beams, was determined by Starikov and Wolf (1982); these beams were
interpreted as multimode laser radiation by Gase (1991). The mode repre-
sentation of Bessel-correlated Schell-model sources was derived by Gori,
Guattari, and Padovani (1987). Flat-topped partially coherent beams were
treated by Borghi and Santarsiero (1998), and a special class of beams car-
rying optical vortices was introduced by Ponomarenko (2001). The mode
representation of anisotropic Gaussian Schell-model beams was evaluated
by Sundar, Makunda, and Simon (1995).

A new and intriguing class of partially coherent Gaussian beams incor-
porating a “twist” in the azimuthal phase structure was introduced by
Simon and Mukunda (1993) and are referred to as twisted Gaussian
Schell-model beams; in relatively short order their mode decomposition
was derived (Simon & Sundar, 1993) and their propagation characteris-
tics determined (Sundar, Simon, & Mukunda, 1993). An intuitive model
of twisted beams as the incoherent superposition of ordinary Gaussian
beams was related by Ambrosini, Bagini, Gori, and Santarsiero (1994).

The mode representations of three-dimensional sources and fields have
also been considered. Gori, Palma, and Padovani (1989) introduced a
modal expansion for blackbody radiation in a spherical cavity. Setälä,
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Lindberg, Blomstedt, Tervo, and Friberg (2005) applied their aforemen-
tioned electromagnetic coherent mode representation to study the full
vector properties of blackbody radiation. Gori and Korotkova (2009)
have studied the general mode representation of spherical homogeneous
sources.

A number of other mode representations of broad physical interest
have been derived, including the representation of Lambertian sources
(Starikov & Friberg, 1984), the representation of propagation-invariant
fields (Ostrovsky, Martinez-Niconoff, & Ramirez-San-Juan, 2001), and
that of thin annular sources (Gori, Santarsiero, Borghi, & Li, 2008).

As noted, it is in general difficult to derive the coherent mode rep-
resentation for an arbitrary wave field. A number of techniques have
been proposed, both experimental and theoretical, for extracting the mode
behavior from a given partially coherent field. The earliest of these seems
to be by Kim and Park (1992), who developed an approximate method
for determining the eigenvalues and eigenfunctions of the representation;
this method was tested numerically by Hong, Kang, and Kim (1993). For
the special case when the modes are known to be of Hermite-Gaussian
form, Gori, Santarsiero, Borghi, and Guattari (1998) demonstrated that
knowledge of the intensity of the field is sufficient to determine the mode
weights. Xue, Wei, and Kirk (2000) further suggested that the weights
could be determined by the evolution of the intensity on propagation.
Another experimental technique for extracting the mode structure from
intensities was recently introduced by Flewett, Quiney, Tran, and Nugent
(2009).

Alternative modal decompositions have been shown to be easier to
calculate both experimentally and theoretically. Ostrovsky, Zemliak, and
Hernández-Garćia (2005) introduced an alternative representation that
can be determined experimentally from radiometric measurements. An
“elementary source model” was described by Vahimaa and Turunen
(2006) for efficient propagation of partially coherent fields. Davis and
Schoonover (2009) have introduced a computationally efficient modal
decomposition based on the LDL† factorization, while Martinex-Herrero,
Mejias, and Gori (2009) have given a nonorthogonal “pseudo-modal”
decomposition of the cross-spectral density.

The coherent mode representation has been shown to be directly useful
in a number of optical applications, foremost among them, as noted, the
propagation of partially coherent wave fields. The first use of coherent
modes for propagation appears to be due to Gori (1983), who investi-
gated the free-space propagation of Schell-model sources. Such a strategy
has also been applied to the analysis of spectral changes on propaga-
tion (Gamliel, 1990), changes in the state of coherence on propagating
through an optical system (Shirai & Asakura, 1993), and the evolution of
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the generalized radiance (Ostrovsky & Rodriguez-Solid, 2000). The mode
representation has also been applied to a class of inverse source problems
(Habashy, Friberg, & Wolf, 1997).

A modal representation can also be applied to the propagation of
fields through random media, as was demonstrated theoretically by
Shirai, Dogariu, and Wolf (2003) in a study of the spreading of beams
in turbulence. Schwartz and Dogariu (2006) have suggested that a mode-
coupling approach could be used to study more general properties of a
turbulence-degraded beam.

One interesting observation that has been made is that the coher-
ent mode representation allows for the quasi-geometrical propagation of
partially coherent wave fields. Zysk, Carney, and Schotland (2005) have
demonstrated that a scalar partially coherent field could be propagated by
ray-tracing the individual coherent modes; this method was later extended
to electromagnetic partially coherent fields by Schoonover, Zysk, Carney,
and Wolf (2008).

Several other applications of the coherent mode representation are
worth noting. Gbur and Wolf (1997) used the representation to construct
theoretically a primary source that is globally incoherent but produces
a fully coherent field. Withington and Murphy (1998) applied the repre-
sentation to study submillimeter-wave quasi-optical systems. The modal
representation has been applied to the development of a near-field mea-
surement technique by Fourestie, Altman, Bolomey, Wiart, and Brouaye
(2002).

Although they do not directly apply the coherent mode representa-
tion, Salem and Agrawal (2009a) recently described a modal technique for
analyzing the coupling of stochastic beams into optical fibers. The tech-
nique was used to study the effects of this coupling on the coherence and
polarization of the coupled field by Salem and Agrawal (2009b).

9. NUMERICAL SIMULATION OF PARTIALLY
COHERENT FIELDS

As already noted, determining the free-space propagation of a partially
coherent field typically involves the evaluation of one or more four-fold
integrals, a difficult prospect even with modern computing power. The
application of the coherent mode representation (described in Section 8)
allows one to reduce the problem to a finite sum of two-fold integrals,
but even these integrals may be difficult to evaluate – and the coherent
mode representation of the field may not be available. Because of this, a
variety of techniques have been proposed for the numerical evaluation of
the propagation of a partially coherent field.
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These techniques may be broadly divided into two classes: efficient sim-
ulation of the average properties of the optical field and generation of
realizations of a wave field with prescribed statistical behavior. The second
class is of interest for evaluating the properties of systems in which detec-
tors can respond fast enough to measure instantaneous field properties.

Of the first class of techniques, a number of methods have been
developed for propagating correlation functions using the framework of
geometrical optics. We have already noted the propagation of partially
coherent fields using geometrical optics and the coherent mode repre-
sentation, as done by Zysk et al. (2005); this method was later extended
by Schoonover et al. (2008) to encompass partially coherent electromag-
netic fields. Another ray-based propagation method was introduced by
Petruccelli and Alonso (2008), based on their earlier work on generalized
radiometry (see Alonso, 2001; Petruccelli & Alonso, 2007, and references
therein) that allows the propagation of the cross-spectral density through
complex optical systems. Very recently, a third method was developed by
Riechert, Dürr, Rohlfing, and Lemmer (2009) to propagate the temporal
coherence function by means of rays; this method, however, does not as
yet include diffraction effects. Pedersen and Stamnes (2000) introduced
another method of propagation based on radiometric concepts.

Monte Carlo methods have also been combined with geometric tech-
niques for the efficient propagation of coherence functions. Fischer, Prahl,
and Duncan (2008) introduced a Monte Carlo propagation technique
based on the Huygens–Fresnel principle; later work (Prahl, Fischer, &
Duncan, 2009) investigated the construction of the Green’s function for
an entire optical system using Monte Carlo methods.

The second class of techniques involves determining realizations, in
space and time, of partially coherent fields of given average properties.
An early technique of this type was given by Davis, Kim, and Piepmeier
(2004), who described a method of generating realizations of station-
ary electromagnetic random processes in time; the method was later
extended to generating full vectorial spatio-temporal realizations by Davis
(2007). Another technique for generating spatio-temporal realizations was
introduced by Gbur (2006), who constructed the realizations from a col-
lection of pulses of appropriate spatial and temporal shape. Around the
same time another method was introduced by Rydberg and Bengtsson
(2006) in which realizations are generated from a finite superposition of
independent monochromatic fields.

Somewhere between the first and second class of techniques lies the
works of Voelz, Bush, and Idell (1997) and Xiao and Voelz (2006), in which
the average properties of a partially coherent field are determined by
constructing temporal and spatial realizations of the field, respectively,
and averaging over these properties.
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10. DIRECT APPLICATIONS OF COHERENCE THEORY

The theory of optical coherence plays an important indirect role in many
optical applications in which the statistical properties of light must be
understood in order to evaluate their effect on system performance.
There are also a number of applications, however, based directly on the
manipulation of the state of spatial and temporal coherence.

Several of these applications have been touched upon in previous
sections. For instance, it has been suggested by Gbur and Visser (2003a),
Pu et al. (2004), and van Dijk et al. (2008) that the ability to shape the inten-
sity in the focal region by spatial coherence could be used to develop novel
optical trapping and optical manipulation schemes. In particular, Arlt and
Padgett (2000) introduced the term “bottle beam” to characterize a focused
coherent field with an intensity minimum at the geometric focus; this term
has also been adopted for describing partially coherent beams of this type
by Pu, Liu, and Nemoto (2005).

The most well-known application involving coherence theory is opti-
cal coherence tomography (OCT), a low-coherence interferometric technique
which can be used to image subsurface features of a biological specimen.
OCT has become a very important medical diagnostic tool, and references
to it are far too numerous to exhaustively discuss here; we mention the
review article by Fercher and Hitzenberger (2002) and the text by Brezinski
(2006). It is also worth noting more recent research that improves on the
standard OCT modality by treating it as an inverse scattering problem (see
Ralston, Marks, Carney, and Boppart, 2006; Marks, Ralston, Carney, and
Boppart, 2007 for details).

Laser beams with high spatial and temporal coherence produce speckle
patterns on reflection or scattering that can be detrimental for many
applications; appropriately chosen partially coherent fields can provide
superior performance in many of these cases. Because the high bright-
ness and directionality of laser light is usually required, the strategy for
producing partially coherent light is typically to distort a fully coherent
laser beam. An overall review of the techniques of speckle reduction was
given by Iwai and Asakura (1996); we also list a few illustrative applica-
tions. Kato, Nakayama, and Suzuki (1975) used an extended incoherent
source to reduce speckle in the recording of holograms; other studies of
the effects of coherence in holography include the work of Lurie (1966),
Lurie (1968), Wolf, Shirai, Agarwal, and Mandel (1999), and Gopinathan,
Pedrini, and Osten (2008). Wang, Tschudi, Halldórsson, and Pétursson
(1998) reduced speckle in a laser projection system by introducing a
time-varying diffractive optical element. Speckle reduction in OCT was
achieved using a partially coherent source by Kim et al. (2005). A number
of authors have investigated the usefulness of partially coherent fields in
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inertial confinement fusion schemes, for instance, Lehmberg and Goldhar
(1987), Rothenberg (1997), and Tsubakimoto, Nakatsuka, Miyanaga, and
Jitsuno (1998).

Closely related to the goal of speckle reduction is the observation that
partially coherent beams are often more useful than their fully coher-
ent counterparts for applications involving propagation through random
media such as the turbulent atmosphere. It has been demonstrated that
such “prerandomized” beams have less scintillations (intensity fluctua-
tions) in turbulence, making them of interest for free-space laser commu-
nications and sensing.

Early articles, such as those by Beran (1966), Taylor (1967), Yura (1972),
Belenkii, Kon, and Mironov (1977), and Fante (1981b), looked at the general
evolution of the mutual coherence function in turbulence. Other articles,
such as those by Kon and Tatarskii (1972) and Leader (1978), studied
the propagation characteristics of partially coherent beams. During the
same period, the focus of research seems to have gradually shifted to
the study of the scintillation characteristics of partially coherent beams.
Leader (1979), Fante (1981a), and Banakh, Buldakov, and Mironov (1983)
looked at the fluctuations of beams with partial spatial coherence. Fante
(1979) noted that a decrease in temporal coherence could also significantly
reduce scintillations.

Through the 1990s, the study of such effects seems to have been
mostly ignored, with the exception of articles by Wu (1990) and Wu and
Boardman (1991) on the propagation and coherence properties of model
beams in turbulence.

At the turn of the millenium, interest in partial coherence-based turbu-
lence effects exploded again. Gbur and Wolf (2002) looked theoretically
at the spreading of partially coherent beams in random media, and noted
that they are “resistant” to turbulence; this was demonstrated experimen-
tally by Dogariu and Amarande (2003). Similar theoretical results were
found by Ponomarenko, Greffet, and Wolf (2002) using a Hilbert-space
method, and by Shirai et al. (2003) using the coherent mode representa-
tion. Long-distance propagation of partially coherent beams was studied
soon after by Salem, Shirai, Dogariu, and Wolf (2003). Baykal (2004)
investigated the average transmittance of partially coherent beams in tur-
bulence. Many other studies of beam spreading in turbulence have been
performed since then for specific classes of beams.

Of most interest to those developing optical communications and sens-
ing applications is the scintillation reduction associated with partially
coherent beams. The application of Gaussian Schell-model beams to free-
space communication was investigated by Ricklin and Davidson (2002),
Ricklin and Davidson (2003), and Korotkova, Andrews, and Phillips
(2004).
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Much research since then has involved the study of a variety of
strategies for reducing scintillation with partial coherence. A “pseudo-
partially coherent beam” was introduced by Voelz and Fitzberry (2004)
for free-space communication. Kiasaleh (2006) investigated the scintilla-
tion of a multiwavelength Gaussian beam; a spectral encoding strategy for
scintillation reduction was introduced by Berman, Bishop, Chernobrod,
Nguyen, and Gorshkov (2007). Baykal and Eyyuboglu (2007) studied the
scintillation of incoherent flat-topped Gaussian beams. It was shown in
Korotkova (2006) and Korotkova (2008) that appropriately chosen elec-
tromagnetic beams can have appreciably lower scintillation. Furthermore,
Gu, Korotkova, and Gbur (2009) have demonstrated that nonuniform, fully
polarized beams can have lower scintillation as well, as they become par-
tially polarized on propagation; the propagation characteristics of such
beams were studied by Wang and Pu (2008).

One of the most promising partially coherent sources for optical com-
munications is an incoherent array of beams. The possibility of scintilla-
tion reduction with beams of different wavelengths was investigated in
Peleg and Moloney (2006), Peleg and Moloney (2007), and Polynkin, Peleg,
Klein, Rhoadarmer, and Moloney (2007). A study of a partially coher-
ent array of Gaussian beams was performed in Baykal, Eyyuboglu, and
Cai (2009), following up on work on coherent arrays done in Eyyuboglu,
Baykal, and Cai (2008).

A number of mathematical tools have been developed for studying par-
tially coherent beams in turbulence. The optimization of scintillation and
propagation characteristics of beams was investigated in Schulz (2004)
and Schulz (2005). An angular spectrum representation for propagation
through turbulence was introduced by Gbur and Korotkova (2007); an
electromagnetic version of this representation was done by Korotkova and
Gbur (2007).

The relation between partial coherence and random media has also
been used to probe the structure of the medium itself. Ponomarenko
and Wolf (2002) developed a technique for deducing the turbulence cor-
relations using measurements of the correlations of the scattered light.
A strategy for determining the scattering parameter of an optically diffu-
sive medium was tested by McKinney, Webster, Webb, and Weiner (2000).
A technique called variable coherence tomography was introduced in Baleine
and Dogariu (2004b) and Baleine and Dogariu (2005), which uses illumi-
nation with various states of coherence to deduce structure; this technique
was adapted to include polarization effects by Tyo and Turner (2008). More
recently, Gu and Gbur (2010) showed that the evolution of correlation sin-
gularities in turbulence can be used as a crude measure of turbulence
strength.
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