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ORBIFOLDS OF LATTICE VERTEX ALGEBRAS

BOJKO BAKALOV, JASON ELSINGER, VICTOR G. KAC,
AND IVAN TODOROV

ABSTRACT. To a positive-definite even lattice ), one can associate
the lattice vertex algebra Vi, and any automorphism o of @ lifts to
an automorphism of V. In this paper, we investigate the orbifold
vertex algebra V{7, which consists of the elements of Vq, fixed under
0, in the case when ¢ has prime order. We describe explicitly the
irreducible V(§-modules, compute their characters, and determine
the modular transformations of characters. As an application, we
find the asymptotic and quantum dimensions of all irreducible V5~
modules. We consider in detail the cases when the order of o is 2
or 3, as well as the case of permutation orbifolds.
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1. INTRODUCTION

In the past 25 years there has been significant progress in the theory
of regular vertex algebras [DLM, CM, DRX]. Recall that a vertex
algebra V' with a conformal vector L [K2] is called regular [DLM] if
all V-modules are completely reducible, and all eigenvalues of Ly are
non-negative integers with finite multiplicities. It is often required,
in addition, that the 0O-eigenvalue of Ly has multiplicity 1, that V is
simple, and that the V-module V is self-dual, which we shall do in the
present paper.
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Examples of regular vertex algebras include the simple affine vertex
algebras at positive integer levels, Virasoro minimal series, and lattice
vertex algebras Vg associated to a positive-definite even lattice @ (see
e.g. [K2] for their construction).

Regular vertex algebras were introduced in [DLM], where it was
shown that they are in particular rational. Hence for them the Zhu
Theorem [Z] holds, i.e., a regular vertex algebra has finitely many irre-
ducible modules and the span of their characters is SLy(Z)-invariant.

A major advance of the theory has been made by Carnahan and
Miyamoto [CM], who proved that for any finite-order automorphism o
of a regular vertex algebra V', its fixed-point subalgebra V7 is regular as
well. Another important result, by Dong, Ren and Xu [DRX], implies
that for a regular vertex algebra V' all irreducible modules over V¢
occur as submodules of irreducible o*-twisted V-modules for some k.

In the present paper, we use these results to describe explicitly the
irreducible V{J-modules for a prime order p automorphism o of the
positive-definite even lattice @) (Theorem 4.19), to compute their char-
acters (Section 4), and to obtain explicit modular transformation for-
mulas for these characters (Theorems 5.16, 5.17, 5.18). For this we use
the explicit description of twisted Vp-modules obtained in [BK].

As an application, we find the asymptotic dimensions [KP2] of all
irreducible V{5-modules, where o is a prime order p automorphism of ¢
(Corollary 5.20). In Sections 6 and 7, we consider the cases p = 2 and
p = 3, and in Section 8 the case of a permutation orbifold with () = anp
for any positive-definite even lattice )y and the cyclic permutation o
of the summands (cf. [DXY1, DXY2, DXY3, DXY4]).

2. VERTEX ALGEBRAS AND THEIR TWISTED MODULES

In this section, we briefly recall the notions of a vertex algebra and of
a twisted module over a vertex algebra. Then we review several impor-
tant theorems about regular vertex algebras. Good general references
on vertex algebras are [FLM, FHL, K2, FB, LL, KRR].

2.1. Conformal vertex algebras. Recall that a verter algebra is a
vector space of states V' with a distinguished vector 1 € V' (vacuum
vector), together with a linear map (state-field correspondence)

(2.1) Y(,2): VeV =V() =V,

satisfying axioms (2.3) and (2.4) below. Thus, for every a € V, we
have the field Y(a,z): V. — V((z)). This field can be viewed as a
formal power series from (End V')[[z, 27!]], which involves only finitely
many negative powers of z when applied to any vector.
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The coefficients in front of powers of z in this expansion are known
as the modes of a:

(2.2) Y(a,z) = Z am 2z ", am) € End V.

neL

The vacuum vector 1 plays the role of an identity in the sense that
(2.3) a(_l)l = 1(_1)a =a, a(n)l = l(m)a = 0, n Z 0, m 7é —1.

This means that Y (1, z) is the identity operator, Y (a, z)1 € V[[z]] is
regular at z =0, and Y (a, 2)1].—9 = a.

The main axiom for a vertex algebra is the Borcherds identity (also
called Jacobi identity [FLM]) satisfied by the modes:

i <m> (@(nt)D) (prm—j) € = f: (”) (1) ntn=) (B )

=0\ =0 \J

- (J) (=17 bigeyn—sy (@@mri))
=0

where a,b,c € V and m,n, k € Z. Note that the above sums are finite,
because a,)b = 0 for sufficiently large n.

We say that a vertex algebra V' is (strongly) generated by a subset
S C V if V is linearly spanned by the vacuum 1 and all elements of
the form ay(,,) - - ar(y,)1, where k > 1, a; € S, n; < 0. An ideal of a
vertex algebra V' is a subspace W such that ag yw € W for all a € V,
w € W, n € 7Z. The vertex algebra V' is simple if it contains no nonzero
proper ideals.

Essential to our setting is the notion of a conformal vertex algebra
and a vertex operator algebra, which we define below.

Definition 2.1. A vertex algebra V is called conformal of central
charge ¢ € C if there exists a Virasoro vector L € V such that the
corresponding field Y (L, z) = >, L,z ""* satisfies:

(i) [L-1,Y(a,2)] = .Y (a,2), a€V;
(#9) (Lo, Ln) = (1m0 — 1) Ly + Gy Pz
(7i1) Lo is diagonalizable.

The eigenvalues of Ly are called conformal weights or conformal di-
mensions. The Virasoro algebra is the Lie algebra with basis {c¢, L, | n €
Z} equipped with the bracket relations in Definition 2.1(ii) together
with the condition that c is central. A vertex operator algebra is a con-
formal vertex algebra, in which all eigenvalues of Ly are integers and
all eigenspaces of Ly are finite dimensional.
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A representation of a vertex algebra V', or a V-module, is a vector
space M endowed with a linear map Y (-,2)-: V@ M — M((2)) (cf.
(2.1), (2.2)) such that the Borcherds identity (2.4) holds for a,b € V,
¢ € M (see [FB, LL, KRR]). For a vertex operator algebra V =
D,.c7, Vo, where V,, is the Ly-eigenspace with eigenvalue n, its dual or
contragradient V' is defined as

(2.5) V=

nel

It is shown in [FHL] that this duality can be defined more generally for
V-modules M with analogous grading, and in this case the dual M’ is

also a V-module. The vertex operator algebra V' is called self-dual if
V 2V’ as V-modules.

2.2. Twisted representations of vertex algebras. Let o be an
automorphism of a vertex algebra V' of a finite order N. Then o is
diagonalizable. In the definition of a o-twisted representation M of V
[FFR, D2], the image of the linear map Y is allowed to have nonintegral
rational powers of z, so that

- 1
2.6 Y = n —n—1 if _ ,—2mim il
(2.6) (a, 2) g Q(p) 2 ) i oca=e a, meN ,

nem+7Z

where ag,y € End M. The Borcherds identity (2.4) satisfied by the
modes remains the same in the twisted case, provided that a is an
eigenvector of o, where a,b € V, c€ M, n € Z, and k,m € %Z.

An important consequence of the Borcherds identity is the locality
property [DL, Li, K2J:

(2.7) (z —w)N[Y(a,2),Y(b,w)] =0

for sufficiently large N depending on a,b (one can take N to be such
that ag,)b = 0 for n > N).

Proposition 2.2 ([BM]). Let V be a vertex algebra, o an automor-
phism of V', and M a o-twisted representation of V. Then

1
(2.8) H@f((z —w)NY (a, 2)Y (b, w)v)
for all a,b € V,ve M, k>0, and sufficiently large N. Conversely,
(2.7) and (2.8) imply the Borcherds identity (2.4).

=Y (an-1-rb, w)v

Z=w

2.3. Regular vertex algebras. In this subsection, we give a defini-
tion of regular vertex algebras and state a series of remarkable theorems
about them, which were proved by several authors.
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Definition 2.3. Let V be a conformal vertex algebra with conformal
vector L € V. Then V is called regular if the following additional
conditions hold:

(1) Lo has non-negative integral eigenvalues;
(17) the eigenspaces of L are finite dimensional;
(73) all V-modules are completely reducible;
(1v) V is simple, i.e., V contains no nontrivial ideals;
(v) V is self-dual, i.e., the contragredient module V' (cf. (2.5)) is
isomorphic to V;
(vi) the 0-eigenspace of Ly is C1.

Remark 2.4. The V-modules that we consider in Definition 2.3(4ii) are
the same as the weak V-modules as in [CM] and [ABD]. In general,
there are three types of V-modules, labeled as weak, admissible, and
ordinary. The weak modules are not necessarily graded. The admissible
modules have a Z,-grading, which is compatible with the action of V.
The strongest notion of module is the ordinary V-module, which is
graded by the eigenvalues of Lj, all eigenvalues are in Z,, and all
eigenspaces are finite dimensional. In the literature, rationality refers
to complete reducibility of admissible modules, while regularity refers
to complete reducibility of weak modules, which a prioriis more general
than rationality. For regular vertex algebras, all these notions of V-
module coincide.

The original definition of regularity from [DLM] does not include
assumptions (iv), (v), (vi). While in general one may consider dropping
several of these assumptions, we include them here in order to state
the following theorems in a more concise form.

Theorem 2.5 ([CM]). Let V' be a reqular vertex algebra, and T be a

cyclic group of automorphisms of V. Then the fized point subalgebra
VY (called the orbifold) is reqular as well.

Theorem 2.6 ([Z], [ABD]). Let V' be a reqular vertex algebra of central
charge c. Then

(1) V' has, up to isomorphism, a finite number of irreducible modules,
M(] :V, Ml,...,Mm.
(1) The characters

X;(7) = tray, gm0,

where ¢ = e*™7

for Im71 > 0.

, are convergent series to holomorphic functions
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(7i1) The C-span of the functions xo, ..., Xm @S Sla(Z)-invariant un-
der the modular transformation

Fr) e g (‘””) |

ct +d

where <CCL Z) € SLy(Z). Equivalently, we have

(As—e 1 -
(74 1) = ST (r), (‘F) = 2 Siwxe("):
k=0

where S;i € C, and A; is the conformal weight of M, i.e., the
minimal eigenvalue of Lg in M;.

Theorem 2.7 ([H1]). Let V be a regular vertex algebra. Then, in the
notation of Theorem 2.6, we have:

(i) Sjr=Sk; forall jk=0,...,m,

(i1) Sjo#0 forall j=0,...,m.
(i3i) Let

M; ® M; = @5 Nf, M,
k=0

be the fusion product. Then Verlinde’s formula holds:
50571k,
2.9 Nf =) =i
(29) =3
Theorems 2.6 and 2.7 have the following simple corollary (cf. [KP2]).

Corollary 2.8. Assume that V is a reqular vertex algebra of central
charge c, such that A; >0 for all 5 > 0. Then

(1) As 7 — 07 we have
X;(T) ~ Sjoe™/I2) =0, m,
(i1) Sjo >0 forall j=0,...,m.
Proof. Replacing 7 by —2, we obtain from Theorem 2.6(4ii):

- 1
X;(7) = Z Sk Xk (—;)-
k=0
But, by the definition of x;, we have:

(1) = (-2 oo,
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where a; is the multiplicity of the Lg-eigenvalue A, in My, so that
ap = 1. Since, by the assumption, A, > 0 for £ > 1, we obtain the
first part.

Letting 7 = i, where [ is a positive real number, we obtain from
the first part:

x;(iB) ~ S;0e™/128) >

since Sjo # 0. But the category of V-modules is a modular tensor
category [H2|, and ¢ € @Q in any modular tensor category (see e.g.
[BKi]); hence S, > 0. O

Definition 2.9. Provided that the condition of Corollary 2.8 holds,
the positive real number Sj is called the asymptotic dimension of the
V-module M; and denoted by asdim M;. The number S /5 is called
the quantum dimension of M; and is denoted qdim M;.

Remark 2.10. Obviously, the asymptotic dimension is additive. Also,
the quantum dimension is a ring homomorphism from the fusion ring
of modules to C (see [H1, V]).

Remark 2.11. Two other well-known properties of the matrix S =
(Sjk) = for arbitrary regular vertex algebras are (cf. [KP2] for affine
V): S? = C, where C is a permutation matrix of square 1 (cf. [H1]),
the matrix S is unitary, and in particular,

> 1S4 = 1.
j=0

As pointed out to us by Y.-Z. Huang, the unitarity of S follows from his
theorem that the category of modules over a regular vertex algebra is

modular [H2], and a theorem of Etingof-Nikshich—Ostrik [ENO], that
S is unitary for any modular tensor category.

2.4. Theta functions and transformation laws. In this subsection,
we review the definition and transformation laws of the classical theta
functions (see e.g. [KP2, K1]).

Let £ be a positive-definite even integral lattice, i.e., a free abelian
group of finite rank equipped with a symmetric bilinear form (-|-): @ X
Q) — Z such that |a|* = (a]a) is a positive even integer for all nonzero
a € Q. Set r =rank L and hy = C®y L. For A € L*,u € C, and
z € b, the classical theta function (of degree 1) is defined as

(2.10) Onic(r,z,u) = 20 3 2ml)ghl/2,
YENL
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2miT

where ¢ = e*™". The parameter v is introduced in order to simplify
the transformation formulas in Theorem 2.13 below.

Remark 2.12. For any scalar ¢, we have
Ocriec(T, 2, u) = ™ Z e2mi(rlz) gmireyl?
(2.11) YEAL
= 9)\4-5(027_’ cz, U)
This formula is particularly useful when the lattice £ is not integral. If
we can choose a suitable value of ¢ which makes ¢£ an integral lattice,

then the known transformation laws of theta functions can be applied
using the lattice ¢£ and (2.11).

The transformation laws of theta functions go back to Jacobi and
are given in [K1, Theorem 13.5] among many other works.

Theorem 2.13. Let L be a positive-definite even integral lattice of rank
r, and let X\ € L*. Then the transformation laws of (2.10) are

2
Oree (—1,f,u 12 ) _ (=i L)

St oy
(2.12) .
X Z e 2MAMG L o (7, 2, ),
p+LeLlL* /L
(2.13) Oric(T+1,2,u) = 0, o (7, 2,0).

For our purposes, it will often be convenient to set ©v = 0. In this
case, we set Oy, (7, 2) = O, 2(7, 2,0), and Theorem 2.13 becomes:

1 z NS ¥
Oir <—;7 ;) = (_17') /2‘5 /E‘ 12

(2.14) , ,
> em\z\?/r Z e—27r1()\\u)eu+£(7_’ Z),
p+LeL /L
(2.15) Orirc(T +1,2) = PO, o(7, 2).
In many of the examples, we also set z = 0. In this case we set

Or2(T) = Ori£(7,0,0).

The transformation corresponding to a general element of SL(2,R)
is given in [KP2, Corollary 3.9]. The following is a special case of their
general result, which we will need later.

Theorem 2.14 ([KP2], Corollary 3.9). Let L be a positive-definite

even lattice with rank r. Consider the action of A = (Z Z) €
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SL(2,R) on triples (7, z,u) given by
atr+b 2 c |z
A- = — =
(7,2,0) <c7‘+d’c7‘+d’u 2er+d)’

where T,u € C, Im7 > 0, and z € L. There exists 5y € C ®z L such
that

aclv)* = 2(v|By) mod 2Z for all v € L* with cv € L.
Then, for any A € L*, we have
Oric (A~ (1,2,0) = (7 +d) Pu(A)
% Z miled]u|?+2be(p|\)+ab| X2 +2b(A| Bo) +2d (1| Bo

i ept+LeL* /L
cuecl*

))Hak—i-cu—i-ﬁ (T, Z, u)7

where v(A) € C depends only on A.
In the case when cL* C L, which includes the case when ¢ = 0, the
summation collapses to one term, corresponding to p = 0:

Oriz (A~ (7,2,1)) = (e + d)Po(A)em™eR* 208G (7 2 ).

Remark 2.15. In general, Corollary 3.9 in [KP2] requires two vectors
g, Bo € L and a chosen scalar t; € R. However, in the case when the
lattice is even and c is an odd integer, each of the parameters «y, 5y, to
can be set to zero and their result simplifies to the result shown in
Theorem 2.14 (using that c|u|? = |pu* = |eu/> = 0 mod 2 when c is
odd). In the case when c is even, the parameter 5, may be nonzero.
For example, if a =d =1,b =0, and ¢ = 2, then y = § is nonzero for
the A; root lattice generated by the vector a with |a|? = 2.

Remark 2.16. In Corollary 3.9 in [KP2], the summation is indexed by
the set of p € L*, ¢ mod L, and this set coincides with the index set
of cosets used throughout this paper using the cosets ' + £ € L*/L
with p/ = cp € cL*. In particular, for ¢ = 0 both sums reduce to one
term corresponding to u = u' = 0.

Remark 2.17. It is important to point out that in Theorem 2.14, a
choice of square root of ¢r + d is made. This means that Theorem
2.14 describes the action of the metaplectic group, which contains the
modular group as a subgroup, due to the choice of square root. In this
paper, we will not concern ourselves too much with this choice because
the characters and trace functions later in Section 4 will be the ratio of
a theta function divided by another function (see Theorem 4.1) whose
transformation involves the same choice of square root (see Corollary
5.10 in the case A = 9).
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In general, v(A) is a complex valued function such that
(2.16) [W(A)| = [(L+cL)/L]72,  v(A™) = v(4)
(cf. [KP2, Proposition 3.8]). We also calculate in general that
(2.17) v(=A) =i"v(A).

While the theorem proves the existence of the complex number v(A), it
does not provide what they are explicitly. In practice, it may be more
convenient to write the matrix A first in terms of the generators S and
T, then repeatedly use Theorem 2.13.

By comparing the coefficients in Theorem 2.13 with Theorem 2.14
when A = S and when A =T, we can obtain the constants v(S) and
u(T):

(i)

(2.18) u(S) = e

o(T) = 1.

ir/2

- L%/ L|2
using (2.17). In addition to these facts, the following proposition will
be useful later.

It follows that v(T*) = 1 for all integers k and v(—S)

a b

Proposition 2.18. Let £, A = € SL(2,Z), and v(A) be as in

d
Theorem 2.14. Then the following hold for the generators S and T :
(2.19) v(AT?) = v(T*A) =v(A)  forall k€ Z,
(2.20) v(AS) = v(A)w(S) Z omi(ed|l?+2d (1] Bo0))
p+Lel*/L

Proof. To prove the first identity, we use Theorem 2.14 to calculate
0. ((AT*) - 7), where k in an integer, in two different ways. Since

v [(a ak+b
AT _<c ck+d)’

we have from setting A, z, u equal to zero in Theorem 2.14 that

Oc ((AT*) - 7) = (cr + ck +d) Po(AT?) Y emelehtdlly,  (7),

WA LEL /L
w'eel*
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where i/ = cu. On the other hand, we compute this transformation
using two steps and (2.13):

Oc (A (TF 7)) = (c(r+ k) +d)Po(A) Y el o (TF - 7)
wWHLel*/L
weeL*
= (et +ck+d)?v(A) > el Rnly (7).
wWHLel*/L
weeL*
By comparing both equations and noting that (AT*).-7= A (T*. 1),
we arrive at the relation v(AT*) = v(A). In a similar way, we can show
that v(T*A) = v(A).
We now compute in a similar way 0.((AS)-7) in two different ways.
First we assume that ¢,d # 0. Since

b —a
ASz(d _C),

we have from setting A, z, u equal to zero in Theorem 2.14 that
(2.21)

O ((AS) - 7) = (dr — )P v(AS) > ermledml2ewlbong, (),

W+LEL /L
w'edr*

where i/ = dp. On the other hand, we compute this transformation
using two steps and (2.12):

Oc(A-(S-7))
C /2 : 2 1
= <_; + d) v(A) Z emilcd P +2d(lpo))g . (_;)
vV+LeL* /L
(222> v'eel*

= (dr — ¢)"27"2u(A)v(S)
y Z Z emilediv®+2d(v|Bo)—2e(vie))g ()

VHLEL* L at+LEL*/L
v'eel*
where v/ = cv. Since (AS) -7 = A-(S-7), it follows from Theorem
2.14 that the terms in the sum in (2.21) and (2.22) must have equal
coefficients for each corresponding theta function. In particular, if we
set ¢/ =0in (2.21) and a = 0 in (2.22), we obtain (2.20).

Next we consider the cases ¢ = 0 or d = 0. When ¢ = 0, the
summation over v/ in (2.22) turns into one term corresponding to v/ =
0. Hence a comparison of (2.21) and (2.22) in this case yields that
v(AS) = v(A)v(S). In fact, when ¢ = 0 and det A = 1, the matrix is
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actually of the form A = +T", for some integer k, and this case reduces
to (2.19). When d = 0, the summation over x4’ in (2.21) turns into one
term corresponding to p/ = 0. A comparison of (2.21) and (2.22) then
yields (2.20). O

We also recall the Dedekind n-function

(2.23) n(r) =" I[1-¢"), g¢=€"", Im7>0.

n=1
The transformation laws for (1) are well known:

1

@24) e+ =), (=) = (=0 ().

More generally, it is well known that for any A = (Z Z) € SL(2,7),

(2.25) n(A-7) = e(A)(er +d) (),

where €(A) is a 24-th root of unity that depends on A.
Consider the one-dimensional lattice Za, with |a|?> = m. Set z = Sa

so that (z]|a) = %m. Then the theta function (2.10) takes the form

(2.26) 01 iz (T, ga, u) = ?miu Z eﬂinméqnzm/z’
nE#—I—Z
where [ € Z/mZ. For later use we set
1 S
(2.27) Ki(1,(;m) = Weﬁa—i-la(ﬂ §O"0>'

The following is then immediate using Theorem 2.13 and (2.24):

Proposition 2.19. The transformation laws for K;(t,(;m) are

1 ¢ 1 o
S, _ mim(* /4T —2mill’/m p .
(2.28) Kl< T,T,m> —c Yoe Ku(r,¢m),
VEL/m.
Wi(E—L)

(2.29) Ki(t+4+1,m)=e \m 2JK|(1,(;m).

Note that since the function Kj is a ratio of a theta function and the
Dedekind n-function, the choice of square root (—ir)'/? cancels.
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3. TWISTED REPRESENTATIONS OF LATTICE VERTEX ALGEBRAS

In this section, we review the construction of irreducible o-twisted
modules over a lattice vertex algebra associated to a positive-definite
even lattice (see [KP1, Le, D2, BK]). We do so in more details than
available in the literature, and in particular, we calculate the action of
the twisted energy operator L§".

3.1. Lattice vertex algebras. Let () be a positive-definite even in-
tegral lattice with the bilinear form (-]-). We denote by h = C @z Q
the corresponding complex vector space considered as an abelian Lie
algebra, and extend the bilinear form (+|-) to it by linearity.

The Heisenberg algebra § = b[t,t7] & CK is the Lie algebra with
brackets

(3.1) [@m, bp] = MOy, (alb) K, Ay, = at™ |

where K is central, i.e., [a,, K] = 0 for all m € Z. Its irreducible
highest-weight representation

(3.2) F =Ind} e, C = SO,

where h[t] acts trivially on C and K = 1, is known as the (bosonic)
Fock space.

Following [FK, BJ, we consider a 2-cocycle €: @ x @ — {%1} such
that

(33) o) = (D) aeq,
and the associative algebra C.[Q] with basis {e® },co and multiplication
(3.4) e¥e? = e(a, B)e* .

Such a 2-cocycle ¢ is unique up to equivalence and can be chosen to be
bimultiplicative, which we shall assume. In this case, by (3.3), we also
have

(3.5) e(a, Be(B,a) = (-1 a,Beq.

The space of states of the lattice vertex algebra associated to @) is
defined as Vg = F ® C.[Q], where the vacuum vector is 1 = 1®¢e". We
extend the action of the Heisenberg algebra on F to Vi by

(3.6) ane’ = 8,0(alB)e” ach, neZ.
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The state-field correspondence on Vg is uniquely determined by the
generating fields (recall that z®0ef = 2(@18)ef):

(3.7) Y(a-nl, z) = Zan et aeh,

(3.8) Y(e% z) = e*2% exp (Z o —— ) exp (Z o —— ) :

Notice that 7 C Vj, is a vertex subalgebra, which we call the Heisen-
berg vertex algebra. The map h — F given by a — a_11 is injective.
From now on, we will slightly abuse the notation and identify a € b
with a_11 € F; then ap) = a, for all n € Z. Let {a'} and {b'},
i =1,...,r, be dual bases of h with respect to the bilinear form, so
that

(a'|b)) =0y .

Then lattice vertex algebras are conformal with central charge r and
Virasoro vector given by

1 - i 4
(3.9) L=35 aiyb' Vo
i=1

We will denote by Q* the dual lattice to (), which is defined by
(3.10) Q"={ ebh|(Na)€eZ VaecQ}.

This is a free abelian group of the same rank as ); however, QQ* is not
integral in general. Notice that () C Q* because @) is integral. It is
well known (see Theorem 2.7 in [D1]) that the irreducible Vi-modules
are classified by the finite abelian group Q*/Q), and are given explicitly
by

(3.11) Vo= FOCQE, Aeq .
The contragradient module of V)¢ is
Ve =Vorta,

so that the duality corresponds to sending A to —A. In particular, we
see that Vj is self-dual.

Theorem 3.1 ([DLM]). For any positive-definite even lattice @, the
lattice vertex algebra Vi is regular.
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3.2. Twisted Heisenberg algebra. Every automorphism o of b pre-
serving the bilinear form induces automorphisms of 6 and F, which
will be denoted again as o, by setting o(at™) = o(a)t™, o(K) = K
and 0(1) = 1. As before, we assume that o has a finite order N.

The o-twisted Heisenberg algebra 60 is spanned over C by K and the
elements a,, = at™, where m € +Z is such that ca = e~*™qa. This is
a Lie algebra with bracket (cf. (3.1)):

1
[@m, bp] = MOy, —p(alb) K, a,bebh, m,ne€ NZ.
Let 6? (respectively, 6;) be the abelian subalgebra of b, spanned by
all elements a,, with m > 0 (respectively, m < 0).
The o-twisted Fock space is defined as

_ ho r;./ (<
(3.12) Fy= Indha EBCK ~ S(hs),
where 6? acts on C trivially and K acts as the identity operator. Then

F, is an irreducible highest-weight representation of 60, and has the
structure of a o-twisted representation of the Heisenberg vertex algebra

F (see e.g. [FLM, KRR]). This structure can be described as follows.
We let Y'(1, z) be the identity operator, let

(3.13) Y(a,z) = Z an 2",

nem+7Z

for a € h and m € +Z such that oa = e ?™"a, and we extend Y to
all a € b by linearity. The action of Y on other elements of F is then
determined by applying several times the product formula (2.8). More
explicitly, F is spanned by elements of the form a}nl = -a’ﬁnkl where
a’ € b, m; € Z, and we have:

Y(ain1 ceeab, 1,2)v

HaW 1=m; (ﬁ(z] -2V Y(a', ) -Y(ak, zk)v>

=1

==z =2

for all v € F, and sufficiently large N. In the above formula, we use
the divided-power notation 9™ = 9" /n!.

3.3. The groups G, and G£. Let o be an isometry of the even lattice
@ of finite order N, so that

(3.14) (calop) = (alf), o,feq.
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The uniqueness of the cocycle ¢, (3.5) and (3.14) imply that there exists
a function 7: @@ — {£1} such that

(3.15) n(a+ Be(oa, o) = n(e)n(Be(e, 5)

for all o, 8 € @ (the distinction from the Dedekind n-function should
be clear from the context). If L is a sublattice of ) with the property
e(oa,0B) = e(a,p) for a, € L, then n can be chosen to satisfy
n(a) =1 for all @ € L [BE, Lemma 2.3]. In particular, we can choose
1 so that

(3.16) nla) =1, a€e@QNhy,
where
(3.17) ho={h €bh|oh=h}

is the subspace of b consisting of vectors fixed under o.
There is a natural lifting of ¢ to an automorphism of the lattice
vertex algebra V by setting

(3.18) o(a,) =o(a),, o(e*)=n(a)e’™, aceh, ae@.

Note that the order of o is either N or 2N when acting on V.
We recall the following useful fact concerning dual spaces taken in a
subspace of b.

Lemma 3.2 ([BK], Lemma 4.6). Let t be a subspace of b on which the
bilinear form (-|-) is nondegenerate. Denote by m: b — t the orthogonal
projection of § onto t. Then for any lattice L C b, we have

(3.19) (L) = (LNny™,
where x¢ denotes taking dual in t. Equivalently
(3.20) (m(L))"* =L"Nt.

Next, we introduce the group G = C* X exphy X ) consisting of
elements ceU, (c € C*, h € by, a € Q) with multiplication

(3.21) ehel! — h '
(3.22) e = oy
(32?)) UaUﬁ - g(a,B)B(;lﬁ Ua+ﬁ’
where
N— 1
(324) —(alB) 27r1k/N (o* OC\B)

k:l
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We set the following notation for the eigenspaces of o:

(3.25) hjv={h€Eb }ah = e 2Ny 0<j<N,

(3.26) b = (ho)" @ BN -

From (3.23), we get the commutator
(3.27) Cop = UaUﬁU(;lUﬁ_l — ¢ri(moal8) g2mi(as| )

for « = mya + (1 — 0)a,, where . € b, and 7 is the orthogonal
projection of h onto by (see [BK, (4.44)]). We will also use the notation
m, = 1 — my for the orthogonal projection of h onto b, .

By [BK, Lemma 4.4], the center Z(G) of G consists of all elements
of the form

(3.28) ce® Ny,

where ¢ € C* and A € Q* is such that (1 — o)\ € Q. For a € Q, we
set (cf. [BK, (4.46)]):

(3.29) O = (@)U LU, 2miba+m00)
where

1 2 2
(330> ba e §(|7T004| — |Oé‘ )

Applying (3.23), we see that C, has the form (3.28) for A = « and a
suitable scalar ¢; hence C, € Z(G) for all a € Q.

The next lemma is contained in the proof of [BS, Proposition 5.5],
but is provided here for completeness.

Lemma 3.3. We have C,Cs = Cyip for all a, B € Q.
Proof. Using that Cs € Z(G), we find:
CoCp =

a 27r1 (bat+moa) CB

(@)U,
(a> JO}C U 627”(ba+7r0a)
(@)
(@)

a 77(5) 27i(ba+bg) Uaal Ugﬁl U5627ri m0(8) Uae27ri o (o)
Oé ﬁ(ﬁ) 27i(ba+bg) Ucr_al Ug_ﬁl UB Ua€27ri(7roﬁ|a) e27ri mo(a+p) 7

I
S 3 3 3
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where in the last line we used (3.22). Then applying (3.23) and (3.15),
we get:

BUB,Ja 5(5) Oé) —1
6(Uﬁ, aa) Bﬁ,a Ucr(a—l—ﬁ) Ua-l—ﬁ
_ 77(0‘ + ﬁ) -1 U

n(a)n(B) olerd et

because B,3,0 = Bgo. The rest of the proof follows from (3.30) and
the fact that (moS|a) = (mof|mocr). O

U U UU, =

o« g

Now we define
(3.31) N, ={C,|a € Q}.

It follows from Lemma 3.3 that N, is a subgroup of G. Moreover, N, C
Z(G). Let G, be the quotient group G/N,. Note that exp 27i(Q N hy)
is a subgroup of N, so that these elements become trivial in G,. Also
consider the subgroup

(3.32) T, = exp bo/ exp 2mi(Q N ho) C G-

Then C* x T, is the connected component of the identity in G,.
Let G+ C G be the subgroup

(3.33) Gt ={cU,|ceC*, acQnb.},

and denote by G+ the image of G* in G,. This image is described as
the quotient group G+/N;, where

(3.34) N =N,NG+={CylacQnh,}.

Then it is easy to see that N is a subgroup of Z(G*) and the central-

izer of 60 in G, is equal to T, x G. The group G can also be viewed
as a central extension by C* of the finite abelian group

QNbL
(1—-0o)(@Nhy)
We will need the following description of the centers.

Lemma 3.4 ([BK], Lemma 4.5). The centers of the groups G,, G,
and G+ are given by:

(3.35)

(3.36) 2(G,) 2 Z(G) /N, = T x (Q"/Q),
(3.37) Z(GH) ={cU,|ceC*, acQn(l—-0)Q"},
(3.38) 2(GH) = 7(GH) N = o x 2010

(1-0)(@nNby)
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Note that in (3.36), (Q*/Q)7 is the subgroup of Q*/@Q consisting
of cosets A + @, where A € Q*, such that o(A + Q) = A+ Q, ie.,
(1—-0)X e Q.

3.4. The G,-modules W (u, (). We continue to use the notation of
the previous subsection. Let ¢: Z(G%) — C* be a central character of
G+ such that ((c) = ¢ for every ¢ € C*. Then ¢ can also be viewed as
a central character of G* such that ((c) = ¢ and ¢(C,) = 1 for every
ceC*and a € QNbh . Let () be the unique (up to isomorphism)
finite-dimensional irreducible G:-module corresponding to the central
character (. Recall that €2(() can be constructed as follows (see e.g.
[FLM]). Pick a maximal abelain subgroup A} of G, and extend ¢ to
AL; then Q(¢) is the induced module

(3.39) Q(¢) = Indf7 C,

where C¢ is the 1-dimensional Ar-module C with character (.

By Lemma 3.2, we have mo(Q*) = (Q N o)™, where %, represents
taking dual in hy. For p € mo(Q*), consider the 1-dimensional T,-
module C,, with the action of T}, given by

(3.40) ey 2milhln) hebh mod QN hp.

Notice that this is independent of the representative of h modulo QNhg
because (a|p) € Z for o € Q) N hy. We also have an action of by on C,
given by h — (h|p) for h € by.

Now consider the T, x Gx-module Q(u, () = C, ® Q(¢), and induce
it to a module for G,:

(3.41) W (p,¢) = Indze, .0 Q(u, ).
Alternatively, by (3.39), we can write
(3.42) W(p,¢) =Indge, ., Cuc s

where C, ¢ is the 1-dimensional T}, x AX-module C with action
(3.43) (2" cU ), c = ce®™m (U1,

for h € by, c € C*, and o € Q N b such that U, € AL

By [BK, Proposition 4.4] and its proof, W (yu, {) is an irreducible G-
module such that the action of T, on it is semisimple and every ¢ € C*
acts as the scalar c¢. Moreover, any irreducible G,-module with these
properties is isomorphic to W (u, ) for some p, (.

Lemma 3.5 ([BK]). Two pairs (u,¢) and (1',(") correspond to iso-
morphic irreducible G,-modules if and only if they are related by

(3.44) p=p+ma,  C'(Us) =Cry¢(Us),
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for some fized o € Q and all B € QN (1 —0)Q*. In this case, the
isomorphism W (p', ') = W(p, ) sends 1, ¢ to Uyl .

Proof. This follows from the discussion in [BK] above Eq. (4.57). Notice
that (3.44) coincides with [BK, (4.57)]. O

It is easy to check that (3.44) defines an equivalence relation on pairs
(i, €); henceforth, two such related pairs will be called equivalent. We
emphasize that while ;o can be taken as a representative of the coset
i1+ m(Q), a change in the representative p also changes the central
character (. We summarize the above discussion as follows.

Theorem 3.6 (cf. [BK], Proposition 4.4). There is a bijective corre-
spondence between the following sets of objects:

(1) Irreducible representations of G, up to isomorphism, such that
the action of T, is semisimple and every ¢ € C* acts as the
scalar c;

(2) Characters x: Z(G) — C* such that x|n, = 1 and x(c) = ¢
for all ¢ € C* (cf. (3.29), (3.31));

(3) Pairs (p, (), up to equivalence (3.44), where p € mo(Q*) and ¢
is a central character of G such that

(3.45) O C(UZTL) = n(y)e ™,
for all v € Q (cf. (3.30)).

Proof. In addition to the above discussion, let us fill the gaps from [BK]
that were presented without proof there. Recall that the center Z(G)
consists of elements (3.28). Given a pair (u, (), we define x: Z(G) —
C* by setting

(346) X(C 62W1WO(A)U(1_J))\) = Cezﬂi()\"u) C(U(l—a))\>7

where ¢ € C* and A € Q* with (1 — o)X € Q.

We check that equivalent pairs correspond to the same character
X- Suppose (p,¢) and (1, (') are equivalent, so they satisfy (3.44) for
some o € Q. Let f=(1—0)A € QN (1 —0)Q*. Then (3.27) with «, 5
switched and 8, = 7, (\) implies

(3.47) C;}g = (0 = 2N — o~2ri(moda)
Hence

627Ti()‘|ul)</(U(1_o))\) _ 627Ti()\w+7r00¢) C;’% C(U(l—o'))\)
— p2mi(Ap) e27ri()\\7roa)e27ri(7rl>\\a)C(U(l_J))\)

= 627ri()\‘u)C(U(1—0'))\)7
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using that
(A moar) + (mLA|a) = (meA|a) + (T A\ |a) = (M|a) € Z,

as A € Q" and a € Q.

Putting A = 0 in (3.46), we obviously have x(c¢) = ¢ for ¢ € C*.
Next, we show that condition (3.45) is equivalent to x|y, = 1, i.e., to
x(Cy) =1 for all v € Q. By (3.23), we can write

UO:/IU’Y = 24U -0)y
for some x, € C. Then from (3.29) and (3.22), we have
C, = 2,1(7) e Uy gy, 2 ™00)
= 2, (7)emEm TN g,
because (moy|(1 — o)y) = 0. Then x(C,) = 1 is equivalent to

1= ,’L’»ﬂ](’}/)ezﬂiwa (627ri w0 (%) U(l—a)'y)
= 2,n(7)e*™ W (UG _p,)
_ 77(,}/)627rib—y627ri('y|u) C (Ua_fyl U—Y) ’

which is exactly (3.45). The rest of the proof is in [BK, Proposition
4.4]. O

Remark 3.7. Suppose that (1 —0)Q =QNby. Then QN (1 —0)Q* =
(1 — 0)Q. Hence, for a given u € mp(Q*), relation (3.45) completely
determines the character ¢ of Z(G%). Some examples that satisfy the
condition (1 — 0)Q = @ N by include the root lattice Ag,y1 (n > 1)
with ¢ a Dynkin diagram automorphism and the class of permutation
orbifolds (see Section 8 below).

Example 3.8. Another important special case is when hy = 0. Then
m = 0 and p = 0. Examples that satisfy this condition include o =
—1 for an arbitrary lattice @ (cf. [D2] and Section 6 below) and the
ADE root lattices with o a Coxeter element from the Weyl group (cf.
[KP1, KTJ).

3.5. The o-twisted Vp-modules My, (). Now we review the con-
struction of irreducible o-twisted Vp-modules from [BK], where as be-
fore o is an isometry of ) of order N.

Starting from an irreducible G,-module W (u, () corresponding to a
pair (u, ) as in Theorem 3.6, we make it an by @ Bi-module by letting
b> act trivially. Note that by acts on W (u, ¢) according to

(3.48) h(Uyv) = (hla+ p)Uyv ,
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for h € by, a € Q and v € Q(p, () (cf. (3.22), (3.41)). Then by inducing
this action to b,, we obtain an irreducible o-twisted Vo-module
(3.49) M(p,¢) = Ind)” o W, Q) = Fp @ W (g, )
with an action defined as follows.

We define Y (a, z) for a € b as before (see (3.13)), and for o € Q) we
let

(3.50) Y (%, 2) = Eo(2) @ Uyt ™
where
z " z "
(3.51) Eo(z) = exp( Z an——n> eXp< Z Oén_—n>-
HE%Z@ NE%Z>0

Here the action of 2™ is given by z™%(Ugv) = 2(M™02lB+1 gy for 8 € Q
and v € Q(u, ¢). Notice that (moer|p) € +Z. The action of Y on all of
Vg can then be obtained by applying the product formula (2.8).

Theorem 3.9 ([BK]|, Theorem 4.2). Every irreducible o-twisted V-
module is isomorphic to one of the modules M(u,(), and two such
modules are isomorphic if and only if the corresponding pairs (i, () are
equivalent according to (3.44). Moreover, every o-twisted Vig-module
s a direct sum of irreducible ones.

In the special case when ¢ = 1, we obtain Dong’s Theorem that the
irreducible V-modules are classified by Q*/Q (see (3.11) and [D1]).

Now we describe a basis for M (u, (). We start by choosing a basis
Bq for the finite-dimensional G-module Q(u, ¢).

Remark 3.10. All irreducible G:-modules Q(u,¢) have the same di-
mension:

dim Q(y, ¢) = d(0),
where d(o) is called the defect of o (see [KP1, BK]). It is known that

(3.52) d(o)* =G5 : Z(G) =1(Q Nb1)/Qsl.

where Q, = QN (1 —0)Q* C @Nhy (see [BK, (4.53)]). In the setting
of [KP1], @ is a root lattice and o is an element of its Weyl group. In
this case, it was shown in [KP1] that (1 — 0)Q* C @ for such o and
that d(o)? can be described as the order of the torsion subgroup of the

abelian group Q/(1 — 0)Q*.

Due to (3.41), the set {gv|g € Cq, v € Ba} is a basis for the G,-
module W (u, (), where Co C G, is a set of representatives of the cosets
of T, x G+ in G,. The next lemma provides a way for constructing Cg.
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Lemma 3.11. If Co C Q is a set of representatives of the cosets of
QNbin Q, then Co = {U,N, € G, |y € Cq} is a set of represen-
tatives of the cosets of T, x G+ in G,.
Proof. By assumption, every a € () can be written as a = v + 3 for
some v € Cg and B € QN b . Then for any h € by and c € C*, using
(3.22), (3.23), we have
ce"U, =U, " Ug

for some ¢ € C*. The claim of the lemma follows, since e" € T, and
d Ug € G(Jj‘ ]

As a consequence of Lemma 3.11, we have:
Corollary 3.12. With the above notation, the set

{vah € Co, v € Bo}

is a basis for W(u, ().

In order to write a basis for the o-twisted Heisenberg algrebra 60,
we pick a basis {a'}/_, for b such that a' € b, /n, where 0 < j; < N
(cf. (3.25)). A basis for b, is then given by

{ait”

The following is now immediate.

Lemma 3.13. Let Cgy C () be representatives of the cosets QQ/(QNhL),
let Bq be a basis for the irreducible G:f-module Q(u,C), and {a'}i_,
be a basis for b as above. Then a basis for the Vig-module M (i, ¢
consists of elements

(3.53) (@ t™) -+ (a7 Uy (v € Cq, v € Bg),

where k > 0 (the case k = 0 corresponding to U,v), 1 iy < r,
n € —(i/N)+2Z, ng >0 for 1 <1 <k, and the pairs (i;,n;) are
ordered lexicographically.

3.6. Li"-action on the Vy-module M(y, (). Recall that the lattice
vertex algebra Vj is conformal with central charge r = rank ) and a
Virasoro vector given by (3.9). Then for any o-twisted Vj-module M,

from the action Y of V3 on M, we obtain a representation on M of the
Virasoro Lie algebra by

Y(Lz)=)Y LMz L) €EndM.

neL

. Ji
1<i<rnel Z}.
<i:<r nEN—l-

To emphasize that it is a twisted module, we will also denote the modes
LM as L™. An explicit formula for L™ in the more general case of
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twisted logarithmic modules was given in [Ba] for an arbitrary (not
necessarily semisimple) automorphism o. Here we determine the action
of the twisted energy operator L§" on a basis of the irreducible o-
twisted Vp-module M (u, C).

To give this action explicitly, we define a linear operator s on each
eigenspace b;/n by (cf. (3.25)):

(3.54) sa:—%a for achjn, 7=0,...,N -1,

so that o = e*™*. Let {a'}/_, and {b'}’_, be dual bases of h consisting
of eigenvectors of o. Suppose that a" € b;,/v. Notice that this implies

sa' = ]j\;a’ sb' = (‘7—]\; — 1>bi

if j; # 0, while sa’ = sb® = 0 if j; = 0. Then, by [Ba, (6.8)], the action
of L is given by

W n 24—N 1 8_'_1
(3.55) LY = Z > (at) (bt ):—Etrh< ) )[,

nedi+z

where the normal ordering :: is defined by

(at)(b't™™), n <0,
(bt (a't™), n >0.

(at™)(b't ") = {

For convenience, we set

N—-1 .
1 1 1
(3.56) A, = _§tr;, <S + ) — 1 (1 — —) dim b /n.
1

]:

Note that A; = 0 for the identity automorphism o = 1, which corre-
sponds to the case of untwisted modules.

Remark 3.14. Using that dim b;/n = dim b;_(;/n), we have

= . . 1
try s = 52 ((% — 1) + (—%)) dimb;/ny = —5 dimb; .

i=1

Remark 3.15. Formula (6.8) in [Ba| uses a linear operator S on h such
that 0 = e72™% and the eigenvalues of S are in the interval (—1,0].
The form (3.55) for L§" is obtained by setting S = —s and using that
(3) = (*1"). Note that the term —@t" in [Ba, (6.8)] vanishes in our
case since the Lie algebra b is abelian and @ is given in terms of Lie

brackets (see [Ba, Lemma 6.4]).



26 B. BAKALOV, J. ELSINGER, V. G. KAC, AND I. TODOROV

Lemma 3.16. Let () be an even lattice and o be an isometry of Q) of
prime order p. Then

(3.57) A, = ——
where b1 is given in (3.26). In particular, Ay = A, for all I =
1,...,p—1.

Proof. By the Cyclic Decomposition Theorem, h has a o-invariant basis
on which o acts as a permutation. The order of each orbit of this action
divides p. Suppose that there are e singleton orbits and d orbits of order
p. Then we have for 1 < j7 <p—1:

(3.58) dimb =e+dp, dimby=e+d, dimb;, =d.
Hence, (3.56) becomes

IE1()- e

thus proving (3.57) since dim h; = d(p—1). The last claim of the lemma
follows from the fact that b, remains the same for ¢ and o'. O

Remark 3.17. In general, A, = A, if [ is coprime to the order of o,
but (3.57) may no longer hold. In particular, we have A, = A,-1.

Our goal is to determine the action of L§" on the basis of the o-
twisted Vg-module M (u, ¢). For a € Vi, we have

(3.59) LY.V (a,2)] = 20.Y (a, 2) + Y (Loa, 2)

(see e.g. [Ba, Section 5.4]). Recall that in Vj, elements of h have
conformal weight (eigenvalue of L) 1, and elements e® have conformal
weight |a|?/2 (see e.g. [K2]). Hence, we have:

(3.60) Ly, Y (b, 2)] = (14 20,) Y (h, 2), h € b,
(3.61) (LYY, Y (%, 2)] = (g + z@z) Y(e*, z), a € Q.
Lemma 3.18. For a € ), we have

(3.62) (LY. U] = U, ('W";“z + Woa) .

Proof. Equations (3.60) and (3.13) imply that [L§", a,,] = —nay,, from
which we get [L{V, E,(2)] = 20.E4(z) (cf. (3.51)). The result now
follows from (3.50), (3.61), and the relation % + b, = @ O
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Now we determine the action of L§" on v € Q(u, ():
(3.63) Ly = ! i(aito)(bito)v + A = M +A, v
0 2 p 2 ’
using that (ht°)v = (h|p)v and (ht™)v = 0 for n > 0. Then for v € Q
and v € Q(u, (), we find
LUy = U, Lg'v + [Lg", U, v

2 T 2
(3.64) = <% + AU) Uwv+U, <| 0;' + WO’Y) v

_ (et moy/?
2

using that (mpy)v = (moy|p)v. Using (3.64), the action of L on
M (1, ¢) can now be determined.

+ AJ) Uy,

Proposition 3.19. Let w = (a"t™™)---(a™t"™)U,v be a basis ele-
ment for M(u, () as in Lemma 3.13. Then

(365) how = (h‘,u + 7T0’)/)w, h € by,

2
(3.66) Lo = (nl Fo b+ m n Aa)w.

In particular, LY is diagonalizable on M (u, ) with positive eigenval-
ues, with the only exception when M (u,() = Vg and w = 1, which has
eigenvalue 0.

Proof. The only thing left to prove is the claim that the eigenvalues of
L are positive. From (3.56), we see that A, > 0 and A, > 0 unless
o = 1. Since Q is positive definite, |p + moy|? > 0 and | + 7y|* > 0
unless 1 + mpy = 0. Hence, the eigenvalues of L§" are non-negative,
and the only way to obtain Oisifalln; =0ando =1, p=~v=0. O

Remark 3.20. We see from (3.66) that the conformal weight (i.e., the
minimal eigenvalue of L") of M(u, () is

1
A, + = min |+ 7oy
9 VEIQ |1+ o]
In particular, if 4 = 0, then the conformal weight is A, .

3.7. The sublattice Q C Q. In this subsection and the next one, we
consider a more general situation when the isometry o of a positive-
definite even lattice () is an element of a finite group I' of isometries.
In subsequent sections, we will return to the case of a single element
o, or equivalently, a cyclic group I' = (o).
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As in Section 3.1, we fix a bimultiplicative 2-cocycle €: Q X @ —
{£1}. As in Section 3.3, for any isometry ¢ € I', we pick a function
ny: Q@ = {£1} such that

(3'67) 77@(04+5)€(9004,<P5) = W(a)%(ﬁ)f(a,ﬁ), a, B e€qQ).

We will assume that 7, = 1 for the identity element ¢ = 1.
Then ¢ induces an automorphism of C.[Q)] defined by

(3.68) p(e”) = ny()e™, aed

(cf. (3.4), (3.18)). It also defines an automorphism of Vi, similarly
to (3.18), which by abuse of notation we will denote again as ¢. As
before, the order of ¢ as an automorphism of C.[Q] (or V) may be
double its order as an automorphism of (). Moreover, this does not
define a representation of I', but only a projective representation, or
a representation of its central extension. Following an idea of [BE],
we will avoid these complications by restricting to a certain sublattice

Q of Q, for which this is true and which produces the same orbifold
subalgebra (V)" = (V)" of fixed points under T.

Definition 3.21. Let Q be the set of all a € @ such that, for every
©1, 2 € I', we have

(3.69) (p1p2)(e”) = p1(p2(e”))

in C.[Q] (and hence also in V). Equivalently, Q consists of all a € Q
such that

(3.70) N1 (@) = Ty (P200) 1, (¥)
for every 1, € T'.

Lemma 3.22. The subset Q) C Q is a I'-invariant sublattice of Q
containing 2Q). In particular, rank () = rank ().

Proof. Consider arbitrary a, 8 € @ and @1,y € I'. Using (3.4) and
that each ¢; acts as an automorphism the associative algebra C.[Q)],
we obtain:

e(a, B)(p102) (") = (pre02) (e%€”) = (p192) (™) (01602) (e
and

e(a, B)e1(pa(e*™7)) = p1(pa(ee”)) = @1(pa(e®)) 1 (pa(e”)).

If a, B € Q, then the right-hand sides of the above equations are equal;
hence, the left sides are equal and o + 8 € Q.

Similarly, taking 8 = —a and using that p(e?) = €° for all p € T,
we also see that o € Q implies —a € . Therefore, @ is a sublattice
of @. Now let 8 = a € @ be arbitrary. Then, since (p1p9)(e®) =

%)
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+01(p2(e”)), when we square these we get that the right-hand sides of
the above equations are again equal. Hence, 2a € @ for all a € Q.

Finally, to prove the I'-invariance of ), let & € @ and @1, o, 03 € T.
Then

Ny () (P102)(€7°) = (0102) (p3(€”)) = (P1p2003)(€”)
and
Nos () 01(02(e7*?)) = p1(p2(p3(e”))) = (prpasps)(e”).
This implies that psa € Q. O

Due to Lemma 3.22, we can view I" as a group of isometries of the
lattice Q. Hence, as above, every ¢ € I' induces an automorphism of
the lattice vertex algebra Vi, which is a subalgebra of V. By construc-
tion, this does give a representation of I' on Vi;. In particular, the order
of ¢ remains the same as an element of I' and as an automorphism of
V- Now we prove that the subalgebra of I'-fixed points is the same in
Vi and in Vo

Lemma 3.23. We have (Vo) = (V)"

Proof. Since Q C @, we have the obvious inclusions Vo C Vg and
(Va)' C (Vi)' To prove the opposite inclusion, consider an arbitrary
element

v:Zfa@ueaeVQ (fa € F),
aeQ)
where only finitely many f, # 0.
For ¢y, ps € ', the automorphism ¢ = (p1p2) ! 0 1 0 (g of Vp has
the property that ¥(f) = f and ¥(e®) = £e* for all f € F, o € Q.
Hence,

V() =) fa®@(e").
ac@
Suppose that v € (Vp)', i.e., p(v) = v for all ¢ € I'. This implies that
(v) = v and ¥ (e*) = e for all & € Q with f, # 0. Therefore, a« € @
and v € V. O

If the group I' is given in terms of generators and relations, then it
is enough to specify 7, for the generators ¢. Due to (3.67), we can let
Nyt = 7Np. Then we can use (3.70) to define 7, in the case when ¢ is
a product of generators and their inverses. For this process to be well
defined, it needs to respect the relations of I'; explicitly, we must have

p10---0pp(e”) = e,
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or equivalently

N (2 - @Ry (03 - - 1) -+ - gy, (PR, () = 1,

whenever ¢ - - -, = 1in I'. The above identities do not hold in general
for all & € @, but by construction they hold for all a € Q.

In this paper, our main focus is the case when I' = (o) is a cyclic
group of order N. Then all relations in I' are consequences of the
relation 0¥ = 1. We fix the function n = n,: Q — {£1} satisfying
(3.15) and (3.16). Then from the above discussion we can define 7,, for
all ¢ € T'. Hence, the sublattice Q C @ is determined by the equation

(3.71) go---oqg(e”) = e,
N

or equivalently
(3.72) n(e"la)n(eVa) - n(oa)(a) = 1.

The final result of this subsection provides a useful characterization of

@ in terms of the bilinear form (-|-) of the lattice Q.

Lemma 3.24. Suppose that I' = (o) is a cyclic group of order N of
isometries of Q. Then @ consists of all o € Q) such that

N—1
(3.73) > (alo™a) € 2z,
m=1
or equivalently,
2
(374) ‘7T(]Oé|2 = (Oé‘ﬂ'(]Oé) c NZ,

where mqy is the projection onto the space of o-invariant vectors in b.

Proof. The equivalence of the two conditions is obvious from («a|a) €
27 and the formula

(3.75) o = — Z a™.

Since the element Nmoa = av + ocav + - - - + oVt € ) is o-invariant,
we have

(3.76) na+oa+ - +oV ta) =1, a€eq,
by (3.16).
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We want to calculate the left-hand side of (3.72), which we denote
by L. Using (3.15), we have for 0 < j < N — 2:
nie’tayn(a+oa+ -+ ola)(a+ -+ o a)
=clatoa+---+da,0'a)e(ca+ -+ o7 Ta, 07 a).
Then, by (3.76), L equals the product of these expressions, which by
the bimultiplicativity of € gives

N=2 7

H H (o'a, 0" a)e(o" M, 0/ 2a).
j=0 i=0

Consider first the factors of the form e(a, 0™a) or e(¢™a, «) in the
above product, where 1 < m < N — 1 and we keep in mind that
oVa = a. For each m, there are exactly two such factors, coming from
e(o’a, 0’ ta) with j = m — 1,4 = 0, or from (¢, 07 ) with
j=N—=2,i=m—1. By (3.5), the product of these two factors is

e(a,0™a)e(0™a, a) = (—1)@lo"e),

Now consider the remaining factors of the form e(c*a, 0™a) for 1 <
E < m < N—1. We claim that every such factor appears exactly twice
in the above product, and hence they cancel each other. Indeed, we
can get e(ofa, 0™a) either from e(oia, 0/ a) with j =m — 1, i =k,
or from e(c"a, 07 ?a) with j =m — 2, i = k — 1. Therefore,

L | | a‘o.'ma

which completes the proof of the lemma. O
Corollary 3.25. If I' = (o) is cyclic of odd order, then Q = Q.
Proof. When ¢ has order N = 2n + 1, we have for every a € @),

N-1 n n
Z (a|o™a) Z(a|ama +oN"ma) =2 Z(a|ama) € 27,
m=1 m=1 m=1

since

(ale®™a) = (alo™"a) = (e"ala) = (alc™a)

by the o-invariance and symmetry of the bilinear form. Hence, Lemma
3.24 gives ) = Q. O

Remark 3.26. When I' = (o) is cyclic of even order N = 2n, the
same reasoning as in the proof of Corollary 3.25 shows that (3.73) is
equivalent to the condition (a|c"«) € 27Z.
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Corollary 3.27. In the case when T' = (o) is cyclic, the index of Q
i Q) 1s either 1 or 2.

Proof. For any a, 8 € @, formula (3.75) implies

(moar|moB) = (a|moB) € iZ-

N
Thus,
2
[mo(a + B)I° = [moal” — moBI* € 2.
If o, 8 ¢ Q, then N|moar|> and N|mof3|* are odd integers; hence, their
sum is even and o + 3 € Q. 0

When I' = (o) is cyclic, the proof of the above corollary also provides
an alternative proof of the fact that () is a sublattice of @, while the
o-invariance of () is an immediate consequence of (3.14) and Lemma
3.24.

3.8. The subgroup I';, (. As in the previous subsection, let I' be a
finite group of isometries of a positive-definite even lattice ). Following
[DVVV], for every pair of commuting elements o, € I', we want to
define an action of ¢ on the set of irreducible o-twisted Vj-modules.

We will continue to use the notation from the previous subsections
regarding o. If we extend ¢ linearly to b, then it preserves the o-
eigenspaces f;/y; in particular,

(3.77) ©(ho) C bo, w(h) Chy.

Hence, ¢ induces an automorphism of the o-twisted Heisenberg algebra
b, given by

(3.78) (ht") = p(W)t", o(K) =K (h €N, n € —% + Z).

We also define an action of ¢ on the group G by
(3.79) cp(ceh Ua) = cn,(a) e Uga (ce C*, h€bhy, a€Q),

where 7, plays the same role for ¢ as n does for o (see (3.67)). It is
easy to show that ¢ is an automorphism of G. However, in general, it
is not true that ¢ preserves the subgroup N, defined by (3.31). It will
be true if we assume that Q = @, which we will do from now on (cf.
Lemma 3.24 and Corollary 3.25).

Lemma 3.28. If po = oy and o € Q, then ¢(Cy) = Cy, where C,
is defined by (3.29).
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Proof. From (3.70), we have
Moo (@) = Np(00)ne (@) = () = N6 ()N ().

We rewrite this as

Ne(oa)n.(a) = n(pa)n(a),

where as before n = 7,. Furthermore, observe that ¢ commutes with
7o and bye = by (cf. (3.75), (3.30)). Using all that, (3.29), and (3.79),
we find

a)n.(oca)n,(a) U;;a U, e27i(batomoa)

-1 27i(bya+mopa
SOO‘)Uacan@ae (boatmopa)

po s

as claimed. O

Due to the above lemma, we have
SO(NO')CNCH QO(N;)CN;

Hence, we can view ¢ as an automorphism of both G, and G%. This
induces an action of ¢ among the irreducible G,-modules W (pu, ().
Since such modules are classified by pairs (p, (), up to equivalence
(3.44), we obtain an action of ¢ on such pairs (see Theorem 3.6).

Lemma 3.29. We have a linear map p: W (p,¢) — W(p(p),op™t)
such that

(3.80) (L) = Logu),cop

and

(3.81) plgw) = p(g)p(w), g€ Gy, we W(n,().

Proof. This follows from comparing (3.42), (3.43), (3.79), and noting
that (ph|pp) = (hlp) for h € by. O

We will be interested in the case when the pairs (p(u),( o ') and
(1, ¢) are equivalent. We introduce the following subgroup of I':

(3.82) Tope ={p el |po=0p, (o(p), op™)~ (1)},

where ~ denotes the equivalence (3.44). Then, by Lemma 3.5, the
G,-modules W (p(u), Cop™t) and W (u, () are isomorphic. Composing
this isomorphism with the map p: W(u,¢) — W(p(u),¢ o ¢™!) from
Lemma 3.29, we obtain an action of ¢ on W (u, (), which satisfies (3.81)
and

(3.83) P(Lue) = Ualpc
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where a € () is such that

(3.84) p(p) = p+moa, (e (Us)) = Co5C(Us),

forall e @N(1—0)Q".

Similarly, as we assumed that Q = @, the group I' acts on Vg by
automorphisms. Hence, ¢ acts on the irreducible o-twisted modules
by composing the V-action with ¢. More precisely:

Lemma 3.30. We have a linear map ©: M(p, () — M(o(p),(oe™)
satisfying (3.80) and

(3.85) (Y (a,2)v) =Y(p(a), z)p(v), a€c Vg, ve M(u().

Proof. This follows immediately from (3.49), (3.78), and Lemma 3.29.
U

As above, for ¢ € I', ¢, we obtain an action of ¢ on M (y,() sat-
isfying (3.83) and (3.85). In particular, if we restrict to the orbifold
subalgebra V), then we will have ¢(a) = a in (3.85); hence the map
@: M(p,¢) — M(p,¢) is an isomorphism of Vj-modules.

Remark 3.31. Later we will restrict to the case when the group I' = (o)
is cyclic, so ¢ = o for some k. Then we have o(u) = p and Cop™! = ¢,
which imply, in particular, that I', , . = I'. Indeed, o(u) = p because
€ m(Q*), and ( oo = ¢ because ((C,) =1 for all « € Q N, (see
(3.29), (3.34), (3.79)).

4. MODIFIED CHARACTERS OF TWISTED V,-MODULES

Throughout this section, as before, () will be a positive-definite even
integral lattice, and ¢, o will be two commuting isometries of Q). Our

goal is to compute the modified characters of irreducible o-twisted V-
modules M (u, ), which are defined by

(4.1) X5 (72 ) = by e H
where r = rank Q, h € bho, p € Iy, ¢ (cf. (3.82)), and ¢ = €*™7 with
7€ C, Im7 > 0. Since M(u,() is a tensor product of the o-twisted
Fock space F, and the G,-module W (u, (), the trace is a product of
traces over them. First, we compute the trace over F, under only the
assumption that oy = @o. Then we find the trace over W (u, () under
the additional assumption that ¢ is a power of ¢, which is always the
case when I' = (o).
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4.1. Calculating the trace over F,. In this subsection, we only
assume that b is a finite-dimensional complex vector space equipped
with a nondegenerate symmetric bilinear form (-|-), and o, ¢ are two
commuting automorphisms of h of finite order preserving (-|).

Any linear operator o, such that ¢ = 1 for some positive integer
N, can be diagonalized with eigenvalues N-th roots of 1 (cf. (3.25)).
Since o and ¢ commute, they can be diagonalized simultaneously. We
denote by

(4.2) f)w,y = {h c h ‘ och = 6—27riach7 <,0h _ e_zmyh}

the common eigenspaces for o and ¢. Similarly to (3.54), we define
linear operators s and f on § by

(4.3) s(h) = —zh, f(h)=—yh for heb,,,

where the eigenvalues of s and f are chosen to be in the interval (—1, 0],
ie., 0 <,y < 1. Hence, by construction,

(44) o= e27ris’ 0= e27rif7

and s coincides with the operator previously defined by (3.54).
Consider the o-twisted Heisenberg algebra b, and its irreducible
highest-weight representation, the o-twisted Fock space F, (see Sec-

tion 3.2). Recall that ¢ induces an automorphism of b, given by (3.78).

Since ¢ preserves the subalgebra 6;,
¢ on F, such that (cf. (3.12)):

(4.5) o(1) =1, olav)=g(a)p), a€cbh, veF,.

Now we find the trace over F, of pe?™hgl" 31 for h € hy. As the
action of hy on F, is trivial, this trace simplifies to

it also induces a linear operator

(4.6) Xz, (0, 7) = trz, ogk" 3.

Theorem 4.1. For every two commuting automorphisms o, of b as
above, we have

(7)==
XF \P, T) = )
Pow (7)
where
(4.7) Pyy(7) = q 2o [ | dety(1 — g™ ")
m=1

and A, is defined by (3.56).
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Proof. Choose a basis {ai}ZT:l for b consisting of common eigenvectors
for o and ¢, so that a' € b, ;. Then F, has a basis of monomials of
the form

w = (at7™) .- (a™t )1,
where £ > 0 (with & = 0 corresponding to w = 1), 1 < ¢ < r,
n € —si, +Z, ny > 0 for 1 <1 <k, and the pairs (i;,n;) are ordered
lexicographically.
As a special case of (3.66), we have that
L&Fw=(n; + - +np + Ay )w
while (3.78) and (4.2)—(4.5) imply that

oW = e~ 2mi(fiy ++fip gy

Therefore,
g Ty = Do g2t fiy) gty
_r _ i g _ i .
— qu o1 (6 27r1f11qm1 511) . (6 27r1flkqu Slk)w’

where m; = n; + s;, € Z. Notice that n; > 0 and s;, > 0 imply that
my;>0foralll <[l<Ek.

For each positive integer m that appears in the above product, con-
sider the set of indices [ € {1,..., k} such that m; = m, and let u;,, > 0
be the number of such [ for which i, = j (1 < j < r). Then we can
rewrite

(pthW 2T4w - q U 24 (H H 27T1f3q77’l SJ Uj, 'm)w’

m=1 j=1

where only finitely many u;,, # 0. Summing over the eigenvalues of
all basis vectors w € F,, we obtain that the trace (4.6) is

Xz, (o, 7) = qAa—i H H Z (6—27riqum_8j)uj,m'

m=1 j=1 uj m=0

On the other hand, for every fixed m, we have

T

dety(1 — q™**) = [J(1 — e figm—),

7j=1

as the determinant is the product of eigenvalues. Using a geometric
series expansion, we find

deth(l — <qu+s H Z —27r1fgqm Sj)uj e

j=1ujm=0




ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 37
and a comparison with the above expression for xz, (p,7) completes
the proof of the theorem. O

The products P, (7) can be computed more explicitly in the case
when ¢ = % and the order of ¢ is prime, by use of the following lemma.

Lemma 4.2. Suppose that o has a prime order p. Then, for all k,m €
Z, we have

p—1 N
dety (1 — o*q™™) = (1 —¢™)" (1 - w_jkqm_5> ,
1

<.
Il

where ro = dim by, d = dim by, and w = >™/P.

Proof. This follows directly from the definition of s (see (3.54)) and the
proof of Lemma 3.16 (see (3.58)). O

As a consequence of Lemma 4.2 and Remark 3.17, we see that
P u(1) = P, n(7) for all 1 <1 < p— 1, because replacing o with
o! amounts to performing the permutation j ~ /5 mod p on the index
set {1,...,p — 1}. More generally, one can prove such an invariance

without assuming that the order of ¢ is prime:
(4.8) Py g (1) = P, 51 (T), X7, (o 7) = x5 (6%, 1),
for every [ that is coprime to the order N of o.

4.2. The sublattice R, and a basis for W (u, (). In this subsection
and the next one, our goal is to compute the trace

(49) X0 (T h) = trwgug 9™ g 8 h € by,

where W (u, ¢) is one of the irreducible G,-modules (see Theorem 3.6).
The factor ¢® corresponding to the eigenvalue of L} in (3.66) is in-
cluded in the trace over the Fock space (4.6). We thereby subtract A,
from the exponent of ¢ in (4.9), so that we have (cf. (4.1), (4.6)):

From now on, we assume that Q = Q and ¢ € Iy ¢ (cf. Lemma 3.24,
Corollary 3.25, and (3.82)). The condition ¢ € I, , ¢ ensures that we
have an action of ¢ on W (y, () satisfying (3.81) and (3.83).

Recall that a basis for W (u, ¢) is given in Corollary 3.12. If we take
one of the basis vectors of the form U,v (v € Cq, v € Bg), then by
(3.79), (3.81), we have

e(Uyv) = o(U,)p(v) = 1p(7)Upyp(v).
Notice that, as v € Q(u, (), it has ho-weight p, i.e., ev = Wy for
h € bo. Then the weight of U,v is mpy + . On the other hand, by

h
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Lemma 3.29, the weight of ¢(v) is ¢(u); hence, the weight of ¢(U,v)
is mo(y) + ¢(p). Thus, the only representatives v € Cq contributing
to the trace (4.9) are those satisfying

(4.11) Toy + = mop(Y) + p(p).

Notice that this condition trivially holds in the case when ¢ = o
power of o, because o(p) = pu and 7y 0 0 = .

In order to provide a more explicit basis for W (u, (), we recall its
alternate description given by (3.42). For that, we need to pick a max-
imal abelain subgroup A} of G, which we can do as follows. Notice

o

that when «, 5 € Q Nbh, the commutator (3.27) reduces to

Cop = e2mi@x1B), a=(1-0)a,.

ks a

Hence, if we choose a maximal sublattice R, C () N b, with the pro-
perty that

(4.12) (|B)€Z for a,f€ R,
then we can take
(4.13) Ay ={cU,N;|ceC*, aeR,}.

Thus, a basis for W (p, ¢) consists of elements Us1,, ¢, where ¢ runs over
a set of representatives of the cosets Q/R .

We can improve the above description even further by introducing
the lattice (cf. [BE]):

(4.14) L=(QnNbr)+(Q@Nho).

Note that this sum is direct and @)/ L is a finite group. We have a chain
of sublattices in Q:

R.cQnbh. cLcCaq,

and L/(QNb1) = QNho. Let C;, C @ be a set of representatives of the
cosets Q/L, and Cr C Q N, be a set of representatives of the cosets

(@Nby)/R,. Then
{Oé—f—ﬁ—l—’}/}OZGQr\lho, ﬁECLa ’YGCR}

is a set of representatives of the cosets QQ/R,. We can summarize the
above discussion as follows.

Proposition 4.3. Let C;, C Q) be a set of representatives of the cosets
Q/L, and Cr C Q Nhy be a set of representatives of the cosets (Q N
hi)/R.. Then a basis for W (p, () consists of the elements

UaUgU-ylMC (a ce@nNhy, pelyr, vE CR)
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Similarly, notice that {U,1,¢|v € Cgr} is a basis of the irreducible
GE-module Q(p,¢), by (3.39). As a consequence, we obtain another
formula for the defect:

(4.15) d(o) = (@ NbhL)/R.| = |Crl,

since d(o) = dim Q(u, ) by Remark 3.10. Finally, we point out that
the cosets of Q/L can be replaced with the cosets of m(Q)/(Q N ho),
as we now show.

Lemma 4.4. For an integral lattice Q) with an isometry o, define L
by (4.14) and let M = Q N bo. Then the map f+ L — mof + M is a
group isomorphism Q/L = m(Q)/M.

Proof. Consider the map f: Q — m(Q)/M given by f(8) = w8+ M.
Then clearly f is a surjective group homomorphism and L C Ker f. In
order to show that L = Ker f, consider # € Ker f so that o := w3 €
M. Then my(aw — ) = 0, which implies o — f € QN h,. Hence 5 € L,
and the result follows from the First [somorphism Theorem. U

Remark 4.5. Sections 3.7, 3.8, 4.1, and 4.2 were developed in a more
general setting than needed for the rest of the paper. We hope that
they will be useful for future investigations.

4.3. Calculating the trace over the G,-module W (y,(). From
now on, we will assume that I' = (o) is a cyclic group of finite order N
and ¢ = 0% is a power of 0. Then, by Lemma 3.29 and Remark 3.31,
we have an action of ¢ on W (y, () such that ¢(1,) =1, and (3.81)
holds. Now (4.9) reduces to

O'O'k i tw_ -
(4.16) X () (T h) = trw ) okemihgle’ A h € bo.

In this subsection, we will express (4.16) in terms of a theta function
(recall Section 2.4).

Proposition 4.6. Let () be a positive-definite even integral lattice, and
o be an isometry of Q of finite order. Then

o,k —mik|p|?
(4.17) Xiir(uo) (T h) = d(o)e M0, s o) (T + Ky 1, 0).
As a consequence, we have

o,0F —ik|ul? . o,
(4.18) X oy (T2 1) =€ Rl le(MC)(T +k,h).

Proof. Let w = U,UgU,1,, ¢ be a basis element of W (s, () as in Propo-
sition 4.3. Using (3.81) and o(1,,¢) = 1,,¢, we compute the action of o
on w:

ow = 0(Ua)o(Ug)o(Uy)1c -
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First, by (3.16) and (3.79) with n = 7,, we have

o(Uy) =n(@)Use = Uy, a€eM:=QnNh.
Next, we find

0(Us) = 0(B)Uqg = Uge®™ 4™ - e q,
since Cz = 1 in G,; see (3.29). Similarly,

O-(U'Y) = U’Yezﬂpi(b’y—’_ﬂo’” = U’Y ) v € Q N hJ_ )

because myy = 0 and b, = —|y|?/2 € Z. Finally, by (3.22) and (3.43),
we have

627ri7TOBU-ylu7< _ U7627T17T061u7< _ Uﬂye27ri(ﬁ\u) 1/1,(7
as (mo3|y) = 0. Putting the above together, we get

ow — 2mbs+BI)

Then the k-th power gives

o = 2O (Bl

On the other hand,

27rih,w 2mi(h|o4-B+p)

(& w, h S hO )
again by (3.43), and

LYW —A _Luta+mos)?
q"" R = ¢! P,

= e

by (3.66), where we used moaw = v, mpy = 0. Therefore,

2 tw__ 3 1 2
O_ke27r1thO AU'LU _ e27r1(kb5+k(6|u)+(h|o¢+ﬁ+u))q2 |pta+mo | w.

Then the trace (4.16) is the sum of the eigenvalues:
ST ST R kbl st
aeM BeCr, veCRr

The sum over v gives |Cg| = d(0); see (4.15). To simplify the rest,
we rewrite

205 + 2(Blp) = oI — 181> + 2(Bp)
= |moB+ p|* — |p>  mod 2Z
= |p+a+mpl> - [uf*  mod 2Z,

where we used that |«|? € 2Z, |B|* € 2Z and (a|moB + 1) = (a|B) +
(alp) € Z. For the last claim, we have (a|p) = (a|\) € Z if u = mA
for some A € Q.
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Hence, we can express the trace as a multiple of a theta function:

o0k _ —mrike| 2mi(h|pta+moB)  mi(r+k)|ptatmos|?
(7o) = dlg)e 0 3 5 i
aEM BeCy

= d(O’)€_7rik|M|2 Z 9N+7TOB+M(7— + k, h, O)
peCr

= d(g)e—ﬂik|ﬂ|29“+m(Q) (T + ka ha O)>

where in the last equality we used the isomorphism /L = my(Q)/M
from Lemma 4.4. O

Next, we derive some properties of the defect d(o) that are useful
when describing the characters of o!-twisted modules (cf. Remark 3.10).

Lemma 4.7. Let Q) be a positive-definite even integral lattice, and o
be an isometry of @ of order N.

(i) If | and N are coprime, then d(o') = d(o).
(i1) If (1—0)Q =QNh,, then d(o) = 1.

Proof. Recall that the defect d(o) is defined by (3.52):
d(0)* = [(QNbL)/(@N(1-0)Q)

As [ is coprime to NN, the space b, is the same for o and ¢'. Since 1 —¢
divides 1 — ¢!, we have

QN(1-HQ*cN(1-0)Q".

It follows that d(o) < d(o!). But (o) = (o) similarly implies that
d(c) > d(c'). Hence d(o) = d(c'). Finally, (i) follows from

(1-0)QCcN(l-0)Q"C@Nh..
This completes the proof. O

It will be convenient to have an expression for X;VU(Z 0 (7, h) in terms
of a theta function corresponding to an integral lattice. Notice that
the lattice mo(Q) is not integral in general. However, v Nm(Q) is an
even integral lattice by Lemma 3.24, if we assume Q = (). Using the
rescaling property (2.11) of theta functions, we obtain the following.

Proposition 4.8. Let () be a positive-definite even integral lattice, o
be an isometry of Q) of finite order N, and assume that Q = Q). Then
VNmo(Q) is an even integral lattice and

" B R T+k h
(4-19) XW (11,€) (7-> h) = d(a)e v 9\/NH+\/N7TO(Q)< N \/—N’ O).
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Notice that in the left-hand side of (4.19), k can be taken mod N
because 0¥ = 1. Using the transformation (2.13), one can check that
the same is true for the right-hand side of (4.19). It is also not hard to
see that

(4.20) VNp e (\/NWO(Q))* for all pu € m(Q"),

where the dual of v N7y(Q) is taken in bj.

Finally, we multiply the modified characters from Theorem 4.1 and
Proposition 4.8 as in (4.10) to yield the modified characters of irre-
ducible o-twisted V-modules M (1, ¢), given by the following theorem.

Theorem 4.9. Let Q be a positive-definite even integral lattice, o be
an isometry of @ of finite order N, and assume that Q = Q. Then
the modified characters (4.1) for ¢ = o® are given by

- i VE v Emo@ (R 70 0)
(421)  Xj.o(mh) = d(o)e P, (1)

Remark 4.10. When m(Q) is an even integral lattice, we have the
simpler formula

(4.22) Xarue) (T, 1) = d(0o)

which follows from (4.17) and (2.13).

9u+7ro(Q) (7—7 h, O)
P, .+ (T) ’

Corollary 4.11. Suppose that [ is coprime to the order N of o. Let
p € mo(Q*), let ¢ be a central character of G%, and ' be a central

character of GZ%. Denote the irreducible o' -twisted Vi-module corre-
sponding to the pair (1, (') as M(u,(’;0'). Then

ol okl o,0F
(423) XM(,LL,C';UZ)(T’ h) = XM(;U"C) (7_’ h)

Proof. First of all, note that the projection 7y is the same for both o
and o'. We have

ot ok o,ok
(424) XW(MC’) (T7 h’) - XW(MO (T7 h)’
due to (4.17) and Lemma 4.7(z). Then (4.23) follows from (4.8), (4.10),
and (4.24). O

Remark 4.12. 1f [ is coprime to the order N of o, then [ has a multi-
plicative inverse mod N. Hence, for fixed [ coprime to IV, all powers of
o can be written in the form o*' for some k.

Notice that the characters X(Zj\;(z 0 (7, h) are independent of the central

character ¢ of G. In the special case when (1 —0)Q = Q N b, there
is a unique ¢ for any fixed p € m(Q*) (see Remark 3.7). Otherwise,
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we will require a choice of { when inverting formula (4.19), which we
will do when we compute the modular transformations of characters in
Section 5.2 below.

4.4. Calculating the trace over the untwisted Vj;-module V).
In this subsection, we find the modified characters

2mih  Lo—

(4.25) X%}fw (7, h) = try, , e q

of irreducible untwisted V-modules V)i, where ¢ is an isometry of
finite order of the positive-definite even lattice ), A € Q*, h € b, and
r = rank (). While these may be derived as a special case of previous
results, it is instructive to present a direct calculation here.

Recall from (3.11) the construction of Vi.g as F ® W (), where F
is the Fock space (3.2) and

(4.26) W(A) = C.[Qle* = span{e* |a € Q}.
Clearly, W () only depends on the coset A4+ @ € Q*/Q. As in Lemma

3.13, Va4 has a basis consisting of monomials of the form

(4.27) v=a", ---a*, M,

where a € Q, {a'}!_; is a fixed basis for b, k£ > 0 (with &k = 0 corre-
sponding to v = ) 1 <4 <7, n € Z, ny >0 for 1 <[ <k, and
the pairs (i;,n;) are ordered lexicographically.

Similarly to the action (3.18), we have an action of ¢ on the vectors
(4.27) given by

(428) SO(U) = 7780()‘ + Oé) (p(ail)—n1 e Sp(aik)—nkecp()\-i_a) .
As in Lemma 3.30, we have:

Lemma 4.13. The linear map ¢: Viiqg — Voo, defined by (4.28),
satisfies

(4.29) o(Y(a,2)v) =Y (p(a), 2)p(v), a€eVy, veVig.

Since the action of ¢ sends Vi to V)40, the trace (4.25) makes
sense only when

A+Q=pN)+Q, ie, (1—pAeQ.

Let v be asin (4.27). Any h € h acts on v as the zero mode hg according
to

hov = (h|A + a)v
(cf. (3.6), (3.65)), while the action of Ly is given by

A+ oz\2>
v

Lov:<n1+---+nk+
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(cf. (3.66)). Hence,

2mih , Lo 2mi(h|A\+a)

1 2
e2mihgLoy — ¢ nitotnetgAal?

q
Therefore, the only basis vectors v that contribute to the trace (4.25)
are those with
oA+ a) =+ a, a € Q.

If one such « exists, then we can replace the representative A € Q* of
the coset A + @ with A+ «, and assume without loss of generality that
©(A) = A. Then all other « lie in @ Nh?, where h¥ C b is the subspace
of fixed points under . Notice that when p(A + ) = XA + «, we can
assume 7),(A + a) = 1; cf. (3.16).

Under the above conditions, the trace (4.25) becomes a product of
traces

(4.30) X%/ﬁQ (1,h) = (tr; goqLO_ZT_Al> (tfw()\)w e27rith°>,
where A € @* N h¥ and
W(A\)? =span{e’™ |a € QNbH?} C W(A)

is the subspace of p-invariants.

The first factor in the right-hand side of (4.30) is the special case of
X7, (p,7) for 0 =1 (see (4.6)). From Theorem 4.1, we obtain
1

Pry(r)’

trr g™ = x£(p,7)

where

P (1) = ¢ H dety (1 — ©q™) .

m=1
The second factor in the right-hand side of (4.30) is given by
trwpye g0 = Y MG = 0, e (7, B, 0).
YEAH(QNH¥)
We summarize the answers in the following theorem.
Theorem 4.14. Let () be a positive-definite even integral lattice, © be
an isometry of Q of finite order, and X\ € Q* be such that (1—p)\ € Q.

If there exists o € Q such that (A + «) = X\ + «, then the modified
character (4.25) is given by

‘9)\+a+(QﬁhV’) (7'7 h, 0)
4.31 g = :
(43 W h) Pio(7)

If no such « ewists, then X%};iQ(T, h) = 0.
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In the rest of the paper, we will restrict to the special case considered
earlier, when o is an isometry of @ of order N, and ¢ = o* with
k coprime to N. In this case, since (o) = (o*), the subspace h? of
p-invariants coincides with h7 = hy. Thus, (4.31) can be rewritten as

(432) X (n.h) = %(h)o) ,
We also restate the last claim of Theorem 4.14 as
N, (mh) =0 i AeQ, (1-oeqQ,

and (A + Q)N by = {0}.
In particular, for o = 1 (or directly from (4.31) for ¢ = 1), we recover
the well-known result that the character of V. ¢ is

9)\ (7‘ h 0)
4' 4 11 — +Q ) )
(4:34) Waso(H) = =505

For future reference, we denote the numerators of (4.32) and (4.34)
as follows:

)\EQ*mbOa M:meo

(4.33)

, AEQ".

(435> X‘l/{/CT(I;) (Tv h’) = ‘9)\+M(7—7 h7 0)7 A € Q* N b(] )
(4.36) X%,[’,l()\) (1,h) = Orr0(7, h,0), Aeq”.

We can compute the denominators by applying the next lemma, which
is similar to Lemma 4.2.

Lemma 4.15. Suppose that o has a prime order p. Then, for m € Z
and 1 <k <p-—1, we have

dety (1 —¢™) = (1 —¢™)",
dety (1 —0"¢™) = (1= ¢"™)" (1 —¢"™)"~",
where r = dim b and d = dim b, ,,.
Proof. The first equation is obvious. For the second one, we compute
using (3.58):
p—1 d
deth(l—akqm) (I —q™ TOH(l—w ik m) ,

J=1

where 7y = dim by and w = €™/, Notice that the map j — —jk mod
p is a permutation of the set {1,...,p—1}; hence, we can replace w/*
with w’ in the above product. Then apply the polynomial identity
P _ 1 p—1 _
! ="'+ trt =@ - o)
j=1

r—1
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to finish the proof. O

In particular, we see from Lemma 4.15 that

O'k a
(437) Pak,l(T) - Pa,l(T)a X%}/\JrQ (T> h) = X%/’A+Q (Ta h),
forall 1 <k <p-—1.

4.5. Irreducible orbifold modules and their characters. Let, as
before, () be a positive-definite even integral lattice and o be an isom-
etry of @ such that Q@ = Q (cf. Lemma 3.24 and Corollary 3.25). In
this subsection, we derive the classification of irreducible modules over
the orbifold subalgebra V(§ from the general results of [DRX], assuming
that the order N = p of ¢ is prime. Then we obtain their characters
from the characters of twisted and untwisted Vy-modules. In order to
state the classification, we need to introduce some notation.

First, recall that if o acts as a linear operator of order N on a vector
space W, then o is diagonalizable with eigenvalues N-th roots of 1,
and the projections onto the eigenspaces of o are given by:

N
1 ) .
(4.38) WjIN E wWwikah (OSjSN—l, w:e%‘/N).
k=0

We denote by W7 = ;(W) the eigenspace with eigenvalue w™/. Com-
pared with our earlier notation, we have h7 = h;/n (see (3.25), (3.75)).

Second, assuming that N = p is prime, if ¢ acts on a finite set, then
every orbit has order either 1 or p. In particular, this applies to the
finite set Q*/Q. The set of singleton orbits is the set of fixed points
(Q*/Q)7, and it consists of A+ @ with A € Q* such that (1—0)\ € Q.
We choose a set O C Q*/Q of representatives of the orbits of order p.

Finally, again for N = p prime, every ¢! with 1 <[ < p—1isa
generator of the cyclic group I' = (o). Hence, the projection 7 is the
same both for ¢ and ¢!, and h° = b"l = bo. By Theorem 3.9, the
irreducible o'-twisted Vg-modules are classified by pairs (i, (), where
i € mo(Q*) and ( is a central character of Gjl satisfying the analog of
(3.45) with ¢! in place of o:

(4.39) eQﬂi(V‘M)C(U;}{Uv) = i () e 2oy | v EQ.

Definition 4.16. For fixed p € mo(Q)* and 1 <1 < p—1, let Z, »
be the set of all central characters ¢ of G that satisfy relation (4.39).
For [ = 1, we will use the shorter notation 2, = 2, ,.

Proposition 4.17. Let p € m(Q*), and 1 < k,I < p—1 be such
that kl =1 mod p. Then the map ¢ — C* is a bijection Z,, — Z, ol
Moreover, ¢* =1 for all ¢ € Z,.
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Proof. First, note that as in the proof of Lemma 4.7, we have

(1-0)Q =1-0)Q", (1-0o)(QNbr)=(1-0o)QNbL).

Hence, we can identify the centers Z(G%) and Z(Gy) due to (3.38).
Furthermore, since

p—1 p—2
pri=>) (1-0)=(1-0)) (p—1-i)’,
j=0 1=0

we have that

p@N(1-0)Q") Cp(@Nb1)C (1—a)(@NbL).
Therefore, every element of Z (G has order 1 or p. This implies ¢? = 1
for ¢ € Z,,.
It is enough to show that ¢* € Z, o, for ¢ € Z,, because then the
inverse map Z, , — 2, will be given by ¢’ +— (' !, In order to check

that ¢* satisfies (4.39), we find ((U;f{Uw) by writing
Ut Uy = (UgiUg1,) (UL Ugi2y) - (Uy Us)

and applying ¢ to the product. We obtain
-1
C(Uz0,) = [ nloty)e e me-2mie
i=0
-1
_ e—2l7ri('y|u)6—2l7rib—Y H n(o_z,y) ’
i=0
using (3.45), o = p and b,, = b,. On the other hand, since @ = Q,
we get from (3.70) that

Hence,
C(U,LU,) = e MOl em2imbny y(y)
To finish the proof, we raise this identity to the k-th power and use
that
2rmitln) — q (77(7)6—%1)7)1) _1,
which follow from pu € pm(Q*) C Q* and (¥ = 1. O
We will denote by M (u,¢; o) the irreducible o!-twisted Vg-module

corresponding to the pair (u, (), where p € m(Q*) and ( € 2, 1.
Again by Theorem 3.9, two such modules are isomorphic if and only if
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the corresponding pairs (u, () and (u/, (") are related by the following
analog of (3.44):

(140) W= ptma,  C(Us) = e OO,
for some fixed o € Q and all 8 = (1 — o!)v € Q with v € Q*.

Remark 4.18. Note that (4.40) is equivalent to (3.44) with ¢! playing
the role of o, due to the alternative expression (3.47) for C, 5. In
particular, (3.47) implies that C, g is a p-th root of 1, because pmo\ €
Q. If B = (1 oy for some v € Q*, then B = (1 — o)\ with
A= (1+0o+-+cHr € Q*. Hence, mA = Imv, and C, 4 for
o is the [-th power of C, s for o!. This implies that the bijection
Z, — Z, » from Proposition 4.17 is compatible with the equivalence

relations (3.44) and (4.40).
Now we can formulate the classification theorem.

Theorem 4.19. Let () be a positive-definite even integral lattice, o be
an isometry of Q of prime order p, and assume that Q = Q (which
holds if p is odd, due to Corollary 3.25). Choose a set Cry C mo(Q*)
of representatives of the cosets mo(Q*)/mo(Q), and a set O C Q*/Q
of representatives of the orbits of order p of o on Q*/Q. Then the
following is a complete list of non-isomorphic irreducible modules over
the orbifold algebra Vi3:

(Type 1) Vi,p (A+Q€(Q/Q)7, 0<j<p—1),
(Type 2) Ving (A+Q€0),
(Type 3) M(u,¢;0') (n€Cum, CE€EZ,,,0<j<p—1,1<1I<p—1).

The characters of these modules are given by:

(Type 1) XvA ‘o (7, h) = ZWMXVHQ 7.h) (cf. (4.32)),
(Type 2) xviuo(T.h) = Xy, (1) (cf. (4.34)),

; ]_ . 0’l O_k
(TyPe 3) Xhriuciony (T 1) = ];ZMJRXM’(M; n (7, h) (cf. (4.23), (4.21),
and Remark 4.12),

where w = e2m/P,
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Proof. Recall that the lattice vertex algebra V{, is regular (see Defini-
tion 2.3 and Theorem 3.1). Then the orbifold subalgebra Vi, = Vg
is also regular for I' = (o), by Theorem 2.5. Due to [DRX, Theorem
3.3], every irreducible V{§-module is a submodule of some irreducible
ol-twisted Vo-module W for 0 <[ <p—1.

The case [ = 0 corresponds to untwisted Vp-modules; hence, W =
Vitg for some A + @Q € Q*/Q, by Dong’s Theorem [D1]. By Lemma
4.13, for any ¢ € I', we have a linear map ¢: Vi o — Vi, +¢ satisfying
(4.29), which implies that ¢ is a homomorphism of V{§-modules. If
A+ Q € (Q*/Q)7, then o acts on Vi;q, and every eigenspace V){JFQ is

a V§-submodule (0 <j <p—1). As V){JFQ = m;(Va+q), its character is

- 2mih Lo—oy _ omih Lo— -
trVAJ+Q e gt = trVMQ miest gt
121
1 i _r
— § (.U]k trVA+Q O_ke27r1th0 29
P

fA+Q & (Q/Q)7, then o: Varg — V,(n)+¢ is an isomorphism of
V§-modules; hence, we can assume that A + @ € O.

When 1 <[ < p—1, we have an irreducible o'-twisted Vg-module .
By Theorem 3.9, W = M (p, ¢;0') for some p € mo(Q*) and ¢ € Z, 1.
Since pairs (u,¢) and (¢, (') that are related by (4.40) correspond to
isomorphic modules, we can arrange that o € Cyq. By Lemma 3.30 and
Remark 3.31, any ¢ € I" acts on M (p, (; o) so that (3.85) holds. Hence,
¢ is a homomorphism of V{§-modules, and the eigenspaces M (1, (; ot)
are V§-submodules (0 < j < p—1). Their characters are found simi-

larly as the characters of V/\j Lo above.

We have shown that every irreducible V{J-module is a submodule
of one of the listed modules. To finish the proof of the theorem, we
need to check that the listed modules are themselves irreducible and
non-isomorphic to each other. We will derive these claims again from
[DRX, Section 3]. We specialize the setting of [DRX] to the case when
their group G = I" = (o) is cyclic of prime order.

In [DRX], for any ¢ € I' and any irreducible ¢-twisted Vy-module
W, they introduce the subgroup I'yy C I' consisting of ¢ € I' such that
W = W o as twisted V-modules. Here W o ¢ is defined similarly to
our actions from Lemmas 3.30 and 4.13. Since the order of I" is prime,
we have I'yy = {1} if the automorphism o does not act on the module
W, and I'y, = T if it does.

Then the module W is decomposed under the action of I'yy; in fact,
more generally, under the group algebra of 'y, twisted by a certain
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2-cocycle. However, when I'y, = I is cyclic of order p, the second coho-
mology H?(T', C*) = C*/(C*)P is trivial. Therefore, the twisted group
algebra is the usual group algebra C[I'], whose characters correspond
to p-th roots of unity. Then the decompositions in [DRX] correspond
to our decompositions into eigenspaces of ¢ in the case when o acts on
the module . U

Corollary 4.20. The conformal weights of all irreducible V{5 -modules
are positive, except for V§ itself, which has conformal weight 0.

Proof. By Theorem 4.19, every irreducible Vg-module is a submodule
of some twisted or untwisted irreducible Vp-module. Due to Proposi-
tion 3.19, all of them have positive conformal weights, except that the
vacuum vector in Vg has conformal weight 0. l

Notice that, although the irreducible V§-modules listed in Theorem
4.19 are non-isomorphic to each other, many of them have equal char-
acters. Indeed, by (4.23), we have
(4.41) Xhatucraty (T 1) = X (T B,
for all

pem(Q), C€2, (€2,,, 0<5j<p-11<I<p-1L

In particular, all these characters are independent of . Similarly, we
can derive from (4.37) that

1 p—1 1,
(442) X?/}H*Q (T? h’) = EX:‘l/z;:,Q (T? h’) _I_ TX:‘L/ZA+Q (7-7 h)?
. 1 1,
(4'43) X‘{/)\‘FQ (T7 h) = EX%};:,Q (T7 h) - EX%})\+Q (T7 h’)’

forall A+ @Q € (Q*/Q)7 and 1 < j < p — 1. However, when we find
the modular transformations of characters in the next section, we will
retain the different labels prescribed by Theorem 4.19 as a bookkeeping
device.

5. TRANSFORMATION LAWS FOR MODIFIED CHARACTERS OF
TWISTED V-MODULES

As before, let () be a positive-definite even integral lattice, and o be
an isometry of @) of prime order p such that Q = Q (recall that the last
assumption is superfluous for odd p, by Corollary 3.25). In this section,
we derive how the modified characters of twisted and untwisted V-
modules change under the modular transformations 7 — 741 and 7 —
—1/7. Then from Theorem 4.19, we obtain the transformation laws for
the characters of irreducible modules over the orbifold subalgebra V5.
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5.1. Transformation laws for modified characters of 7. In this
subsection, we calculate the modular transformations 7 — 7 + 1 and
T+ —1/7 for the modified characters

of the twisted Fock space F, (cf. (3.12), (4.6)), where r = rank () and

q= €™ with 7 € C, Im7 > 0. As in Section 4.1, we assume only that
b is a finite-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form (-|-), and o, ¢ are two commuting
automorphisms of h of finite order preserving (-|-).

At this point, it will be convenient to set some additional notation
for subspaces of h. Recall the notation (4.2)—(4.4) for the common
eigenspaces of ¢ and ¢, where the first subscript corresponds to ¢ and
the second subscript to ¢. In particular, g is the invariant subspace
for both ¢ and ¢. We designate the perpendicular subspaces by using

a subscript L. Then we have

(5.2) bo = Ho,0 D bo, 1, b =b10DbL L,
where using one subscript refers to only the automorphism o, and
(5.3) héo =bho L ©®bhro® by 1.

We note that in the special case when ¢ is a power of o, the subspaces
ho,. and by are trivial, and (5.2), (5.3) simplify to hy = hoo and
by =br="bho 1.

Recall that, by Theorem 4.1, xz, (¢, ) is related to the products
P, (1) given in (4.7). In order to find the transformation laws of
P, (1), we will express P, ,(7)? in terms of another function
(5.4) P(r,¢) = ¢/ J](1 = eq") (1 — ™" ).

n=1
We will relate P(7,() to the functions K;(7,(;m) introduced at the
end of Section 2.4 as the quotient of a theta function and the Dedekind
n-function (see (2.23), (2.26), (2.27)). Then we will use the transfor-
mation laws in Proposition 2.19 to obtain the transformation laws for
P, ,(7)? and ultimately for x, (¢, 7).

Lemma 5.1. Define the maps s and f by (4.3), and let P, ,(7) be the
function defined by (4.7). Then
27,0

Po 2 — 77(7')
’@(T) detho,L(l - 90_1)

where 1oy = dim b o.

detpy e" ) P — f — 75),
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Proof. We first write

(55)  Puglm) = ¢/ dety (7 T (1= 2700 ),

n=1

using (3.56), (4.4), and (4.7). Then we have

P(W(T)2 _ qr/12 deth e7ri7'(s2+s) H detho(l N e27rifqn)(1 - 6—27rifqn)

n=1

> H detm(l _ e27ri(f+7—s)qn)(1 _ 627ri(—f—l—7-(—s—1))qn>

_ qr/12 det e7r17'(s +5) H 27“00
n=1
P(r,=f) P(r,—f —1s)
x dety, | q/12(1 — e=2mif) dety, qi/12

B n(q)2ro,o deth 6ﬂiT(s2+s)
dety, , (1 = ¢71)

using that ro9 = r — dimb, — dimbe (cf. (5.2)), and dimb;n =
dimf)l_(j/N) for 1 S] < N —1. 0

detyy, P(r,—f —71s),

Before moving on, we note some properties of the function P(7, (),
each of which is easy to verify.

Lemma 5.2. For the function P(7,() given in (5.4), we have

1— e27r1§

(5.6) P(r,¢) = Wp(ﬂ —(),
(5.7) P(r,(+1) = P(7,(),
(5.8) P(r,(+ 1) = P(1,—().

Next, we express P(7, () in terms of the functions K;(7, (;m), defined
by (2.27). To this end, we employ the Jacobi triple product identity,

TI0 - (1 — 21 — ) = Y (—aymgnnve,

n=1 meZ

which is equivalent to

_1/12P 7_ C H 1_ q Z(_Z)mqm(m—l)/2’ 5 = e27riC.
n=1

meZ
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It follows that P(7,() can be written in summation form as
g 1)/2 27i
(5.9  P(r,Q) === (=2)"g"mVR =
’/](T) meZ
Lemma 5.3. The function P(7,() defined in (5.4) can be written as
P(T> C) = eWiC (K—l(Ta Ca 4) - Kl (77 Cv 4))
Proof. From the definitions (2.26) and (2.27), we have

1
Kl(T, ( 4) _ Z q2(n+l/4)222(n+l/4)’

7](7') nez
where z = €2™¢. Therefore
1/8
i q n<—mn _2n n<+n _2n
K A(7,G54) = Ki(7,¢54)) = —— Y (¢*" "2 — i)
’/](T) nez
_ q1/8 Z((_Z)2nq2n(2n—l)/2 + (_z>2n+1q(2n+1)((2n+1)—1)/2)
n(7)
nez
= (T7 C)?
using (5.9). O

Now we can use Proposition 2.19 to calculate the following transfor-
mation laws for P(r, ().

Proposition 5.4. The transformation laws for P(t,() are:

(5.10) P(—%7 g) = _ie7riC(1+C—T)/Tp(7.7 0),
(5.11) P(r+1,¢) = e™/5P(1,().

Proof. Using the transformation law (2.28), we find
LGN e (- . Y/ .
Kl( 7_7 7_’4> - 26 (( 1) K—I(Tv C74)+( 1) KI(T7C74)
+Eo(T.G:4) + (<) Ka(7.G:4)).

Therefore

LG (L) m(159)
_ _TQiem(Cz+C)/T (K_l(q—7 C;4) — Kq(7,¢; 4))

= _ieﬁi(@q+C)/T€—7riCp(7_7 ()
= _ieWiC(lJrC—T)/Tp(T7 ¢).
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Using the transformation law (2.29), we find
P(r+1,0) =™ (K_1(t+1,(;:4) — Ki(1 4+ 1,:4))
= e”icem(%_%)(K_l(T, ¢;4) — Kq(7, ¢; 4))
= e™/P(7,0).
This completes the proof. O

Before presenting the final transformation laws for the modified char-
acters xz, (¢, T), we first point out a particular calculation that will be
needed in the proof.

Lemma 5.5. Suppose that o, are two commuting automorphisms of
b, and the maps s, f are defined by (4.3). The we have

dety e~m(H/+23) — jr=roo
where r = dim b and 9o = dim b .
Proof. Notice that

dety e ™20 = exp (—itry(s + f)) exp(—itry 2sf).

It is easy to show that
trg(s + f) = —% (dim b(io + dim bl,L)
(cf. Remark 3.14) and
try2sf = Y ((=)(=y) + (x = 1)(~y)) dimb,,

z,y7#0

1 . 1.
=3 Z (y+ (1 —y))dimb,, = 5 dimb, 4,
z,y#0

using that dimb, , = dimb;_, , = dimb, 1_,. The result follows. [

We are now ready to present the transformation laws for the modified
characters xz, (i, T) of the o-twisted Fock space F,.

Theorem 5.6. Let o, be two commuting automorphisms of h. Then

1 detb (1—(p_1)
12 ( ,——) - - —ir) Xz (07 7).
(512) Xz (9 \/ dety, (1= o) (—ir) X7, (07, 7)

(5.13)  xz (@, 7+1) = e MRty 1 (0o, 1),
where r = dimb, roo = dim bo o, and A, is given by (3.57).
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Proof. Due to Theorem 4.1, it is sufficient to compute the transfor-
mation laws for P, (7). First, we find the transformation 7 +— —1/7
for P, ,(7)%. Using Lemma 5.1, Proposition 5.4 with ( = s — f7, and
(2.24), we calculate:

P,

a,¢

2r0,0 _mig2
1\2 —L)T00 ety e T (5749 1 s—
(__> _n(=3) b det,. P(——,S fT)
dethu(l — 1 0,0 T T

(—iryon(r)os
dety, (1 =)
x dety e~ 7 ()T (1) detys (=1)P(7,5 = 7f)
(e
" ety (-p )
x dety, ™~/ =2 s+ (7 40)T) detyy P(7,5 = 7).

Now we use Lemma 5.1 again but with the replacement o — ¢ and
oot (e, s fand f+— —s):

n(T)?00

14) Pya(r)?t=-—1T T
(5 ) o 1(T> dethl,o(l - U)

dety, ™7+ detyr P(7,s—71f).

Finally, using (5.14) and Lemma 5.5 we have

1\2 . det(”_ 0(1 — O')
PU - — (_ 70,0 s
7S0( ) ( 1T> detho# (1 — (,0_1)

-
x (—1)7700 (dety e MCH 2O B i (1)?

det 1-—
€ fu,o( U) P(p 071(7_)2.
detho,L(l - 90_1) 7

= (—ir)ro0

We then obtain

1 deth (1 — O')
Po’ (__) _ 1,0 o 7’070/2P o
T ¢®mua—w*ﬂ1” w7

by choosing the appropriate branch.
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Next we compute the transformation 7 — 7 4 1. From (4.4) and
(4.7), we have

Po(r+1) = e2ni(—Aa+i)q—Aa+§H dety (1 — S0627ri(n+s)qn+s)

n=1

o0

— iAot Aot [ dety (1 — og™)
n=1

_ e27ri(—Aa+i)PU7<pU(7‘),

This completes the proof of the theorem. O

Remark 5.7. If we apply the transformation law for P, ,»(7) twice, as
in the proof of Theorem 5.6, we obtain:

det 1-—
T e gy (.
’ dety, , (1 —oF) (—ir)roo/2” 7> T

det 1—ok

— € hJ_,O( o ) Po.fl o.fky(T)
dety, , (1 —oF) ’

= cr*l,o*k(T)a

where in the last step we used that by | and b, o are trivial. This is a
special case of (4.8) for [ = —1.

While Theorem 5.6 is given for general commuting automorphisms ¢
and o, in the following sections we will make the additional assumption
that ¢ is a power of ¢, which is the case when the order of ¢ is prime
and ¢ € (o). We first need the following lemma.

Lemma 5.8. If o is an automorphism of b of prime order p, then

4
(5.15) dety, (1—0*)=p*,  d=dimb), = ;Hibf )

forall 1 <k<p-1.

Proof. Recall from the proof of Lemma 3.16 (cf. (3.58)) that dim b/, =
d for all 1 < j < p—1. In particular, dimbh, = d(p — 1), as h, =
@?;i h,/p- Hence the minimal polynomial of oly, is the cyclotomic
polynomial
P —1
r—1
and the characteristic polynomial is

R SRR

dety, (z—0) = (& 442 +1)".
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Setting x = 1, we get dety, (1 — o) = p?. The result for o* follows from
the fact that b, is the same for all 1 < k£ < p — 1, and the order of o*
is again p. 0

We are now ready to present how the transformation (5.12) simplifies
in the case we will use later.

Corollary 5.9. Let o be an automorphism of b of prime order p.
Then

1 R _
(5.16) v, (L=2) = p (=) (o ),
1
G171 x (0F ) = (DT e ),
T (e}

for 1 <k <p-—1, where ro = dimby and d = dim b ,.

Proof. These formulas follow from Theorem 5.6 and Lemma 5.8, since
bo,. =0, h10="b1 and hoo = ho when ¢ = 1. [

We also present how the transformation (5.12) simplifies for modified
characters of the untwisted Fock space F (cf. Section 3.1).

Corollary 5.10. For any automorphism o of prime order p, and 1 <
k<p-—1, we have

(515 xr(1,-2) = (i) 721, 7),

1 -
(5.19) w0, =2 ) = p A=) T (L),
where r = dimb, ro = dim bg, and d = dim b/, = (r —ro)/(p — 1).

Finally, we note that the results (5.16)—(5.19) remain unchanged if &
is replaced with another power of o not equal to 1, due to the invariance
(4.8).

5.2. Transformation laws for modified characters of W (\) and
W(u, ). Throughout the rest of this section, we let () be a positive-
definite even integral lattice, o be an isometry of () of prime order p,
and we assume that @ = @ (cf. Lemma 3.24 and Corollary 3.25). We
also fix a set Coy C mo(Q*) of representatives of the cosets 7o (Q*) /7o (@),
and a set O C Q*/Q of representatives of the orbits of order p of o on
Q°/Q.

In this subsection, we calculate the modular transformations 7
7+ 1 and 7 — —1/7 for the modified characters

(5.20) X;VU(Z o7 h) = trwue ghe2mih by =B
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where h € by, k € Z, pn € m(Q*), € is a central character of G,
and W (u, C) is one of the irreducible G,-modules (cf. (3.41), (4.16)).
We will also do this for the modified characters (4.35), (4.36) of the
untwisted C.[@]-module

(5.21) W(A) = C.[Q]e* = span{e*** |a € Q}

(cf. (4.26)).

Before presenting the calculations of these transformation laws, we
need to set a “rule of thumb” for how to write a theta function in
terms of modified characters. In general, this can be tricky due to the
degeneracies (4.8), (4.37), and Corollary 4.11. For fixed u € m(Q)*,
we denote by Z,, the set of all central characters ¢ of G that satisfy
relation (3.45). Then, for every (,(’ € Z, and [ € Z, we have the
relations (4.24), which imply that each modified character is equal to
the average of all modified characters taken over the set Z,. The
following is our “rule of thumb.” If a theta function originates from

the modified character X%/fo (7, h) of untwisted type (cf. (4.32)—(4.34)),

then we will choose to use the average over Z, when writing it in terms
of modified characters:

T+k h emiklul? ook
"
Alternatively, if a theta function originates from the modified charac-
k

ter X7i,,.0) (7, 1) of twisted type (cf. (4.19)), then we will choose the
corresponding character with the same parameters when writing it in
terms of modified characters:

T+k h emkil®
(523) HWLH‘\/NWO(Q) <T’\/—N7O) =

d(o) X0t () (T3 1)-

We are now ready to present the transformation laws for modified
characters of W (). For convenience, we set M = Q N by and define
(_iT)(rankL)/267r1|h\2/T

|L*/L|/? ’

where h € by and L is any positive-definite even integral lattice.

(5.24) Cr(r, h) =

Proposition 5.11. With the above notation, the transformation laws
for modified characters of W (\) are:
miAZ 11
Lok ™I Xw(\) (Ta h)>
€ X (\) (7.h),
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(5.26)
—27i 1,1
Co(r,h) Y e >0l (7, h),
1ok 1 h Y+QeO
X (7’;) =\ Culrh) h
LS Y G ),
HGCM CEZu

where in each case the top choice applies when A € Q* and k = 0 and
the bottom choice applies when A € Q* Nbg and 1 < k <p—1.

Proof. Formulas (5.25) follow from (4.35), (4.36), and (2.13). The top
formula of (5.26) is clear using (4.36), (2.12), and that

Orsq (T, h,0) = e™"/70, o (7, h, —|h|?/27).

Next, we prove the bottom formula of (5.26). Using (4.35) and (2.12)
for k # 0, we have

ok 1 h o
(5.27) Xé{/(,\) (——,;) = Cy(T, h) Z e 2MAMG (7, b, 0).

-
y+MeM* /M

Using Lemma 3.2, we have the following sequence of sublattices in M*:
(528) M = Q N b(] = WQ(L) C 7T0(Q) C Wo(Q)* = M"

(cf. (4.14)). Hence the coset v+ M in M*/M can be written in the
form

/Jz"—ﬂ'(]ﬁj—FM,

where f3; (indexed by j € J) is a representative of a coset in @Q/L,
and /4 is a representative for a coset in M*/my(Q). Since in this case
A € Q* N by, we have

(mfIN) = (BIN) €2, feq.

Therefore, we can rewrite the sum (5.27) as

Lok 1 h
Xwoo\ "7 7
= CM(Ta h) Z 6_%1()\‘#) Z 9M+ﬂoﬁj+M(T’ h, O)
ptmo(Q)EM™ /mo(Q) jed
=Cu (7—7 h) Z 6_%1()\‘#) 9u+7ro(Q) (Tv h, 0)

ptmo(Q)EM™ /m0(Q)

T e 2mi(Alp)
S oD DD SRR

ptmo(Q)EM™* /m0(Q) CEZ,
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where we used (4.19) with k = 0, (2.11), (5.22), and d(c*) = d(o) (cf.
Lemma 4.7). O

Before presenting the transformation laws for the modified characters
of W(u, (), we state a lemma that will be useful in the proof.

Lemma 5.12. Let L C @ be a sublattice with rank L = rank @), and
{B;+ L|j € J} be the distinct cosets of Q/L. Then for X € M* =
mo(Q*), we have

omi(mos;) _ ) |To(Q@)/ M|, A € Q"M by,
Ze _{07 )‘¢Q*mb0
Proof. Write m(Q)/M = @, ,{mof; + M) and let

r; =min{n € Z|np; € M}.

If v = Zgzlaﬂoﬁj € m(Q), where r = |m(Q)/M| = |Q/L] (cf.
Lemma 4.4), then

jeJ

r ri—1
(5'29) Z e2m(A) — H JZ (627ri(,\\7roﬁj))aj '
Y+Memo(Q)/M j=1a;=0

Since 7o(Q) is a rational lattice, e>™ ™5 is a root of unity for each
j. Hence, the right hand side of (5.29) is zero unless (A|m/f;) € Z for
all 7 € J. The result then follows using that (m(Q))* = Q* N by by
Lemma 3.2. U

To present the transformation laws for the modified characters of
W (u, ), we set some additional notation that will make the formulas
more compact. For convenience, we set £ = /pmo(Q) and define (recall
that M = Q N []0)

(530) C(Ta ha U) - d(U)CM(Ta h)|7TO(Q)/M|a
where Cy(7, h) is given in (5.24). Then, by Lemma 3.2,
1
M* =7(Q*) and L*= %Q* N ho.
We fix a set Cpy C M* of representatives of the cosets A+ M € M* /M
such that A € Q* N hy. For fixed k € Z and pu € mo(Q*) we fix a set

Cc(k, ) C L* of representatives of the cosets of the form /pr + L €
L*/L such that v € ku + Q* N hy.

Proposition 5.13. Suppose that p is an odd prime. With the above
notation, the transformation laws for modified characters of W (u, ()
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are:
o,k i
(5.31) Xiruo) (T +1,h) =€ l® XW(MC (1,h), keZ,
C(r, h,o) Z 6_2W1(A|“)XW ) (7. ),
Kk 1 h =
532) Xyt -2 2 ) =
( ) XW (11,€) ( T 7—) 0T/ Z o~ 2milulv) (7_ h),
Vprele

where the top choice applies when k = 0 and the bottom choice applies
when 1 < k <p—1, and each vy, is a complex number.

Proof. First, we prove formulas (5.31). Using (5.23) and Proposition
4.8, we find

o,0F —ri 2 T+ k + 1
XV{’(M,C) (T +1 h) - d(a)e e 9\/ﬁu+x/ﬁ7ro(Q) (T’ b 0)

_ emlul XW(;LC (T h)

forany 0 < k<p-—1.
Next, we prove the top formula of (5.32). We have from the proof of
Theorem 5.6 that P, (—1) can be written as a multiple of P ,-1(7).

We therefore expect the transformation Xcvr{,l( 10) (—%, %) to be written

as a linear combination of the trace functions X;VU(:\; (1) for suitable
A € Q" N bho. From (4.35) and Proposition 4.8, we have:

Xiv (e (T 1) = d(0)0,1m0() (7,1, 0)
(5.33) = d(o) Z Oyt mos, 11 (T, 1, 0),
jeJ

where §; 4+ L for j € J are the distinct cosets in ()/L, and

(5:34) Xy (7o) = Oxgar (1.5,0) = X370 (1. B), A € Q" M by,
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Then the transformation law (2.12) yields

o 1 h
Xwwo \ 777

= d(a>CM(T7 h’) Z 6—27Ti()\|,u+7foﬁj)‘9>\+M(7_7 hu O)

M-MeM* /M
jeJ

=d(o)Cy(m.h) Y (Ze—%iwwoﬁﬂ) e 2 G, 4 v (7, h, 0)

MMeM*/M \j€J

=C(1,h,0) Z 6_2”1(’““))(‘1,[’,0(; (1, h),
AM-MeM* /M
AEQ*Nho
where we used Lemma 5.12 in the last step.
Finally, we prove the bottom formula of (5.32). We have from the
proof of Theorem 5.6 and Corollary 5.15 that P, (—%) can be writ-

ten as a multiple of P« ,—1(7). We therefore expect the transformation
X;VU(Z 0 (—%, 2) to be written as a linear combination of the trace func-

tions X%ﬁ&;;;,)(ﬂ h) for suitable p/ € my(Q) and central character ¢’ of
G2 (cf. Theorem 3.6). To this end, we set ¢/ = o*. Then

!

0.—1 _ (o,l)k’ _ O_kk ’
where kK" = —1 mod p, and we write
(5.35) kk'+1=pm

for a suitable integer m. It will be convenient to also make the trans-
formation

/
(5.36) g TRy
p

Note that from (5.35) we can write
—14k kT —m

3

. — — A7
(5.37) » S T,
with

k —m
(5.38) A= (p —k’) € SLy(Z),

where A - 7" denotes the action described in Theorem 2.14. Since the
matrix A depends on the exponent k, we relabel the scalar v(A) from
Theorem 2.14 as vy.
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We next employ Theorem 2.14 using the matrix A, the even lattice
L = /pm(Q), and with 7 replaced by 7. First, we describe the set
over which the summation in Theorem 2.14 occurs. Using the coset
labeling in the theta function in (4.19), the summation index in the
current case is over the cosets

1

v+ L€
VP N

Q" Nbho/L (v € Q" Nbp),

since

£ = (Vim(Q) = %@* "o

by Lemma 3.2. Therefore, we have from Theorem 2.14 that

(5.39)
0 o (A- (7', 0,0)) = v (pr' — K')"?
x ¥ (=5 | pv 2 —2m( /Bl yBr) —km| /Pyl

JPUHLEL* /L
veQ*Nho

L S e e TR SN )

VPr+LELY /L
veku+Q*Nho

)eﬁl/-i-k\/ﬁlﬁ-ﬁ (7,7 h'/> 0)

where we used the relation cd|u|> = ¢|cu|* and made the shift v +—
v — ku. In the last step, we used (5.35) to calculate

—K' v = kpl? = 2mp(plv — kp) — kmp|u® = =K'|v* = 2(p|v) + k|uf*,

Also recall that the value of By in Theorem 2.14 can be set to zero when
p is odd (cf. Remark 2.15 with ¢ = p in this case).

Note that the first equation in (5.39) remains unchanged when re-
placing k' by k' 4+ ap for some integer a. Since (5.35) implies that m
gets replaced with m + k, and (5.36) implies that 7’ gets replaced with
7'+ a, it is clear that the resulting exponentials involving a cancel out
(cf. Theorem 2.13). Hence, (5.39) only depends on & modulo p.
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Now we finish the proof using (5.39), (5.23), and Proposition 4.8 to
get

o,0" 1A —mik|p|?
XW (11.0) (_;7 ;) = d(0)e ™0 g simo(q) (A (7, H,0))
= d(U)UkTTO/2 Z €7ri(—lg/‘y|2_2(m1/))9\/@/4_£(7_/7 h/, 0)

Pv+LELY /L
veku+Q*Nho

. k_—1
= 702 Z 6_%1(“'”))(%/5,4) (,h).
JPUALEL /L
veku+Q*Nbo

This completes the proof of Proposition 5.13. U

5.3. Transformation laws for modified characters of V)., and
M (1, ¢). In this subsection, we calculate the modular transformations
T+ 7+ 1 and 7 — —1/7 for the modified characters

(5.40) X5y (T ) = gy o g =31,

where r = rank @, h € ho, k € Z, pn € mo(Q*), ( is a central character
of G, and M(u,() is one of the irreducible o-twisted Vg-modules
(see (3.49), (4.1), (4.21)). Since M (u,() is a tensor product of the
o-twisted Fock space F, and the G,-module W (u,(), the trace is a
product of traces over them (see (4.10)). The calculation of modular
transformations of M (u, ) will hence follow from Corollary 5.10 and
Proposition 5.13.

Similarly, we will also do this for the modified characters

(541) X:‘l/z;\)jM (7-’ h) — trVA+A{ O.k'627rltho—§

of untwisted Vp-modules, where r = rank @), k € Z, M = Q) N by, and
A € QF (see (4.25), (4.30), (4.31)). Note that when k& = 0, the cosets
in (5.41) are taken over ) = M. For convenience, we set

en1|h\2/rpdim bi/2(p—1)
|M=[M|'2d(o)
when A € Q* Ny and set Dy(7, h,0) = 0 otherwise.

(5.42) Dy(1,h,0) =

Proposition 5.14. With the above notation, the transformation laws
for modified characters of Vyiq are given by:

(5.43) X%};jM(T +1,h) = ewi(lm—ﬁ)x%}ak (7. h).

A+M



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 65

(5.44)

( 7r1\h| /T

—27i( | 1,1
a2 ¢ (),

XVaar T'r) Dy(t,h,0) 2mi(A| )
Tz Zze XMM(Th)

HeCam CEZ,

\
where the top choice applies when N € Q* and k = 0, and the bottom
choice applies when A € Q* Nhg and 1 <k <p—1.

Proof. These results follow easily from Proposition 5.11 and Corollary
5.10, using that V), is a tensor product of the Fock space F and the
C.[Q]-module W (\); see (4.32)—(4.36). O

Before presenting the transformation laws for the modified charac-
ters of M(u,(), we set some additional notation, which will make the
formulas more compact. We let £ = |/pmo(Q) and

_ (o dimb /201 | T0(Q)/M]
(5.45) vo = d(o)p A M

where, as before, M = () N hy. Then, by Lemma 3.2,

* * * 1 *
(5.46) M* = mo(Q7), L \/]_?Q N bo.
We fix a set Cpy C M* of representatives of the cosets A+ M € M* /M
such that A € Q* Nhy. For fixed k € Z and pu € mo(Q*), we fix a set
Cc(k, ) C L* of representatives of the cosets of the form |/pv + L €
L*/L such that v € ku 4+ Q* N ho. Finally, recall the constant

1

(5.47) T

from (3.56) and Lemma 3.16.

Proposition 5.15. Suppose that p is an odd prime. With the above
notation, the following are the transformation laws for modified char-
acters of M(u,():

ook Ti(As— 7r1

(5.49)
v 67r1|h\ /T Z e —2mi(A|p) XVA+M(T h)

s < 1 h) B AeCp
XM(%C) ') v 17“()/2 Z 6—27r1(u\ )XM( o (7_ h)
\/ﬁVECC(kvu)
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where the top choice applies when k = 0 and vg is given by (5.45), while
the bottom choice applies when 1 < k < p—1 and each vy is a complex
number.

Proof. These results follow easily from Proposition 5.13 and Corollary
5.9, using that M (u, () is a tensor product of the o-twisted Fock space
F, and the G,-module W (u, (); see (4.10). O

5.4. Orbifold modules and transformation laws for orbifold
characters. In this subsection, we present the main results of this
paper, the calculation of the transformation laws 7 +— 74+ 1 and 7 —
—1/7 for the irreducible characters given in Theorem 4.19 of the orb-
ifold algebra V(5. As in the previous sections, we let () be a positive-
definite even integral lattice, o be an isometry of () of prime order p,
and we assume that @ = @ (cf. Lemma 3.24 and Corollary 3.25). We
set r = rank @ and fix a set Cyy C m(Q*) of representatives of the
cosets m(Q*)/mo(Q), and a set O C Q*/Q of representatives of the
orbits of order p of o on Q*/Q. We also set M = Q N by.

Let us recall the complete list of non-isomorphic irreducible modules
over the orbifold algebra Vi§ given in Theorem 4.19 (cf. Definition 4.16):

(Type 1) Vi,g (A+Q€(Q/Q)7, 0<j<p—1),
(Type 2) Viyq (A +Q € 0),

(Type 3) M(M’C’O-I)J (/J“ € CM? C € Zﬂ,0l7 0 S] Sp_]-a 1 S [ Sp_]')
The characters of these modules are given by (cf. (4.21), (4.23), (4.32),
(4.34)):

p—1

) 1 . ok
(5.50) X0 (T2 h) = ; > W, (),

k=0
(5.51) Xvaio (T B) = Xy, (5 B),

p—1
1k

] 1 k. oo
(5-52) Xty (T2 1) = 2 D N ion (T )

k=0

where w = 2™/ In the proof, it will be necessary to invert these
formulas as follows:

p—1
ZXZVMLQ(Ta h)a (1 _U))\ S Q>
=0

(5.53) Xvpo (T h) = § &
XVatq (Tv h'>7 (1 o 0>)‘ g—f Q7
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(5.54) XVA+Q Zw‘lkxlvHQ T, h),

ol ok _
(5.55) Xar6o Z DN ity (T2 1)-

First, we present the transformation laws for the characters of VAJ Lo
For convenience, we set

pdﬁnhl/20%—1) ) .
(5.56) D ={ MM Py € @ 1ho,
Oa )\ ¢ Q* N bOa

where the defect d(o) is defined in Remark 3.10.

Theorem 5.16. The transformation laws for the characters of the V5 -
modules V+Q for A\ +Q € (Q*/Q)7 and 0 < j < p—1 are as follows:

(5.57) Xty o(T+ 1,h) = €™ (A= X0 (T ),

. 1 h emilh|*/ p1 i) ¢
J _ § § —2m1
XV>\+Q <_;7;) - p|Q*/Q|1/2 (& ’YXVW‘FQ(T’ h)

Y+QEQ™/Q t=0

(1-0)veQ
67r1|h\ /T _amitAly)
638) +5romn 2 ¢ (o h)
v+QeO
DO’ wilh|2/7 P

CplZ) ZZZ Z W e AING iy (T3 1)

k=1 pECa t=0 CEZ, i

Proof. The transformation laws are obtained using (5.50) and Proposi-
tion 5.14. While most of the details are straightforward, we emphasize
the nontrivial details regarding the transformation 7 — —1/7.

The details of the third sum in (5.58) are straightforward using
(5.50), (5.44), and the inversion formulas (5.53)—(5.55). For the first
and second sums, we separate the sum over cosets v + @ in (5.44)
into two sums over cosets for which (1 — o)y € @ and (1 — o)y ¢
Q. Then we apply the inversion formula (5.53). The terms in the
sum over cosets with (1 — o)y ¢ @ simplify further as the o-orbit
Y+ Q07+ Q,...,07 1y + Q of cosets in Q*/Q correspond to equal
characters over the same orbifold module. Since (1 — o)A € @) implies
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o'\ € A+ Q for each i, we obtain sums of the form

p—1
Z e—27ri()\\(5)XV%LC2 ,7_ h Z e —27i(A|oty) XV, 10 (7_’ h),
I+QEN+Q] i=0

(1-0)v¢Q

where for v+ Q € O, [y + @] is the set of cosets within the orbit of
order p. Using this fact and that () is integral, we find

—_

p— p—1

e—27ri(,\\oi~,) _ Z e—zm(o*i,\w) _ pe—27ri()\\'y)'
i=0 1=0
This yields the second sum in (5.58). U

Next, we present the transformation laws for the characters of Vy,¢.
For convenience, we set

(5.59) By, =Y e )\ yeq.

Theorem 5.17. The transformation laws for the characters of the V§-
modules V.o with A+ Q € O are:

(56()) XVA+Q (T + 17 h’) =e" (AP )XV Q(T h’)

1 h emint S omiOn
XVas+q <_;’;) - W Z Ze XV’HQ(T’ h)

Y+QEQ™/Q 1=0

(5.61) (1-0)7€Q
emilhl?/7 Z B (1)
t A TAE AAX Va4 T 1)
* 1/2 YAVY+Q
QT 2,

Proof. The sums and coeflicients F) , in the transformation law (5.61)
are obtained in a similar manner as in the proof of Theorem 5.16 using
(5.44) and inversion formula (5.53). O

In the transformation laws for the characters of M (u, ¢;0')?, we will
use the notation vy, £, and A, from (5.45)—(5.47).

Theorem 5.18. When p is an odd prime, the transformation laws for
the characters of the Vi§-modules M (1, C; o) are:

] —7 2miAs i 2_r j
(5:62)  Xiyquewon) (T + 1 h) =w e deemtimn)y g (7 h),



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 69

(5.63)
p—1
J _1 E _ Yo _xin?/r —2mi(A|p), It t h
XM (u.Giot) ’ - ¢ Z Ze w XVA+Q(T’ )
o T p AeCyy t=0
ir0/2 p—1 p—1 ' - .
LD OIS DD WL S CYOR
p k=1 \/ﬁVeCC(kHM) t=0
where

,UECM, CGZM,O'Z? OS]SP‘L 1§l§p_1,
ro = dim b, vy € C for each k, and vy is given in (5.45).

Proof. The transformation laws are obtained using (5.52) and Proposi-
tion 5.15. While most of the details are straightforward, we emphasize
the nontrivial details regarding the transformation 7 +— —1/7. This
uses (5.49), (5.52), and inversion formulas (5.54), (5.55). We use (5.49)
and (5.54) to transform the term in (5.52) with & = 0. To transform
the terms in (5.52) with & > 0, we use (5.49) and (5.55), where in
(5.55), k is replaced with &' = —kP=2 and [ is replaced with k. O

Remark 5.19. Note that Theorems 5.16 and 5.17 hold for p = 2, while
in Theorem 5.18 we assume that p is odd. This is due to the presence
of By in Theorem 2.14 for p = 2 (cf. Remark 2.15). The case p = 2 is
considered in detail in the next section.

As an immediate corollary of the transformation laws, we obtain the
asymptotic and quantum dimensions of irreducible orbifold characters
using the coefficients in (5.58) for j = 0 and A = 0 corresponding to
the vacuum module. This corollary also holds for p = 2, and in this
case it agrees with the previous results of [E2].

Corollary 5.20. Let Q be an even integral lattice, o be an isometry
of @Q of prime order p, and assume that Q = Q). Then the asymptotic
dimensions of irreducible V§-modules are determined by type as follows:

(Type 1) asdim V/{+Q = p7HQ*/Q|7YV2, where (1 — o)) € Q,

(Type 2) asdim Vi, q = |Q*/Q|~Y2, where (1 — o)\ ¢ Q,
O @b /@)
pl2uld(o) ’ ’ 7

where d(o)? = |(QNbh)/(QN(1—0)Q*)| and j =0,...,p—1 label
the eigenspaces of o. In all cases, the quantum dimensions are related
to the asymptotic dimensions by:

(5.64) qdim M = (asdim M) p|Q*/Q|">.

(Type 3) asdim M (p, (; 0°)7 =
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Proof. We may apply Corollary 2.8, due to Corollary 4.20. Let Sy ; be
the coefficient of the vacuum module Vg in the linear combinations in
(5.58), (5.61), (5.63). It is uniquely defined since the character of the
vacuum module does not lie in the span of the remaining modules, by
Corollary 4.20. Then the asymptotic dimensions are Sy j, where j runs
through the labeling of inequivalent irreducible orbifold modules (see
e.g. [DJX, Section 4.2]). For orbifold modules of Type 1, we see from
(5.58) for A =0 and j = 0 that

1
S00 = — AT A5
CoplRH/QI?
So,; = Sopo for each term in the first sum, while Sy; = pSyo for j

representing orbifold modules of Type 2, and Sy ; = (DF/|2,])S0,0 for
J representing orbifold modules of twisted type. The result follows. [

Remark 5.21. Since the transformation 7 — —1/7 corresponding to
the S-matrix is unitary, we must have in particular that

(5.65) Z |SO,j‘2 =1,
=0

where m is the number of irreducible orbifold modules (cf. Remark
2.11). In general, the number of irreducible orbifold modules of each
type are given in the following table.

Module Number of irreducible orbifold modules
Viig p(Q*/Q)7|
Vaiig p ' (1Q*/QI = 1(Q*/Q)°])
M, G 0') p(p — 1) [Z,| [M*/7(Q)]

TABLE 1. Number of irreducible orbifold modules

Recall that the set Z, was introduced in Section 4.3. In the twisted
case, there are | Z,||M*/m(Q)| many (u, () pairs describing irreducible
twisted V-modules, the factor p — 1 counts the nontrivial powers of o
which can act, and the factor p counts the eigenspaces corresponding to
the orbifold modules. Then from (5.58) with j = 0,A\ =0, and h = 0,
we get that (5.65) becomes
1, 1-p (D)

p p |2

|M*/7m0(Q)] = 1,
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where DY is given in (5.56). It follows that
(5.66) ptm e = 2,1 d(0)? [mo(Q)/M],

where we used that |M*/mo(Q)]| |mo(Q)/M| = |M*/M]|. Note that by
Lemma 5.8 the left-hand side of (5.66) is an integer power of the prime
p, where the exponent is the number of orbits of ¢ of order p. Since
p(@Nbh1) C (1—0)QNh, this implies that indeed d(0)? and |Z,| are
a power of p (cf. (3.35) and Remark 3.10). In addition, pmy(Q) C M
implies that |mo(Q)/M]| is also a power of p.

6. EXAMPLES IN ORDER 2

In this section, we consider the lattice () to be even and positive
definite with an isometry o of order 2. As before, we will assume that
Q = @, which means explicitly that (a|oa) € 2Z for all o € Q (see
Lemma 3.24).

6.1. The irreducible characters of twisted type in the general
setting. First, we demonstrate how the transformation law (5.32) can
be calculated by using repeatedly Theorem 2.13 rather than Theorem
2.14, which will allow us to determine explicitly the unknown constants

or in (5.32).
It follows from Theorem 5.6 and Corollary 5.15 that
1
6.1) Poa (=3 = (A2 Paar)
T

when ¢ has order 2. Therefore, as in the general case, we expect the
transformation X;(/U(u 0 (—%, %) to be written as a linear combination
of the trace functions X%’/"(M, ¢ (7, h) for suitable zi € m(Q) and central

character ¢’ of G (cf. Theorem 3.6).
From Theorem 4.9, we have

o il T+1 h
(62) XW (11,¢) (T7 h) = d(a)e i Hﬁ/ﬁ-\@ﬂo(Q) ( 2 ’ﬁ’ O) '

Similarly to (5.36) and (5.37), we set

T—1

(6.3) =

and note that

(6.4)
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10
2 1

0 —1 1 1
(6.5) S = (1 0 ) and T = (0 1) ,
and we can write A as

(6.6) A= (; (1)) _ S35 = —STS,

where A = ( ) € SLy(Z). The group SLy(Z) has generators

As before, consider the lattices

.
(6.7) £=Vam(Q),  £=5Q"Nhy

(cf. Lemma 3.2). As in Theorem 2.14, fix 5y € C ®z L = b such that
(6.8)  2lv*=2(v|By) mod2Z forall ve& L* with 2ve€ L.

Then we can calculate the constant v; from Theorem 2.14 using Propo-
sition 2.18 and Remarks 2.16 and 2.18:

vy = v(=ST%5) =i"v(ST?%5)
=i"0(ST 2(S) Y e 2mlulr(ido)

u+LeL*/L

(6.9) _ iTU(S)2 Z o212+ (1lB0))

ut+Lel/L

_ CBo
1£+/L]

where
(6.10) Coy = Z e 2mi(lul?+(u|Bo))

pHLELH /L

Now we are ready to present the analog of Theorems 5.16-5.18 in
the case when the order of the lattice isometry is 2. In this case, we
simplify the notation for orbifold characters of twisted type as

ng(#v@?”) (T’ h) - X?\/[(,u,g‘) (T7 h)7 ,] = O, 1.

Theorem 6.1. Let () be an even integral lattice and o be an isometry
of Q of order 2 such that Q = Q, i.e., (a|oa) € 2Z for all a € Q.
Denote by superscript j the eigenspaces of o, where 7 = 0,1. Let O
be the set of orbits of o in Q*/Q of order 2 and set [y + Q] € O, for
v € QF, to designate the orbits. Consider the lattices

M=Qnhy, M =m(Q), L=V2mQ), L= %Q* M bo,
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and fix By € ho satisfying (6.8).
(1) The transformation laws for the orbifold characters of V{JFQ for
A€ Q* with (1 —o)A €@ and j =0,1 are:

XVA+Q (T + 1 h’) =e" |>\‘ )X‘{/}\+Q (T7 h’>7

. 1 A emilh?/ .
J A R 2 : —2mi(Aly) (.0 1
XVyiq ( ’ ) B 2|Q*/Q[* ¢ ! (XVwQ T XVw+Q)(T’ h)
T TH+QREQ*/Q
(I—o)veq

7r1\h| /T

|Q /Q|1/2 Z e 2mAn) w+Q(7— h)

v+QleO

Z (_1)j€_2ﬂi()\|u) (Xgi(u,g“) + X}\/I(M,C))(Tu h)a

|2 ptmo(Q)EM™* /70(Q)
o )
CEZ,

o mi|h|?/T
Dgemine/

2dimhL/2
where DY = ¢ |M*/M|*/2d(c)’ A€ QTN b,
0, A ¢ Q" Nho.
(i1) The transformation laws for the orbifold characters of Viig for

A€ QF with (1 —0)\ & Q are:

AP=15)

XViaio(T +1,h) =e™ il 2\, (T, h),

1 h ewi\h|2/'r o
XV)\+Q <__7 _) = T 172 Z € 2ri(ah) (X _'_ XV )(Tv h’)

* 1/2
T QIR 55 o
(1-0)veQ
emin®/m —2mi(Al7) —2mi(A|oy)
‘|‘W Z (6 +e )X WJFQ(T h)
[v+Q]eO

(i11) The transformation laws for modified characters of M (ju, ()7, with
w € m(Q*), € is a central character of G+, and j = 0,1 are:

o’

ng(u’C)(T +1,h) = w iAo (|~ )X M(0) (1,h),

j 1 h Vo milh|2/r —2mi
Xﬂm,o( p )256 RN e ARG, = Xy, o) (T B)

T
M-MeM* /M
AEQ™Nho
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iT’o/Z,Ul

2

Z (— 1)3 mi(=2(v|p)+v2(v— MIBO))(><%4(V,C) XMVC )(7, h),

v+mo(Q)ELQ*Nho /m0(Q)
veu+Q*Nho

where ro = dim by, vy is given in (6.9), (6.10), and
C_d@)m@/M , _ dimb,
0= dimb /2| \p /M| 12 T
Proof. Recall that the transformation laws for orbifold characters of
Types 1 and 2 remain valid for p = 2 (see Theorems 5.16 and 5.17).

The case of Type 3 is similar to the proof of (5.57)—(5.63). Here we
prove the last transformation formula. For convenience we set:

A= \/§,u S \/§7T0(Q*), 0= \/§I/ S \/i(Q* N f)o) C \/§7T0(Q*)

Using Proposition 4.8 and equations (6.1), (6.9), we calculate:

(6.11)

o 1 h
Xy \ =7 7

o =t b
—7Ti|/.l,|2 \/§H+\/§7TO(Q) 2 ’7——\/5’

=d(o)e
) Pro (1)
= d(o)emnP Oric (A- (7', 1,0))
P‘77‘7 (_%)
T oy =1 h
_ 7PPd(o)ea,e > em(|u2+\/§<u|ﬁo)>9”‘”£< 2 ﬂ’o)
_im\ro/2| /*
(HArye L /L], G a(T)
6e2L*
§ 1 g
_ 0N g im0 ( i)
|£/ | oHLeL*/L UU )
dEA2LY

iro/2 4 (T_l’i’())
_ i"%d(0)cg, $ el -2l VR g2 e 2 )ﬂ

£+ /L] S4Lel* /L Foolr
dEA2LY
iTO/chO .
B mi(—2(v|p)+v2(v—plBo)) , 0.0
T /L) > € X (T 1) -
v+m0(Q)E2Q*Nbo /70 (Q)
vep+Q*Nho

Note that we used (2.13) to change the input of the theta function from
T to T, Now recall that (cf. (5.52))



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 75

' 1 4 i o0 .
Xg\/l(u,C)(T) - §(XMl(u,C)(T) + (_I)JXM(M,Q) (7)), j=0,1

The transformation of the trace functions XX};(M o (7, h) follow similarly

to the proof of (5.32) and (5.49). Hence, the last transformation for-
mula now follows from (6.11) and (5.55). O

Remark 6.2. All formulas in Theorem 6.1 except the last one agree
with (5.57)—(5.63) for p = 2. The only difference in the last formula is
the addition of a possible ingredient 3y (cf. Remark 2.15). In the case
when Sy = 0, this last transformation formula in Theorem 6.1 agrees
with (5.63).

6.2. The irreducible characters and S-matrix of a Zs,-orbifold
using the root lattice A;. Consider the simple roots {1, as} associ-
ated to the root lattice Ay = Zay + Zas, and the Dynkin diagram auto-
morphism o: oy > ay. Recall that |y |2 = |ag|* = 2 and (o |ag) = —1.
This example will emphasize the roles of the sublattice @ (cf. Section
3.7) as well as the set Z, (cf. (5.22) and the discussion before it). The
classification of irreducible orbifold representations for the root lattice
A, for even n is treated in [E1]. Another construction of the modules
presented here is discussed in [BE|, which uses a previously studied
orbifold in [DN].
For convenience, we set o = a1 + a9 and = a3 — ay. Then

la*=2,  |B*=6, (a|8)=0.
Using Lemma 3.24, we find that ai,ay ¢ Ay and Ay = Za @ Z3. For
the rest of this subsection, we set
Q=ZadZps.
Then for h = C ®7z ), we find that
M=QNhy=Za=m(Q)

and Q Nh, = ZB. Since (1 — 0)Q = Z20 is not equal to Q N b,
the central characters of GG, are needed in the description of twisted
Vo-modules (cf. Remark 3.7).
Next we describe the irreducible orbifold modules. We first find that
-
Q=7 5 ¥/ 5
and the set of g-invariants in Q*/Q is

(6.12) (Q*/Q) = Z% ® Zg > 7y X .
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We also note that

M* = 10(Q*) = Z% .
We then have 7o(Q*)/mo(Q) = Z, and that the group G is an abelian
group generated by Ug such that U_g = Ug. Therefore, there are four
(i, ¢) pairs which describe the irreducible twisted Vg-modules (cf. The-
orem 3.6), and this agrees with using the o-invariant elements in Q*/Q
to describe the twisted modules (cf. [BK]). Since the automorphism o
acts on each of these modules, each of them will decompose into two
eigenspaces of o, resulting in 8 irreducible Vj-modules.

Since o acts on any untwisted V-module V)¢ if the coset A + @ is
fixed under o, we obtain from (6.12) 8 irreducible V,§-modules of Type
1. The Vg-modules on which o does not act form orbits comprised
of two modules, each isomorphic as orbifold modules under o. Hence
there are (12 —4) = 4 irreducible V§-modules of Type 2. All together
that makes 20 irreducible V§-modules given in the following list:

Lyl o
Vii = Visajorg =01
Vij=Viayjsiq =01, j=12

! Q !
M(Oagk) P M (§a<k) , k= 1’2’

where [ = 0, 1 denotes the eigenspaces of o and (i, (5 are the characters
of G£. Note that

0: Visyjorg 7 Vig—ji+q
The characters of the above modules are given by:
(6.13)
1 eiﬂ+‘§+Q (7) Ois17a(T)
! 2 ]2 l 2 ..
b=z =22 4 (- =2 ,,7=0,1,
Xhi(r) = 5 ( e e j
(6.14)
e-a -3 (T)
15+ +Q . .
i'T:#v 7':0717 :1727
X J( ) P1,1(7—> J
(6.15)

(6.16)

Xivf(%,gk) (1) =
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where we used (2.13) and (4.22), since m(()) = Za is an even integral
lattice.
In this case we find that 5y can be set to zero in Theorem 2.14. We
also calculate that for £ = Z+/2a, (6.10) becomes ¢y = 2 — 2i, and
1
(cf. (6.9)). Using Theorem 5.16 and (6.17), we obtain the following
transformation laws of orbifold characters:

(6.18) Xé,j(T +1) = 6%(3i+9j_1)Xé,j(7)a

m,n=0
1
(6.19) =) (=) a(7)
12 m=0 n=1
1 L2
+ 1 ( 1)l+"(Xg/1(rg,gk) + XM(T%,Ck))(T>7
r=0 k=1

where [ = 0,1 and ¢,5 =0, 1,

(6.20) Xig (T +1) = €8 CHP =Dy, (),
1 1 <
Xij (_?) ~ /12 > D)X, A X ()
(6.21) e
1 . 1
N —1)"™cosh | —71n | Xomn(T),
127”2:0;() (])X,()

where © = 0,1 and 57 =1, 2,

(6.22) XlM(O,Ck)(T +1) = (—1)16_7ri/24XlM(0,<k)(T)7

(6.23) XIM(%@)(T +1)= (_1)l€7m/24X1M(a

2

Ck)(T>’
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X0(0,60) <—%) :i(Xg,o — Xo0 T X1o — X1,0)(7)
(6.24) ,
lz XM (rgCk) X}\J(r%,ck))(T)v
r=0
(6.25)
I I YN T S 1
XM (2 ,¢) ( 7_) —4(X0,0 Xo,0 ~ X1,0 T X1,0)(7)

l+r
Z gvgk) XM(T ,Ck))( )

where [ = 0,1 and k£ = 0, 1.
In the following table, we present the asymptotic and quantum di-
mensions using the coefficients of the linear combination of characters
in (6.19); see also Corollary 2.8.

M TV [ Vi [ M, G
asdim M 25 | 7o 1
qdim M | 1 2 V3

TABLE 2. Asymptotic and quantum dimensions

6.3. The irreducible characters and S-matrix of a Zs,-orbifold
using the root lattice As. Consider the simple roots {aq, as, as}
associated to the root lattice A3 = Zay + Zas + Zas, and the Dynkin
diagram automorphism

(6.26) olag) =ay and o0: g <> as.

Recall that |o;]? = 2 for all i, (a]|ag) = (ag|az) = —1, and (ay]as) = 0.

In this section, we provide an alternative way to do the modular
transformations of characters by computing them more directly. This
example is special in that we are able to also obtain the S-matrix and
fusion rules among irreducible orbifold characters. The classification of
irreducible orbifold representations for the root lattice A, for odd n is
treated in [E1].

Using Lemma 3.24, we find that Q = Q. Hence we set Q = A3 and
denote the eigenvectors of o by

a=oa+a3, [=a —as.
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Then |a|? =4 = |3]?, and (a|8) = 0. We also find that
(6.27) M =QnNhy=Zay P Za, (1-0)Q=0QNb, =7Zp5.

It follows from Lemma 4.7 that d(o) = 1. Therefore, the irreducible
twisted Vp-modules can be classified using only p € m(Q*) (cf. The-
orem 3.6 and Remark 3.7). The dual lattice Q* is spanned by the
weights

1 1
A1 = —(30&1 + 20(2 + 043), A3 = Z(al + 20(2 -+ 30(3),

4
1 «
Ag = Z(Qal + 40(2 + 20&3) = 5 + g,
and the fundamental group is cyclic of order 4:
(6.28) QT/Q = (A1 + Q) = Zy.

Note that Ao + M = § + M = mya; + M, and

M =m(@Q)=(F5)

Now 7y fixes ap and Ay, and Ty = moaz = 5,

so that
(6.29) 70(Q) = <%,a2>,
(6.30) mo(Q)/mo(@) = (5 +70(Q) ).

Hence we may take 1 = 0, % in describing distinct irreducible twisted

Vo-modules. Note that my(Q) is a self-dual integral lattice.

It turns out that the trace functions (4.1) with h € ho set to zero
are sufficient to describe all irreducible V§-modules. Since the only
o-invariant cosets in Q*/Q) are Ay + @) and the trivial coset, there are 4
irreducible orbifold modules of Type 1: Vét and VAjE2 o corresponding to
the eigenspaces of o on Vi and V), ¢. The generator A; + @ of Q*/Q
forms an orbit of order 2, and there is only one irreducible orbifold
module of Type 2. In addition, there are 2 irreducible orbifold modules
of twisted type given by u = 0, %, and each of them breaks into two
eigenspaces of 0. All together there are 9 irreducible V{j-modules.

For convenience we set 05 ,¢(7) = 0x4¢(7,0,0) (cf. (2.10)). Since the
central characters of G are not needed in this example, we also set for
convenience

o,0F o,0F
(6.31) X0 () (1) = XM () (7,0),

where £ = 0,1 (cf. (4.16)). Using Theorem 4.1 and Proposition 4.8,
we obtain the following trace functions on irreducible untwisted Vi-
modules (the characters corresponding to superscript 1, 1):
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xg (1) = : Xg (1) = ;
Pra(7) P1o(7)
1,1 9A1+Q(7) 1,0 Onp01(T)
T 9 - 9
XA1+Q( ) P171(7') XA2+Q( ) P170'(7-)
1,1 9A2+Q(7)
T
(") Pra(7)

We also get the following trace functions on irreducible twisted V-
modules (the characters corresponding to o, 1):

T4+1

() = @) 2o () = @)

M(0) PO—J(T) ) M(0) Po’,o‘(T) )
T+1
oy 2 Prm@(n) vy V@)
e\ =T e e T T

where 0. (7) = O (7) + 02 41 (7).

From these trace functions, we compute the irreducible charaters for
the orbifold by taking trace of projections of o. We label the orbifold
characters as follows:

1 o
Xa(r) = 505"+ xg7) (7).

1
+ 1,1 1,0
XA2+Q(T) - i(XAz-i-Q + XAz-i-Q)(T)’

1,1
Xa+Q(T) = Xa,10(7),

1
o,% _ o,1 o,0
Xn(0) (1) = §(XM(0) + XM((]))(T)7

1
o+ o,l 0,0
We compute the transformation laws under 7 — —1/7 directly, by

invoking Theorem 2.13 (with z = u = 0) to get:

1 1, . s
0o <__> - 5(—17)3 (0 + 208,40 + Or040)(7),

.
1 1 .
(== ) = 5O+ Oar F 02 4+ O )7

1.
‘9%+M (——> = 5(_17')(9M + ‘9%+M - 9“72+M - 9&2‘*2“\4)(7)7
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and Theorem 5.6 to get:

Pm(—%) — (—ir)3 P (), Pl,(,(—%) _ %(—ﬁ)gﬂ(r).

Using these, we compute the transformations for the trace functions.
For example,
1 1 1
1,1 1,1 1,1 1,1
W (=2) = 5670 + X&) + 4k (),
T 2 2
1 1 1
lof -+ - o,1 - Z,l )
W (1) = 3+ o)
We find the transformation laws for the other trace functions on ir-
reducible Vg-modules in a similar way and state the answer in the
following lemma.

Lemma 6.3. The transformation laws under T — —1/7 of the trace
functions on irreducible Vo-modules are:

1 1 1

X <_;> _ 5;(3,1(7) F PP + 5;(2’21(7), A=0, Ay,

1,1 1 1 1.1 1 1,1
XAy (_;> - §X0 (1) — §XA2 (7),

of 1 1 " .

Xi (‘;) = ﬁ (Xo ") + (=DM a221(7)) . A=0,A,,

o 1 1 o a o «
G (-3) = 5 O+ (DA n= 0,2

Proof. We prove the transformations for xJ°(7) and x%; (7). We have
2
that
e} . 1« 1 1
L=Vor(@) =V2(G0), L= 5(G0)=—m(@Q=3L
and |£*/L]| = 4. In this case we find that
Qg

fo= 2

is nonzero and (6.10) becomes cg, = |£*/L|. The transformations now
follow from (6.11) and that rq = 2. O

Using Lemma 6.3, we can now write the transformation laws for
irreducible orbifold characters, and determine the S-matrix using that
the orbifold characters are linear combinations of the trace functions
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defined above. For example, we show the calculation for the vacuum
module yg (7) and the character x%; (7):
2

1 IR I o1 L 51 ISt
Xo (“) = 17X + XA + 72X + ﬁXo + 2—\/§X%g

1, 11 1, 1
= 1X0 +1X0 +§XA1+ZXA2+ZXA2

1 o,+ o,— o,+ o,—
+ﬁ(Xo + Xo +Xa72 +X%)7

o,+ (_l) o i lo i 1,0 + 0,0
X az = \/§XO \/QX Ay T Xo
_ 1 + — + — Loos 1 oo
= ﬁ(Xo —Xo — Xa, T XAZ) + §X0 - §X0 .

We compute the transformations for the other orbifold characters in
a similar way. Using the coefficients in these linear combinations, we
then obtain the S-matrix. This is because the the irreducible characters
of this Zs-orbifold are linearly independent, due to the fact that (1 —
0)Q =QNh (see (6.27) and Remark 3.7).

Theorem 6.4. Let () be the Az root lattice and o be the Dynkin dia-
gram automorphism given by (6.26). Consider the vector space spanned
by the irreducible characters of V§ with ordered basis

OG0 X X X8 X8 T X% X% )

Then the modular transformation T — —1/7 for characters of irre-
ducible V§-modules is given by the following S-matriz:

1 1 2 1 1 V2 V2 V2 V2

1 1 2 1 1 —V/2 —V2 —V2 —V2

2 2 0 -2 =2 0 0 0 0

. 1 1 =2 1 1 V2 V2 V2 =2
S:Z 1 1 =2 1 1 V2 —V2 V2 V2
V2 =2 0 V2 —V2 0 0 2 =2

V2 V2 0 V2 —V2 0 0 =2 2

V2 =V2 0 V2 V2 2 =2 0 0

V2 —V2 0 V2 V2 =2 2 0 0

We also present the asymptotic and quantum dimensions using the
coefficients of the linear combination of characters in (6.19); see also
Corollary 2.8.
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M Ve, Viig [ Vare | M0)F, M(%)*
asdim M 1 L 1

212
qdim M V2

TABLE 3. Asymptotic and quantum dimensions

W~

—_
DO (o]

Remark 6.5. These results agree with the quantum dimensions for ir-
reducible representations of orbifold modules computed in [E2] in the
general case of an order 2 automorphism. In general, the quantum
dimensions of the irreducible orbifold modules of untwisted type corre-
sponding to an involution are either 1 or 2, and the quantum dimensions
of the irreducible orbifold modules of twisted type are all equal.

Next we compute the transformation laws for the transformation
T — 7+ 1, which are given in Theorem 2.13 with 2 = v = 0. For
example,

Orisa(T +1) = €170, 10(7),
971’0(@)(7- + 1) = QM(’T + 1) + 9%+M(’T + 1) = 9]\/[(’7') — 9%+M(7),
9012_2_1_7.‘.0(@)(7— + 1) — HO;_2+M(T _'_ 1) + HQT2+%+M(T + 1) - 19‘1724_7‘_0(@)(7—)

To use the results of Theorem 5.6, we first find that A; = 0 and
A, = %. Then we obtain

P (t+1)=e"P (1), Pro(r+1)=e"2P, (1),

for ¢ = 1,0. We can now compute the transformations 7 — 7+ 1 for
the trace functions. For example,

—Lxi 37 :
XAy (T + 1) =€ 47et XN (T> = 1XA (T>
The other transformations of the trace functions are found in a similar
way and the results are stated in the next lemma.

Lemma 6.6. The transformation laws under 7 — 7+ 1 of the trace
functions on irreducible V-modules are:

Xo T+ D) =N, X T A1) = e TG (),
A+ D) = 7) G+ 1) = i (1),
Xaa (T4 1) = =G r), x0T(r+ 1) = e D7),
W) =), X D) = i),
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1,0 - —7i/4. 1,0
XA2 (T + 1) = —¢ m/ XA2 (7—)

Using Lemma 6.6, we can now write the transformation laws for
irreducible orbifold characters and determine the T-matrix.

Theorem 6.7. In the setting of Theorem 6.4, the modular transforma-
tion T — T + 1 for irreducible characters of the orbifold vertex algebra
V§ is given by the following diagonal matriz:

T = e—ﬂi/4diag(1’ 17 637Ti/4, _1’ _1’ 67'('1/8’ _67ri/8’ ie7ri/87 —ie”i/8).

Next we describe the fusion matrix corresponding to the fusion prod-
uct among irreducible orbifold modules. The 9 irreducible orbifold

modules for the A3z root lattice and Dynkin diagram automorphism are
given in [BE] (where L, = Q N bhy):

Vo 2(Ve, @ Vig) © (Varr, @ Vi),

8128
+ ~ + +
Viig=(Vi, @ V; ) & (Vaur, ® Vi)

(6.32) (
(6.33) (
(6.34) VarQ g(V%+L+ ® V§+Zﬁ) S (VQTQ+%+L+ ® V§+Zﬁ) =
(6.35) (Ve ® Vg5 ™) @ (Vaur, @ Vgg™)
(6.36) (Vi, ® V™) @ (Vaur, @ Vy5¥).

. . L1 o+ o+ .
Their corresponding characters are X(jf, X/jfz, Xay s Xo > Xa, , respectively.

For convenience in writing the matrix describing the fusion algebra, we
make the labelling:

a*t i
- = V%+Q, )\1 = V>\1+Q>

and we denote the modules (6.35) by T and (6.36) by 75". We also
set

T=T T, =12,
Um,n — Vén -+ V%n_’_@, m,n € {Zl:}

Theorem 6.8. With the above notation, consider the fusion matriz
whose (i, j)-entry is the fusion product V; X V;, where V;,V; are the
irreducible V§-modules in position © and j, respectively. Then fusion
matrix is given by:
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Vo Vo A1 S S U SR S by
Vo Vo A a- &+ m T Ty T
)\1 )\1 Ut + U~ )\1 )\1 T2 Tg Tl Tl
%J_r 5 A Véﬁ Vo T 1: Tt T;_r Ty
a- at At Vo Vg Tr TF T, Ty
T1+ Tl_ T2 Tl_ T1+ U+’_ U_’+ )\1 )\1
Tl_ T1+ T2 T1+ Tl_ U_’+ U+’_ )\1 )\1
T2+ T2_ T T2+ T2_ A A1 utt U~
T2_ T2+ T T2_ T2+ A A1 U—— Un*

7. EXAMPLES IN ORDER 3

In this section, we consider the lattice  to be even and positive
definite with an isometry o of order 3. Then @) = ) by Corollary 3.25.

7.1. The irreducible characters of twisted type in the general
setting. First, we will determine the complex numbers v; and v_; from
(5.63). Recall from Theorem 5.6 and Corollary 5.15 that

(7.1) P, <—%) = (—i7)"2 Pk 1 (7).

As in the general case, we expect the transformation X;VU(Z 0 ( ) to

be written as a linear combination of the trace functions XV;(Z:C/)(T, h)

T T

for suitable i/ € m(Q) and central character ¢’ of G (see Theorem
3.6).

We write 0~ = o', where kk’ +1 = 3m for some m € Z. This im-
plies that we can take k = +1, ¥ = —k, and m = 0. From Proposition
4.8, we have

)

0,0 o — il w|?
71 = A0 5 s (T

| | 1
XW(;U'C (T h) d(U)e ‘,Uz‘ 9\/§U+\/§7r0( ) ( 3 )
Similarly to (5.36), (5.37), we set
T—k h
7.2 T = , = —,

and note that
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where A = (g 2) and £ = £1. Then A is an element of the group
SLy(Z) with generators

0 —1 1 1
SZ(I 0) and Tz(o 1).
We find that

10 - _3 -1 0 _ 3
(7.3) (3 1) =-ST7°S and <3 _1) = ST°S.

Note that these matricies do not depend on the lattice (). Our goal
will be to use these decompositions to transform the theta function in

steps, using one generator at a time.
We have that

1
V3

(cf. Lemma 3.2). In this case we find that fy in Theorem 2.14 can be
set to zero. Therefore we set (cf. (6.10))

(7.4) co = Z 3Tk

pt+LEL* /L

L=V3m(Q), L =—=Q"Nh

Then the complex numbers v; and v_; in (5.63) can be determined
using Proposition 2.18 and Remarks 2.16 and 2.18 as follows:

v; = v(=ST7?S) =i"v(ST2S)
={0(ST*)u(S) > e #mind

(7.5) p+LeLlLx/L
=i"v(S5)%c
_
- le/L)”

and

v_y = v(ST?S) = v(ST?S)
=o(ST?(S) > e

pt+LELH /L
= v(9)%co
B (_1)7‘0/200
|£+/L]
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Remark 7.1. Since the above calculations do not depend on the expo-
nent of the generator 7', formulas (7.5), (7.6) hold for any odd prime p
in place of 3.

We set w = €?™/3 and recall that (cf. (5.52), (5.55)):

2
J

1
Moy (T ) = 3 Z“]kXch (. h),
k=0

X

XMMC ZWXMMZ (7, 1),

XM(MOC 7 h Zw XlJ\J(u,C;Ufl)(Tv h’)v

where j = 0,1,2 and s = 1,2. For convenience, we also set A = /3 €

V3To(Q*) and § = V3v € V3(Q* Nhg) C V3m(Q*). Using (7.5), we

specialize the transformation (5.63) in this case:

2
j L h Yo _ri|h)2/r —2mi(\p), sl 1
X M(uGio) (—;v;) =3¢ e E E e 2y, Xvyio(T:h)

MMeM* /M 1=0

AEQR™Nho
r0/2co 4l _2m(u‘
3|£*/£|Z Z w XM(V@Z (7, h)
1=0 64+LeL*/L
SENH3L*
7’0/260 2 l 9
—j—lo—2mi(ulv)
3\5*/£\Z > W N o (T ),
1=0 6+LeL*/L
SE—A+3L*
where 7 = 0,1,2, ro = dim by, s = 1,2, and
_ —dimhl/4|7r0(Q)/M|
vg = d(0)3 /M

7.2. The Zs-orbifold using the root lattice D,. In this subsection,
we consider the lattice () = @?:1 Zoy; to be the D, root lattice and o to
be the Dynkin diagram automorphism given by a 3-cycle on the outer
nodes of the diagram. We fix the labelling so that «, is the center
node:

o(ay) = ay and O Qq — Qg — Qg — Q.
Denote the eigenvectors of o by

2 2
a =001+ 0 +a3, v =0 +was +wag, Yo = o) +wog + waos,
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where w = e?™/3. The basis vectors of Q N'h, are

g = L@

l—-w
Note that |«]? = 6 and (5;|a) = 0 = (Bi|as), i = 1,2. We also find that
M =QnNho =2Zoy @ Za, (1-0)Q=0QNbL =Zp &ZLp,

and L = (o, aq) @ (B, f2). It follows that the defect of o is d(o) =
1 (cf. Lemma 4.7) and that the irreducible twisted Vg-modules are
determined only from elements p € mo(Q*) (cf. Remark 3.7 and (3.44)).
Using the relations

52:71—72

= Q1 — (g, o — w2

= (X9 — (/3.

g =az+ P2, =0+ B, 3o =a+ 20+ P,

we obtain Q/L = (o + L) = Zs.
The dual lattice D} is spanned by the weights

1 1
A1:a1+a4+§(a2+a3), A2:a2+a4+§(a1+a3),

1
)\3:Oé3+044+§(041+042), )\4:a+2a4,

and the fundamental group of Dy, is

QY/Q=(M+Q, 2+ Q)

—<a2;a3+Q,a1;a3+Q>%ngZQ.

We see immediately that (Q*/Q)7 = {Q} and the other cosets form
an orbit of o of order 3. It follows that there is a unique irreducible
untwisted Vg-module of Type 1 (the vacuum module) that breaks into
eigenspaces of o (cf. (4.34)). This provides 3 irreducible V§-modules
of Type 1. Since the weights Ai, Ay, and A3 form an orbit of o, the
corresponding Vo-modules Vy, 1o, Vi,4+0, Vas+@ become isomorphic as
V§-modules; we let V), 4 represent the unique irreducible Vj-module
of Type 2.

Next, we evaluate the projection my = %(1 + 0 + 0?) on the lattices
Q@ and Q*. It is easy to show that (cf. Lemma 3.2)

m(Q) = <%7OK4>, Q" Nho = (m0(Q))" = (v, au) = M,

and that M = /3m(Q) as lattices. Therefore, M* = m(Q) and
M*/M = Zs. 1t is also clear that

mo(Q") = mo(Q)
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since mpA; € mo(Q) for each i. It follows that there is a unique irre-
ducible twisted Vy-module corresponding to p = 0 (cf. Theorem 3.6).
We denote this module by M(0) (cf. Remark 3.7).

From Corollary 4.9 and equations (4.32), (4.34), (5.50)—(5.52), we
obtain the following characters of the 10 irreducible orbifold modules
described above (j = 0,1,2):

Oq(7) ijM(T) 2 O (7)
(7 )

Poa(r) " Pia(r) P (7)

Xt (T) =

XVar+a () = 9;1+1Q((7)—)

] 9 Y (I) Y (T_l) e (T_l)
ng(oa)(T)_3<\/_0 Q)\3 ‘I‘CU] \/go(Q) 3 +w2] \/_O(Q( 3 :

(1) Pyo(T) Py (7)
J ) — V3mo(Q (%) Y \[WO(Q (TTH) w2 fﬂo(Q (TTl)
XM(O;JZ)( )= 3 ( Py (7) - P2 ,2(T) - 2.5 (7) ) .

In this case [y can be set to zero in Theorem 2.14. We also calculate
that for £ = v/3m(Q), (6.10) becomes ¢y = 3, and hence v; = 1,
v_y = —1 (cf. (6.9)). Using Theorem 5.16 and (6.17), we obtain the
following transformation laws of orbifold characters, where 7 = 0,1, 2
and s = 1,2:

Xt (T+1) = —wxij (7),

2 2
. 1 ,
o (+2) = 50 M0+ 500 53 30

XVa, +q (T + 1) = WXW, 40 (7—)7

2
1 1 1
XVA1+Q (_; - 5 le‘/@ (T) - §XVA1+Q (T)7
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In the following table, we present the asymptotic and quantum di-
mensions, which are a special case of Corollary 5.20.

M Vé V)\l—i—Q M(O,O’S)j
asdim M L
qdim M

[y =
copol
DO | |

TABLE 4. Asymptotic and quantum dimensions

Finally, we remark that, even though we have found the modular
transformations of the characters of irreducible orbifold modules, it
remains a challenge to determine the S-matrix from Theorem 2.6. This
is due to the fact that the characters are linearly dependent and in
fact many are just equal; see (4.41), (4.43). If we naively pretend
that the characters are linearly independent and construct an S-matrix
from the coefficients in the above transformation formulas, we obtain
an S-matrix that may produce non-integral fusion rules when used in
Verlinde’s formula (2.9) (see Theorem 2.7).

8. PERMUTATION ORBIFOLDS

In this section, we study the representation theory of a permutation
orbifold of a lattice vertex algebra V. We present the irreducible Vij-
modules and their characters in the case when () is a direct sum of a
prime number of copies of an arbitrary positive-definite even lattice and
the automorphism o acts as a cyclic shift of the summands. Then we
derive the modular transformations of characters, using Theorem 2.14
for the twisted type modules. Permutation orbifolds of lattice vertex
algebras for o of order 2 and 3 were studied previously by Dong—Xu—Yu
in [DXY1, DXY2, DXY3|. Their recent paper [DXY4] gives a (rather
complicated) formula for the S-matrix for the permutation orbifold of
any regular vertex algebra, but it is unclear how to derive from it the
results of this section.

8.1. The irreducible characters in the general setting. In this
section, we consider the lattice Q) to be an orthogonal direct sum Qg”
of p copies of an even lattice ()9, where p is prime. We represent the
elements of @ as a = (ay,...,qp) with a; € Qo for 1 < i < p. The
bilinear form for () is given by

p

(8.1) (alB) = (ilB),

i=1
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using the bilinear form for Q)y. The dual lattice is Q* = (Qg)®, and
we have

(8.2) Q"/Q = (Q5/Qu)*" .

At this point, the rank of )y is arbitrary. The automorphism o of @)
will be the p-cycle that permutes the entries:

(8.3) olag,...,0p) = (ag,...,0p, ).

Let e9: Qo X Qo — {£1} be a 2-cocycle for Qg satisfying (3.3) and
(3.5). As a 2-cocycle for ), we define

(8.4) e(a, B) = Hﬁo(ai,ﬁi)a

where o = (v,...,0a,) and f = (f1,...,0,) with o, 8; € Qo for
1 <4 < p. Notice that (o, o) = e(a, ) for all o, 5 € @, which
implies that we can choose n = 1 in (3.15). Hence, Q = @ (this also
follows easily from Lemma 3.24). Now for h = C ®7 @, we find:

(8.5) by = span(c{(ao, ..., 0p) ‘ao € Qo}, dim by = rank Qg = 79,
(8.6) b, = {(al,...,ap) c Q’ S = 0}, dimb. = ro(p — 1).
i=1

We have Q Nho = /pQy as lattices under the correspondence
(ag; - .., ag) > /Pag, a9 € Qo-
Lemma 8.1. With the above setting, we have that (1—0)Q = QNbh,.

Proof. 1t is sufficient to show Q N, C (1 — 0)@Q. Indeed, an element
in ) N b, has the form
(Qy e apog, —ap — - — Qpq),
and such elements can be spanned by elements of the form
(1-0)(0,...,0,00,0,...,0)=(0,...,0,—, x,0,...,0).
O

The above lemma ensures that all twisted V-modules can be de-
termined using only p € mo(Q*): relation (3.45) determines a unique
character ¢ = ¢, of Z(G¥) for every pu € m(Q*); see Remark 3.7.
Moreover, the defect is d(o) = 1, by Lemma 4.7. Recall the lattice

L=(QnNbo)®(QNbHL).

Then the quotient group (/L can be described in terms of the lattice
Qo as the next lemma shows.
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Lemma 8.2. For Q = Q5" and L as above, we have Q/L = Qo/pQo
as abelian groups. In particular, there are p™ cosets of L in Q.

Proof. Consider the composition of maps f: @ — Qo — Qo/pQo given
by

p p
(0, ..., qp) HZO&,’ >—>Za,~+p@0.
i=1 i=1

Clearly, f is surjective and L C Ker f. Now suppose (ai,...,q,) €
Ker f so that Y7 | a; = pfy for some [y € Q. Then

(ala---aap) - (5()’-“760) S thJn
and (5o, ...,00) € Q@ Nbho; hence L = Ker f. The result follows from
the First Isomorphism Theorem. 0

Next, we describe the irreducible modules of V(7. We first calculate
the o-invariants in Q*/Q to be

8.7)  (Q/Q)” ={( Ao+ Qo,--- . X0+ Qo) | Mo € Q5} = Q5/Qo.
We also calculate mo(Q*) and mo(Q):
1

(@)= {0020 | We @it o

1

VP

mo(Q) = {%(ao, .., 0p) ’ ap € Qo} ~

where the isomorphisms are as lattices. We obtain

mo(Q")/mo(Q) = Qp/Qos  V/Pmo(Q) = Qo,  /pmo(Q) = Qg

as lattices.

Hence, there are |Qj/Qo| many irreducible o-twisted Vi-modules.
Since the automorphism ¢ acts on these modules, each of them will
decompose into p eigenspaces for ¢. The same is true for each o*,
s=1,...,p— 1, since the order of ¢ is prime. This yields

(8.8) p(p = 1)|Q5/ Qo

many irreducible orbifold modules of twisted type. We denote the
eigenspaces using j = 0,...,p — 1 and label the irreducible Type 3
orbifold modules by

(5.9) M2 o) 1= M(p, i)
for \g € Qf and s=1,...,p— 1, where

Q07

(810) ,LL:7T0()\0,0,...,0) ()‘07"'7>\0)

1
p
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and ¢ = (, is uniquely determined by p from (3.45), due to Lemma
8.1 and Remark 3.7. Notice that the coset \g + )y is in one-to-one
correspondence with the parameter u € m(Q*) given by (8.10); cf.
Theorem 3.6. In particular, |A\g|* = p|u|?.

Since the lattice () is a direct sum of copies of )y, the vertex algebra
Vo can be written as a corresponding tensor product of vertex algebras
Vi, (cf. [FHL]). The same is true for the irreducible Vg-modules:

Vi@ Vi @ @ Vg, (A € Qp)-

Now o acts on the Vg-module (Vy,10,)%" for each Ay € Qj, and each
of these will decompose into p eigenspaces for o, yielding p irreducible
orbifold modules for each Ay € (). Hence, there are

(8.11) p|Q5/ Qo

many irreducible orbifold modules of Type 1.

We label the eigenspaces by V/\i+Q, where ¢+ = 0,1,...,p — 1 and
A € Q" such that A = (Ao, ..., Ag) for A\g € Q. The action of o on the
other V-modules is given by

0 VagQo @ @ V1o = Vagsqo @+ @ Vi, 10 @ Vai4+qos

and these distinct Vg-modules become isomorphic as Vj-modules. So
the irreducible modules where o does not act are in orbits of size p,
and each module in the same orbit corresponds to the same orbifold
module. We obtain

(3.12) }j (1Q3/Qol” — 1Q5/Qol)

many irreducible orbifold modules of Type 2. To label these modules,
we use notation to describe the orbits of o in Q*/Q of order p. Let O
be the set of orbits of order p, and denote by [y + Q] € O the g-orbit
of the coset v + @ with (1 — o)y ¢ Q. Then the order of O is given
by (8.12), and we label the irreducible orbifold modules of Type 2 by
V.1 for each [y + Q] € O.
All together, there are
3

(.13) })|@3/@o\p += haw/a

many irreducible V§-modules. We summarize this discussion into a
theorem, which describes the irreducible orbifold modules and their
characters explicitly.

Theorem 8.3. Consider a lattice () = anp, where p is prime and
Qo 1s a positive-definite even lattice. Let o be the automorphism of
Q that permutes the summands cyclically. Denote by superscript j the
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eigenspace of o with eigenvalue w7, where w = e*™/P Let O be the set
of orbits of o in Q*/Q of order p, and denote the orbit of v+Q € Q*/Q
as [y+Q]. Also choose a set C C mo(Q5) of representatives of the cosets

mo(Q5)/mo(Qo)-

Then the following is a complete list of non-isomorphic irreducible
modules over the orbifold algebra Vi3:

(Type 1) V+Q with A\ = ()\0,...,)\0), )\OGQS, j:O,...,p—l;

(Type 2) Visg with [y+@] €0, ve€@
(Type 3) M(Xo;0°)  with N+ Qo €C, N €Q), j=0,....,p—1,
s=1,....,p—1 (cf. (8.9), (8.10)).
The characters of these modules are given by:

-1
19>\+Q(T) + } iwjk9A0+Qo (pT) ’
pPia(r) p 1 Py i (T)

0r+q(7)
Pl,l(T) ’
p—1

p Prsa(7) D Py gor(T)

Proof. The classification of irreducible V{J-modules is a special case
of Theorem 4.19. The formulas for the characters follow immediately
from Theorem 4.9 and equations (4.32), (4.34), (5.50)—(5.52). For the
Type 1 characters, we used that M = ,/p(Q)y and employed identity
(2.11). O

(Type 1) xi,,, (1) =
(Type 2) xv,.o(T) =

(Type 3) X‘g\l()\o;os)(7—> =
k=1

In order to derive the modular transformations of the irreducible
orbifold characters, an important step in the process is to invert the
equations representing these characters, so that each quotient on the
right side is written as a linear combination of the orbifold characters.
We can do this using (5.53)—(5.55), as follows.

Lemma 8.4. Let Ay € Q, A = (No,...,X0) € QF, and 1 < s,k < p.
Then the formulas for the irreducible orbifold characters of Types 1 and
3 given in Theorem 8.3 can be inverted as follows:

9A+Q
P Z XV/\JrQ ):

9}\ (T+k) p—1 - _
mk‘)\ E 0+Qo - ik j
O ) 2 Wt ()
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9>\0+Q0
X %)
0_5 1 Z M()‘Ov
030400 (PT) o
A0+Qo _ —jk.J
—_— Y = w .
Pl,ak (7_) ]Z:% XVA+Q (T>

Proof. The results follow easily from the identity 14+w+---+wP~! = 0.
To obtain the two formulas involving theta functions with argument
different from 7, we multiply the corresponding characters by w™/* and
then sum over j to yield the k-th term in the sum. U

Due to Lemma 8.4, to obtain the transformations of irreducible orb-
ifold characters, it is sufficient to transform the quotients involving
theta functions. We first describe intuitively how these quotients should
transform among themselves. Orbifold characters of Type 1 are writ-
ten in terms of two types of theta functions, with arguments 7 and pr,
respectively, while characters of Type 2 are just one such quotient. The
characters of twisted type are also in terms of two types of theta func-
tions, with arguments % and £ respectively, where 1 < k < p. As we
will show, the theta functions with argument 7 will transform among
themselves. Those with argument pr will transform to theta functions
with argument and vice-versa, because —2 = —=. It follows that the

theta functions Wlth argument T;k must transform among themselves.
We now prove these transformations for the separate quotients, and
as a result obtain the transformations of the irreducible permutation
orbifold characters.

Theorem 8.5. With the notation of Theorem 8.3, the modular trans-
formations of the irreducible permutation orbifold characters are as
follows:

j mi(A2—25) .\ J
(814) X{/AJrQ (T + 1, h) =e (1Al 12)X¥/A+Q (7—7 h)7
(8.15) XVaio (7 +1, h) — 6m(\A| )Xv Q(T h)

) i o r i 2 ;
(816) X?w()\o;as)(’r—l— 1,h) = W J 2mi(A 24) |)\O| XM()\O 09 (’T h)
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(8.17)

) 1 1 —2mi(A|0) . 1
xﬂvw(——) Ly Yemengd ()
) T ol
0+QeQ*/Q =0

(1—0)d€eqQ

1 —2mi(A
*W ST TNy ()
+Q]eO

‘QO/QO Z Z Zu)ﬁk —2mi(Ao|do) X (6070k)( )7

k=1 60+QoeQ;/Qo =0

1 1 —2mi(Al8)
(D)o Sy
A+Q T |Q /Q 6+QEZQ /Q ; 6+Q

(8.18) (1-0)5€Q

1
+W Z Exqxv, o(T),
@Q/Ql , Geo

(8.19)

; 1

J S —27‘(‘1()\0‘50

XM(rojos <__) E , § :W
T Py ‘QO/QO #+Q€Q"/Q 1=0

(50, +00)

VMQ (1)

7“()/2 p—1

2 _@
Z Z kawjk—l—lkp (Ao\'yo)le(WJks)(T)’

k=1 0+Qo€Q{/Qo =0
Y0 EkA0+PQG

where A, = p;g|(9|, r =rank @, E\, is given by (5.59), and vy is a

complex number.

Proof. The transformation laws for 7 — 741 are essentially the same as
in Theorem 5.16. The expression for A, follows from writing dim b, =
(p — 1)|O| in Lemma 3.16. The rest of the proof will describe the
transformation 7 — —1/7.

First, we transform characters of Type 1. In terms of theta functions,
this transformation is

; 1 10x0(=2) 1% i0ni00(—2)
8.20 ! o) =2 Ay o e P0tQo\ T )
( ) XVAJrQ ( 7_) p PLI(—%) _I_ p Zw Pl’o_k(_%>

k=1
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By Theorem 2.13 and Corollary 5.10, we obtain

Orio(—1)  (—ir) o2 (—ir)r/? Z —2i(A9) 05+q(T)
Pl,l(_%) V ‘Q*/Q‘ 5+QEQ*/Q Pl,l(T)

_ 1 3 e—zm(w)@]«;L(T)
VIQ QL 5, 5510 1.1(7)
(1-0)s€Q
1 “aniiay) Pr+0(7)
+ — L
VIQ+/Q| 7%25:*/@ Pra(7)

(1-0)v¢Q
Using Lemma 8.4, we write the transformation as a linear combination
of irreducible orbifold characters:

Oriq(—1) 1 3 2mi(A[9) pz_l l
= VP e X340 (7)
(1-0)5€Q

1 —2mi(A
PR
1+QEQ"/Q

(1-0)v¢Q

-1
_ 1 —2mi(A[8) SN
= o0 > € D Xo(7)
HQeQ*/Q =0
(1-0)6€Q

p —27i
Foem 2,
[v+QleO

and

1 r c N—r ST\ T
9A0+Qo(_§) P o2 (—ir) TR (AT )0/ 3 e—27ri(>\o|60)960+Q0(5)
1 /1)*
Pl,a-k(_;) |QO/QO| 6O+QOEQ8/QO P0k71(7->

p—1

e~ 2mi(o0ldo) Z Xé\/](&);ok)(T)’

: >
|Q5/Q0l 5,1 05e05 /00 1=0

using that dimb, = ro(p — 1). The transformation (8.17) now follows
from (8.20) and the above calculations.

Next we prove (8.18). Again from Theorem 2.13 and Corollary 5.10,
we obtain

_1Y _ fre(=0)
XVA+Q T P171(_%)
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_ (i) (i)l 5 o—2rins) o+0(7)
LR Fa()

1
VIl 5o P14 (7)

(1-0)6€Q

1 —2mi()| 0r+(7)
+ e~ 2 v) 2
V1Q*/Q| 7+Q€ZQ*/Q Pra(r)

(1-0)v¢Q

Z o~ 2mi(A[9) 05+q(T)

-1
_ 1 —2mi(\6) —
o |Q*/Q| Z € Z XVsio (T)
5+QeQ*/Q =0
(1-0)5€Q

1 —2mi(A
Vo P PR
Y+QEQ*/Q

(1-0)v¢Q

-1
_ 1 —2mi(\|8) \ !
N 10+/Q) Z ¢ Z XVsiq (7)
6+QeQ"/Q =0
(1-0)6€Q

1
T,
[v+Q]e0O

Now we prove (8.19). Similarly to transforming theta functions with
argument pr, the transformation of the first term of the irreducible
orbifold character of twisted type in Theorem 8.3(3) is

(8.21)
9>\0+Q0(_pi7—> - (_i7->—7’o/2(_ip7—)7’0/2 e—27ri(>\o|50)‘950+Q0(pT>
N . = § -
PUS,l(_;) p0/21/ |Q0/Q0| 0+QoeQs/Qo Pl,U*S(T)

p—1

o~ 2mi(X0l%0) Z wlSXlVHQ (7).

1 3
V |Q8/Q0 S+QEQ*/Q =0
5

=(0,..-,00)

We use the same method of transforming the term

T+k
_Wikw ‘9>\0+Q0( P )

Po-s7o-sk (T)
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as in the proof of (5.32). As in (5.36) and (5.37), we set
T4k

p
where kk" + 1 = mp, and note that

(8.22) _—

—%—i—/{:_kT’—m_

8.23 = =
( ) p pT/ _ k/

, k —m
AT, A:(p _k,)ESLg(Z).

We next use Theorem 2.14 with the matrix A and 7 replaced by 7':
(8.24)

1
—= + k ,
9>\0+Q0 ( Tp ) - 6)>\o-i-Qo (A - T )

99

i(—* Jyo|2=2m(Ao|yo) —km 0|2
= (pr' — k)" Pu, Y el TG, ru(T)

Y0+Qo€Q/Qo
Y0 EPRG
. _IL, 2 _ 2 T ‘I‘ k/
— 770/2y, Z (=% ol*=2m(oly0) —kml Aol )9k>\0+’yo+Qo< ) )

70+QoeRQ/Qo

Y EPQG

T gl 2 2 T+ k‘/

Y0+Qo€Q/Qo

Yo€kN+PQG

using in the last step that
—k’,|’70 — k‘)\o|2 — Qmp()\oh/o — k‘)\o) — kmp|)\0|2
= —k'[70l* = 2(Aol70) + Kol

It now follows that

9 —1+k
P AW Ao+Qo P
e »
1
Po-s7o-sk(_;)

er
70+QoeRQ/Qo
YoE€kN+PQ

(825) Pcrks,cr*S (T)

0 0 (T-i—k’)
R L S A L e\ p
= k e e r
Po-ks oS (7-)
70+Qo€RQS/Qo '
YoEkA+pQ}

I
= 770/2(—ir) 70/, Z = (o2 —2( o)) T\
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Using (8.21), (8.25), and Lemma 8.4, we finish the calculation:

1
~Ltk
-1 T "
1 b Trlk )\ 2 9)\0+QO ( P )
_E wike™p KXol .
p k=1 Po-s7o-sk (_;)
p—1 T+k'
i/ Z k e —”—ik'mwe’m*QO( 2
= w’ UL e » e » _ 7
Pks oks k’(T)
70+QoEQS/Qo
YoEkX+PQG
7‘0/2 p—1 p—1
_ J 271 (Xo|v0) —Ik 1
= ZW we ) D0 K gpiore (7).
’Yo-‘rQOEQS/Qo =0
YoEEX+PQG

We now obtain (8.19) from (8.21), using that
K =—kP2 mod p.
This completes the proof of Theorem 8.5. U

In the following table, we present the asymptotic and quantum di-
mensions of permutation orbifold modules, which are a special case of
Corollary 5.20.

M ‘/(j)\o,...,)\o)+Q Visg M(Xg, 0°)
asdim M | p~'|Q5/Qol ™77 | 1Qs/Qul "% | p1Q5/Qol
qdim M ! P [@0/Qu" 7

TABLE 5. Asymptotic and quantum dimensions

8.2. The case when p = 3. In this subsection, we let p = 3 and use
the alternative strategy outlined in Sections 6.1 and 7.1 to calculate the
part of the transformation ng(% co) ( -, ;) that contributes to orbifold
characters of twisted type without reference to Theorem 2.14.

In this case, (7.4) becomes

(826) CQO —_= Z 637ri‘V|2’
v+Qo€Q)/Qo
and the complex numbers vy and v_; in (8.24) can be determined ex-
plicitly using (7.5) and (7.6):
EQO (_1>TO/2CQ0

(8.27) oo R T Ty ToN
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The transformations of the irreducible permutation orbifold characters
of twisted type now follow from (8.19), (8.26) and (8.27):

2
. 1 1 .

J _ ls ,—27i(Ao|do) 4 !
Metwon () = 572 e L ()
Cor ) 3VIQ0/Q) 5+Q€ZQ*/Q§

6=(00,90,00)

i?“()/2—

2
€Qo —(Noly)+i+l 1
_l_ * w X Hoad (T)
3|Q0/Q0| Z Z M (v;0%)

Y+QoEQH/Qo =1
YEN+3Q

i_m/2CQ 2 .
4@ wPo=i=tyd (7Y,
3\@3/@0‘ Z Z M(v; )( )

THQRoEQS/Qo =1
YE=A0+3Q5

where w = e2™/3,
For an even more explicit demonstration, we now consider the case
rank Q)9 = 1, which has been investigated previously in [DXY3]. Then

we can write
Q = QSB?» = ZOél @ZO&Q @Zag

with bilinear form given by
(aiay) = 2t0;

for some positive integer ¢t. From the general results of Section 8.1, we
have that d(c) = 1 and all o*-twisted V-modules can be described
using the cosets of Qf/Qo.

For convenience, we set o = a; + ap + a3. Then |a|? = 6t and

M:QQUOIZOK, me)J_IZ(Oq—OéQ)—FZ(OéQ—Oég).
We can also write (4.14) as
L ={z10q + 2905 + x303 | 11 + 22 + 3 =0 mod 3},

and we find that QQ/L = Zj is generated by the coset a; + L. The dual
lattice of () and its fundamental group are

* « Q Q * ~
0 :Z2—;@ZQ—§@ZQ—Z’, Q" /Q = Loy & Ly & Loy
It follows that (Q*/Q)7 = Zy, and it consists of the elements
gajLQ for 0<m<2t—1.
We also find that

«

*Nhy =2Z—.
Q" Nho o7
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For each m, the automorphism ¢ acts on the irreducible Vg-module
Vo, and so it decomposes into 3 irreducible orbifold modules given
by the eigenspaces of o.

From (8.8)-(8.12), there are 12t irreducible V{§-modules of twisted
type, 6t irreducible V§-modules of Type 1, and %(4153—15) irreducible V(-
modules of Type 2 (also see the discussion in Section 8.1). Therefore,
we have a total of

2
18t + g(4&"’ —t)

irreducible V§-modules. In particular, we obtain 20 irreducible per-
mutation orbifold modules for t = 1, which agrees with [DXY3]. The
orbits of o in Q*/Q that are not singletons can be described in four
class types, which we describe in Table 6 below. We use

&%)

’Yi:di%—i‘@iZﬂLfi% (0< d;, e, f; <2t =1, i=1,2,3,4)

to represent a generic element in Q* from which to describe the class
types. Notice that the sum of all class sizes is indeed Z(4t* —t).

Representative | Relation among coefficients Class size
Y1 d1:61<f1 217 —t
Y2 d2<62:f2 217 —t
V3 ds < e3 < f3 s(2t —2)(2t — 1)(20)
Y4 di< fi<ey (2t —2)(2t — 1)(2t)

TABLE 6. Cosets v+ Q with v € Q* and (1 — o)y ¢ Q

Finally, we compute the constant cq,, given by (8.26), for t = 1,2, 3.
Recall from Section 8.1 that v/37m(Q) = Qo and v/3m(Q*) = Q5. Then
(7.4) becomes

2t—1

(828) co = Cco, = Z 637rin2/2t’
n=0

and we calculate this explicitly for some values of ¢ in Table 7.

t=1 CQZ]_—i
37l

t=2| co=2e1
t=3 00:3+31

TABLE 7. Values of ¢
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