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A Special Case of Rolling Tire Vibrations

I. F.Kozhevnikov

We investigate a special case of vibrations of a loaded tire rolling at constant speed without
slipping in the contact area. A previously proposed analytical model of a radial tire is considered.
The surface of the tire is a flexible tread combined with elastic sidewalls. In the undeformed state,
the sidewalls are represented by parts of two tori and consist of incompressible rubber described
by the Mooney –Rivlin model. In the undeformed state, the tread is a circular cylinder. The
tread is reinforced with inextensible cords. The tread deformations are considered taking into
account the exact nonlinear conditions of inextensibility of reinforcing cords. Due to nonlinear
geometric constraints in the deformed state, the tread retains its cylindrical shape, which is not
circular for a typical configuration. The contact between the wheel and the ground plane occurs
by a part of the tread. The previously obtained partial differential equation which describes the
tire radial in-plane vibrations about the steady-state regime of rolling is investigated. Analyzing
the discriminant of the quartic polynomial, which is the function of the frequency of the tenth
degree and the function of the angular velocity of sixth degree, the rare case of two pairs of
multiple roots is discovered. If the geometry of the tire and the internal tire pressure are known,
then the angular velocity of rotation, the tire speed and the natural frequency, corresponding
to this case, are determined analytically. The mode shape of vibration in the neighborhood of
the singular point is determined analytically.
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1. Introduction

Natural frequency (NF) is the frequency at which a mechanical system tends to oscillate
in the absence of external or damping force. When a system vibrates at a frequency of applied
external force and this frequency is equal to the NF, then the system vibration amplitude highly
increases. This circumstance could lead to damage. That is why it is very important to know
the NF of the structure. For each NF the corresponding mode shape (MS) exists. A mode is
a standing wave which oscillates but whose peak amplitude does not move in space.

If we consider the tire rotating with constant angular velocity without contact, then each
NF of an unloaded nonrotating tire corresponds to two different NF of an unloaded rotating
tire. This is a well-known effect: the two counter-rotating waves, superimposed onto a standing
vibration in resting structures, are distinct in speed for a rotating system.

In the case of a nonrotating tire with contact, for each NF of an unloaded nonrotating
(UNR) tire there are two different NF of a loaded nonrotating (LNR) tire [1, 2]. The fixed
contact points of the tire cause a loss of the circular symmetry and the disturbance of free
wave motion. The identical modes split into two not identical ones. The MS subdivides into
a symmetric and an antisymmetric shape. The mass center of the tire does not move in the
longitudinal direction for the symmetric MS, and it moves for the antisymmetric MS. Thus, the
antisymmetric MS “sways” from side to side.

If we consider the tire rotating with constant angular velocity with contact, then the increase
in the angular velocity implies that NF decreases. The previously observed split of the NF
of an unloaded rotating tire caused by rotation disappears under rolling conditions due to the
disturbed symmetry [2, 3]. A phenomenon of frequency loci veering is observed: NF as functions
of angular velocity approach each other and then veer away instead of crossing [2, 4]. The MS
interact in veering region and, consequently, interchange. Thus, in the dynamical system there
are many difficult interesting phenomena.

Current problems of investigating the dynamics require fast calculating models. Therefore,
the problem of constructing models which simulate complex dynamic processes and do not
require significant computational resources is very important. A model of a reinforced tire
was proposed in [5]. In the case of a wheel rolling without slipping in the contact area, an
unknown in advance, a complete system of equations of motion was obtained. The steady-state
regime of rolling at constant speed was investigated. This tire model was also used in studying
the vibrations of an UNR and LNR tire [6] and in studying the steady-state cornering on the
plane with slipping [7]. In [2] we study the vibrations of an unloaded and loaded tire rolling at
constant speed. Supposing that all the roots of the characteristic equation are different, the NF
were determined numerically and MS were determined analytically for a loaded rotating tire.
The quantities of the NF obtained for the UNR and LNR tire were compared with experiments:
Experiment I1 (UNR), Experiment II (UNR) and Experiment III2 (LNR) [8].

The idea to study in detail the roots of a characteristic equation arose. It was observed
that for any value of the angular velocity of a wheel there are several frequencies at which

1TMPT (Tyre Model Performance Test) was developed by an international group of experts con-
sisting of members of vehicle industry, tire manufacturers, tire model developers, multi-body-system
program suppliers and universities. It was organized by: Prof. P. Lugner and Prof. M.Plöchl (Institute
of Mechanics and Mechatronics, Div. of Vehicle System Dynamics and Biomechanics, Vienna University
of Technology, Austria).

2A similar experiment was also performed by the author in 2005 in the laboratory LAMI (Laboratoire
d’Analyse des Matériaux et Identification) ENPC (L’Ecole Nationale des Ponts et Chaussées).
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two roots can coincide. For these frequencies the frequency function (the function from the
frequency equation which defines infinite spectra of NF) tends to zero. This means that they
must probably be added to the spectra of NF. If there are multiple roots, then the MS is
represented in a different form, and the problem must be solved differently. In the process of
research an even rarer special case of two pairs of multiple roots was discovered. This special
case is considered in this paper.

The paper is structured as follows. First, we briefly describe the model of a wheel with
a reinforced tire proposed in [5]. Next, we recall the main features of the general case of vibrations
of a loaded rotating tire [2]. Then we consider the special case of two pairs of multiple roots. In
the concluding remarks we discuss the results.

2. Tire model

Assume that the wheel with a reinforced tire consists of a disc joined to the sidewalls and of
a tread (Fig. 1a). The wheel disc is a rigid body with six degrees of freedom. In the undeformed
state, the sidewalls are represented by parts of two tori. The elastic sidewalls of incompressible

Fig. 1. The model of a wheel with a reinforced tire.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 67–78



70 I. F.Kozhevnikov

rubber are described by the Mooney –Rivlin model [9]. The tread is reinforced with inextensible
cords. In the undeformed state, the tread is a circular cylinder (Fig. 1a) of radius r and height 2l
(tread width). The tread deformations are considered taking into account the exact nonlinear
conditions of inextensibility of reinforcing cords. Due to nonlinear geometric constraints in
the deformed state, the tread retains its cylindrical shape, which is not circular for a typical
configuration. The tread is the part of the tire that makes actual contact with the ground
plane.

Let (X1,X3) denote the coordinates of the mass center of the disc C in the inertial frame
(Fig. 1b). Introduce a moving frame (MF1) with its origin C and axes fixed to the disc, θ is a ro-
tation angle. Using the Lagrangian specification we determine the position of median line points
by angle ϕ with respect to a MF1. After two rotations by angle θ + ϕ we obtain a new moving
frame (MF2) and ru(ϕ, t), rv(ϕ, t) are, respectively, the radial and tangential components of the
displacement vector of median line points in the MF2. The contact area of the tire and the plane
can be represented by a rectangle of constant width 2l, equal to the tread width, and of variable
length r(ϕ2(t) − ϕ1(t)). The length is defined by two functions of time ϕ1(t), ϕ2(t), which are
unknown in advance. These functions can be obtained from the equations of motion. Suppose
that the wheel rolls without slipping and without jumping. This means that the velocity of
points of the tread in the contact area [ϕ1, ϕ2] vanishes. The equations of motion and the con-
ditions on the boundary of the contact area were obtained [5] from the Hamilton –Ostrogradsky
variational principle for nonconservative systems

t2∫
t1

(δT + δA) dt =

t2∫
t1

(δTd + δTt + δAF + δAP + δN1 + δN3 + δN6) dt = 0.

The kinetic energy of the wheel T consists of the kinetic energy of the disc Td and the kinetic
energy of the tire Tt, assuming that the whole mass of the tire is distributed uniformly along
the plane median line of the tread with linear density ρ. The work δA at virtual displacements
has the following structure: 1) the work δAF performed by the external longitudinal force, by
the vertical load and by the wheel torque applied to the wheel disc (Fig. 1b), 2) the work δAP

performed by the potential forces (it comprises the work performed by the pressure and the
variation of the potential energy of the rubber stretching in the Mooney –Rivlin model when
the sidewalls and the tread are deformed), 3) the works δN1, δN3, δN6 performed by the re-
actions of the constraints (rolling without slipping and without jumping in the contact area
and the condition of the inextensibility of the median line). Using the Hamilton –Ostrogradsky
variational principle

t2∫
t1

(
E1δX1 + E2δX3 + E3δθ +

ϕ2∫
ϕ1

[
E4δu+ E5δv

]
dϕ+

2π+ϕ1∫
ϕ2

[
E6δu+ E7δv

]
dϕ+

+ E8δu1 + E9δu2 + E10δv1 + E11δv2

)
dt = 0,

where uk = u(ϕk, t) and vk = v(ϕk, t), one can obtain [2, 5] a complete system of fourteen
equations in fourteen unknowns which has the following structure: three Lagrange’s equations
of motion (E1 = E2 = E3 = 0) with Lagrange multipliers (a feature of these equations is that
they contain integral terms), four partial equations of motion (E4 = E5 = E6 = E7 = 0), three
constraint equations and four dynamic boundary conditions (E8 = E9 = E10 = E11 = 0).
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3. Tire vibrations

The steady-state regime of rolling of a loaded tire at constant speed, without slipping in the
contact area, was considered in [5]. The problem of vibrations of a tire about this steady-state
regime of rolling was investigated in [2]. Suppose that the wheel rotates with constant angular
velocity Ω. Then

Ẋ1 = rΩ, X3 = const, θ̇ = Ω.

Putting α = ϕ+Ωt−π/2 we pass from the Lagrangian specification to the Eulerian specification.
Now the contact area length r(α2(t) − α1(t)) is defined by two functions of time α1(t), α2(t)
(Fig. 1b). We represent the functions determining the shape of the deformed tread and the
contact area in the form

ru(ϕ, t) = rU(α) + rUvib(α, t), rv(ϕ, t) = rV (α) + rVvib(α, t), αk(t) = α◦
k + αvib k(t).

The terms rU(α), rV (α), α◦
k describe the steady-state regime of rolling without slipping (the

dash line in Fig. 1b). The terms rUvib(α, t), rVvib(α, t), αvib k(t) describe the vibrations of the
tire (the solid heavy line in Fig. 1b) about the steady-state motion. The function Vvib satisfies
the equation [2]

ρr3V̈ ′′
vib − ρr3V̈vib + 2ρr3ΩV̇ ′′′

vib + 2ρr3ΩV̇ ′
vib + a0V

(IV)
vib + a1V

′′
vib + a2Vvib = 0 (3.1)

and the boundary conditions

Vvib(α
◦
1 + 2π + αvib 1) = 0, Vvib(α

◦
2 + αvib 2) = 0,

V ′
vib(α

◦
1 + 2π + αvib 1) = 0, V ′

vib(α
◦
2 + αvib 2) = 0.

(3.2)

Here the coefficients a0, a1, a2 are constant. They are determined analytically by evaluating
definite integrals (by integrating over sidewalls and over the tread of the tire) and depend on
the geometric parameters of the tire (Fig. 1a) and on the internal tire pressure. For the sake of
brevity we omit details of these calculations.

Remark 1. With the phenomenological approach these coefficients are unknown. One must obtain
them experimentally.

In determining the frequency of tire vibrations, the length of the contact area is taken as
constant, since within the model chosen its variation determines the second order of smallness
correction to the frequency. Hence, the boundary conditions in problem (3.2) are equivalent to
the following:

Vvib(α
◦
1 + 2π) = 0, Vvib(α

◦
2) = 0, V ′

vib(α
◦
1 + 2π) = 0, V ′

vib(α
◦
2) = 0. (3.3)

For simplicity, we will write αk instead of α◦
k. Using the method of separation of variables (the

Fourier method), we will represent

Vvib(α, t) = eiωtX(α).

Here ω is an angular frequency (ν = ω/(2π) is a NF in Hertz), X(α) is a MS. Substituting this
expression into Eqs. (3.1) and (3.2), we obtain the ordinary differential equation

a0X
(IV) + 2ρr3ΩωiX ′′′ + (a1 − ρr3ω2)X ′′ + 2ρr3ΩωiX ′ + (a2 + ρr3ω2)X = 0 (3.4)

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 67–78



72 I. F.Kozhevnikov

and the boundary conditions

X(α1 + 2π) = 0, X(α2) = 0, X ′(α1 + 2π) = 0, X ′(α2) = 0. (3.5)

The general solution of (3.4) can be written as

X(α) = Gepα.

So, the characteristic equation reads

a0p
4 + 2ρr3Ωωip3 + (a1 − ρr3ω2)p2 + 2ρr3Ωωip+ (a2 + ρr3ω2) = 0. (3.6)

Solving this equation one can obtain [2] four roots p1(ω,Ω), p2(ω,Ω), p3(ω,Ω), p4(ω,Ω). The
functions pj(ω) = Re(pj(ω)) + i Im(pj(ω)) are represented in Figs. 2a–2d for Ω = 148 and

157 rad s−1. Most likely, this is a situation close to two pairs of multiple roots.

Fig. 2. The functions p1(ω), p2(ω), p3(ω), p4(ω), (a) Repj(ω), Ω = 148 rad s−1, (b) Impj(ω), Ω = 148
rad s−1, (c) Repj(ω), Ω = 157 rad s−1, (d) Impj(ω), Ω = 157 rad s−1, (e) Repj(ω), Ω = 152.55 rad s−1,
(f) Impj(ω), Ω = 152.55 rad s−1.
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Remark 2. Carrying out calculations we used the input data (Input I) as in [2]: the tire size
(205/55R16), the mass of tire and the quantity of internal pressure.

The quartic polynomial (3.6) has the discriminant

D(ω,Ω) = a60(p1 − p2)
2(p1 − p3)

2(p1 − p4)
2(p2 − p3)

2(p2 − p4)
2(p3 − p4)

2 =

= D10(Ω)ω
10 +D8(Ω)ω

8 +D6(Ω)ω
6 +D4(Ω)ω

4 +D2(Ω)ω
2 +D0,

D10(Ω) = −16ρ5r15
[
ρr3Ω2 − a0

]
, D0 = 16a0a2(a

2
1 − 4a0a2)

2,

D8(Ω) = 16ρ4r12
[
−44ρ2r6Ω4 + ρr3 (3a1 + 55a0 − a2)Ω

2 + a0a2 − 8a20 − 4a0a1
]
,

D6(Ω) = −16ρ3r9
[
−16ρ3r9Ω6 + ρ2r6 (24a0 + 72a2 − 16a1)Ω

4+

+ ρr3
(
73a0a1 − 92a0a2 − 3a1a2 + 3a21 − 84a20

)
Ω2 −

− 6a0a
2
1 − 16a30 + 16a20a2 − 16a20a1 + 4a0a1a2

]
,

D4(Ω) = 16ρ2r6
[
ρ2r6

(
a21 − 6a0a2 + 18a1a2 − 27a20 + 18a0a1 − 27a22

)
Ω4 +

+ ρr3
(
36a0a

2
2 − 3a21a2 + a31 − 36a20a1 + 17a0a

2
1 − 112a0a1a2 + 132a20a2

)
Ω2 +

+ 48a30a2 − 4a0a
3
1 − 8a20a

2
2 + 6a0a

2
1a2 + 32a20a1a2 − 8a20a

2
1

]
,

D2(Ω) = 16ρr3
[
ρr3

(
a31a2 + a0a

3
1 + 20a0a

2
1a2 − 36a0a1a

2
2 − 36a20a1a2 + 48a20a

2
2

)
Ω2 −

− 4a0a
3
1a2 + a0a

4
1 + 16a20a1a

2
2 − 16a20a

2
1a2 + 48a30a

2
2

]
.

This discriminant vanishes if and only if at least two roots are equal. The plot ofD(ω) for angular
velocity Ω = 152.55 rad s−1 is shown in Fig. 3. So one multiple root (root of multiplicity one,
for example, p1, p1, p3, p4) is located between 106 and 107 Hz. This case is not considered in
this paper. Yet, there is a more interesting situation (two pairs of multiple roots) around 92 Hz.

In the general case pi �= pj (this case was investigated in [2]) the solution can be represented
in the form

X(α) = G1e
p1α +G2e

p2α +G3e
p3α +G4e

p4α. (3.7)

The coefficients Gi(p1, p2, p3, p4) = Gi(ω,Ω) are determined from the boundary conditions (3.5)

G1 = e−p1(α1+2π)
(
(p4 − p3)e

p2(Δα−2π) − (p4 − p2)e
p3(Δα−2π) + (p3 − p2)e

p4(Δα−2π)
)
G∗

5,

G2 = e−p2(α1+2π)
(
−(p4 − p3)e

p1(Δα−2π) + (p4 − p1)e
p3(Δα−2π) − (p3 − p1)e

p4(Δα−2π)
)
G∗

5,

G3 = e−p3(α1+2π)
(
(p4 − p2)e

p1(Δα−2π) − (p4 − p1)e
p2(Δα−2π) + (p2 − p1)e

p4(Δα−2π)
)
G∗

5,

G4 = e−p4(α1+2π)
(
−(p3 − p2)e

p1(Δα−2π) + (p3 − p1)e
p2(Δα−2π) − (p2 − p1)e

p3(Δα−2π)
)
G∗

5.

(3.8)

Here Δα = α2 − α1 determines the length of the contact area, G∗
5 is an arbitrary constant.

The homogeneous system (3.5) has a nonzero solution (3.8) if its determinant f(p1, p2, p3, p4) =
= f(ω,Ω) vanishes

f = e(p1+p2+p3+p4)(α1+2π)
[
(p3 − p1)(p4 − p2)

(
e(p2+p4)(Δα−2π) + e(p1+p3)(Δα−2π)

)
−

−(p3 − p2)(p4 − p1)
(
e(p1+p4)(Δα−2π) + e(p2+p3)(Δα−2π)

)
−

−(p2 − p1)(p4 − p3)
(
e(p3+p4)(Δα−2π) + e(p1+p2)(Δα−2π)

)]
= 0.

(3.9)
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Fig. 3. The discriminant D(ω) of the quartic polynomial for Ω = 152.55 rad s−1.

So, if the angular velocity Ω = Ω0 is fixed, then we obtain the frequency equation f(ω,Ω0) =
= f(ω) = 0 which defines an infinite spectrum of NF. The function f(ω) = Re(f(ω))+i Im(f(ω))
is a complex-valued function, but it assumes real or purely imaginary values for real-valued
arguments. The plots of Re(f(ω)), Im(f(ω)) for Δα = 0.3 rad and for angular velocities
Ω = 151 and 154 rad s−1 are shown in Figs. 4a and 4b. The right figures zoom the left figures
around 92 Hz. The frequencies for which Re(f(ω)) vanishes in the left neighborhood and is not
equal to zero in the right neighborhood, and simultaneously Im(f(ω)) is not equal to zero in
the left neighborhood and vanishes in the right neighborhood (for example, the point around
91.96 Hz in Fig. 4b), correspond to the multiple root (root of multiplicity one, for example,
p1, p1, p3, p4). This case is not considered in this paper. The same holds for frequencies in which
Re(f(ω)) is not equal to zero in the left neighborhood and vanishes in the right neighborhood,
and simultaneously Im(f(ω)) vanishes in the left neighborhood and is not equal to zero in the
right neighborhood (for example, the point around 91.79 Hz in Fig. 4b).

3.1. A special case of vibrations of a rolling tire

Let us consider the special case of two pairs of multiple roots, when p1 = p2 and p3 = p4.
In this case, Eq. (3.6) reads

a0p
4 + 2ρr3Ωωip3 + (a1 − ρr3ω2)p2 + 2ρr3Ωωip+ (a2 + ρr3ω2) = a0(p− p1)

2(p− p3)
2.

Multiplying the factors on the right-hand side and identifying the coefficients of each power of
p, one might obtain

p1 + p3 = −ρr3Ωωi

a0
, p1p3(p1 + p3) = −ρr3Ωωi

a0
,

p21 + 4p1p3 + p23 =
a1 − ρr3ω2

a0
, p21p

2
3 =

a2 + ρr3ω2

a0
.

(3.10)
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Fig. 4. The function f(ω), —— Re(f(ω)), ------ Im(f(ω)), (a) Ω = 151 rad s−1, (b) Ω = 154 rad s−1,
(c) Ω = 152.55 rad s−1. The right figures zoom the left figures around 92 Hz.

Solving this system, we calculate all the parameters analytically

ω =

√
a0 − a2
ρr3

, Ω =

√
a0(3a0 − a1 − a2)

ρr3(a0 − a2)
,

p1,3 =
i

2

⎡⎣−ρr3Ωω

a0
±

√(
ρr3Ωω

a0

)2

+ 4

⎤⎦ =
i

2

[√
3− a1 + a2

a0
±
√

7− a1 + a2
a0

]
.

Thus, if the geometry of the tire and the internal tire pressure are fixed (the coefficients
a0, a1, a2), then one can immediately identify the angular velocity of rotation

(Ω = 152.55167 . . . rad s−1) and, respectively, the tire speed (Ẋ1 = rΩ = 174.03705 . . . km h−1)
and the frequency such that p1 = p2 and p3 = p4. The plots of Re(f(ω)), Im(f(ω)) for Δα =
= 0.3 rad and for angular velocity Ω = 152.55 rad s−1 are shown in Fig. 4c. The right figure

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 67–78
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zooms the left figure around 92 Hz. One can see a singular point of the curve, corresponding to
the special case of two pairs of multiple roots. The functions pj(ω) = Re(pj(ω)) + i Im(pj(ω))

which are the solutions of (3.6) are represented in Figs. 2e and 2f for Ω = 152.55 rad s−1. Now
one can really visualize the case of two pairs of multiple roots for ν = 92.019909 . . . Hz.

In this special case, one cannot use the formulae (3.7). Thus, one must search for the MS
in the form

X(α) = (G1 +G2α)e
p1α + (G3 +G4α)e

p3α, (3.11)

where the coefficients G1, G2, G3, G4 are determined from the boundary conditions (3.5)

G1e
p1(α1+2π) +G2(α1 + 2π)ep1(α1+2π) +G3e

p3(α1+2π) +G4(α1 + 2π)ep3(α1+2π) = 0,

G1e
p1α2 +G2α2e

p1α2 +G3e
p3α2 +G4α2e

p3α2 = 0,

G1p1e
p1(α1+2π) +G2

(
1 + p1(α1 + 2π)

)
ep1(α1+2π) +G3p3e

p3(α1+2π) +

+G4

(
1 + p3(α1 + 2π)

)
ep3(α1+2π) = 0,

G1p1e
p1α2 +G2

(
1 + p1α2

)
ep1α2 +G3p3e

p3α2 +G4

(
1 + p3α2

)
ep3α2 = 0.

(3.12)

The solution of this system reads

G1 = e−p1(α1+2π)
[
−α2e

p1(Δα−2π)+
(
α2 − (p3 − p1)(Δα− 2π)(α1 + 2π)

)
ep3(Δα−2π)

]
G∗

5,

G2 = e−p1(α1+2π)
[
ep1(Δα−2π)−

(
1− (p3 − p1)(Δα− 2π)

)
ep3(Δα−2π)

]
G∗

5,

G3 = e−p3(α1+2π)
[
−α2e

p3(Δα−2π)+
(
α2 + (p3 − p1)(Δα− 2π)(α1 + 2π)

)
ep1(Δα−2π)

]
G∗

5,

G4 = e−p3(α1+2π)
[
ep3(Δα−2π)−

(
1 + (p3 − p1)(Δα− 2π)

)
ep1(Δα−2π)

]
G∗

5.

(3.13)

The homogeneous system (3.12) has a nonzero solution (3.13) if its determinant vanishes

f = e(2p1+2p3)(α1+2π)
[(

(p3 − p1)
2(Δα− 2π)2+ 2

)
e(p1+p3)(Δα−2π)− e2p1(Δα−2π)− e2p3(Δα−2π)

]
=

= e(p1+p3)(α1+α2+2π)f1

(
(p3 − p1)(Δα− 2π)

)
= 0, f1(x) = x2 + 2− 2 cosh x. (3.14)

Substituting (3.13) into (3.12) for verification, one can obtain three identities (the first three

equations) and the equation f · e−(2p1+2p3)(α1+2π) = 0 (the fourth equation). If f vanishes, then
the fourth equation of (3.12) is fulfilled identically. But the multiplier f1(x) appearing in (3.14)
does not vanish except x = 0, that is, for p1 = p3. Thus, this is a case of a root of multiplicity
four (p1 = p2 = p3 = p4) which is not considered here. Thus, the homogeneous system (3.12)
has only a zero solution G1 = G2 = G3 = G4 = 0 and the corresponding MS X(α) vanishes.

Let us consider the neighborhood of the singular point. If p4 → p3 and p2 → p1 it is
necessary to use the formulae (3.7), (3.8) and (3.9) obtained in [2]. The frequency function (3.9)
tends to zero f(ω) → 0. Thus, (3.8) practically satisfies the boundary conditions (3.5): the first
three equations of (3.5) are the three identities and the left side of the fourth equation X ′(α2)
tends to zero. This means that the tangential component of the displacement vector of median
line points meets the conditions rVvib(α1 + 2π) = 0, rVvib(α2) = 0. But the radial component
fulfills the conditions rUvib(α1 + 2π) = 0, rUvib(α2) → 0 (Fig. 5). As Gi in (3.8) tend to zero,
the amplitude of vibrations also tends to zero. The MS in the neighborhood of the singular point
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Fig. 5. The MS in the neighborhood of the singular point for Ω = 152.55 rad s−1 and ν = 92.020198 Hz.

is represented in Fig. 5. The shape of the deformed median line of the tread in the steady-state
regime of rolling of a loaded tire is represented in the figure by the dotted line. The vibrations
about the steady-state motion correspond to the solid line.

Remark 3. If one has the special case of a root of multiplicity four (p1 = p2 = p3 = p4), then the
system (3.10) reads

2p1 = −ρr3Ωωi

a0
, 2p31 = −ρr3Ωωi

a0
, 6p21 =

a1 − ρr3ω2

a0
, p41 =

a2 + ρr3ω2

a0
. (3.15)

Solving this system, we calculate all the parameters analytically

p1 = 0, Ω = 0, ω =

√
− a2
ρr3

, a2 = −a1;

p1 = ±1, Ω = ± 2a0ωi

a0 − a2
, ω =

√
a0 − a2
ρr3

, a1 + a2 − 7a0 = 0.

Carrying out calculations we used the input data (Input I) as in [2]: a0 = −8045.37 N m, a1 =
= 55661.5 N m, a2 = −58109.6 N m. Thus, for these parameters a root of multiplicity four is impossible.
But theoretically, it is possible to choose such a geometry of the tire that the case a2 = −a1 can be
implemented.

Remark 4. The system (3.10) has another solution p3 = −p1. In this case

Ω = 0, ω2 =
a1 + 2a0 ± 2

√
a0(a0 + a1 + a2)

ρr3
, p21 =

ρr3ω2 − a1
2a0

= 1±
√
a0(a0 + a1 + a2)

a0
. (3.16)

If p3 = −p1 one must search for the MS (3.11) in the form

X(α) = (G1 +G2α)e
p1α + (G3 +G4α)e

−p1α.

The determinant (3.14) reads

f = f1

(
2p1(Δα− 2π)

)
.

The equation f = 0 has a unique root p1 = 0. But according to (3.16) p1 is not equal to zero, and in this
case, we again obtain that X(α) vanishes.

The author thanks Prof. A.A. Burov for useful discussions.
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4. Conclusions

A special case of two pairs of multiple roots is considered in this paper. In contrast to [2],
if one has a situation of multiple roots, then the solution is represented in a different form, and
the problem must be solved differently. If the geometry of the tire and the internal tire pressure
are fixed, then the angular velocity of rotation (152.55167 . . . rad s−1) and, respectively, the
tire speed (174.03705 . . . km h−1) and the frequency (92.019909 . . . Hz), corresponding to this
case, are determined analytically. As for mode shape, here one has an interesting situation.
If p4 → p3 and p2 → p1, it is necessary to use the formulae obtained in [2]. The frequency
function (the function from the frequency equation which defines an infinite spectrum of natural
frequencies) tends to zero. Thus, the solution practically satisfies the boundary conditions. The
amplitude of vibrations tends to zero. If p4 = p3 and p2 = p1, one has a special case and cannot
use the formulae obtained in [2]. It is necessary to use the formulae obtained in this paper. For
the case of two pairs of multiple roots the frequency function is a constant function and has
a different structure. This constant function is not equal to zero at the singular point. So the
amplitude of vibrations is equal to zero and hence the corresponding mode shape also vanishes.
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