
A Formal Analysis of the Mimblewimble Cryptocurrency
Protocol with a Security Approach

Adrián Silveira
Universidad de la República, Facultad de Ingenieŕıa,

Montevideo, Uruguay, 11300,
adrians@fing.edu.uy

and

Gustavo Betarte
Universidad de la República, Facultad de Ingenieŕıa,

Montevideo, Uruguay, 11300,
gustun@fing.edu.uy

and

Carlos Luna
Universidad de la República, Facultad de Ingenieŕıa,

Montevideo, Uruguay, 11300,
cluna@fing.edu.uy

Abstract
A cryptocurrency is a digital currency that enables online transactions for various products
and services. Cryptocurrencies are deployed over public blockchains which have the
transactions replicated and dispersed across multiple nodes within a computer network.
This decentralized mechanism is devised in order to achieve, for example, reliability,
transparency, integrity in a network consisting of unreliable nodes. Privacy and anonymity
have become crucial in this context. Privacy in blockchain refers to the ability to
protect sensitive data and transactions from unauthorized access. Anonymity aims to
prevent the linkage of transactions to the real identity of the parties involved. For
that reason, formal and mathematical approaches are gaining popularity in order to
guarantee the correctness of the cryptocurrency implementations. Mimblewimble is
a privacy-oriented cryptocurrency technology which provides security and scalability
properties that distinguish it from other protocols of its kind. Mimblewimble combines
confidential transactions, CoinJoin and cut-through to achieve a higher level of privacy
and security, as well as, scalability. In this work, we present and discuss these security
properties and outline the basis of a model-driven verification approach to address the
certification of the correctness of the protocol implementations. In particular, we propose
an idealized model that is key in the described verification process. Then, we identify and
precisely state the conditions for our model to ensure the verification of relevant security
properties of Mimblewimble. In addition, we analyze the Grin and Beam implementations
of Mimblewimble in their current state of development. We present detailed connections
between our model and their implementations regarding the Mimblewimble structure and
its security properties. Finally, we analyze the Litecoin soft-fork that enhances privacy
over the blockchain based on Mimblewimble features.

Keywords: Security, Formal Verification, Mimblewimble, Idealized Model, Cryptocurrency.

1

esteb
Máquina de escrever
CLEI Electronic Journal, Volume 27, Issue 3, paper 4, August 2024



1 Introduction

A cryptocurrency is a digital currency that can be exchanged online for goods and services. It can be
converted into cash through a cryptocurrency exchange and vice versa. Many cryptocurrencies work using a
technology called blockchain, a distributed ledger of transactions that is duplicated and distributed across
the nodes of a computer network. A defining feature of cryptocurrencies is that there is no central trusted
authority. The ledger is maintained using a consensus-based validation protocol where transactions are
constructed in a peer-to-peer fashion and broadcast to the entire set of participants who work to validate
them and build blocks. Therefore, the consensus algorithm is what decides which is the following block to
be appended to the blockchain. This decentralized mechanism is devised to achieve reliability in a network
consisting of unreliable nodes. Next, we present relevant security aspects of the cryptocurrencies and the
importance of applying formal methods for the verification of their implementations. Then, we state the aims
and the structure of this paper.

1.1 Background

Cryptocurrency protocols are a valuable target for several attacks since they deal with virtual money.
Irreparable losses of money and credibility have been caused because of several attacks against cryptocurrency
systems (e.g., [1]). Security and confidentiality are now much more important in this situation. For this
reason, the cryptocurrency community is looking for techniques and approaches that can reduce the likelihood
of successful attacks. One such approach is the application of formal methods to software implementation. In
particular, interest in formally certified implementations and formal proofs has increased [2, 3].

Mimblewimble (MW) is a privacy-oriented cryptocurrency technology with scalability and security that
set it apart from similar techonologies. In MW, unlike Bitcoin [4], there is no such concept as an address, and
all the transactions are confidential. The method used in this work is based on formal software verification,
and it aims to formally verify the fundamental mechanisms of MW and its implementations [5, 6]. Security
issues are explored on an idealized model of the MW protocol. Such model delivers a realistic environment
while abstracting away the specifics of any particular implementation. Then, verification should be performed
on more detailed models, where low-level mechanisms are specified. Finally, it must be proved that the
low-level model implements the idealized model.

Security Properties

Some security and privacy properties are crucial for the cryptocurrency protocols, however we can find them
with different names in the literature. Next we classify the main security and privacy concepts that will be
verified in our idealized model into the following properties.

The property of ownership or security against theft implies that only a user can spend coins belonging to
them [7, 8]. In other words, it means that no one can spend a user’s coins as long as they keep their keys
safe. Ownership will be defined in Section 4

The property of no-inflation or security against inflation or balance or No double spending [7, 8, 9] ensures
that the only way money can be created is via the supply of transactions. In other words, money can not
be created from thin air. Furthermore, coins can not be double-spent. The property of no-inflation will be
verified in 5.1.

The property of transaction indistinguishability [7] states that a transaction does not reveal anything
about the amount. In other words, the amount involved in a transaction is hidden so that only the sender
and the receiver know how much money is involved. In Section 5.2, we define the perfect hiding property of
the Pedersen commitment to guarantee this property.

The property of untraceable [10] prevents tracing activities of the transactions. In other words, IP
addresses should be hidden and can not be used to discover identity or geolocation of the user. In Section 5.4,
we define how the broadcast of the transaction should be performed with the aim of fulfilling this property.

1.2 Related Work

The cryptocurrency community is interested in applying formal methods to guarantee correctness and
properties over their protocol constructions. For instance, Idelberger et al. [11] proposes the use of defeasible
logic frameworks such as Formal Contract Logic for the description of smart contracts. However, the authors
did not analyze the necessary conditions the cryptocurrency protocols should satisfy to guarantee security
properties.

On the other hand, Hirai [12] employs Lem to formally specify the Ethereum Virtual Machine (EVM),
while Grishchenko, Maffei, and Schneidewind [13] use F* for the formalization of the EVM. Hildenbrandt et

2



al. achieve the same using the reachability logic system known as K. P̂ırlea and Sergey [14] present a Coq
[15, 16] formalization of a blockchain consensus protocol, verifying certain properties formally.

Boyd et al. presented a blockchain model in Tamarin [17], which is useful for analyzing certain blockchain
based protocols. In addition, a mechanized formal verification of the Pedersen commitment protocol was
presented by Metere and Dong [18] using EasyCrypt [19]. Moreover, an abstraction for the analysis of some
security properties of MW was introduced by Fuchsbaue et al. [7].

Finally, in Betarte et al. [20] we have outlined several formal methods techniques that are particularly useful
for cryptocurrency software. We have provided guidelines for adopting formal methods in cryptocurrency
software projects, suggesting that set-based formal modeling (or specification), simulation, prototyping,
and automated proof should be applied before considering more advanced approaches such as code formal
verification. Specifically, we have presented excerpts from a set-based formal specification of a consensus
protocol and the Ethereum Virtual Machine. Additionally, we have demonstrated how prototypes can be
generated from these formal models and how simulations can be run on them. Lastly, we have illustrated
how test cases can be generated from the same models and how automated proofs can be used to evaluate
the correctness of these models. The work we present here closely follows the approach described in [20].

We believe that cryptocurrency protocols should undergo a formal security assessment in order to prove
and guarantee security properties from a formal point of view. A complete formal model of the cryptocurrency
is crucial. For instance, Ruffing et al. [21] show an attack against Zerocoin [22] exposing the lack of an
important missing property in the formal security analysis of the cryptocurrency.

1.3 Contributions

The goal of the present work was to identify and analyze the main components of the MW protocol with the
aim of building an idealized model and verifying its security properties.

The specific objectives were to i) identify and specify the foundational schemes and protocols underlying
Mimblewimble, ii) identify and define the principal components of our model, iii) define and verify relevant
security properties and iv) compare our model with the most popular implementations of MW, Grin and
Beam, and the MW based soft-fork of Litecoin.

This work expands upon and extends the findings and insights presented in previously published papers
[23, 24, 25]. In those papers, we have delineated components that constitute the foundational phases in
developing a thorough formalization of the MW cryptocurrency protocol, coupled with an analysis of its
properties. More specifically, we have defined the essential elements of our idealized model and articulated
conditions for validity to guarantee the correctness of the blockchain. Furthermore, we have identified and
precisely stated the conditions within our model to ensure the verification of relevant security properties
associated with MW.

We have studied both the protocol and the essential security properties that a MW blockchain should
have, along with analyzing the security properties inherent in the Pedersen commitment and range proofs
schemes. The primary contribution of our work is the proposed idealized model, complemented by an analysis
showcasing the essential properties it successfully validates. Furthermore, we have introduced and discussed
the foundations of a model-driven verification approach aimed at certifying the correctness of a protocol’s
implementation. Lastly, we have conducted a comparison between two MW implementations, Grin [5] and
Beam [6], with our model and we have discussed certain features that distinguish them from each other. In
addition, we have have described the Litecoin soft-fork main features and compare them with our model.

The paper is organized as follows. Section 2 provides a brief description of MW. Section 3 defines the
schemes and protocols our model is based on. Section 4 outlines the building blocks of a formal idealized
model depicting the computational behavior of MW. Section 5 specifies the verification activities being
implemented to validate both the protocol and its corresponding implementation.

Then, Section 6 examines the Grin and Beam implementations of MW in their present stage of development
and the Litecoin soft-fork based on Mimblewimble features. Final remarks are presented in Section 7 and
directions for future work are detailed in Section 8.

2 The Mimblewimble protocol

In August 2016, someone using the pseudonym ”Tom Elvis Jedusor” (the French name for Voldemort in
Harry Potter) shared a text file on the IRC Channel outlining a cryptocurrency protocol with a distinctive
approach compared to Bitcoin. This article titled ‘Mimblewimble’ [26] addressed some privacy concerns and
explored the capability to compress the transaction history of the chain without compromising the validity
of verification. In October 2016, given that this document left certain questions open, Andrew Poelstra
published a paper to address these concerns [27]. He described, in more detail, the design of a blockchain
based on MW.

3



Next, we describe the process of money transfer within the MW protocol.
Let’s consider a scenario where Alice and Bob mutually decide on a money transfer. Alice intends to

send v coins to Bob. They engage in off-chain communication and create the MW transaction, including the
transaction amount v.

Alice Bob

transaction

Then, the transaction should be added to a block which is distributed across the nodes of a computer
network to be added to the blockchain.

In MW, transactions are conducted through Confidential transactions [28, 29]. A transaction allows a
sender (Alice) to encrypt the amount v of bitcoins by using blinding factors. In a confidential transaction,
only the two parties involved possess knowledge of the amount of bitcoins being exchanged. Nevertheless, for
any external observer, validating the transaction’s legitimacy is feasible by comparing the number of inputs
and outputs. If these quantities are equal, the transaction is deemed valid. This process ensures that no
funds have been generated arbitrarily, playing a key role in maintaining the integrity of the system.

In MW transactions, the recipient (Bob) randomly selects a range of blinding factors provided by the
sender, which are then used as proof of ownership by the receiver.

The MW protocol aims at providing the following properties [26, 5]: i) Verification of zero sums without
disclosing the specific amounts involved in a transaction, thereby ensuring confidentiality; ii) Authentication
of transaction outputs without signing the transaction; and iii) Good scalability, while preserving security, by
generating smaller blocks or reducing the size of old blocks, generating a blockchain with a size that doesn’t
increase over time as extensively as, for example, Bitcoin’s. The first two properties rely on Elliptic Curves
Cryptography operations and properties. The third one is a consequence of the first two.

3 Schemes and Protocols

A commitment scheme is a cryptographic primitive that allows a player in a protocol to choose a value and
commit to his choice such that he can no longer change his mind. The value is kept hidden from others with
the ability to reveal the committed value later. In MW transactions, the transaction amounts and blinding
factors are hidden in Pedersen commitments. We say that it is hard (in terms of complexity) for someone
observing the transaction to know the transaction amount or the blinding factor. In addition, since the
transaction amounts are hidden, it should be possible to verify that the values are positive without revealing
any information about them. Range proofs should be provided to guarantee the transactional amount lies in
some range. Moreover, a transaction contains a signature to guarantee it was honestly constructed. Next, we
define the schemes and protocols our model is based on.

3.1 Commitment Scheme

A commitment scheme [30] is a two-phase cryptographic protocol between two parties: a sender and a receiver.
At the end of the commit phase, the sender is committed to a specific value that he cannot change later, and
the receiver should have no information about the committed value. A non-interactive commitment scheme
[31] can be defined as follows:

Definition 1 (Non-interactive Commitment Scheme) A non-interactive commitment scheme
ζ(Setup,Com) consists of two probabilistic polynomial time algorithms, Setup and Com, such that:

• Setup generates public parameters for the scheme depending on the security parameter λ.

• Com is the commitment algorithm: Com : M×R→ C, where M is the message space, R the randomness
space and C the commitment space. For a message m ∈ M, the algorithm draws uniformly at random
r ← R and computes the commitment com ← Com(m, r).

We have simplified the notation, but it is important to remember that Com, M , R, and C depend on the
parameters generated by Setup.

We say the commitment algorithm is a linear function if:

∀m1,m2 ∈ M , r1, r2 ∈ R:

4



Com(m1, r1) + Com(m2, r2) = Com(m1 + m2, r1 + r2)

In other words, Com is additive in both parameters.
Transactions in MW are derived from Confidential transactions [28], which are enabled by Pedersen

commitments with homomorphic properties over elliptic curves. We define the non-interactive Pedersen
commitment scheme we will use in our model, based on Definition 1, as follows:

Definition 2 (Pedersen Commitment Scheme with Elliptic Curves) Let M and R be the finite field
Fn and let C be the set of points determined by an elliptic curve C of prime order n. As in Definition 1, the
probabilistic polynomial time algorithms are defined as:

• Setup generates the order n (dependent on the security parameter λ) and two generator points G and H
on the elliptic curve C of prime order n whose discrete logarithms relative to each other are unknown.

• Com(v, r) = r .G + v.H, with v the transactional value and r the blinding factor chosen randomly in Fn.

Each MW transaction contains a list of range proofs of the transactional values. Next, we define the
range proof scheme we will analyze in our model.

3.2 Range Proof Scheme

Range proofs aim at proving that a secret value is in a particular range without revealing the value.
Transactions in MW contain a list of range proofs proving that the transactional values are positive and less
than a specific upper bound to avoid overflow errors. We define a non-interactive zero-knowledge (NIZK)
range proof scheme from a commitment scheme as follows:

Definition 3 (NIZK Range Proof Scheme) Let ζ(Setup,Com) be a Pedersen commitment scheme as
in Definition 2. Let P be the range proof space for the values v ∈ M such that v lies in some range [a, b]. A
non-interactive zero-knowledge range proof scheme η(Prove,Verify) consists of two probabilistic polynomial
time algorithms, Prove and Verify, such that:

• Prove : M×R×C → P, which receives a value v, the random value r and the commitment c = Com(v, r)
and computes the range proof for the value v.

• Verify : C × P → bool, that given a commitment value and a range proof, decides if the value is in the
range.

Notice that the Prove algorithm computes a zero-knowledge proof to the commitment to verify that
the committed value is in a particular range. In other words, the guarantee enables a prover to convince
a verifier that the statement holds without revealing any information about the secret value. In addition,
since the transactional values should be positive, the amount should lie in [0, b] such that b is large enough to
guarantee privacy concerns.

3.3 Schnorr Signature Protocol

The construction of the MW transaction is made off-chain by the parties. For simplicity, we shall work with
a signature protocol between two parties, but this can be generalized to multi-parties.

During the transaction construction, as we will see in Section 4.2, Alice needs to verify Bob’s Schnorr
signature. Schnorr signature protocols can be applied over any group where discrete logarithm is hard, in
our case, over an elliptic curve C. Next, we define the Schnorr signature protocol used by them during the
transaction construction. The message m can be the empty string.

Definition 4 (Schnorr Signature Protocol) Let C be an elliptic curve of prime order n with generator
G. Let hash : {0, 1}∗ → Fn be a cryptographic hash function over the finite field Fn. Alice secretly knows
kA ∈ Fn whose public key is KA = kA.G

Signing
The following steps are followed to create a signature on a message m ∈ {0, 1}∗:

1. Alice chooses nonce nA $← Fn where $← denotes that nA is drawn uniformly at random from Fn.

2. She computes public key NA = nA.G

3. She computes e = hash(NA | KA | m) and sA = nA + e.kA where | denotes concatenation and NA,KA
are represented as a bit string.

5



4. The signature σ is defined as follows:

σ = (sA,NA),with public key KA

Validation
A signature σ = (sA,NA) is valid if the following holds:

sA.G = NA + e.KA

Each MW transaction contains a signature σ made by the parties during the transaction construction,
which can be seen as a Schnorr multi-signature.

Next, a Schnorr signature protocol aggregation is defined according to our model.

Definition 5 (Schnorr Signature Protocol Aggregation) Let C be an elliptic curve of prime order n
with generator G. Let hash : {0, 1}∗ → Fn be a cryptographic hash function over the finite field Fn. Alice and
Bob secretly know kA, kB ∈ Fn whose public keys are KA = kA.G and KB = kB.G respectively.

Signing
The following steps are followed to create a multisignature on a message m ∈ {0, 1}∗:

1. Alice and Bob choose nonces nA,nB $← Fn respectively

2. They compute public keys NA = nA.G and NB = nB.G

3. They compute e = hash(NA + NB | KA + KB | m) and respectively compute:

sA = nA + e.kA sB = nB + e.kB

4. The aggregate signature σ is defined as follows:

σ = (sa + sB,NA + NB)

with the aggregate public key KA + KB

Validation
A signature σ = (sa + sB,NA + NB) is valid if the following holds:

(sA + sB).G = NA + NB + e.(KA + KB) (1)

Next, we show that a signature σ honestly constructed will be valid.
If we consider the signing process, we know that:

sA = nA + e.kA and sB = nB + e.kB
By applying algebraic properties on elliptic curves, the left term on the equality 1 can be written as:

(sA + sB).G = (nA + e.kA).G + (nB + e.kB).G =

nA.G + e.kA.G + nB.G + e.kB.G =

nA.G + nB.G + e.(kA.G + kB.G)

So, if we substitute the left term on the equality 1, we have:

nA.G + nB.G + e.(kA.G + kB.G) = NA + NB + e.(KA + KB)

The above equality holds because:

NA = nA.G, KA = kA.G and NB = nB.G, KB = kB.G

(NA,KA) are Alice’s public keys, and (NB,KB) are Bob’s public keys. Since we are working over the
elliptic curve C where the discrete logarithm is hard, the only ones who know the private keys (nA, kA) and
(nB, kB) are Alice and Bob respectively.

6



4 Idealized Model

The basic elements of our model are transactions, blocks and chains. Each node in the blockchain maintains
a local state. The main components are the local copy of the chain and the set of transactions waiting to
be validated and added to a new block. Moreover, each node keeps track of unspent transaction outputs
(UTXOs).

Properties such as zero-sum and the absence of double spending in blocks and chains must be proved for
local states. The blockchain global state can be represented as a mapping from nodes to local states. Next,
we define all the elements which compose our idealized model.

4.1 Transactions

Given two fixed generator points G and H on the elliptic curve C of prime order n (whose discrete logarithms
relative to each other are unknown), we define a single transaction as follows:

Definition 6 (Transaction) A single transaction t is a tuple of type:

Transaction def
= {i : I

∗
, o : O

∗
, tk : TxKernel,

tko : KOffset}

with X∗ representing the lists of elements of type X and where:

• i = [c1, ..., cn] and o = [o1, ..., om] are the lists of inputs and outputs. Each input ci and output oi are
points over the curve C and they are the result of computing the Pedersen commitment r .G + v.H with
r the blinding factor and v the transactional value in the finite field Fn.

• tk = {rp, ke, σ} is the transaction kernel where:

– rp = [rp1, ..., rpm] is a list of range proofs of the outputs. The j − th item rpj in rp corresponds to
the j − th item oj in o

– ke is the transaction excess represented by (
∑m

1 r ′ −
∑n

1 r − tko).G
– σ is the kernel Schnorr signature (for simplicity, fees are left aside)

• tko ∈ Fn is the transaction kernel offset.

Inputs are previous transaction outputs. The transaction kernel offset will be used to construct a block to
satisfy security properties.

The ownership of a coin is given by the following definition:

Definition 7 (Ownership) Given a transaction t, we say S owns the output o if S knows the opening (r , v)
for the Pedersen commitment o = r .G + v.H.

The strength of this security definition is directly related to the difficulty of solving the logarithm problem.
If the elliptic curve discrete logarithm problem in C is hard, then given a multiple Q of G, it is computationally
infeasible to find an integer r such that Q = r .G.

It is important to notice that the sender and the receiver do not learn their respective blinding factors
during the construction of the transaction. Instead, they build a Schnorr signature that is used to guarantee
the authenticity of the transaction’s excess value.

We say that a transaction is valid if the following property holds:

Property 1 (Valid Transaction) A transaction t is valid (valid transaction(t)) if t satisfies:

i. The range proofs of all the outputs are valid.

ii. The transaction is balanced.

iii. The kernel signature σ is valid for the excess.

These three properties have a straightforward formalization in our model. The first property we should
guarantee is that all the range proofs of all the outputs are valid.

7



Definition 8 (Valid Range Proof Outputs Transaction) Let t = {i, o, tk, tko} be a transaction as in
Definition 6, with transaction kernel tk = {rp, ke, σ} where o = [o1, ..., om] is the list of outputs and
rp = [rp1, ..., rpm] is the list of the range proof outputs. Let η(Prove,Verify) be a NIZK scheme as in
Definition 3 with P the range proof space where rpj ∈ P proves that oj lies in the range [0, 2n] where n is
small enough to not cause overflow errors. We say all the range proof output transactions are valid if: for all
rpj ∈ rp, Verify(oj , rpj) = true.

The list of range proof outputs provides proof that each transactional output is positive without revealing
further information.

The second property is defined as follows:

Definition 9 (Balanced Transaction) A transaction t = {i, o, tk, tko}, with transaction kernel tk =
{rp, ke, σ}, is balanced if the following holds:∑

oj∈o
oj −

∑
cj∈i

cj = ke + tko.G

A balanced transaction guarantees no money is created from thin air.
The kernel signature σ is a Schnorr signature aggregation with the kernel excess ke as the public key.

Note that, for simplicity during the transaction construction, in Definition 5 we consider a Schnorr signature
aggregation between two parties, however, once the transaction is constructed it is not necessary to know the
parties involved.

The third property is defined as follows:

Definition 10 (Valid Signature for the kernel excess) Let t = {i, o, tk, tko} be a transaction as in
Definition 6 with transaction kernel tk = {rp, ke, σ} where:

• rp is a list of range proofs of the outputs.

• ke is the transaction excess.

• σ = (s,N ) is the kernel Schnorr signature aggregation as in Definition 5 on the empty string m.

We say the kernel signature σ is valid with public key ke if the following holds:
s.G = N + e.ke such that e = hash(N | ke)

To illustrate the above definition, we detail the transaction construction between two parties.

4.2 Transaction construction

Suppose Alice wants to send vB coins to Bob. They need to construct a transaction tr , as in Definition 6,
which contains:

• Alice’s Input Ain, such that she knows the opening (rA, vA) with rA the blinding factor.

• Bob’s Output Bout such that he knows the opening (rB, vB) with rB the blinding factor and Alice’s
change Cout such that she knows the opening (rC , vC ) with rC the blinding factor. Let vC be vA − vB.

The following image illustrates the target transaction tr .

tr(Ain ,Bout || Cout , tk(rp, ke, σ), tko)

The symbol || is the list concatenation operator.
To construct the transaction, Alice and Bob will exchange the information using a data structure called

slate.
Step 1

• Alice adds Ain and the amount vB to the slate.

• Alice chooses rC $← Fn (blinding factor) and computes Cout = rC .G + vC .H (Definition 2). Additionally,
she computes the output range proof rpC = Prove(vC , rC ,Cout) (Definition 3) which will be added to
the transaction in the step 3.

8



• Alice chooses the kernel offset tko $← Fn and computes Alice’s kernel excess secret key as:

keA = rC − rA − tko (2)

• Alice adds to the slate: tko and Alice’s kernel excess as KEA = keA.G

• Alice chooses nonce nA $← Fn and adds the nonce public key NA = nA.G to the slate.

• Alice sends the slate to Bob.

slate(Ain , vB, tko,KEA,NA)

Step 2

• Bob chooses rB $← Fn (blinding factor) and computes Bout = rB.G + vB.H Additionally, he computes
the output range proof rpB = Prove(vB, rB,Bout). He adds Bout to the slate.

• Bob computes Bob’s kernel excess as:
KEB = rB.G (3)

and adds it to the slate.

• Bob chooses nonce nB $← Fn and adds the nonce public key NB = nB.G to the slate.

• Bob calculates the receiver Schnorr signature on the empty string as σB = (sB,NB) where:
sB = nB + e.rB such that e = hash(NA + NB | KEA + KEB)

• Bob adds σB = (sB,NB) to the slate.

• Bob sends the slate to Alice.

slate(Bout , rpB,KEB,NB, σB)

Step 3

• Alice verifies Bob’s signature σB = (sB,NB) as in Definition 4:
sB.G = NB + e.KEB such that e = hash(NA + NB | KEA + KEB)

• Alice computes the sender Schnorr signature on the empty string as σA = (sA,NA) where:
sA = nA + e.keA such that e = hash(NA + NB | KEA + KEB)

• Alice sets the kernel excess ke := KEA + KEB.

• Alice sets the kernel signature σ := (sA + sB,NA + NB).

Finally, Alice and Bob have computed all the remaining fields of the transaction:

tr(Ain ,Bout || Cout , tk(rp, ke, σ), tko)

where: rp := [rpA, rpB]; ke := KEA + KEB; and σ := (sA + sB,NA + NB).
It is important to notice that the kernel excess ke is the same as in Definition 6 represented by (

∑m
1 r ′ −∑n

1 r − tko).G as shown by the following equations:

- by Equation 2, KEA = keA.G = (rC − rA − tko).G

- by Equation 3, KEB = rB.G

9



Then, ke = KEA + KEB = (rC − rA − tko).G + rB.G = (rC + rB − rA − tko).G, which is the sum of the
output blinding factors minus the input blinding factor minus the transaction kernel offset.

In addition, we can highlight that during the transaction construction:

• Alice does not learn Bob’s blinding factor rB.

• Bob does not learn Alice’s blinding factor rC .

• Bob does not learn Alice’s change amount vA − vB.

4.3 Aggregate Transactions

A single transaction can be seen as the sending of money between multiple parties. An aggregate transaction
represents many transactions.

Definition 11 (Aggregate Transaction) An aggregate transaction tx is a tuple of type:

TransacAgg def
= {i : I

∗
, o : O

∗
, tks : TxKernel

∗
,

tko : KOffset}

A single transaction is a particular case where the transaction kernel list contains a single element.
We say that an aggregate transaction is valid if the following property holds:

Property 2 (Valid Aggregate Transaction) Let tx = {i, o, tks, ko} be an aggregate transaction with
tks = [tk1, ..., tkt ] the list of transaction kernels where the j-th item in tks is of the form tkj = {rpj , kej , σj}.
Then tx is valid if the following are satisfied:

i. all the range proofs rpj are valid.

ii. the transaction is balanced.

iii. all the kernel signatures σj are valid for the excess kej.

A balanced aggregate transaction is defined as follows:

Definition 12 (Balanced Aggregate Transaction) Let tx = {i, o, tks, ko} be an aggregate transaction
with tks = [tk1, ..., tkt ] the list of transaction kernels where the j-th item in tks is of the form tkj = {rpj , kej , σj}.
We say tx is balanced if the following holds:∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

Transactions can be merged non-interactively to construct an aggregate transaction. This process can be
applied recursively to add more transactions into one aggregate transaction. The CoinJoin mechanism [32]
makes it possible. It combines all inputs and outputs from separate transactions to form a single transaction,
and the signatures can be composed by the parties. A Transaction Join can be understood as a simple way
to perform CoinJoin with no composite signatures.

Definition 13 (Transaction Join) Given a valid transaction t0 and an aggregate transaction tx:

t0 = {i0, o0, tk0, tko0} and tx = {i, o, tks, tko}

a new aggregate transaction can be constructed as:

tx = {i0 || i, o0 || o, tk0 || tks, tko0 + tko}

The validity of the transactional parties guarantees the validity of an aggregate transaction during the
construction process.

Lemma 1 (Invariant: CoinJoin Validity) Let t0 be a valid transaction and tx be a valid aggregate
transaction. Let tx ′ be the result of aggregating t0 into tx as in Definition 13. Then, tx ′ is valid.

10



Proof.

Let t0 = {i0, o0, tk0, tko0} be a transaction with tk0 = {rp0, ke0, σ0}. Let tx = {i, o, tks, tko} be an aggregate
transaction with tks = [tk1, ..., tkt ], the list of transaction kernels where each tki is tki = {rpi , kei , σi}.

Applying Definition 13, we have that the resulting tx ′ is of the form:

tx ′ = {i ′, o′, tks′, ko′}

with i ′ = i0 || i, o′ = o0 || o, tks′ = (tk0, tk1, ..., tkt),

ko′ = tko0 + ko

According to Property 2, we need to show that:
i) the range proofs of all the transaction outputs are valid.

It means that, according to Definition 8, it is necessary to prove that:
for all rpj ∈ rp, Verify(oj , rpj) = true where rp = [rp0, rp1, ..., rpt ]
Since, t0 and tx are valid transactions, in particular it holds that the range proofs of all the transaction

outputs are valid:

• transaction t0: Verify(o0, rp0) = true

• transaction tx: for all rpj ∈ rp, Verify(oj , rpj) = true where rp = [rp1, rp1, ..., rpt ]

ii) the transaction tx ′ is balanced.
According to Definition 12, we need to prove the following equality holds for the aggregate transaction tx ′:∑

oj∈o′

oj −
∑
cj∈i′

cj = ko′.G +
∑

kej∈tks′
kej

Each term can be written as follows:

(
∑

oj∈o0

oj +
∑
oj∈o

oj)− (
∑
cj∈i0

cj +
∑
cj∈i

cj) =

(tko0 + ko).G + ke0 +
∑

kej∈tks
kej

Rearranging the equality and using algebraic properties on elliptic curves, we have:

(
∑

oj∈o0

oj −
∑
cj∈i0

cj) + (
∑
oj∈o

oj −
∑
cj∈i

cj) =

(ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej)

(4)

Now, we apply the hypothesis concerning the validity of t0 and tx . In particular, applying Definition 9 for
t0 and Definition 12 for tx, we have the following equalities are true:∑

oj∈o0

oj −
∑
cj∈i0

cj = ke0 + tko0.G (5)

and ∑
oj∈o

oj −
∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej (6)

Now, if we substitute the left part of Equation 4 with the right parts of Equation 5 and Equation 6, we
have:

(ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej) =

(ke0 + tko0.G) + (ko.G +
∑

kej∈tks
kej)

iii) all the kernel signatures are valid for the excess.
The list of transaction kernels of tx ′ is tks = [tk0, tk1, ..., tkt ] where each tki is tki = {rpi , kei , σi}.
We need to prove that, for each i ∈ {0, .., t}, σi is valid for the excess kei which holds trivially:

11



• since t0 is a valid transaction, according to Property 1, σ0 is valid for the excess ke0 .

• since tx is a valid aggregate transaction, according to Property 2, for each i ∈ {1, .., t}, σi is valid for
the excess kei .

□
Although in our model aggregate transactions and blocks are essentially the same, we are interested in

distinguishing them. That is because the unconfirmed transaction pool will contain aggregate transactions
and the chain will contain blocks. Since our idealized model is being built in an incremental iterative way,
this distinction allows us to identify and add components in a separate way. For instance, we could add and
analyze block headers to state validity conditions over the chain. On the other hand, aspects of different
security properties will be analyzed on aggregate transactions and blocks.

4.4 Unconfirmed Transaction Pool

The unconfirmed transaction pool (mempool) contains the transactions which have not been confirmed in a
block yet.

Definition 14 (Mempool) A mempool mp is a list of type:
Mempool def

= AggregateTransaction∗

4.5 Blocks and chain

The genesis block Gen is a particular block since it is the first block ever recorded in the chain. Transactions
can be merged into a block. A block is a significant transaction with aggregated inputs, outputs, and
transaction kernels.

Definition 15 (Block) A Block b is either the genesis block Gen, or a tuple of type:

Block def
= {i : I

∗
, o : O

∗
, tks : TxKernel

∗
, ko : KOffset}

where:

• i = [c1, ..., cn] and o = [o1, ..., om] are the lists of inputs and outputs of the transactions.

• tks = [tk1, ..., tkt ] is the list of t transaction kernels.

• ko ∈ Fn is the block kernel offset which covers all the transactions of the block.

We can say a block is balanced if each aggregated transaction is balanced.

Definition 16 (Balanced Block) Let b = {i, o, tks, ko} be a block with tks = [tk1, ..., tkt ] the list of trans-
action kernels where the j-th item in tks is of the form tkj = {rpj , kej , σj}. We say the block b is balanced if
the following holds: ∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

We assume the genesis block Gen is valid. We define the notion of block validity as follows:

Property 3 (Valid Block) A block b is valid if b is the genesis block Gen or it satisfies:

i. The block is balanced.

ii. For every transaction kernel, the range proofs of all the outputs are valid, and the kernel signature σ is
valid for the transaction excess.

Blocks can be constructed by aggregating transactions (analogous to Definition 13). We have proved that
block aggregation preserves the validity of blocks, i.e., block validity is invariant concerning block aggregation.
The proof is analogous to Lemma 1 [24].

In our model, a chain is defined as a list of blocks.

Definition 17 (Chain) A chain is a non-empty list of blocks:

Chain
def
= Block

∗

For a chain c and a valid block b, we can define a predicate validate(c, b) representing the fact that is
correct to add b to c. This relation must verify, for example, that all the inputs in b are present as outputs in
c; in other words, they are UTXOs.

12



5 Properties

Since we deal with virtual money, we should guarantee privacy and security properties on our idealized model.
In particular, the property of ownership ensures that only the coins’ owner can spend them. Furthermore, we
should prevent an attacker from spending a coin more than once and creating virtual money from thin air.
Next, we detail some relevant properties that can be verified in our model.

5.1 Protocol Properties

The property of no coin inflation or zero-sum guarantees that no new funds are produced from thin air in a
valid transaction. The property can be stated as follows.

Lemma 2 (No Coin Inflation) Let t = {i, o, tk, tko} be a valid transaction with transaction kernel tk =
{rp, ke, σ}. Then, the transaction excess only contains the blinding factor and the kernel offset.

Proof.

We know the transaction t is valid, in particular, the transaction is balanced. Applying Definition 9, we know
that: ∑

oj∈o
oj −

∑
cj∈i

cj = ke + tko.G

Using Definition 6, we start to unfold the terms in the equality:
m∑
1

r ′.G + v′.H −
n∑
1

r .G + v.H =

(

m∑
1

r ′ −
n∑
1

r − tko).G + tko.G

Applying algebraic properties on elliptic curves, we have:
m∑
1

v′.H −
n∑
1

v.H = (

m∑
1

r ′.G −
n∑
1

r .G)

−(
m∑
1

r ′.G −
n∑
1

r .G)− tko.G + tko.G = 0

Therefore,
(v′1 + ...+ v′m).H − (v1 + ...+ vn).H =

(v′1 + ...+ v′m − v1 − ...− vn).H = 0.H = 0

It means that all the inputs and outputs add to zero. In other words, they summed to the commitment to
the kernel offset plus the commitment to the excess blinding factor. □

Thus, we have proved that no coins are being created or destroyed in the transaction. In addition, we
have seen that a valid transaction guarantees that all the range proof outputs are valid, which means that
every transactional output is positive.

The cut-through process is an essential feature of MW. This process aims to erase redundant outputs
that are used as inputs within the same block. Let C be a list of coins that appear as an output in the block
b. If the same coins appear as an input within the block, then C can be removed from the list of inputs and
outputs after applying the cut-through process. The only remaining data are the block headers, transaction
kernels and UTXOs. After applying cut-through to a valid block b, ensuring that the resulting block b′ is
still valid is essential. We can say that the validity of a block should be invariant concerning the cut-through
process.

Lemma 3 (Invariant: Cut-through Block Validity) Let b = {i, o, tks, ko} be a block with i and o the
list of inputs and outputs, tks = [tk1, ..., tkt ] the list of transaction kernels and ko the block kernel offset. Let
b′ = {i ′, o′, tks, ko} be the resulting block after applying the cut-through process to b where:

• i ′ = i \ (i ∩ o)

• o′ = o \ (i ∩ o)

Hence, if b is a valid block, then b′ is valid too.

13



Proof.

Let b = {i, o, tks, ko} be a block with tks = [tk1, ..., tkt ] the list of transaction kernels where the j-th item in
tks is of the form tkj = {rpj , kej , σj}.

Let r be r = i ∩ o = {r0, r1, ..., rn} where we assume r ̸= ∅ because otherwise the lemma holds trivially
as b′ = b.

Let b′ = {i ′, o′, tks, ko} be a block with tks = [tk1, ..., tkt ], the list of transaction kernels, i ′ = i \ r and
o′ = o \ r .

We need to prove that b′ is valid. According to Property 3, we need to show that:
i) The block b′ is balanced.

According to Definition 16, we need to prove:∑
oj∈o′

oj −
∑
cj∈i′

cj = ko.G +
∑

kej∈tks
kej

By hypothesis, we know that b is a valid block. Applying Property 3, we know that b is balanced.
According to Definition 16, the following equality holds for block b:∑

oj∈o
oj −

∑
cj∈i

cj = ko.G +
∑

kej∈tks
kej

Applying the definition of r , we can rewrite the above equality as follows:

(
∑

oj∈o\r

oj +
∑
oj∈r

oj)− (
∑

cj∈i\r

cj +
∑
cj∈r

cj) = ko.G +
∑

kej∈tks
kej

Rearranging the equality, we have:

(
∑

oj∈o\r

oj −
∑

cj∈i\r

cj) + (
∑
oj∈r

oj −
∑
cj∈r

cj) = ko.G +
∑

kej∈tks
kej

Now, we can observe that we are subtracting the sum of all the elements belonging to the same set r .
Thus, the term is equal to zero.

Then, if we remove the term, we have:∑
oj∈o\r

oj −
∑

cj∈i\r

cj = ko.G +
∑

kej∈tks
kej

By hypothesis, we know that i ′ = i \ r and o′ = o \ r ; therefore we can rewrite the above equality as:∑
oj∈o′

oj −
∑
cj∈i′

cj = ko.G +
∑

kej∈tks
kej

ii) For every transaction kernel, the range proofs of all the outputs are valid, and the kernel signature σ is
valid for the transaction excess.

Since the range proofs of the remaining outputs are the same, they remain valid.
According to definition 10, a valid signature for the kernel excess is defined in terms of the list of range

proofs of the outputs rp, transaction excess ke, and the kernel signature σ. Notice that these three elements
remain unchanged during the cut-through process. Since b is a valid block, it holds trivially. □

5.2 Privacy and Security Properties

In blockchain systems, the notion of privacy is crucial: sensitive data should not be revealed over the network.
In particular, it is desirable to ensure properties such as confidentiality, anonymity, and unlinkability of
transactions. Confidentiality refers to the property of preventing other participants from knowing certain
information about the transaction, such as the amounts and addresses of the owners. Anonymity refers
to hiding the real identity of the parties involved in a transaction. In contrast, unlinkability refers to the
inability to link different transactions of the same user within the blockchain.

In the case of MW, no addresses or public keys are used; there are only encrypted inputs and outputs.
Privacy concerns rely on confidential transactions, cut-through, and CoinJoin. As we have seen, CoinJoin
combines inputs and outputs from different transactions into a single aggregated transaction, and cut-through
removes outputs and inputs spent within the same block. We have shown in Lemma 1 and Lemma 3 that the
validity of transaction and block is guaranteed after applying both processes.

14



Game GBinding
def
=

(G, H ,n)← SetUp(1λ)
(v1, r1), (v2, r2)← ABinding(G,H , n);
return Com(v1, r1) = Com(v2, r2) ∧ v1 ̸= v2

Figure 1: Game Binding Commitment

The security problem of double-spending refers to spending a coin more than once. All the nodes keep
track of the UTXO set, so the node checks that the inputs come from it before confirming a block to the
chain. If we refer to our model, that validation is performed in the predicate validate mentioned in Section
4.5.

5.2.1 Security properties of Pedersen commitments

In MW transactions, input and output amounts are hidden in Pedersen commitments (Definition 1).
We state that the Pedersen commitment is expected to satisfy hiding and binding properties. The former

implies that the transaction amount of coins remains private for the rest of the network over time. The latter
means that senders cannot change their commitments to a different transaction amount. If that were possible,
it would mean that an adversary could spend coins that have already been committed to a UTXO, which
would allow the creation of coins out of thin air.

There are two possible specifications for these properties. Computational hiding or binding is when all
adversaries, running in polynomial time, can break the security property with negligible probability. This
asymptotic security is parameterized by a security parameter λ and adversaries run in polynomial time in λ
and their other inputs. On the other hand, we talk about perfectly hiding or binding, when even with infinite
computing power it would be not possible to break the security property.

Notice that a commitment scheme cannot be perfectly hiding and binding at the same time. So, for
cryptocurrencies systems is better to provide stronger security in order to guarantee the hiding property.
In other words, we prefer a commitment scheme with computational binding and perfectly hiding. We can
understand this by first assuming adversaries break the binding property. It means that they could create
money from thin air from a certain point in time but this would not affect the blockchain history. On the
other hand, if the adversary breaks the hiding property, history could be inspected and all the transactions
revealed which breaks one of the main principles of a privacy-oriented cryptocurrency.

Pedersen commitments are computational binding

This property relies on the discrete logarithm assumption. In provable security, security is proved to hold
against any probabilistic time adversary by showing an efficient way to break the cryptography protocol
implies a way to break the underlying mathematical problem which is supposed to be hard (security reduction).
The adversary is modeled as a procedure.

Definition 18 (Computational Binding Commitment) Let ζ(Setup,Com) be a Pedersen commitment
scheme as in Definition 2. Let ABinding be a polynomial probabilistic time adversary against the binding
property running in the context of the game GBinding as in Figure 1. We say that the Pedersen commitment
scheme ζ is computational binding if the success probability of ABinding winning game GBinding is negligible.

In game GBinding, the scheme is first set up by choosing two generator points, G and H , over the elliptic curve
C of prime order n. All these parameters are public. Secondly, the adversary ABinding performs the attack
attempting to find out two different transactional values v1 and v2 that commit to the same commitment.
Once the adversary finishes the attack, two pair of different opening values are returned. The adversary
succeeds if both pairs commit to the same value and v1 ̸= v2.

As we mentioned before, the computational binding property is based on a security reduction. In terms of
Pedersen commitment, it means that if the adversary ABinding could perform the attack in the context of
game GBinding and could win with non-negligible probability, an adversary EDlog attacking a game against the
discrete logarithm problem on the group C could use ABinding to win the game with non-negligible probability.

Recall that MW uses Pedersen commitment with elliptic curves (Definition 2). The discrete logarithm
problem on this context means: given a point y over the elliptic curve C with generator G, it is hard to find
x such that y = x.G. In this case, its security is shown against the discrete logarithm relation assumption
which is as hard as breaking the discrete logarithm problem. It means that an adversary cannot find a
non-trivial discrete logarithm relation between generators of a group independently chosen. In our case,
finding a non-trivial discrete logarithm relation between G and H over the elliptic curve C.

15



Game GDlog
def
=

(G, H , n)← SetUp(1λ)
y ← EDlog(G, H , n)
if y = failure then

return failure
else

return H = y.G

EDlog(G, H , n)
def
=

(v1, r1), (v2, r2)←
(ABinding(G, H ,n))

if Com(v1, r1) =
Com(v2, r2)
∧ v1 ̸= v2

then
return

r2 − r1
v2 − v1

else
return failure

Figure 2: Game Extractor DLog

The following lemma captures the semantics of that security reduction.

Lemma 4 (Computational Binding) Let ζ(Setup,Com) be a Pedersen commitment scheme as in Defini-
tion 2. Let ABinding be an adversary against the computational binding commitment (Definition 18) in the
commitment scheme ζ.

Let us assume that ABinding succeeds in finding two distinct pair of opening values that commit to the same
commitment with ϵ probability. Therefore, there exists an extractor EDlog which can find out a non-trivial
discrete logarithm relation between the generators G and H, independently chosen, on the elliptic curve C
with ϵ′ probability using the adversary ABinding.

Hence, if ϵ is non-negligible, ϵ′ is non-negligible too.

Proof.

The goal of the proof is to show how to transform the efficient adversary ABinding that is able to break the
computational binding commitment into an algorithm that efficiently solves the discrete logarithm assumption.
The extractor EDlog will provide a simulation context in which the adversary ABinding will perform its attack.
The attack of the extractor EDlog will be successful if ABinding is successful and the simulation does not fail.

According to game GBinding, when the adversary A succeeds we have two identical commitments
Com(v1, r1) = Com(v2, r2) and v1 ̸= v2 such that (Definition 2):

r1.G + v1.H = r2.G + v2.H

So we can compute:
H =

r1 − r2
v2 − v1

.G

which means that we have computed the discrete logarithm of H with respect to G.
Figure 2 shows the game GDlog which captures the semantic of the reduction. The failure event captures

when the adversary ABinding fails and therefore, the adversary EDlog fails too.
The probability of success of EDlog is equal to the probability of success of ABinding. □

Pedersen commitments are perfectly hiding

Basically, it is because, given a commitment Com(v, r) = r .G + v.H , there are many combinations of (v′, r ′)
that satisfies Com(v, r) = r ′.G + v′.H . Despite the adversary have infinite computing power and could
attempt all possible values, there would be no way to know which opening values (v′, r ′) were the original
ones. Furthermore, r is a random value of the finite field Fn so r .G + v.H is a random element of C.

Definition 19 (Perfectly Hiding Commitment) Let ζ(Setup,Com) be a Pedersen commitment scheme
as in Definition 2. Let AHiding be a computationally unbounded adversary against the hiding property running
in the context of the game GHiding as in Figure 3. We say that the Pedersen commitment scheme ζ is perfectly
binding if the success probability of AHiding winning game GHiding holds:

Pr(b = b′) = 1

2

In the game described in Figure 3, first the game is set up and then the adversary chooses two distinct
transactional values v0 and v1. Then, one of these values is randomly chosen as vb, as well as with the
blinding factor r . The commitment of (vb, r) is computed and the adversary AHiding performs the attack
attempting to find out which one of the values was committed.

16



Game GHiding
def
=

(G, H , n)← SetUp(1λ)
(v0, v1)← AHiding(G, H ,n)

b $← {0, 1}
r $← Fn
com = Com(vb, r)
b′ ← AHiding(com, G, H , n)
return b = b′

Figure 3: Game Hiding Commitment

5.3 Switch commitments

As already mentioned, if an attacker succeeds in breaking the computational binding property of a commitment
then money can be created from thin air. Switch commitments [33] were introduced to enable the transition
from computational bindingness to statistical bindingness, specially to the commitments stored in the
blockchain. The notion of statistical security implies that a computationally unbounded adversary cannot
violate the property except with negligible probability.

If in a certain moment we believe that the bindingness of the commitment scheme gets broken, we could
make a soft fork on the chain and switch existing commitments to this new validation scheme which is
backwards compatible.

Below, we show the changes that are needed for our model to also encompass Switch commitments. In
Pedersen commitment definition (Definition 2) we add a third point generator J of the elliptic curve C whose
discrete logarithm relative to G and H is unknown. We define the new commitment algorithm as follows:

Com(v, r) = r ′.G + v.H ,with v the transactional value and

r ′ = r + hash(v.H + r .G, r .J ),

where r is the blinding factor randomly chosen in the finite field Fn and J is the third point generator.
Note that r is still randomly distributed and the hash value of ElGamal commitment is computed which

is the combination of ElGamal encryption [34] and a commitment scheme.

5.3.1 Security properties of range proofs

The goal of zero-knowledge proofs is to prove that a statement is true without revealing any information
beyond the verification of the statement. In MW, we need to ensure that the amount is positive in every
transaction so that users cannot create coins. Here, the hard part is to prove that without revealing the
amount. In our model, the output amounts are hidden in the form of a Pedersen commitment and the
transaction contains a list of range proofs of the outputs to prove that the amount is positive. This verification
is performed as the first step of the validation of the transaction (Property 1).

We state that the range proof scheme (Definition 3) is expected to satisfy the properties of completeness,
soundness, and zero-knowledge. Completeness states that if the statement holds for a witness v, the argument
provided by the prover can convince the verifier. Soundness says that if the statement does not hold for
a witness v, the prover cannot convince the verifier about the statement. Zero-knowledge states that the
argument does not leak any information about the witness, except whether the statement is true or false.

In our model, a range proof scheme is expected to have perfect completeness and computational soundness
with negligible error ϵS . We define these properties as follows:

Definition 20 (Perfect Completeness NIZK Scheme) Let ζ(Setup,Com) be a Pedersen commitment
as in Definition 2 where c = Com(v, r) is the commitment to the transactional value v and the blinding
factor r. Let η(Prove,Verify) be a NIZK scheme as in Definition 3. We say η(Prove,Verify) has perfect
completeness if for every v in the range [a, b], exists a range proof rp such that rp = Prove(v, r , c) and
Verify(c, rp) = true.

Definition 21 (Computational Soundness NIZK Scheme) Let ζ(Setup,Com) be a Pedersen commit-
ment as in Definition 2 where c = Com(v, r) is the commitment to the transactional value v and the
blinding factor r. Let η(Prove,Verify) be a NIZK scheme as in Definition 3. We say η(Prove,Verify) has
ϵS − soundness if for every v ̸∈ [a, b] and rp = Prove(v, r , c), it holds that Pr(Verify(c, rp) = true) ≤ ϵS .

Recall that, the Prove algorithm computes a non-interactive zero-knowledge proof to the commitment in
order to verify that the committed value is in certain range. We need to ensure that the proof does not leak
any information about the secret value, other than the fact it lies in a certain range.

17



Game GZKw
def
=

(G,H , n)← SetUp(1λ)
(v0, v1)← AZKw(G, H ,n)

b $← {0, 1}
r0 $← Fn
r1 $← Fn
com0 = Com(v0, r0)
com1 = Com(v1, r1)
rp = Prove(vb, rb, comb)
b′ ← AZKw(rp, com0, com1, G,H , n)
return b = b′

Figure 4: Game Zero-knowledge range proof

Definition 22 (Perfect ZK Range Proof) Let ζ(Setup,Com) be a Pedersen commitment as in Definition
2, where c = Com(v, r) is the commitment to the transactional value v and the blinding factor r. Let
η(Prove,Verify) be a NIZK scheme as in Definition 3 where rp is a range proof such that rp = Prove(v, r , c).
Let AZKw be a computationally unbounded adversary running in the context of the game GZKw as in Figure
4. We say that the range proof rp is perfect zero-knowledge if the success probability of AZKw winning game
GZKw is Pr(b = b′) = 0.5. In other words, the adversary cannot learn anything about the opening value v
from rp.

In Figure 4, first the game is set up and then the adversary chooses two distinct transactional values v0
and v1. Then, one of these values is randomly chosen as vb, as well as with the blinding factors r0 and r1.
Both commitments of (v0, r0) and (v1, r1) are computed. Then, a zero-knowledge proof rp is generated for
the value vb. Finally, the adversary AZKw performs the attack attempting to find out which value {v0, v1}
corresponds to the range proof rp; in other words, for which value holds Verify(comb, rp) = true.

Bulletproofs [31] is a non-interactive zero-knowledge proof protocol. A bulletproof is a short proof
(logarithmic in the witness size) with the aim of proving that the committed value is in a certain range without
reveling it. Proof generation and verification times are linear in the length of the range. Moreover, aggregation
of range proofs is supported which enables the parties to generate a single proof, without revealing their
inputs to each other. They do not require a trusted setup and are non-interactive applying the Fiat-Shamir
heuristic [35] [36] which replaces the verifier’s random challenge by a hash. MW uses Bulletproofs, which
helps to maintain its size more compact than other Bitcoin blockchains as it uses a compact version of the
inner product argument (rp in Definition 3). Bulletproofs are computational soundness and rely on the
discrete logarithm assumption. In this case, its security is shown against the discrete logarithm relation
assumption which means that an adversary cannot find a non-trivial discrete logarithm relation between
generators of a group independently chosen. In our model, it means to be proved over the elliptic curve C
and it could be finding a non-trivial discrete logarithm relation between G and H (Definition 6). Solving this
is as hard as breaking the discrete logarithm problem. We could say that the discrete logarithm relation
problem can be reduced to the computational soundness security property. In [25] we have stated a lemma
that captures that semantic of the computational soundness property.

So far we have analyzed that Pedersen commitments are computational binding and perfectly hiding. On
the other hand, Bulletproofs are perfect zero-knowledge and computational soundness.

Let us suppose we have a commitment c such that c = Com(r , v) = r .G + v.H and the Prover computes
the range proof rp for the value v as in the range proof scheme Definition 3. Now, we need to pass c and rp
to the Verifier in order to verify whether rp the argument is valid. Since we know the property of perfect
completeness holds, the Verifier will accept rp. In other words, an honest Prover succeed in convincing the
Verifier . Moreover, since the commitment is perfectly hiding we have not revealed any information about the
commitment by passing it to the Verifier .

5.4 Unlinkability and Untraceability

In our model, each node has a pool of unconfirmed transactions in the mempool. These transactions are
waiting for the miners to be included in a block. We can distinguish two security properties of the transactions.
Untraceability refers to the transactions in the mempool and unlinkability to the transactions in the block.
In our model, these two notions are formalized as follows. The Transaction Untraceability property states
that for every transaction in the mempool, it is impossible to relate the transaction to the IP address of
the node that originated it. The Transaction Unlinkability property states that given a valid block b, it is
computationally infeasible to know which input cancels which output. Both properties are defined in [24]. In
particular, for the unlinkability property, we have proved the following lemma. Moreover, the operations
cut-through and CoinJoin, which were described above, also contribute to this property.

18



Lemma 5 (Transaction Unlinkability) For any valid block b and for any polynomial probabilistic time
adversary A, the probability of A in finding a balanced transaction within b is negligible.

Proof.

Let b = {i, o, tks, ko} be a valid block with tks = (tk1, ..., tkt) the list of transaction kernels. The j-th item in
tks is of the form tkj = {rpj , kej , σj}.

The goal of the adversary A is to find a tuple of the form {i ′, o′, ke′} where the list of inputs i ′ is a subset
of i and the list of outputs o′ is a subset of o, satisfying Definition 9 of a balanced transaction. It means
that, the following equality must be true for the tuple:∑

oj∈o′

oj −
∑
cj∈i′

cj = ke′ + tko′.G

where ke′ is the transaction excess and tko′ the transaction kernel offset.
If we refer to the construction process the transaction kernel offsets were added to generate a single

aggregate offset ko to cover all transactions in the block. It means that we do not store the individual kernel
offset tko′ of the transaction in b once the transaction is aggregated to the block.

The challenge is trying to solve the adversary A could be seen as the subset sum problem (NP-complete)
but, in this case, tko′ is unrecoverable. So, although many transactions have few inputs and outputs, it is
computationally infeasible, without knowing that value, to find the tuple. □

Regarding the untraceability property, we should refer mainly, to the broadcast of the transactions. Once
the transactions are created, they are broadcasted to the network and they are included in the mempool.
Each node could track the IP address from the node which received the transaction. At that point nodes
could record the transactions, allowing them to build a transaction graph.

We define that the broadcast of a transaction should be performed with confusion as a way to obscure
the IP address node.

Definition 23 (Broadcast with confusion) Let’s say node A sends a transaction to node B. We say B
receives the transaction with confusion if given the IP address of node A, the node B does not know if the
transaction was originated by the node A or not.

In other words, it can be said that if some malicious nodes, working together, construct a graph of the
pairs (transaction, IP address node), the IP address node will not convey information about what node
originated the transaction. Therefore, in our model, we require this property to hold before the broadcast
takes place. In order to achieve this, we can establish that the node broadcasting the transaction should be
far enough from the one which originated it. Moreover, CoinJoin could be performed before the broadcast.

Dandelion, proposed by Bojja et al. [37], is a protocol for transaction broadcasting intended to resist that
deanonymization attack. Dandelion is not part of the MW protocol, however this kind of protocols should be
implemented by each node to lower the risk of creating the transaction graph. In Dandelion, broadcasting is
performed in two phases: the stem phase and the fluff phase. In the stem phase the transaction is broadcasted
randomly to one node, which then randomly sends it to another, and so on. This process finishes when the
fluff phase is reached, and the transaction is broadcasted to the network using a gossip protocol. In [24] we
have defined the routines which capture the semantic of the phases.

6 Implementations

Because of the its robust security, privacy and scalability, there are several implementations of Mimblewimble.
In 2019, the first two practical implementations were launched: Grin and Beam. Although, there are some
design and technical differences in both projects, they implement and extend the core of the MW protocol.
Next, we first describe the main features of their design and compare them with our model. Then, we mention
some features that set apart Grin from Beam. On the other hand, a privacy enhancing approach can be
deployed as an upgrade to existing blockchains such as Litecoin. Litecoin, created in October 2011, is one of
the earliest alternative coins after Bitcoin. In November 2019, in order to achive higher privacy, the Litecoin
network made a soft-fork based on Mimblewimble features. Finally, we describe the Litecoin soft-fork main
features and compare them with our model.

6.1 Grin

Grin [5] is an open source software project with a simple approach to MW. As we will see below, its design is
a straightforward interpretation of our model.

19



Figure 5: Grin Switch commitment source code [39]

Blocks and Transactions

Grin transactions are based on confidential transactions. In [24] we have described how each transaction
contains a list of inputs and outputs. Each input and output is in the form of a Pedersen commitment. For
instance, in the input structure there is a field that stores the commitment pointing to the output being
spent.

In addition, the transaction structure has a list of transaction kernels (of type TxKernel) with the
transaction excess and the kernel signature. All this data has a straightforward relation to our definition of
transaction (Definition 6).

Moreover, a Grin transaction also includes the block number at which the transaction becomes valid.
We have not added this data to the transaction structure yet and we also should include it in the signature
process. In Grin, not only the transaction fee is signed, the signing process also takes into account the
absolute position of the blocks in the chain. In this way, if a kernel block points to a height greater than the
current one, it is rejected. If the relative position points to a specific kernel commitment, Grin has the same
behavior.

Grin Blocks also stores a kernel offset which is the sum of all the transaction kernel offsets added to the
block. In our model, the kernel offset is defined within a block and the notion of adding a transaction into a
block is formalized on the block aggregation.

Privacy and Security Properties

The cut-through process, as explained in Section 5.1, provides scalability and further anonymity. Grin
performs this process in the transaction pool, which we formalized as mempool (Definition 14). Outputs
which have already been spent as new inputs are removed from the mempool, using the fact that every
transaction in a block should sum to zero.

CoinJoin, as we have mentioned, combines inputs and outputs from multiple transactions into a single
transaction in order to obfuscate them. In Grin, every block is a CoinJoin of all other transactions in the
block.

As highlighted in Section 5.2, Switch commitments offer perfect hiddenness and statistical bindingness.
Grin incorporates a switch commitment, as described in [38], within a transaction output to enhance

security beyond computational bindingness (Definition 18). Pedersen commitments are employed in the
Confidential Transaction, where the blinding factor r ′ is not solely chosen randomly but is calculated by
adding the hash of an ElGamal commitment to another random factor r as we have defined in Section
5.3. The operation that implements it can be seen in Figure 5 and it is crucial in defense against quantum
adversaries.

6.2 Beam

Beam [40] was the other Mimblewimble project launched on January 2019. This open source system has a
founding model and a dedicated development team.

20



Figure 6: Grin Dandelion configuration file [42]

Blocks and Transactions

Beam transactions are confidential transactions implemented by the Pedersen commitment scheme. This
follows the same approach as our model.

In Section 4 we have described how each node maintains a local state. The state keeps track of the UTXO
set. Beam extends the behavior of that set, supporting the incubation period on a UTXO. This means that
Beam sets the minimum number of blocks created after the UTXO entered the blockchain, before it can
be spent in a transaction. This number is included in the transaction signature. Beam’s output stores the
number of blocks corresponding to the incubation period [24]. If we relate this functionality to our model, we
should check that every output with certain incubation period on a block was ‘lawfully’ spent for the entire
blockchain (global state). In other words, if we have an output transaction o with an incubation period d on
a confirmed block b over the chain and a later confirmed block b′ containing o as an input, then b′ should be,
at least, d blocks away from b on the blockchain.

Privacy and Security Properties

Beam supports cut-through as we described above. In addition, Beam adds a scalable feature to eliminate all
intermediate transaction kernels [41] in order to keep the blockchain as compact as possible. It would be
important to prove that the resulting transaction is still valid in Property 1.

6.3 Discussion

Both Grin and Beam implementations address the main features of the MW protocol, namely the properties
of confidentiality, anonymity and unlinkability comprised in our work.

Broadcasting Protocol

Both Grin and Beam use the Dandelion scheme as broadcasting protocol [37]. We have formalized that a
broadcasting protocol should hold the property of Transaction Untraceability. It should not be possible to
link transactions and their originating IP addresses, in other words, to deanonymize users. Broadcast with
confusion, as we describe in Property 23, should be carried out to satisfy Transaction Untraceability. We
have also described the stem and fluff phases of the Dandelion scheme.

Grin implements a simplified version of the Dandelion++ protocol. Each individual node pseudorandomly
determines whether it functions as a stem or a fluff node (Section 5.4) at regular intervals known as epoch
periods. As we can see in Figure 6 this is configurable via epoch secs and it is set to last for 10 minutes. At
the start of an epoch, the node randomly selects a single connected peer to serve as its outbound relay and
decides in which mode to operate. This decision is randomized, with the probability of selecting stem mode
set at 0.9 (parameter stem probability, Figure 6). As we have defined in Section 4.4, any transaction
received from inbound peers or transaction originated from the node itself are first added to the mempool.
If the node is in stem mode, after being added to the mempool, received stem transactions are forwarded
onto the their relay node as a stem transaction. If the node is in fluff mode, then transactions received from
inbound nodes are kept in the mempool. The system verifies if any transactions are older than 30 seconds
(configurable as aggregation secs, Figure 6). If found, these transactions are aggregated and subsequently
fluffed. This aggregation is performed by applying Transaction Join (Definition 13, Section 4.3).

Furthermore, Grin’s implementation, in the stem phase, allows for cut-through, which provides greater
anonymity to the transactions before they are broadcasted to the entire network.

21



Figure 7: Litecoin MWEB transaction body source code [45]

In addition, in order to improve privacy, Beam’s implementation adds dummy transaction outputs at the
stem phase. Each output has a value of zero and it is indistinguishable from regular outputs. Later, after
a random number of blocks, the UTXOs are added as inputs to new transactions, i.e., they are spent and
removed from the blockchain.

In [24] can be seen how we have extended the stem routine to capture Beam’s behavior.

Range proofs

Grin and Beam implement range proofs using Bulletproofs. Regarding our model, the validity of the range
proofs are the first property a transaction should satisfy to be valid (Property 1). Furthermore, for every
transaction in a bock, the range proofs of all the outputs should be valid too (Property 3).

6.4 Litecoin

Litecoin [43] is an opensource project [44] and it was born from a copy of Bitcoin’s source code. Litecoin
features faster transaction confirmation times since it has a 2.5-minute block processing time on average.
Meanwhile, Bitcoin’s block processing time is 10 minutes on average. In Litecoin transactions, the sender and
recipient addresses as well as the amount are public. It means that transaction history can be publicly traced.
In November 2019, MWEB (Mimblewimble Extension Blocks) were introduced as a Litecoin improvement
proposal. They are a way to offer Confidential Transactions on the Litecoin network via soft-fork.

Blocks and Transactions

At the core, MWEB combines Mimblewimble features over extension blocks. The extension blocks create a
side-chain alongside Litecoin regular blocks. Users can decide whether to have their transactions public or
private via MWEB. Both private and public transactions exist simultaneously on Litecoin. In Figure 7 (line
142) can be seen as a generic transaction input could either be an MWEB input or a canonical input.

In order to provide privacy and confidentiality guarantees, MWEB transactions are based on confidential
transactions. In Figure 8, we can observe that each transaction contains a list of inputs and outputs.

As can be seen in Figure 9 each input transaction refers to the previous transaction’s output as we have
shown in our model where inputs are previous transaction outputs.

Privacy and Security Properties

The implementation of Mimblewimble over the soft-fork of Litecoin enhances privacy providing users the
option of sending confidential Litecoin transactions. The amount is only known between the parties and
addresses are kept private. In MWEB, CoinJoin can be performed to combine multiple inputs from different
parties into a single transaction. On the other hand, when a new node joins the Litecoin network for the
first time, it must verify the entire history of the blockchain. In MWEB, the cut-through process can be
performed in order to verify the compact blockchain.

7 Conclusions

MW represents a significant advancement in safeguarding anonymity and privacy within the realm of
cryptocurrencies. Due to its facilitation of traceability and the validation process, both Grin and Beam have
incorporated the MW protocol into their implementations.

22



Figure 8: Litecoin MWEB transaction body source code [45]

Figure 9: Litecoin MWEB transaction body source code [45]

23



We have emphasized components that form crucial steps in the comprehensive formalization of the MW
cryptocurrency protocol, the analysis of its properties, and the verification of its implementations. The
proposed idealized model plays a pivotal role in the described verification process.

Initially, we have established the primary components of our idealized model, encompassing transactions,
blocks, and the chain. Then, we have provided validity conditions to ensure the correctness of the blockchain.
We have stated precise conditions for both a valid transaction and a valid block. Moreover, we have defined
and demonstrated that the validity of a block remains invariant concerning the cut-through process and
CoinJoin.

The main difficulty encountered during this process stemmed from the absence of “official” documentation.
Consequently, we have conducted a thorough literature review to comprehensively analyze and conceptualize
the key components of MW. Furthermore, despite the availability of online documentation for Grin and Beam,
the primary challenge was to construct a model that abstracts away the specifics of their implementations.

Additionally, we have pinpointed and clearly articulated the conditions within our model to guarantee the
verification of pertinent security properties of MW, signifying a significant contribution of this work. Firstly,
we have demonstrated that a valid transaction does not generate new funds out of thin air. Secondly, given
that MW transactions are structured as Pedersen commitments, we have examined the robustness of the
scheme concerning the essential security properties that a cryptocurrency protocol must possess. Specifically,
we have outlined the computational binding commitment property and we have demonstrated a security
reduction through a game-based cryptographic proof approach. Thirdly, we have delved into zero-knowledge
proofs to establish that the transaction output is positive without disclosing the specific amount. Additionally,
we have described certain security properties that a range proof scheme should meet.

Then, we have defined and analyzed two crucial security properties: unlinkability and untraceability. In
particular, we have provided a proof demonstrating that the likelihood of discovering a balanced transaction
within a valid block is negligible. Furthermore, we have defined the concept of broadcast with confusion to
obfuscate the IP address from which the transaction originates.

Finally, we have conducted an analysis and comparison of the current states of development of the Grin
and Beam implementations, using our model and its properties as a reference basis. We have illustrated
comprehensive connections between our model and their implementations concerning the MW structure and
its security properties. Specifically, we have expanded our steam routine abstraction to encompass Beam’s
behavior, incorporating dummy transactions and an incubation period to enhance privacy. On the other
hand, we have analyzed the MW based soft-fork Litecoin and we have compared with our model.

The primary challenge encountered in addressing the comparison between our model and the implementa-
tions was the need to read the source code of Grin and Beam. This was essential to identify the components
of our model and analyze how they are implemented in the respective codes.

The present work is not without limitations. Firstly, the off-chain nature of transaction construction
between parties necessitates a thorough analysis of the protocol construction to ensure security and privacy
properties during communication. Additionally, some of the security properties rely on an underlying hard
problem in terms of provable security. On the other hand, the consensus protocol plays a crucial role in
ensuring the integrity of the recorded information. To validate blocks and incorporate them into the chain,
the network must reach consensus through an agreed-upon algorithm. Two commonly used algorithms are
Proof of Work and Proof of Stake. Weaknesses in the protocol could expose vulnerabilities to different types
of attacks, necessitating a thorough examination of security considerations. Since MW is built on top of
a consensus protocol, our idealized model should be extended to formalize and study the security of the
consensus protocol.

8 Future Work

Recognizing the growing complexity and potential for errors in cryptographic proofs, our future plan involves
specifying our MW model using an interactive prover. This approach aims to automate the verification of
the model, encompassing the modeling of security goals and hardness assumptions to validate the security
properties we have stated.

Firstly, our plan involves evaluating tools designed for the verification of cryptographic protocols and
implementations, including: EasyCrypt [19], CryptoVerif [46] and Tamarin [47]. In particular, we are
especially interested in using EasyCrypt, an interactive framework tailored for verifying the security of
cryptographic constructions within the computational model. Subsequently, our plan involves specifying our
model using the chosen tool, adhering to all the definitions articulated in this work. Then, the interactive prover
will be employed to verify all the properties we have presented and proven. Furthermore, we will undertake
the specification and verification of the security properties. In particular, the game-based cryptographic proof
in Lemma 4 where the goal is to formulate a security reduction through a series of games, demonstrating that

24



any attempt to breach the system’s security would result in an efficient solution to the discrete logarithm
problem.

The findings presented in this work represent a significant contribution, enabling the analysis of the
correctness of the MW protocol and its security properties over an idealized model, transcending any
specific implementation. Future research directions include the verification of Grin and Beam as accurate
implementations of the idealized model, ensuring the compliance with security properties through a formal
and rigorous approach. Indeed, Guy Corem, a member of the beam.mw foundation and one of Beam’s
founders, reached out to us expressing interest in our work. He further shared it through both his personal
Twitter account and Beam’s official Twitter account. Moreover, our paper is referenced on Beam’s website 1.

References

[1] V. Buterin, “Critical update re: Dao vulnerability, 2017,” Available online: https://blog.ethereum.org/
2016/06/17/critical-update-re-dao-vulnerability (accessed on May 7, 2023).

[2] G. Rosu, “Formal Design, Implementation and Verification of Blockchain Languages Using K (Invited
Talk),” in 2nd Workshop on Formal Methods for Blockchains (FMBC 2020), ser. OpenAccess
Series in Informatics (OASIcs), B. Bernardo and D. Marmsoler, Eds., vol. 84. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 1:1–1:1. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/13414

[3] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal verification for solidity
smart contracts,” in 2021 Australasian Computer Science Week Multiconference, ser. ACSW
’21. New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3437378.3437879

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, 2008.” Available online: https://bitcoin.
org/bitcoin.pdf (accessed on May 7, 2023).

[5] Grin, “Introduction to MimbleWimble and Grin, 2016,” Available online: https://github.com/
mimblewimble/grin/blob/master/doc/intro.md (accessed on May 7, 2023).

[6] B. Foundation, “Beam confidential cryptocurrency, 2020,” Available online: https://beam.mw/ (accessed
on May 7, 2023).

[7] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A cryptographic investigation of
mimblewimble,” in Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I, ser. Lecture Notes in Computer Science, Y. Ishai and V. Rijmen, Eds., vol. 11476.
Springer, 2019, pp. 657–689. [Online]. Available: https://doi.org/10.1007/978-3-030-17653-2 22

[8] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang, “Omniring:
Scaling up private payments without trusted setup - formal foundations and constructions of ring
confidential transactions with log-size proofs,” IACR Cryptol. ePrint Arch., p. 580, 2019. [Online].
Available: https://eprint.iacr.org/2019/580

[9] K. Rupic, L. Rozic, and A. Derek, “Mechanized formal model of bitcoin’s blockchain validation
procedures,” in 2nd Workshop on Formal Methods for Blockchains, FMBC@CAV 2020, July 20-21, 2020,
Los Angeles, California, USA (Virtual Conference), ser. OASIcs, B. Bernardo and D. Marmsoler, Eds.,
vol. 84. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–7:14. [Online]. Available:
https://doi.org/10.4230/OASIcs.FMBC.2020.7

[10] M. C. Kus Khalilov and A. Levi, “A survey on anonymity and privacy in bitcoin-like digital cash systems,”
IEEE Communications Surveys and Tutorials, vol. 20, no. 3, pp. 2543–2585, 2018.

[11] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, “Evaluation of logic-based smart contracts
for blockchain systems,” in Rule Technologies. Research, Tools, and Applications - 10th International
Symposium, RuleML 2016, Stony Brook, NY, USA, July 6-9, 2016. Proceedings, ser. LNCS, J. Alferes,
L. Bertossi, G. Governatori, P. Fodor, and D. Roman, Eds., vol. 9718. Springer, 2016, pp. 167–183.
[Online]. Available: https://doi.org/10.1007/978-3-319-42019-6 11

1https://beam.mw/resources

25

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://drops.dagstuhl.de/opus/volltexte/2020/13414
https://doi.org/10.1145/3437378.3437879
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://beam.mw/
https://doi.org/10.1007/978-3-030-17653-2_22
https://eprint.iacr.org/2019/580
https://doi.org/10.4230/OASIcs.FMBC.2020.7
https://doi.org/10.1007/978-3-319-42019-6_11
https://beam.mw/resources


[12] Y. Hirai, “Defining the ethereum virtual machine for interactive theorem provers,” in Financial
Cryptography and Data Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers, ser. LNCS, M. Brenner, K. Rohloff,
J. Bonneau, A. Miller, P. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson, Eds., vol.
10323. Springer, 2017, pp. 520–535. [Online]. Available: https://doi.org/10.1007/978-3-319-70278-0 33

[13] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic framework for the security analysis
of ethereum smart contracts,” in Principles of Security and Trust - 7th International Conference,
POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, ser. Lecture Notes in Computer
Science, L. Bauer and R. Küsters, Eds., vol. 10804. Springer, 2018, pp. 243–269. [Online]. Available:
https://doi.org/10.1007/978-3-319-89722-6 10

[14] G. P̂ırlea and I. Sergey, “Mechanising blockchain consensus,” in Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA,
January 8-9, 2018, J. Andronick and A. P. Felty, Eds. ACM, 2018, pp. 78–90. [Online]. Available:
https://doi.org/10.1145/3167086

[15] The Coq Team, “The Coq proof assistant reference manual,” Available online: http://coq.inria.fr
(accessed on May 7, 2023).

[16] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development : Coq’Art : The
Calculus of Inductive Constructions, 2004th ed., ser. Texts in Theoretical Computer Science. Springer,
Isbn: 3540208542, May 2004. [Online]. Available: http://www.worldcat.org/isbn/3540208542

[17] C. Boyd, K. Gjøsteen, and S. Wu, “A Blockchain Model in Tamarin and Formal Analysis of Hash
Time Lock Contract,” in 2nd Workshop on Formal Methods for Blockchains (FMBC 2020), ser.
OpenAccess Series in Informatics (OASIcs), B. Bernardo and D. Marmsoler, Eds., vol. 84. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 5:1–5:13. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/13418

[18] R. Metere and C. Dong, “Automated cryptographic analysis of the pedersen commitment scheme,” in
Computer Network Security - 7th International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, MMM-ACNS 2017, Warsaw, Poland, August 28-30, 2017,
Proceedings, ser. Lecture Notes in Computer Science, J. Rak, J. Bay, I. V. Kotenko, L. J. Popyack,
V. A. Skormin, and K. Szczypiorski, Eds., vol. 10446. Springer, 2017, pp. 275–287. [Online]. Available:
https://doi.org/10.1007/978-3-319-65127-9 22

[19] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub, “Easycrypt: A tutorial,” in
Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, ser. Lecture
Notes in Computer Science, A. Aldini, J. López, and F. Martinelli, Eds., vol. 8604. Springer, 2013, pp.
146–166. [Online]. Available: https://doi.org/10.1007/978-3-319-10082-1 6

[20] G. Betarte, M. Cristiá, C. Luna, A. Silveira, and D. Zanarini, “Set-based models for cryptocurrency
software,” CoRR, vol. abs/1908.00591, 2019. [Online]. Available: https://arxiv.org/abs/1908.00591

[21] T. Ruffing, S. A. Thyagarajan, V. Ronge, and D. Schröder, “Burning zerocoins for fun and for profit: A
cryptographic denial-of-spending attack on the zerocoin protocol,” Cryptology ePrint Archive, Paper
2018/612, 2018, https://eprint.iacr.org/2018/612. [Online]. Available: https://eprint.iacr.org/2018/612

[22] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed e-cash from
bitcoin,” in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 397–411.

[23] G. Betarte, M. Cristiá, C. D. Luna, A. Silveira, and D. Zanarini, “Towards a formally verified
implementation of the mimblewimble cryptocurrency protocol,” in Applied Cryptography and Network
Security Workshops - ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P,
SCI, SecMT, and SiMLA, Rome, Italy, October 19-22, 2020, Proceedings, ser. Lecture Notes in
Computer Science, J. Z. et al, Ed., vol. 12418. Springer, 2020, pp. 3–23. [Online]. Available:
https://doi.org/10.1007/978-3-030-61638-0 1

[24] A. Silveira, G. Betarte, M. Cristiá, and C. Luna, “A formal analysis of the mimblewimble cryptocurrency
protocol,” Sensors, vol. 21, no. 17, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/17/
5951

26

https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1145/3167086
http://coq.inria.fr
http://www.worldcat.org/isbn/3540208542
https://drops.dagstuhl.de/opus/volltexte/2020/13418
https://doi.org/10.1007/978-3-319-65127-9_22
https://doi.org/10.1007/978-3-319-10082-1_6
https://arxiv.org/abs/1908.00591
https://eprint.iacr.org/2018/612
https://eprint.iacr.org/2018/612
https://doi.org/10.1007/978-3-030-61638-0_1
https://www.mdpi.com/1424-8220/21/17/5951
https://www.mdpi.com/1424-8220/21/17/5951


[25] ——, “A range proof scheme analysis for the mimblewimble cryptocurrency protocol,” in 2021 IEEE
URUCON, 2021, pp. 329–333.

[26] T. Jedusor, “Mimblewimble, 2016,” Available online: https://scalingbitcoin.org/papers/mimblewimble.txt
(accessed on May 7, 2023).

[27] A. Poelstra, “Mimblewimble, 2016,” Available online: https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf (accessed on May 7, 2023).

[28] G. Maxwell, “Confidential transactions write up, 2020,” Available online: https://web.archive.org/web/
20200502151159/https://people.xiph.org/∼greg/confidential values.txt (accessed on May 7, 2023).

[29] A. Gibson, “An investigation into confidential transactions, 2018,” Available online: https://github.com/
AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf (accessed on May 7, 2023).

[30] C. Crépeau, “Commitment,” in Encyclopedia of Cryptography and Security, 2nd Ed, H. C. A.
van Tilborg and S. Jajodia, Eds. Springer, 2011, pp. 224–227. [Online]. Available: https:
//doi.org/10.1007/978-1-4419-5906-5 239

[31] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs: Short proofs for
confidential transactions and more,” in 2018 IEEE Symposium on Security and Privacy (SP), May 2018,
pp. 315–334.

[32] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world, 2013,” Available online: https://bitcointalk.
org/index.php?topic=279249.0 (accessed on May 7, 2023).

[33] T. Ruffing and G. Malavolta, “Switch commitments: A safety switch for confidential transactions,” in
Financial Cryptography and Data Security - FC 2017 International Workshops, WAHC, BITCOIN,
VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers, ser. Lecture Notes
in Computer Science, M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague,
A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson, Eds., vol. 10323. Springer, 2017, pp. 170–181.
[Online]. Available: https://doi.org/10.1007/978-3-319-70278-0 10

[34] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” in
Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, ser. Lecture Notes in Computer Science, vol. 196. Springer, 1984, pp. 10–18.

[35] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,”
in ACM Conference on Computer and Communications Security, 1993, pp. 62–73.

[36] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and signature
problems,” in Proceedings on Advances in cryptology—CRYPTO ’86. London, UK: Springer-Verlag,
1987, pp. 186–194.

[37] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath, “Dandelion: Redesigning the bitcoin network
for anonymity,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3084459

[38] Grin, “Grin source code switch commitments,” Available online: https://github.com/mimblewimble/
secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/
main impl.h#L267 (accessed on May 7, 2023).

[39] Grin Community, “Grin source code switch commitment,” Available online: https://github.
com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/
commitment/main impl.h#L267 (accessed on Dec 22, 2023).

[40] Beam, “Beam the scalable confidential cryptocurrency,” Available online: https://docs.beam.mw/
BEAM Position Paper 0.3.pdf (accessed on May 7, 2023).

[41] ——, “Beam description. Comparison with classical MW, 2018,” Available online: https://docs.beam.
mw/BEAM Comparison with classical MW.pdf (accessed on May 7, 2023).

[42] Grin Community, “Grin dandelion configuration,” Available online: https://github.com/mimblewimble/
grin/pull/2628 (accessed on Dec 22, 2023).

[43] Litecoin, “Litecoin,” Available online: https://litecoin.org (accessed on Dec 14, 2023).

27

https://scalingbitcoin.org/papers/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://doi.org/10.1007/978-1-4419-5906-5_239
https://doi.org/10.1007/978-1-4419-5906-5_239
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://doi.org/10.1007/978-3-319-70278-0_10
https://doi.org/10.1145/3084459
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://github.com/mimblewimble/secp256k1-zkp/blob/73617d0fcc4f51896cce4f9a1a6977a6958297f8/src/modules/commitment/main_impl.h#L267
https://docs.beam.mw/BEAM_Position_Paper_0.3.pdf
https://docs.beam.mw/BEAM_Position_Paper_0.3.pdf
https://docs.beam.mw/BEAM_Comparison_with_classical_MW.pdf
https://docs.beam.mw/BEAM_Comparison_with_classical_MW.pdf
https://github.com/mimblewimble/grin/pull/2628
https://github.com/mimblewimble/grin/pull/2628
https://litecoin.org


[44] ——, “Litecoin project,” Available online: https://github.com/litecoin-project/litecoin (accessed on Dec
14, 2023).

[45] ——, “Litecoin mimblewimble blocks,” Available online: https://github.com/litecoin-project/litecoin/
tree/master/src/primitives (accessed on Dec 14, 2023).

[46] B. Blanchet, “Composition theorems for cryptoverif and application to TLS 1.3,” in 31st IEEE
Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018.
IEEE Computer Society, 2018, pp. 16–30. [Online]. Available: https://doi.org/10.1109/CSF.2018.00009

[47] Tamarin, “Tamarin prover,” Available online: https://tamarin-prover.github.io (accessed on May 7,
2023).

28

https://github.com/litecoin-project/litecoin
https://github.com/litecoin-project/litecoin/tree/master/src/primitives
https://github.com/litecoin-project/litecoin/tree/master/src/primitives
https://doi.org/10.1109/CSF.2018.00009
https://tamarin-prover.github.io

	Introduction
	Background
	Related Work
	Contributions

	The Mimblewimble protocol
	Schemes and Protocols
	Commitment Scheme
	Range Proof Scheme
	Schnorr Signature Protocol

	Idealized Model
	Transactions
	Transaction construction
	Aggregate Transactions
	Unconfirmed Transaction Pool
	Blocks and chain

	Properties
	Protocol Properties
	Privacy and Security Properties
	Switch commitments
	Unlinkability and Untraceability

	Implementations
	Grin
	Beam
	Discussion
	Litecoin

	Conclusions
	Future Work

