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ORBIFOLDS OF LATTICE VERTEX ALGEBRAS

BOJKO BAKALOV, JASON ELSINGER, VICTOR G. KAC,
AND IVAN TODOROV

Abstract. To a positive-definite even lattice Q, one can associate
the lattice vertex algebra VQ, and any automorphism σ of Q lifts to
an automorphism of VQ. In this paper, we investigate the orbifold
vertex algebra V σ

Q , which consists of the elements of VQ fixed under
σ, in the case when σ has prime order. We describe explicitly the
irreducible V σ

Q -modules, compute their characters, and determine
the modular transformations of characters. As an application, we
find the asymptotic and quantum dimensions of all irreducible V σ

Q -
modules. We consider in detail the cases when the order of σ is 2
or 3, as well as the case of permutation orbifolds.
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1. Introduction

In the past 25 years there has been significant progress in the theory
of regular vertex algebras [DLM, CM, DRX]. Recall that a vertex
algebra V with a conformal vector L [K2] is called regular [DLM] if
all V -modules are completely reducible, and all eigenvalues of L0 are
non-negative integers with finite multiplicities. It is often required,
in addition, that the 0-eigenvalue of L0 has multiplicity 1, that V is
simple, and that the V -module V is self-dual, which we shall do in the
present paper.



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 3

Examples of regular vertex algebras include the simple affine vertex
algebras at positive integer levels, Virasoro minimal series, and lattice
vertex algebras VQ associated to a positive-definite even lattice Q (see
e.g. [K2] for their construction).
Regular vertex algebras were introduced in [DLM], where it was

shown that they are in particular rational. Hence for them the Zhu
Theorem [Z] holds, i.e., a regular vertex algebra has finitely many irre-
ducible modules and the span of their characters is SL2(Z)-invariant.
A major advance of the theory has been made by Carnahan and

Miyamoto [CM], who proved that for any finite-order automorphism σ
of a regular vertex algebra V , its fixed-point subalgebra V σ is regular as
well. Another important result, by Dong, Ren and Xu [DRX], implies
that for a regular vertex algebra V all irreducible modules over V σ

occur as submodules of irreducible σk-twisted V -modules for some k.
In the present paper, we use these results to describe explicitly the

irreducible V σ
Q -modules for a prime order p automorphism σ of the

positive-definite even lattice Q (Theorem 4.19), to compute their char-
acters (Section 4), and to obtain explicit modular transformation for-
mulas for these characters (Theorems 5.16, 5.17, 5.18). For this we use
the explicit description of twisted VQ-modules obtained in [BK].
As an application, we find the asymptotic dimensions [KP2] of all

irreducible V σ
Q -modules, where σ is a prime order p automorphism of Q

(Corollary 5.20). In Sections 6 and 7, we consider the cases p = 2 and
p = 3, and in Section 8 the case of a permutation orbifold withQ = Q⊕p

0

for any positive-definite even lattice Q0 and the cyclic permutation σ
of the summands (cf. [DXY1, DXY2, DXY3, DXY4]).

2. Vertex Algebras and Their Twisted Modules

In this section, we briefly recall the notions of a vertex algebra and of
a twisted module over a vertex algebra. Then we review several impor-
tant theorems about regular vertex algebras. Good general references
on vertex algebras are [FLM, FHL, K2, FB, LL, KRR].

2.1. Conformal vertex algebras. Recall that a vertex algebra is a
vector space of states V with a distinguished vector 1 ∈ V (vacuum
vector), together with a linear map (state-field correspondence)

(2.1) Y (·, z)· : V ⊗ V → V ((z)) = V [[z]][z−1] ,

satisfying axioms (2.3) and (2.4) below. Thus, for every a ∈ V , we
have the field Y (a, z) : V → V ((z)). This field can be viewed as a
formal power series from (EndV )[[z, z−1]], which involves only finitely
many negative powers of z when applied to any vector.
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The coefficients in front of powers of z in this expansion are known
as the modes of a:

(2.2) Y (a, z) =
∑

n∈Z
a(n) z

−n−1 , a(n) ∈ End V .

The vacuum vector 1 plays the role of an identity in the sense that

(2.3) a(−1)1 = 1(−1)a = a , a(n)1 = 1(m)a = 0 , n ≥ 0 , m 6= −1 .

This means that Y (1, z) is the identity operator, Y (a, z)1 ∈ V [[z]] is
regular at z = 0, and Y (a, z)1|z=0 = a.
The main axiom for a vertex algebra is the Borcherds identity (also

called Jacobi identity [FLM]) satisfied by the modes:

∞∑

j=0

(
m

j

)

(a(n+j)b)(k+m−j)c =

∞∑

j=0

(
n

j

)

(−1)ja(m+n−j)(b(k+j)c)

−
∞∑

j=0

(
n

j

)

(−1)j+n b(k+n−j)(a(m+j)c) ,

(2.4)

where a, b, c ∈ V and m,n, k ∈ Z. Note that the above sums are finite,
because a(n)b = 0 for sufficiently large n.
We say that a vertex algebra V is (strongly) generated by a subset

S ⊂ V if V is linearly spanned by the vacuum 1 and all elements of
the form a1(n1) · · · ak(nk)1, where k ≥ 1, ai ∈ S, ni < 0. An ideal of a
vertex algebra V is a subspace W such that a(n)w ∈ W for all a ∈ V ,
w ∈ W , n ∈ Z. The vertex algebra V is simple if it contains no nonzero
proper ideals.
Essential to our setting is the notion of a conformal vertex algebra

and a vertex operator algebra, which we define below.

Definition 2.1. A vertex algebra V is called conformal of central
charge c ∈ C if there exists a Virasoro vector L ∈ V such that the
corresponding field Y (L, z) =

∑

n∈Z Lnz
−n−2 satisfies:

(i) [L−1, Y (a, z)] = ∂zY (a, z), a ∈ V ;

(ii) [Lm, Ln] = (m− n)Lm+n + δm,−n
m3−m

12
c;

(iii) L0 is diagonalizable.

The eigenvalues of L0 are called conformal weights or conformal di-
mensions. The Virasoro algebra is the Lie algebra with basis {c, Ln |n ∈
Z} equipped with the bracket relations in Definition 2.1(ii) together
with the condition that c is central. A vertex operator algebra is a con-
formal vertex algebra, in which all eigenvalues of L0 are integers and
all eigenspaces of L0 are finite dimensional.
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A representation of a vertex algebra V , or a V -module, is a vector
space M endowed with a linear map Y (·, z)· : V ⊗ M → M((z)) (cf.
(2.1), (2.2)) such that the Borcherds identity (2.4) holds for a, b ∈ V ,
c ∈ M (see [FB, LL, KRR]). For a vertex operator algebra V =
⊕

n∈Z Vn, where Vn is the L0-eigenspace with eigenvalue n, its dual or
contragradient V ′ is defined as

V ′ =
⊕

n∈Z
V ∗
n .(2.5)

It is shown in [FHL] that this duality can be defined more generally for
V -modules M with analogous grading, and in this case the dual M ′ is
also a V -module. The vertex operator algebra V is called self-dual if
V ∼= V ′ as V -modules.

2.2. Twisted representations of vertex algebras. Let σ be an
automorphism of a vertex algebra V of a finite order N . Then σ is
diagonalizable. In the definition of a σ-twisted representation M of V
[FFR, D2], the image of the linear map Y is allowed to have nonintegral
rational powers of z, so that

(2.6) Y (a, z) =
∑

n∈m+Z

a(n) z
−n−1 , if σa = e−2πima , m ∈ 1

N
Z ,

where a(n) ∈ EndM . The Borcherds identity (2.4) satisfied by the
modes remains the same in the twisted case, provided that a is an
eigenvector of σ, where a, b ∈ V , c ∈M , n ∈ Z, and k,m ∈ 1

N
Z.

An important consequence of the Borcherds identity is the locality
property [DL, Li, K2]:

(2.7) (z − w)N [Y (a, z), Y (b, w)] = 0

for sufficiently large N depending on a, b (one can take N to be such
that a(n)b = 0 for n ≥ N).

Proposition 2.2 ([BM]). Let V be a vertex algebra, σ an automor-
phism of V , and M a σ-twisted representation of V . Then

(2.8)
1

k!
∂kz

(

(z − w)N Y (a, z)Y (b, w)v
)∣
∣
∣
z=w

= Y (a(N−1−k)b, w)v

for all a, b ∈ V , v ∈ M , k ≥ 0, and sufficiently large N . Conversely,
(2.7) and (2.8) imply the Borcherds identity (2.4).

2.3. Regular vertex algebras. In this subsection, we give a defini-
tion of regular vertex algebras and state a series of remarkable theorems
about them, which were proved by several authors.
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Definition 2.3. Let V be a conformal vertex algebra with conformal
vector L ∈ V . Then V is called regular if the following additional
conditions hold:

(i) L0 has non-negative integral eigenvalues;
(ii) the eigenspaces of L0 are finite dimensional;
(iii) all V -modules are completely reducible;
(iv) V is simple, i.e., V contains no nontrivial ideals;
(v) V is self-dual, i.e., the contragredient module V ′ (cf. (2.5)) is

isomorphic to V ;
(vi) the 0-eigenspace of L0 is C1.

Remark 2.4. The V -modules that we consider in Definition 2.3(iii) are
the same as the weak V -modules as in [CM] and [ABD]. In general,
there are three types of V -modules, labeled as weak, admissible, and
ordinary. The weak modules are not necessarily graded. The admissible
modules have a Z+-grading, which is compatible with the action of V .
The strongest notion of module is the ordinary V -module, which is
graded by the eigenvalues of L0, all eigenvalues are in Z+, and all
eigenspaces are finite dimensional. In the literature, rationality refers
to complete reducibility of admissible modules, while regularity refers
to complete reducibility of weak modules, which a priori is more general
than rationality. For regular vertex algebras, all these notions of V -
module coincide.

The original definition of regularity from [DLM] does not include
assumptions (iv), (v), (vi). While in general one may consider dropping
several of these assumptions, we include them here in order to state
the following theorems in a more concise form.

Theorem 2.5 ([CM]). Let V be a regular vertex algebra, and Γ be a
cyclic group of automorphisms of V . Then the fixed point subalgebra
V Γ (called the orbifold) is regular as well.

Theorem 2.6 ([Z], [ABD]). Let V be a regular vertex algebra of central
charge c. Then

(i) V has, up to isomorphism, a finite number of irreducible modules,
M0 = V , M1, . . . ,Mm.

(ii) The characters

χj(τ) := trMj
qL0−c/24,

where q = e2πiτ , are convergent series to holomorphic functions
for Im τ > 0.
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(iii) The C-span of the functions χ0, . . . , χm is SL2(Z)-invariant un-
der the modular transformation

f(τ) 7→ f

(
aτ + b

cτ + d

)

,

where

(
a b
c d

)

∈ SL2(Z). Equivalently, we have

χj(τ + 1) = e2πi(∆j−c/24)χj(τ), χj

(

−1

τ

)

=

m∑

k=0

Sj,kχk(τ),

where Sj,k ∈ C, and ∆j is the conformal weight of Mj, i.e., the
minimal eigenvalue of L0 in Mj.

Theorem 2.7 ([H1]). Let V be a regular vertex algebra. Then, in the
notation of Theorem 2.6, we have:

(i) Sj,k = Sk,j for all j, k = 0, . . . , m,
(ii) Sj,0 6= 0 for all j = 0, . . . , m.
(iii) Let

Mi ⊠Mj =

m⊕

k=0

Nk
i,jMk

be the fusion product. Then Verlinde’s formula holds:

(2.9) Nk
i,j =

m∑

l=0

Si,lSj,lS̄k,l

Sl,0
.

Theorems 2.6 and 2.7 have the following simple corollary (cf. [KP2]).

Corollary 2.8. Assume that V is a regular vertex algebra of central
charge c, such that ∆j > 0 for all j > 0. Then

(i) As τ → 0+ we have

χj(τ) ∼ Sj,0e
πic/(12τ), j = 0, . . . , m,

(ii) Sj,0 > 0 for all j = 0, . . . , m.

Proof. Replacing τ by − 1
τ
, we obtain from Theorem 2.6(iii):

χj(τ) =
m∑

k=0

Sj,k χk

(

−1

τ

)

.

But, by the definition of χk, we have:

χk

(

−1

τ

)

= exp
( πic

12τ
− 2πi∆j

τ

)

(ak +O(τ)),
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where ak is the multiplicity of the L0-eigenvalue ∆k in Mk, so that
a0 = 1. Since, by the assumption, ∆k > 0 for k ≥ 1, we obtain the
first part.
Letting τ = iβ, where β is a positive real number, we obtain from

the first part:

χj(iβ) ∼ Sj,0e
πc/(12β) > 0

since Sj,0 6= 0. But the category of V -modules is a modular tensor
category [H2], and c ∈ Q in any modular tensor category (see e.g.
[BKi]); hence Sj,0 > 0. �

Definition 2.9. Provided that the condition of Corollary 2.8 holds,
the positive real number Sj,0 is called the asymptotic dimension of the
V -moduleMj and denoted by asdimMj . The number Sj,0/S0,0 is called
the quantum dimension of Mj and is denoted qdimMj .

Remark 2.10. Obviously, the asymptotic dimension is additive. Also,
the quantum dimension is a ring homomorphism from the fusion ring
of modules to C (see [H1, V]).

Remark 2.11. Two other well-known properties of the matrix S =
(Sj,k)

m
j,k=0 for arbitrary regular vertex algebras are (cf. [KP2] for affine

V ): S2 = C, where C is a permutation matrix of square 1 (cf. [H1]),
the matrix S is unitary, and in particular,

m∑

j=0

|S0,j|2 = 1.

As pointed out to us by Y.-Z. Huang, the unitarity of S follows from his
theorem that the category of modules over a regular vertex algebra is
modular [H2], and a theorem of Etingof–Nikshich–Ostrik [ENO], that
S is unitary for any modular tensor category.

2.4. Theta functions and transformation laws. In this subsection,
we review the definition and transformation laws of the classical theta
functions (see e.g. [KP2, K1]).
Let L be a positive-definite even integral lattice, i.e., a free abelian

group of finite rank equipped with a symmetric bilinear form (·|·) : Q×
Q→ Z such that |α|2 = (α|α) is a positive even integer for all nonzero
α ∈ Q. Set r = rankL and hL = C ⊗Z L. For λ ∈ L∗, u ∈ C, and
z ∈ hL, the classical theta function (of degree 1) is defined as

(2.10) θλ+L(τ, z, u) = e2πiu
∑

γ∈λ+L
e2πi(γ|z)q|γ|

2/2 ,
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where q = e2πiτ . The parameter u is introduced in order to simplify
the transformation formulas in Theorem 2.13 below.

Remark 2.12. For any scalar c, we have

θcλ+cL(τ, z, u) = e2πiu
∑

γ∈λ+L
e2πi(cγ|z)eπiτc

2|γ|2

= θλ+L(c
2τ, cz, u).

(2.11)

This formula is particularly useful when the lattice L is not integral. If
we can choose a suitable value of c which makes cL an integral lattice,
then the known transformation laws of theta functions can be applied
using the lattice cL and (2.11).

The transformation laws of theta functions go back to Jacobi and
are given in [K1, Theorem 13.5] among many other works.

Theorem 2.13. Let L be a positive-definite even integral lattice of rank
r, and let λ ∈ L∗. Then the transformation laws of (2.10) are

θλ+L

(

−1

τ
,
z

τ
, u− |z|2

2τ

)

= (−iτ)r/2|L∗/L|−1/2

×
∑

µ+L∈L∗/L
e−2πi(λ|µ)θµ+L(τ, z, u),

(2.12)

(2.13) θλ+L(τ + 1, z, u) = eπi|λ|
2

θλ+L(τ, z, u).

For our purposes, it will often be convenient to set u = 0. In this
case, we set θλ+L(τ, z) = θλ+L(τ, z, 0), and Theorem 2.13 becomes:

θλ+L

(

−1

τ
,
z

τ

)

= (−iτ)r/2|L∗/L|−1/2

× eπi|z|
2/τ

∑

µ+L∈L∗/L
e−2πi(λ|µ)θµ+L(τ, z),

(2.14)

(2.15) θλ+L(τ + 1, z) = eπi|λ|
2

θλ+L(τ, z).

In many of the examples, we also set z = 0. In this case we set
θλ+L(τ) = θλ+L(τ, 0, 0).
The transformation corresponding to a general element of SL(2,R)

is given in [KP2, Corollary 3.9]. The following is a special case of their
general result, which we will need later.

Theorem 2.14 ([KP2], Corollary 3.9). Let L be a positive-definite

even lattice with rank r. Consider the action of A =

(
a b
c d

)

∈
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SL(2,R) on triples (τ, z, u) given by

A · (τ, z, u) =
(
aτ + b

cτ + d
,

z

cτ + d
, u− c

2

|z|2
cτ + d

)

,

where τ, u ∈ C, Im τ > 0, and z ∈ L. There exists β0 ∈ C ⊗Z L such
that

ac|ν|2 ≡ 2(ν|β0) mod 2Z for all ν ∈ L∗ with cν ∈ L.
Then, for any λ ∈ L∗, we have

θλ+L (A · (τ, z, u)) = (cτ + d)r/2v(A)

×
∑

µ: cµ+L∈L∗/L
cµ∈cL∗

eπi(cd|µ|
2+2bc(µ|λ)+ab|λ|2+2b(λ|β0)+2d(µ|β0))θaλ+cµ+L(τ, z, u),

where v(A) ∈ C depends only on A.
In the case when cL∗ ⊂ L, which includes the case when c = 0, the

summation collapses to one term, corresponding to µ = 0:

θλ+L (A · (τ, z, u)) = (cτ + d)r/2v(A)eπib(a|λ|
2+2(λ|β0))θaλ+L(τ, z, u).

Remark 2.15. In general, Corollary 3.9 in [KP2] requires two vectors
α0, β0 ∈ L and a chosen scalar t0 ∈ R. However, in the case when the
lattice is even and c is an odd integer, each of the parameters α0, β0, t0
can be set to zero and their result simplifies to the result shown in
Theorem 2.14 (using that c|µ|2 ≡ c2|µ|2 ≡ |cµ|2 ≡ 0 mod 2 when c is
odd). In the case when c is even, the parameter β0 may be nonzero.
For example, if a = d = 1, b = 0, and c = 2, then β0 =

α
2
is nonzero for

the A1 root lattice generated by the vector α with |α|2 = 2.

Remark 2.16. In Corollary 3.9 in [KP2], the summation is indexed by
the set of µ ∈ L∗, cµ mod L, and this set coincides with the index set
of cosets used throughout this paper using the cosets µ′ + L ∈ L∗/L
with µ′ = cµ ∈ cL∗. In particular, for c = 0 both sums reduce to one
term corresponding to µ = µ′ = 0.

Remark 2.17. It is important to point out that in Theorem 2.14, a
choice of square root of cτ + d is made. This means that Theorem
2.14 describes the action of the metaplectic group, which contains the
modular group as a subgroup, due to the choice of square root. In this
paper, we will not concern ourselves too much with this choice because
the characters and trace functions later in Section 4 will be the ratio of
a theta function divided by another function (see Theorem 4.1) whose
transformation involves the same choice of square root (see Corollary
5.10 in the case A = S).
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In general, v(A) is a complex valued function such that

(2.16) |v(A)| = |(L+ cL∗)/L|− 1

2 , v(A−1) = v(A)

(cf. [KP2, Proposition 3.8]). We also calculate in general that

(2.17) v(−A) = irv(A).

While the theorem proves the existence of the complex number v(A), it
does not provide what they are explicitly. In practice, it may be more
convenient to write the matrix A first in terms of the generators S and
T , then repeatedly use Theorem 2.13.
By comparing the coefficients in Theorem 2.13 with Theorem 2.14

when A = S and when A = T , we can obtain the constants v(S) and
v(T ):

(2.18) v(S) =
(−i)r/2

|L∗/L|1/2 , v(T ) = 1.

It follows that v(T k) = 1 for all integers k and v(−S) =
ir/2

|L∗/L|1/2 ,
using (2.17). In addition to these facts, the following proposition will
be useful later.

Proposition 2.18. Let L, A =

(
a b
c d

)

∈ SL(2,Z), and v(A) be as in

Theorem 2.14. Then the following hold for the generators S and T :

v(AT k) = v(T kA) = v(A) for all k ∈ Z,(2.19)

v(AS) = v(A)v(S)
∑

µ+L∈L∗/L
eπi(cd|µ|

2+2d(µ|β0)).(2.20)

Proof. To prove the first identity, we use Theorem 2.14 to calculate
θL((AT

k) · τ), where k in an integer, in two different ways. Since

AT k =

(
a ak + b
c ck + d

)

,

we have from setting λ, z, u equal to zero in Theorem 2.14 that

θL
(
(AT k) · τ

)
= (cτ + ck + d)r/2v(AT k)

∑

µ′+L∈L∗/L
µ′∈cL∗

eπic(ck+d)|µ|2θcµ+L(τ),
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where µ′ = cµ. On the other hand, we compute this transformation
using two steps and (2.13):

θL
(
A · (T k · τ)

)
= (c(τ + k) + d)r/2v(A)

∑

µ′+L∈L∗/L
µ′∈cL∗

eπicd|µ|
2

θcµ+L(T
k · τ)

= (cτ + ck + d)r/2v(A)
∑

µ′+L∈L∗/L
µ′∈cL∗

eπic(d+ck)|µ|2θcµ+L(τ).

By comparing both equations and noting that (AT k) · τ = A · (T k · τ),
we arrive at the relation v(AT k) = v(A). In a similar way, we can show
that v(T kA) = v(A).
We now compute in a similar way θL((AS) · τ) in two different ways.

First we assume that c, d 6= 0. Since

AS =

(
b −a
d −c

)

,

we have from setting λ, z, u equal to zero in Theorem 2.14 that

θL ((AS) · τ) = (dτ − c)r/2 v(AS)
∑

µ′+L∈L∗/L
µ′∈dL∗

e−πi(cd|µ|2+2c(µ|β0))θdµ+L(τ),

(2.21)

where µ′ = dµ. On the other hand, we compute this transformation
using two steps and (2.12):

θL (A · (S · τ))

=
(

− c

τ
+ d
)r/2

v(A)
∑

ν′+L∈L∗/L
ν′∈cL∗

eπi(cd|ν|
2+2d(ν|β0))θcν+L

(

−1

τ

)

= (dτ − c)r/2τ r/2v(A)v(S)

×
∑

ν′+L∈L∗/L
ν′∈cL∗

∑

α+L∈L∗/L
eπi(cd|ν|

2+2d(ν|β0)−2c(ν|α))θα+L(τ) ,

(2.22)

where ν ′ = cν. Since (AS) · τ = A · (S · τ), it follows from Theorem
2.14 that the terms in the sum in (2.21) and (2.22) must have equal
coefficients for each corresponding theta function. In particular, if we
set µ′ = 0 in (2.21) and α = 0 in (2.22), we obtain (2.20).
Next we consider the cases c = 0 or d = 0. When c = 0, the

summation over ν ′ in (2.22) turns into one term corresponding to ν ′ =
0. Hence a comparison of (2.21) and (2.22) in this case yields that
v(AS) = v(A)v(S). In fact, when c = 0 and detA = 1, the matrix is
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actually of the form A = ±T k, for some integer k, and this case reduces
to (2.19). When d = 0, the summation over µ′ in (2.21) turns into one
term corresponding to µ′ = 0. A comparison of (2.21) and (2.22) then
yields (2.20). �

We also recall the Dedekind η-function

(2.23) η(τ) = eπiτ/12
∞∏

n=1

(1− qn), q = e2πiτ , Im τ > 0.

The transformation laws for η(τ) are well known:

(2.24) η(τ + 1) = eπi/12η(τ), η
(

−1

τ

)

= (−iτ)1/2η(τ).

More generally, it is well known that for any A =

(
a b
c d

)

∈ SL(2,Z),

η (A · τ) = ǫ(A)(cτ + d)1/2η(τ),(2.25)

where ǫ(A) is a 24-th root of unity that depends on A.
Consider the one-dimensional lattice Zα, with |α|2 = m. Set z = ζ

2
α

so that (z|α) = ζ
2
m. Then the theta function (2.10) takes the form

(2.26) θ l
m
α+Zα

(

τ,
ζ

2
α, u

)

= e2πiu
∑

n∈ l
m
+Z

eπinmζqn
2m/2,

where l ∈ Z/mZ. For later use we set

(2.27) Kl(τ, ζ ;m) =
1

η(τ)
θ l

m
α+Zα

(

τ,
ζ

2
α, 0
)

.

The following is then immediate using Theorem 2.13 and (2.24):

Proposition 2.19. The transformation laws for Kl(τ, ζ ;m) are

Kl

(

−1

τ
,
ζ

τ
;m
)

=
1√
m
eπimζ2/4τ

∑

l′∈Z/mZ

e−2πill′/mKl′(τ, ζ ;m),(2.28)

Kl(τ + 1, ζ ;m) = e
πi
(

l2

m
− 1

12

)

Kl(τ, ζ ;m).(2.29)

Note that since the function Kl is a ratio of a theta function and the
Dedekind η-function, the choice of square root (−iτ)1/2 cancels.
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3. Twisted Representations of Lattice Vertex Algebras

In this section, we review the construction of irreducible σ-twisted
modules over a lattice vertex algebra associated to a positive-definite
even lattice (see [KP1, Le, D2, BK]). We do so in more details than
available in the literature, and in particular, we calculate the action of
the twisted energy operator Ltw

0 .

3.1. Lattice vertex algebras. Let Q be a positive-definite even in-
tegral lattice with the bilinear form (·|·). We denote by h = C ⊗Z Q
the corresponding complex vector space considered as an abelian Lie
algebra, and extend the bilinear form (·|·) to it by linearity.

The Heisenberg algebra ĥ = h[t, t−1] ⊕ CK is the Lie algebra with
brackets

(3.1) [am, bn] = mδm,−n(a|b)K , am = atm ,

where K is central, i.e., [am, K] = 0 for all m ∈ Z. Its irreducible
highest-weight representation

(3.2) F = Indĥ

h[t]⊕CK C ∼= S(h[t−1]t−1),

where h[t] acts trivially on C and K = 1, is known as the (bosonic)
Fock space.
Following [FK, B], we consider a 2-cocycle ε : Q × Q → {±1} such

that

(3.3) ε(α, α) = (−1)|α|
2/2 , α ∈ Q ,

and the associative algebra Cε[Q] with basis {eα}α∈Q and multiplication

(3.4) eαeβ = ε(α, β)eα+β .

Such a 2-cocycle ε is unique up to equivalence and can be chosen to be
bimultiplicative, which we shall assume. In this case, by (3.3), we also
have

(3.5) ε(α, β)ε(β, α) = (−1)(α|β) , α, β ∈ Q .

The space of states of the lattice vertex algebra associated to Q is
defined as VQ = F ⊗Cε[Q], where the vacuum vector is 1 = 1⊗ e0. We
extend the action of the Heisenberg algebra on F to VQ by

(3.6) ane
β = δn,0(a|β)eβ , a ∈ h, n ∈ Z .
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The state-field correspondence on VQ is uniquely determined by the
generating fields (recall that zα0eβ = z(α|β)eβ):

Y (a(−1)1, z) =
∑

n∈Z
an z

−n−1 , a ∈ h ,(3.7)

Y (eα, z) = eαzα0 exp
(∑

n<0

αn
z−n

−n
)

exp
(∑

n>0

αn
z−n

−n
)

.(3.8)

Notice that F ⊂ VQ is a vertex subalgebra, which we call the Heisen-
berg vertex algebra. The map h → F given by a 7→ a−11 is injective.
From now on, we will slightly abuse the notation and identify a ∈ h

with a−11 ∈ F ; then a(n) = an for all n ∈ Z. Let {ai} and {bi},
i = 1, . . . , r, be dual bases of h with respect to the bilinear form, so
that

(ai|bj) = δi,j .

Then lattice vertex algebras are conformal with central charge r and
Virasoro vector given by

(3.9) L =
1

2

r∑

i=1

ai(−1)b
i ∈ VQ.

We will denote by Q∗ the dual lattice to Q, which is defined by

(3.10) Q∗ = {λ ∈ h | (λ|α) ∈ Z ∀α ∈ Q} .

This is a free abelian group of the same rank as Q; however, Q∗ is not
integral in general. Notice that Q ⊂ Q∗ because Q is integral. It is
well known (see Theorem 2.7 in [D1]) that the irreducible VQ-modules
are classified by the finite abelian group Q∗/Q, and are given explicitly
by

(3.11) Vλ+Q = F ⊗ Cε[Q]e
λ , λ ∈ Q∗ .

The contragradient module of Vλ+Q is

V ′
λ+Q = V−λ+Q ,

so that the duality corresponds to sending λ to −λ. In particular, we
see that VQ is self-dual.

Theorem 3.1 ([DLM]). For any positive-definite even lattice Q, the
lattice vertex algebra VQ is regular.
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3.2. Twisted Heisenberg algebra. Every automorphism σ of h pre-
serving the bilinear form induces automorphisms of ĥ and F , which
will be denoted again as σ, by setting σ(atm) = σ(a)tm, σ(K) = K
and σ(1) = 1. As before, we assume that σ has a finite order N .

The σ-twisted Heisenberg algebra ĥσ is spanned over C by K and the
elements am = atm, where m ∈ 1

N
Z is such that σa = e−2πima. This is

a Lie algebra with bracket (cf. (3.1)):

[am, bn] = mδm,−n(a|b)K , a, b ∈ h , m, n ∈ 1

N
Z .

Let ĥ≥σ (respectively, ĥ<σ ) be the abelian subalgebra of ĥσ spanned by
all elements am with m ≥ 0 (respectively, m < 0).
The σ-twisted Fock space is defined as

(3.12) Fσ = Indĥσ

ĥ
≥
σ ⊕CK

C ∼= S(ĥ<σ ) ,

where ĥ≥σ acts on C trivially and K acts as the identity operator. Then

Fσ is an irreducible highest-weight representation of ĥσ, and has the
structure of a σ-twisted representation of the Heisenberg vertex algebra
F (see e.g. [FLM, KRR]). This structure can be described as follows.
We let Y (1, z) be the identity operator, let

(3.13) Y (a, z) =
∑

n∈m+Z

an z
−n−1 ,

for a ∈ h and m ∈ 1
N
Z such that σa = e−2πima, and we extend Y to

all a ∈ h by linearity. The action of Y on other elements of F is then
determined by applying several times the product formula (2.8). More
explicitly, F is spanned by elements of the form a1m1

· · ·akmk
1 where

aj ∈ h, mj ∈ Z, and we have:

Y (a1m1
· · · akmk

1, z)v

=
k∏

j=1

∂(N−1−mj )
zj

( k∏

j=1

(zj − z)N Y (a1, z1) · · ·Y (ak, zk)v
)∣
∣
∣
z1=···=zk=z

for all v ∈ Fσ and sufficiently large N . In the above formula, we use
the divided-power notation ∂(n) = ∂n/n!.

3.3. The groups Gσ and G⊥
σ . Let σ be an isometry of the even lattice

Q of finite order N , so that

(3.14) (σα|σβ) = (α|β) , α, β ∈ Q .
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The uniqueness of the cocycle ε, (3.5) and (3.14) imply that there exists
a function η : Q→ {±1} such that

(3.15) η(α + β)ε(σα, σβ) = η(α)η(β)ε(α, β)

for all α, β ∈ Q (the distinction from the Dedekind η-function should
be clear from the context). If L is a sublattice of Q with the property
ε(σα, σβ) = ε(α, β) for α, β ∈ L, then η can be chosen to satisfy
η(α) = 1 for all α ∈ L [BE, Lemma 2.3]. In particular, we can choose
η so that

(3.16) η(α) = 1 , α ∈ Q ∩ h0 ,

where

(3.17) h0 = {h ∈ h | σh = h}
is the subspace of h consisting of vectors fixed under σ.
There is a natural lifting of σ to an automorphism of the lattice

vertex algebra VQ by setting

(3.18) σ(an) = σ(a)n , σ(eα) = η(α)eσα , a ∈ h , α ∈ Q .

Note that the order of σ is either N or 2N when acting on VQ.
We recall the following useful fact concerning dual spaces taken in a

subspace of h.

Lemma 3.2 ([BK], Lemma 4.6). Let t be a subspace of h on which the
bilinear form (·|·) is nondegenerate. Denote by πt : h → t the orthogonal
projection of h onto t. Then for any lattice L ⊂ h, we have

(3.19) πt(L
∗) = (L ∩ t)∗t ,

where ∗t denotes taking dual in t. Equivalently

(3.20) (πt(L))
∗t = L∗ ∩ t.

Next, we introduce the group G = C× × exp h0 × Q consisting of
elements c ehUα (c ∈ C×, h ∈ h0, α ∈ Q) with multiplication

eheh
′
= eh+h′

,(3.21)

ehUαe
−h = e(h|α)Uα ,(3.22)

UαUβ = ε(α, β)B−1
α,β Uα+β ,(3.23)

where

(3.24) Bα,β = N−(α|β)
N−1∏

k=1

(
1− e2πik/N

)(σkα|β)
.
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We set the following notation for the eigenspaces of σ:

hj/N =
{
h ∈ h

∣
∣σh = e−2πij/Nh

}
, 0 ≤ j < N ,(3.25)

h⊥ = (h0)
⊥ =

N−1⊕

j=1

hj/N .(3.26)

From (3.23), we get the commutator

Cα,β = UαUβU
−1
α U−1

β = eπi(π0α|β)e2πi(α∗|β),(3.27)

for α = π0α + (1 − σ)α∗, where α∗ ∈ h⊥ and π0 is the orthogonal
projection of h onto h0 (see [BK, (4.44)]). We will also use the notation
π⊥ = 1− π0 for the orthogonal projection of h onto h⊥.
By [BK, Lemma 4.4], the center Z(G) of G consists of all elements

of the form

(3.28) c e2πiπ0(λ)U(1−σ)λ ,

where c ∈ C× and λ ∈ Q∗ is such that (1 − σ)λ ∈ Q. For α ∈ Q, we
set (cf. [BK, (4.46)]):

(3.29) Cα = η(α)U−1
σαUαe

2πi(bα+π0α) ,

where

(3.30) bα =
1

2

(
|π0α|2 − |α|2

)
.

Applying (3.23), we see that Cα has the form (3.28) for λ = α and a
suitable scalar c; hence Cα ∈ Z(G) for all α ∈ Q.
The next lemma is contained in the proof of [BS, Proposition 5.5],

but is provided here for completeness.

Lemma 3.3. We have CαCβ = Cα+β for all α, β ∈ Q.

Proof. Using that Cβ ∈ Z(G), we find:

CαCβ = η(α)U−1
σαUαe

2πi(bα+π0α)Cβ

= η(α)U−1
σαCβUαe

2πi(bα+π0α)

= η(α)η(β)e2πi(bα+bβ)U−1
σαU

−1
σβ Uβe

2πi π0(β)Uαe
2πi π0(α)

= η(α)η(β)e2πi(bα+bβ)U−1
σαU

−1
σβ UβUαe

2πi(π0β|α)e2πiπ0(α+β) ,
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where in the last line we used (3.22). Then applying (3.23) and (3.15),
we get:

U−1
σαU

−1
σβ UβUα =

Bσβ,σα

ε(σβ, σα)

ε(β, α)

Bβ,α
U−1
σ(α+β)Uα+β

=
η(α+ β)

η(α)η(β)
U−1
σ(α+β)Uα+β ,

because Bσβ,σα = Bβ,α. The rest of the proof follows from (3.30) and
the fact that (π0β|α) = (π0β|π0α). �

Now we define

(3.31) Nσ = {Cα |α ∈ Q}.
It follows from Lemma 3.3 that Nσ is a subgroup of G. Moreover, Nσ ⊂
Z(G). Let Gσ be the quotient group G/Nσ. Note that exp 2πi(Q ∩ h0)
is a subgroup of Nσ so that these elements become trivial in Gσ. Also
consider the subgroup

(3.32) Tσ = exp h0
/
exp 2πi(Q ∩ h0) ⊂ Gσ.

Then C× × Tσ is the connected component of the identity in Gσ.
Let G⊥ ⊂ G be the subgroup

(3.33) G⊥ = {c Uα | c ∈ C×, α ∈ Q ∩ h⊥},
and denote by G⊥

σ the image of G⊥ in Gσ. This image is described as
the quotient group G⊥/N⊥

σ , where

(3.34) N⊥
σ = Nσ ∩G⊥ = {Cα |α ∈ Q ∩ h⊥}.

Then it is easy to see that N⊥
σ is a subgroup of Z(G⊥) and the central-

izer of ĥσ in Gσ is equal to Tσ ×G⊥
σ . The group G

⊥
σ can also be viewed

as a central extension by C× of the finite abelian group

Q ∩ h⊥
(1− σ)(Q ∩ h⊥)

.(3.35)

We will need the following description of the centers.

Lemma 3.4 ([BK], Lemma 4.5). The centers of the groups Gσ, G
⊥,

and G⊥
σ are given by:

Z(Gσ) ∼= Z(G)/Nσ
∼= C× × (Q∗/Q)σ,(3.36)

Z(G⊥) = {c Uα | c ∈ C×, α ∈ Q ∩ (1− σ)Q∗},(3.37)

Z(G⊥
σ )

∼= Z(G⊥)/N⊥
σ
∼= C× × Q ∩ (1− σ)Q∗

(1− σ)(Q ∩ h⊥)
.(3.38)
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Note that in (3.36), (Q∗/Q)σ is the subgroup of Q∗/Q consisting
of cosets λ + Q, where λ ∈ Q∗, such that σ(λ + Q) = λ + Q, i.e.,
(1− σ)λ ∈ Q.

3.4. The Gσ-modules W (µ, ζ). We continue to use the notation of
the previous subsection. Let ζ : Z(G⊥

σ ) → C× be a central character of
G⊥

σ such that ζ(c) = c for every c ∈ C×. Then ζ can also be viewed as
a central character of G⊥ such that ζ(c) = c and ζ(Cα) = 1 for every
c ∈ C× and α ∈ Q ∩ h⊥. Let Ω(ζ) be the unique (up to isomorphism)
finite-dimensional irreducible G⊥

σ -module corresponding to the central
character ζ . Recall that Ω(ζ) can be constructed as follows (see e.g.
[FLM]). Pick a maximal abelain subgroup A⊥

σ of G⊥
σ , and extend ζ to

A⊥
σ ; then Ω(ζ) is the induced module

(3.39) Ω(ζ) = Ind
G⊥

σ

A⊥
σ
Cζ ,

where Cζ is the 1-dimensional A⊥
σ -module C with character ζ .

By Lemma 3.2, we have π0(Q
∗) = (Q ∩ h0)

∗0 , where ∗0 represents
taking dual in h0. For µ ∈ π0(Q

∗), consider the 1-dimensional Tσ-
module Cµ, with the action of Tσ given by

(3.40) e2πih 7→ e2πi(h|µ) , h ∈ h mod Q ∩ h0.

Notice that this is independent of the representative of h modulo Q∩h0
because (α|µ) ∈ Z for α ∈ Q ∩ h0. We also have an action of h0 on Cµ

given by h 7→ (h|µ) for h ∈ h0.
Now consider the Tσ ×G⊥

σ -module Ω(µ, ζ) = Cµ ⊗Ω(ζ), and induce
it to a module for Gσ:

(3.41) W (µ, ζ) = IndGσ

Tσ×G⊥
σ
Ω(µ, ζ).

Alternatively, by (3.39), we can write

(3.42) W (µ, ζ) = IndGσ

Tσ×A⊥
σ
Cµ,ζ ,

where Cµ,ζ is the 1-dimensional Tσ × A⊥
σ -module C with action

(3.43) (e2πih, c Uα)1µ,ζ = c e2πi(h|µ) ζ(Uα)1µ,ζ

for h ∈ h0, c ∈ C×, and α ∈ Q ∩ h⊥ such that Uα ∈ A⊥
σ .

By [BK, Proposition 4.4] and its proof, W (µ, ζ) is an irreducible Gσ-
module such that the action of Tσ on it is semisimple and every c ∈ C×

acts as the scalar c. Moreover, any irreducible Gσ-module with these
properties is isomorphic to W (µ, ζ) for some µ, ζ .

Lemma 3.5 ([BK]). Two pairs (µ, ζ) and (µ′, ζ ′) correspond to iso-
morphic irreducible Gσ-modules if and only if they are related by

(3.44) µ′ = µ+ π0α, ζ ′(Uβ) = C−1
α,β ζ(Uβ),
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for some fixed α ∈ Q and all β ∈ Q ∩ (1 − σ)Q∗. In this case, the
isomorphism W (µ′, ζ ′) → W (µ, ζ) sends 1µ′,ζ′ to Uα1µ,ζ .

Proof. This follows from the discussion in [BK] above Eq. (4.57). Notice
that (3.44) coincides with [BK, (4.57)]. �

It is easy to check that (3.44) defines an equivalence relation on pairs
(µ, ζ); henceforth, two such related pairs will be called equivalent. We
emphasize that while µ can be taken as a representative of the coset
µ + π0(Q), a change in the representative µ also changes the central
character ζ . We summarize the above discussion as follows.

Theorem 3.6 (cf. [BK], Proposition 4.4). There is a bijective corre-
spondence between the following sets of objects:

(1) Irreducible representations of Gσ, up to isomorphism, such that
the action of Tσ is semisimple and every c ∈ C× acts as the
scalar c;

(2) Characters χ : Z(G) → C× such that χ|Nσ = 1 and χ(c) = c
for all c ∈ C× (cf. (3.29), (3.31));

(3) Pairs (µ, ζ), up to equivalence (3.44), where µ ∈ π0(Q
∗) and ζ

is a central character of G⊥
σ such that

(3.45) e2πi(γ|µ)ζ
(
U−1
σγ Uγ

)
= η(γ)e−2πibγ ,

for all γ ∈ Q (cf. (3.30)).

Proof. In addition to the above discussion, let us fill the gaps from [BK]
that were presented without proof there. Recall that the center Z(G)
consists of elements (3.28). Given a pair (µ, ζ), we define χ : Z(G) →
C× by setting

(3.46) χ(c e2πi π0(λ)U(1−σ)λ) = c e2πi(λ|µ) ζ(U(1−σ)λ),

where c ∈ C× and λ ∈ Q∗ with (1− σ)λ ∈ Q.
We check that equivalent pairs correspond to the same character

χ. Suppose (µ, ζ) and (µ′, ζ ′) are equivalent, so they satisfy (3.44) for
some α ∈ Q. Let β = (1−σ)λ ∈ Q∩ (1− σ)Q∗. Then (3.27) with α, β
switched and β∗ = π⊥(λ) implies

(3.47) C−1
α,β = Cβ,α = e2πi(π⊥λ|α) = e−2πi(π0λ|α) .

Hence

e2πi(λ|µ
′)ζ ′(U(1−σ)λ) = e2πi(λ|µ+π0α) C−1

α,β ζ(U(1−σ)λ)

= e2πi(λ|µ)e2πi(λ|π0α)e2πi(π⊥λ|α)ζ(U(1−σ)λ)

= e2πi(λ|µ)ζ(U(1−σ)λ),
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using that

(λ|π0α) + (π⊥λ|α) = (π0λ|α) + (π⊥λ|α) = (λ|α) ∈ Z,

as λ ∈ Q∗ and α ∈ Q.
Putting λ = 0 in (3.46), we obviously have χ(c) = c for c ∈ C×.

Next, we show that condition (3.45) is equivalent to χ|Nσ = 1, i.e., to
χ(Cγ) = 1 for all γ ∈ Q. By (3.23), we can write

U−1
σγ Uγ = xγU(1−σ)γ

for some xγ ∈ C. Then from (3.29) and (3.22), we have

Cγ = xγη(γ)e
2πibγU(1−σ)γe

2πi π0(γ)

= xγη(γ)e
2πibγe2πi π0(γ)U(1−σ)γ ,

because (π0γ|(1− σ)γ) = 0. Then χ(Cγ) = 1 is equivalent to

1 = xγη(γ)e
2πibγχ

(
e2πi π0(γ)U(1−σ)γ

)

= xγη(γ)e
2πibγe2πi(γ|µ)ζ(U(1−σ)γ)

= η(γ)e2πibγe2πi(γ|µ)ζ
(
U−1
σγ Uγ

)
,

which is exactly (3.45). The rest of the proof is in [BK, Proposition
4.4]. �

Remark 3.7. Suppose that (1− σ)Q = Q∩ h⊥. Then Q∩ (1− σ)Q∗ =
(1 − σ)Q. Hence, for a given µ ∈ π0(Q

∗), relation (3.45) completely
determines the character ζ of Z(G⊥

σ ). Some examples that satisfy the
condition (1 − σ)Q = Q ∩ h⊥ include the root lattice A2n+1 (n ≥ 1)
with σ a Dynkin diagram automorphism and the class of permutation
orbifolds (see Section 8 below).

Example 3.8. Another important special case is when h0 = 0. Then
π0 = 0 and µ = 0. Examples that satisfy this condition include σ =
−1 for an arbitrary lattice Q (cf. [D2] and Section 6 below) and the
ADE root lattices with σ a Coxeter element from the Weyl group (cf.
[KP1, KT]).

3.5. The σ-twisted VQ-modules M(µ, ζ). Now we review the con-
struction of irreducible σ-twisted VQ-modules from [BK], where as be-
fore σ is an isometry of Q of order N .
Starting from an irreducible Gσ-module W (µ, ζ) corresponding to a

pair (µ, ζ) as in Theorem 3.6, we make it an h0⊕ ĥ>σ -module by letting

ĥ>σ act trivially. Note that h0 acts on W (µ, ζ) according to

(3.48) h(Uαv) = (h|α + µ)Uαv ,



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 23

for h ∈ h0, α ∈ Q and v ∈ Ω(µ, ζ) (cf. (3.22), (3.41)). Then by inducing

this action to ĥσ, we obtain an irreducible σ-twisted VQ-module

M(µ, ζ) = Indĥσ

h0⊕ĥ>σ
W (µ, ζ) ∼= Fσ ⊗W (µ, ζ)(3.49)

with an action defined as follows.
We define Y (a, z) for a ∈ h as before (see (3.13)), and for α ∈ Q we

let

(3.50) Y (eα, z) = Eα(z)⊗ Uαz
bα+π0α ,

where

(3.51) Eα(z) = exp

(
∑

n∈ 1

N
Z<0

αn
z−n

−n

)

exp

(
∑

n∈ 1

N
Z>0

αn
z−n

−n

)

.

Here the action of zπ0α is given by zπ0α(Uβv) = z(π0α|β+µ)Uβv for β ∈ Q
and v ∈ Ω(µ, ζ). Notice that (π0α|µ) ∈ 1

N
Z. The action of Y on all of

VQ can then be obtained by applying the product formula (2.8).

Theorem 3.9 ([BK], Theorem 4.2). Every irreducible σ-twisted VQ-
module is isomorphic to one of the modules M(µ, ζ), and two such
modules are isomorphic if and only if the corresponding pairs (µ, ζ) are
equivalent according to (3.44). Moreover, every σ-twisted VQ-module
is a direct sum of irreducible ones.

In the special case when σ = 1, we obtain Dong’s Theorem that the
irreducible VQ-modules are classified by Q∗/Q (see (3.11) and [D1]).
Now we describe a basis for M(µ, ζ). We start by choosing a basis

BΩ for the finite-dimensional G⊥
σ -module Ω(µ, ζ).

Remark 3.10. All irreducible G⊥
σ -modules Ω(µ, ζ) have the same di-

mension:
dimΩ(µ, ζ) = d(σ),

where d(σ) is called the defect of σ (see [KP1, BK]). It is known that

d(σ)2 = |G⊥
σ : Z(G⊥

σ )| = |(Q ∩ h⊥)/Qσ|,(3.52)

where Qσ = Q ∩ (1− σ)Q∗ ⊂ Q ∩ h⊥ (see [BK, (4.53)]). In the setting
of [KP1], Q is a root lattice and σ is an element of its Weyl group. In
this case, it was shown in [KP1] that (1 − σ)Q∗ ⊂ Q for such σ and
that d(σ)2 can be described as the order of the torsion subgroup of the
abelian group Q/(1− σ)Q∗.

Due to (3.41), the set {gv | g ∈ CG, v ∈ BΩ} is a basis for the Gσ-
moduleW (µ, ζ), where CG ⊂ Gσ is a set of representatives of the cosets
of Tσ×G⊥

σ in Gσ. The next lemma provides a way for constructing CG.
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Lemma 3.11. If CQ ⊂ Q is a set of representatives of the cosets of
Q ∩ h⊥ in Q, then CG = {UγNσ ∈ Gσ | γ ∈ CQ} is a set of represen-
tatives of the cosets of Tσ ×G⊥

σ in Gσ.

Proof. By assumption, every α ∈ Q can be written as α = γ + β for
some γ ∈ CQ and β ∈ Q ∩ h⊥. Then for any h ∈ h0 and c ∈ C×, using
(3.22), (3.23), we have

c eh Uα = Uγ e
h c′ Uβ

for some c′ ∈ C×. The claim of the lemma follows, since eh ∈ Tσ and
c′Uβ ∈ G⊥

σ . �

As a consequence of Lemma 3.11, we have:

Corollary 3.12. With the above notation, the set
{
Uγv

∣
∣ γ ∈ CQ, v ∈ BΩ

}

is a basis for W (µ, ζ).

In order to write a basis for the σ-twisted Heisenberg algrebra ĥσ,
we pick a basis {ai}ri=1 for h such that ai ∈ hji/N , where 0 ≤ ji < N

(cf. (3.25)). A basis for ĥσ is then given by
{

aitn
∣
∣
∣ 1 ≤ i ≤ r, n ∈ ji

N
+ Z

}

.

The following is now immediate.

Lemma 3.13. Let CQ ⊂ Q be representatives of the cosets Q/(Q∩h⊥),
let BΩ be a basis for the irreducible G⊥

σ -module Ω(µ, ζ), and {ai}ri=1

be a basis for h as above. Then a basis for the VQ-module M(µ, ζ)
consists of elements

(3.53) (ai1t−n1) · · · (aikt−nk)Uγv (γ ∈ CQ, v ∈ BΩ),

where k ≥ 0 (the case k = 0 corresponding to Uγv), 1 ≤ il ≤ r,
nl ∈ −(jl/N) + Z, nl > 0 for 1 ≤ l ≤ k, and the pairs (il, nl) are
ordered lexicographically.

3.6. Ltw
0 -action on the VQ-module M(µ, ζ). Recall that the lattice

vertex algebra VQ is conformal with central charge r = rankQ and a
Virasoro vector given by (3.9). Then for any σ-twisted VQ-module M ,
from the action Y of VQ on M , we obtain a representation onM of the
Virasoro Lie algebra by

Y (L, z) =
∑

n∈Z
LM
n z

−n−2, LM
n ∈ EndM.

To emphasize that it is a twisted module, we will also denote the modes
LM
n as Ltw

n . An explicit formula for Ltw
n in the more general case of
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twisted logarithmic modules was given in [Ba] for an arbitrary (not
necessarily semisimple) automorphism σ. Here we determine the action
of the twisted energy operator Ltw

0 on a basis of the irreducible σ-
twisted VQ-module M(µ, ζ).
To give this action explicitly, we define a linear operator s on each

eigenspace hj/N by (cf. (3.25)):

(3.54) sa = − j

N
a for a ∈ hj/N , j = 0, . . . , N − 1,

so that σ = e2πis. Let {ai}ri=1 and {bi}ri=1 be dual bases of h consisting
of eigenvectors of σ. Suppose that ai ∈ hji/N . Notice that this implies

sai = − ji
N
ai, sbi =

( ji
N

− 1
)

bi

if ji 6= 0, while sai = sbi = 0 if ji = 0. Then, by [Ba, (6.8)], the action
of Ltw

0 is given by

(3.55) Ltw
0 =

1

2

r∑

i=1

∑

n∈ ji
N
+Z

:(aitn)(bit−n):− 1

2
trh

(
s+ 1

2

)

I,

where the normal ordering : : is defined by

:(aitn)(bit−n): =

{

(aitn)(bit−n), n < 0,

(bit−n)(aitn), n ≥ 0.

For convenience, we set

(3.56) ∆σ = −1

2
trh

(
s + 1

2

)

=
1

4

N−1∑

j=1

j

N

(

1− j

N

)

dim hj/N .

Note that ∆1 = 0 for the identity automorphism σ = 1, which corre-
sponds to the case of untwisted modules.

Remark 3.14. Using that dim hj/N = dim h1−(j/N), we have

trh s =
1

2

N−1∑

j=1

((
j

N
− 1

)

+

(

− j

N

))

dim hj/N = −1

2
dim h⊥.

Remark 3.15. Formula (6.8) in [Ba] uses a linear operator S on h such
that σ = e−2πiS and the eigenvalues of S are in the interval (−1, 0].
The form (3.55) for Ltw

0 is obtained by setting S = −s and using that
(−s

2

)
=
(
s+1
2

)
. Note that the term −ω̄tn in [Ba, (6.8)] vanishes in our

case since the Lie algebra h is abelian and ω̄ is given in terms of Lie
brackets (see [Ba, Lemma 6.4]).
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Lemma 3.16. Let Q be an even lattice and σ be an isometry of Q of
prime order p. Then

(3.57) ∆σ =
p+ 1

24p
dim h⊥,

where h⊥ is given in (3.26). In particular, ∆σl = ∆σ for all l =
1, . . . , p− 1.

Proof. By the Cyclic Decomposition Theorem, h has a σ-invariant basis
on which σ acts as a permutation. The order of each orbit of this action
divides p. Suppose that there are e singleton orbits and d orbits of order
p. Then we have for 1 ≤ j ≤ p− 1:

(3.58) dim h = e+ dp, dim h0 = e+ d, dim hj/p = d.

Hence, (3.56) becomes

∆σ =
d

4

p−1
∑

j=1

j

p

(

1− j

p

)

=
d(p− 1)(p+ 1)

24p
,

thus proving (3.57) since dim h⊥ = d(p−1). The last claim of the lemma
follows from the fact that h⊥ remains the same for σ and σl. �

Remark 3.17. In general, ∆σ = ∆σl if l is coprime to the order of σ,
but (3.57) may no longer hold. In particular, we have ∆σ = ∆σ−1 .

Our goal is to determine the action of Ltw
0 on the basis of the σ-

twisted VQ-module M(µ, ζ). For a ∈ VQ, we have

(3.59) [Ltw
0 , Y (a, z)] = z∂zY (a, z) + Y (L0a, z)

(see e.g. [Ba, Section 5.4]). Recall that in VQ, elements of h have
conformal weight (eigenvalue of L0) 1, and elements eα have conformal
weight |α|2/2 (see e.g. [K2]). Hence, we have:

[Ltw
0 , Y (h, z)] = (1 + z∂z)Y (h, z), h ∈ h,(3.60)

[Ltw
0 , Y (e

α, z)] =

( |α|2
2

+ z∂z

)

Y (eα, z), α ∈ Q.(3.61)

Lemma 3.18. For α ∈ Q, we have

(3.62) [Ltw
0 , Uα] = Uα

( |π0α|2
2

+ π0α

)

.

Proof. Equations (3.60) and (3.13) imply that [Ltw
0 , αn] = −nαn, from

which we get [Ltw
0 , Eα(z)] = z∂zEα(z) (cf. (3.51)). The result now

follows from (3.50), (3.61), and the relation |α|2
2

+ bα = |π0α|2
2

. �
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Now we determine the action of Ltw
0 on v ∈ Ω(µ, ζ):

Ltw
0 v =

1

2

r∑

i=1

(ait0)(bit0)v +∆σv =

( |µ|2
2

+ ∆σ

)

v,(3.63)

using that (ht0)v = (h|µ)v and (htn)v = 0 for n > 0. Then for γ ∈ Q
and v ∈ Ω(µ, ζ), we find

(3.64)

Ltw
0 Uγv = UγL

tw
0 v + [Ltw

0 , Uγ ]v

=

( |µ|2
2

+ ∆σ

)

Uγv + Uγ

( |π0γ|2
2

+ π0γ

)

v

=

( |µ+ π0γ|2
2

+ ∆σ

)

Uγv,

using that (π0γ)v = (π0γ|µ)v. Using (3.64), the action of Ltw
0 on

M(µ, ζ) can now be determined.

Proposition 3.19. Let w = (ai1t−n1) · · · (aikt−nk)Uγv be a basis ele-
ment for M(µ, ζ) as in Lemma 3.13. Then

h0w = (h|µ+ π0γ)w, h ∈ h0,(3.65)

Ltw
0 w =

(

n1 + · · ·+ nk +
|µ+ π0γ|2

2
+ ∆σ

)

w.(3.66)

In particular, Ltw
0 is diagonalizable on M(µ, ζ) with positive eigenval-

ues, with the only exception when M(µ, ζ) ∼= VQ and w = 1, which has
eigenvalue 0.

Proof. The only thing left to prove is the claim that the eigenvalues of
Ltw
0 are positive. From (3.56), we see that ∆σ ≥ 0 and ∆σ > 0 unless

σ = 1. Since Q is positive definite, |µ + π0γ|2 ≥ 0 and |µ + π0γ|2 > 0
unless µ + π0γ = 0. Hence, the eigenvalues of Ltw

0 are non-negative,
and the only way to obtain 0 is if all nj = 0 and σ = 1, µ = γ = 0. �

Remark 3.20. We see from (3.66) that the conformal weight (i.e., the
minimal eigenvalue of Ltw

0 ) of M(µ, ζ) is

∆σ +
1

2
min
γ∈Q

|µ+ π0γ|2.

In particular, if µ = 0, then the conformal weight is ∆σ.

3.7. The sublattice Q̄ ⊂ Q. In this subsection and the next one, we
consider a more general situation when the isometry σ of a positive-
definite even lattice Q is an element of a finite group Γ of isometries.
In subsequent sections, we will return to the case of a single element
σ, or equivalently, a cyclic group Γ = 〈σ〉.
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As in Section 3.1, we fix a bimultiplicative 2-cocycle ε : Q × Q →
{±1}. As in Section 3.3, for any isometry ϕ ∈ Γ, we pick a function
ηϕ : Q→ {±1} such that

(3.67) ηϕ(α + β)ε(ϕα, ϕβ) = ηϕ(α)ηϕ(β)ε(α, β), α, β ∈ Q.

We will assume that η1 = 1 for the identity element ϕ = 1.
Then ϕ induces an automorphism of Cε[Q] defined by

(3.68) ϕ(eα) = ηϕ(α)e
ϕα , α ∈ Q

(cf. (3.4), (3.18)). It also defines an automorphism of VQ similarly
to (3.18), which by abuse of notation we will denote again as ϕ. As
before, the order of ϕ as an automorphism of Cε[Q] (or VQ) may be
double its order as an automorphism of Q. Moreover, this does not
define a representation of Γ, but only a projective representation, or
a representation of its central extension. Following an idea of [BE],
we will avoid these complications by restricting to a certain sublattice
Q̄ of Q, for which this is true and which produces the same orbifold
subalgebra (VQ̄)

Γ = (VQ)
Γ of fixed points under Γ.

Definition 3.21. Let Q̄ be the set of all α ∈ Q such that, for every
ϕ1, ϕ2 ∈ Γ, we have

(3.69) (ϕ1ϕ2)(e
α) = ϕ1(ϕ2(e

α))

in Cε[Q] (and hence also in VQ). Equivalently, Q̄ consists of all α ∈ Q
such that

(3.70) ηϕ1ϕ2
(α) = ηϕ1

(ϕ2α)ηϕ2
(α)

for every ϕ1, ϕ2 ∈ Γ.

Lemma 3.22. The subset Q̄ ⊂ Q is a Γ-invariant sublattice of Q
containing 2Q. In particular, rank Q̄ = rankQ.

Proof. Consider arbitrary α, β ∈ Q and ϕ1, ϕ2 ∈ Γ. Using (3.4) and
that each ϕi acts as an automorphism the associative algebra Cε[Q],
we obtain:

ε(α, β)(ϕ1ϕ2)(e
α+β) = (ϕ1ϕ2)(e

αeβ) = (ϕ1ϕ2)(e
α)(ϕ1ϕ2)(e

β)

and

ε(α, β)ϕ1(ϕ2(e
α+β)) = ϕ1(ϕ2(e

αeβ)) = ϕ1(ϕ2(e
α))ϕ1(ϕ2(e

β)).

If α, β ∈ Q̄, then the right-hand sides of the above equations are equal;
hence, the left sides are equal and α + β ∈ Q̄.
Similarly, taking β = −α and using that ϕ(e0) = e0 for all ϕ ∈ Γ,

we also see that α ∈ Q̄ implies −α ∈ Q̄. Therefore, Q̄ is a sublattice
of Q. Now let β = α ∈ Q be arbitrary. Then, since (ϕ1ϕ2)(e

α) =
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±ϕ1(ϕ2(e
α)), when we square these we get that the right-hand sides of

the above equations are again equal. Hence, 2α ∈ Q̄ for all α ∈ Q.
Finally, to prove the Γ-invariance of Q̄, let α ∈ Q̄ and ϕ1, ϕ2, ϕ3 ∈ Γ.

Then

ηϕ3
(α)(ϕ1ϕ2)(e

ϕ3α) = (ϕ1ϕ2)(ϕ3(e
α)) = (ϕ1ϕ2ϕ3)(e

α)

and

ηϕ3
(α)ϕ1(ϕ2(e

ϕ3α)) = ϕ1(ϕ2(ϕ3(e
α))) = (ϕ1ϕ2ϕ3)(e

α).

This implies that ϕ3α ∈ Q̄. �

Due to Lemma 3.22, we can view Γ as a group of isometries of the
lattice Q̄. Hence, as above, every ϕ ∈ Γ induces an automorphism of
the lattice vertex algebra VQ̄, which is a subalgebra of VQ. By construc-
tion, this does give a representation of Γ on VQ̄. In particular, the order
of ϕ remains the same as an element of Γ and as an automorphism of
VQ̄. Now we prove that the subalgebra of Γ-fixed points is the same in
VQ̄ and in VQ.

Lemma 3.23. We have (VQ)
Γ = (VQ̄)

Γ.

Proof. Since Q̄ ⊂ Q, we have the obvious inclusions VQ̄ ⊂ VQ and
(VQ̄)

Γ ⊂ (VQ)
Γ. To prove the opposite inclusion, consider an arbitrary

element

v =
∑

α∈Q
fα ⊗ eα ∈ VQ (fα ∈ F),

where only finitely many fα 6= 0.
For ϕ1, ϕ2 ∈ Γ, the automorphism ψ = (ϕ1ϕ2)

−1 ◦ ϕ1 ◦ ϕ2 of VQ has
the property that ψ(f) = f and ψ(eα) = ±eα for all f ∈ F , α ∈ Q.
Hence,

ψ(v) =
∑

α∈Q
fα ⊗ ψ(eα).

Suppose that v ∈ (VQ)
Γ, i.e., ϕ(v) = v for all ϕ ∈ Γ. This implies that

ψ(v) = v and ψ(eα) = eα for all α ∈ Q with fα 6= 0. Therefore, α ∈ Q̄
and v ∈ VQ̄. �

If the group Γ is given in terms of generators and relations, then it
is enough to specify ηϕ for the generators ϕ. Due to (3.67), we can let
ηϕ−1 = ηϕ. Then we can use (3.70) to define ηϕ in the case when ϕ is
a product of generators and their inverses. For this process to be well
defined, it needs to respect the relations of Γ; explicitly, we must have

ϕ1 ◦ · · · ◦ ϕk(e
α) = eα,
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or equivalently

ηϕ1
(ϕ2 · · ·ϕkα)ηϕ2

(ϕ3 · · ·ϕkα) · · · ηϕk−1
(ϕkα)ηϕk

(α) = 1,

whenever ϕ1 · · ·ϕk = 1 in Γ. The above identities do not hold in general
for all α ∈ Q, but by construction they hold for all α ∈ Q̄.
In this paper, our main focus is the case when Γ = 〈σ〉 is a cyclic

group of order N . Then all relations in Γ are consequences of the
relation σN = 1. We fix the function η = ησ : Q → {±1} satisfying
(3.15) and (3.16). Then from the above discussion we can define ηϕ for
all ϕ ∈ Γ. Hence, the sublattice Q̄ ⊂ Q is determined by the equation

(3.71) σ ◦ · · · ◦ σ
︸ ︷︷ ︸

N

(eα) = eα,

or equivalently

(3.72) η(σN−1α)η(σN−2α) · · ·η(σα)η(α) = 1.

The final result of this subsection provides a useful characterization of
Q̄ in terms of the bilinear form (·|·) of the lattice Q.

Lemma 3.24. Suppose that Γ = 〈σ〉 is a cyclic group of order N of
isometries of Q. Then Q̄ consists of all α ∈ Q such that

(3.73)
N−1∑

m=1

(α|σmα) ∈ 2Z,

or equivalently,

(3.74) |π0α|2 = (α|π0α) ∈
2

N
Z,

where π0 is the projection onto the space of σ-invariant vectors in h.

Proof. The equivalence of the two conditions is obvious from (α|α) ∈
2Z and the formula

(3.75) π0 =
1

N

N−1∑

m=0

σm.

Since the element Nπ0α = α + σα + · · · + σN−1α ∈ Q is σ-invariant,
we have

(3.76) η(α + σα + · · ·+ σN−1α) = 1, α ∈ Q,

by (3.16).
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We want to calculate the left-hand side of (3.72), which we denote
by L. Using (3.15), we have for 0 ≤ j ≤ N − 2:

η(σj+1α)η(α+ σα + · · ·+ σjα)η(α+ · · ·+ σj+1α)

= ε(α + σα + · · ·+ σjα, σj+1α)ε(σα+ · · ·+ σj+1α, σj+2α).

Then, by (3.76), L equals the product of these expressions, which by
the bimultiplicativity of ε gives

L =
N−2∏

j=0

j∏

i=0

ε(σiα, σj+1α)ε(σi+1α, σj+2α).

Consider first the factors of the form ε(α, σmα) or ε(σmα, α) in the
above product, where 1 ≤ m ≤ N − 1 and we keep in mind that
σNα = α. For each m, there are exactly two such factors, coming from
ε(σiα, σj+1α) with j = m − 1, i = 0, or from ε(σi+1α, σj+2α) with
j = N − 2, i = m− 1. By (3.5), the product of these two factors is

ε(α, σmα)ε(σmα, α) = (−1)(α|σ
mα).

Now consider the remaining factors of the form ε(σkα, σmα) for 1 ≤
k < m ≤ N−1. We claim that every such factor appears exactly twice
in the above product, and hence they cancel each other. Indeed, we
can get ε(σkα, σmα) either from ε(σiα, σj+1α) with j = m − 1, i = k,
or from ε(σi+1α, σj+2α) with j = m− 2, i = k − 1. Therefore,

L =

N−1∏

m=1

(−1)(α|σ
mα),

which completes the proof of the lemma. �

Corollary 3.25. If Γ = 〈σ〉 is cyclic of odd order, then Q̄ = Q.

Proof. When σ has order N = 2n+ 1, we have for every α ∈ Q,

N−1∑

m=1

(α|σmα) =
n∑

m=1

(α|σmα + σN−mα) = 2
n∑

m=1

(α|σmα) ∈ 2Z,

since

(α|σN−mα) = (α|σ−mα) = (σmα|α) = (α|σmα)

by the σ-invariance and symmetry of the bilinear form. Hence, Lemma
3.24 gives Q̄ = Q. �

Remark 3.26. When Γ = 〈σ〉 is cyclic of even order N = 2n, the
same reasoning as in the proof of Corollary 3.25 shows that (3.73) is
equivalent to the condition (α|σnα) ∈ 2Z.
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Corollary 3.27. In the case when Γ = 〈σ〉 is cyclic, the index of Q̄
in Q is either 1 or 2.

Proof. For any α, β ∈ Q, formula (3.75) implies

(π0α|π0β) = (α|π0β) ∈
1

N
Z.

Thus,

|π0(α + β)|2 − |π0α|2 − |π0β|2 ∈
2

N
Z.

If α, β 6∈ Q̄, then N |π0α|2 and N |π0β|2 are odd integers; hence, their
sum is even and α + β ∈ Q̄. �

When Γ = 〈σ〉 is cyclic, the proof of the above corollary also provides
an alternative proof of the fact that Q̄ is a sublattice of Q, while the
σ-invariance of Q̄ is an immediate consequence of (3.14) and Lemma
3.24.

3.8. The subgroup Γσ,µ,ζ. As in the previous subsection, let Γ be a
finite group of isometries of a positive-definite even lattice Q. Following
[DVVV], for every pair of commuting elements σ, ϕ ∈ Γ, we want to
define an action of ϕ on the set of irreducible σ-twisted VQ-modules.
We will continue to use the notation from the previous subsections

regarding σ. If we extend ϕ linearly to h, then it preserves the σ-
eigenspaces hj/N ; in particular,

(3.77) ϕ(h0) ⊂ h0, ϕ(h⊥) ⊂ h⊥.

Hence, ϕ induces an automorphism of the σ-twisted Heisenberg algebra
ĥσ, given by

(3.78) ϕ(htn) = ϕ(h)tn, ϕ(K) = K
(

h ∈ hj/N , n ∈ − j

N
+ Z

)

.

We also define an action of ϕ on the group G by

(3.79) ϕ
(
c eh Uα

)
= c ηϕ(α) e

ϕ(h) Uϕα (c ∈ C×, h ∈ h0, α ∈ Q),

where ηϕ plays the same role for ϕ as η does for σ (see (3.67)). It is
easy to show that ϕ is an automorphism of G. However, in general, it
is not true that ϕ preserves the subgroup Nσ defined by (3.31). It will
be true if we assume that Q̄ = Q, which we will do from now on (cf.
Lemma 3.24 and Corollary 3.25).

Lemma 3.28. If ϕσ = σϕ and α ∈ Q̄, then ϕ(Cα) = Cϕα, where Cα

is defined by (3.29).
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Proof. From (3.70), we have

ηϕσ(α) = ηϕ(σα)ησ(α) = ησϕ(α) = ησ(ϕα)ηϕ(α).

We rewrite this as

ηϕ(σα)ηϕ(α) = η(ϕα)η(α),

where as before η = ησ. Furthermore, observe that ϕ commutes with
π0 and bϕα = bα (cf. (3.75), (3.30)). Using all that, (3.29), and (3.79),
we find

ϕ(Cα) = η(α)ηϕ(σα)ηϕ(α)U
−1
ϕσαUϕαe

2πi(bα+ϕπ0α)

= η(ϕα)U−1
σϕαUϕαe

2πi(bϕα+π0ϕα)

= Cϕα ,

as claimed. �

Due to the above lemma, we have

ϕ(Nσ) ⊂ Nσ, ϕ(N⊥
σ ) ⊂ N⊥

σ .

Hence, we can view ϕ as an automorphism of both Gσ and G⊥
σ . This

induces an action of ϕ among the irreducible Gσ-modules W (µ, ζ).
Since such modules are classified by pairs (µ, ζ), up to equivalence
(3.44), we obtain an action of ϕ on such pairs (see Theorem 3.6).

Lemma 3.29. We have a linear map ϕ : W (µ, ζ) →W (ϕ(µ), ζ ◦ ϕ−1)
such that

(3.80) ϕ(1µ,ζ) = 1ϕ(µ),ζ◦ϕ−1

and

(3.81) ϕ(gw) = ϕ(g)ϕ(w), g ∈ Gσ, w ∈ W (µ, ζ).

Proof. This follows from comparing (3.42), (3.43), (3.79), and noting
that (ϕh|ϕµ) = (h|µ) for h ∈ h0. �

We will be interested in the case when the pairs (ϕ(µ), ζ ◦ ϕ−1) and
(µ, ζ) are equivalent. We introduce the following subgroup of Γ:

(3.82) Γσ,µ,ζ =
{
ϕ ∈ Γ

∣
∣ϕσ = σϕ, (ϕ(µ), ζ ◦ ϕ−1) ∼ (µ, ζ)

}
,

where ∼ denotes the equivalence (3.44). Then, by Lemma 3.5, the
Gσ-modules W (ϕ(µ), ζ ◦ϕ−1) and W (µ, ζ) are isomorphic. Composing
this isomorphism with the map ϕ : W (µ, ζ) → W (ϕ(µ), ζ ◦ ϕ−1) from
Lemma 3.29, we obtain an action of ϕ onW (µ, ζ), which satisfies (3.81)
and

(3.83) ϕ(1µ,ζ) = Uα1µ,ζ ,
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where α ∈ Q is such that

(3.84) ϕ(µ) = µ+ π0α, ζ(ϕ−1(Uβ)) = C−1
α,β ζ(Uβ),

for all β ∈ Q ∩ (1− σ)Q∗.
Similarly, as we assumed that Q̄ = Q, the group Γ acts on VQ by

automorphisms. Hence, ϕ acts on the irreducible σ-twisted modules
by composing the VQ-action with ϕ. More precisely:

Lemma 3.30. We have a linear map ϕ : M(µ, ζ) →M(ϕ(µ), ζ ◦ ϕ−1)
satisfying (3.80) and

(3.85) ϕ
(
Y (a, z)v

)
= Y (ϕ(a), z)ϕ(v), a ∈ VQ, v ∈M(µ, ζ).

Proof. This follows immediately from (3.49), (3.78), and Lemma 3.29.
�

As above, for ϕ ∈ Γσ,µ,ζ , we obtain an action of ϕ on M(µ, ζ) sat-
isfying (3.83) and (3.85). In particular, if we restrict to the orbifold
subalgebra V Γ

Q , then we will have ϕ(a) = a in (3.85); hence the map

ϕ : M(µ, ζ) →M(µ, ζ) is an isomorphism of V Γ
Q -modules.

Remark 3.31. Later we will restrict to the case when the group Γ = 〈σ〉
is cyclic, so ϕ = σk for some k. Then we have ϕ(µ) = µ and ζ◦ϕ−1 = ζ ,
which imply, in particular, that Γσ,µ,ζ = Γ. Indeed, σ(µ) = µ because
µ ∈ π0(Q

∗), and ζ ◦ σ = ζ because ζ(Cα) = 1 for all α ∈ Q ∩ h⊥ (see
(3.29), (3.34), (3.79)).

4. Modified Characters of Twisted VQ-modules

Throughout this section, as before, Q will be a positive-definite even
integral lattice, and ϕ, σ will be two commuting isometries of Q. Our
goal is to compute the modified characters of irreducible σ-twisted VQ-
modules M(µ, ζ), which are defined by

(4.1) χσ,ϕ
M(µ,ζ)(τ, h) = trM(µ,ζ) ϕe

2πihqL
tw
0 − r

24 ,

where r = rankQ, h ∈ h0, ϕ ∈ Γσ,µ,ζ (cf. (3.82)), and q = e2πiτ with
τ ∈ C, Im τ > 0. Since M(µ, ζ) is a tensor product of the σ-twisted
Fock space Fσ and the Gσ-module W (µ, ζ), the trace is a product of
traces over them. First, we compute the trace over Fσ under only the
assumption that σϕ = ϕσ. Then we find the trace over W (µ, ζ) under
the additional assumption that ϕ is a power of σ, which is always the
case when Γ = 〈σ〉.
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4.1. Calculating the trace over Fσ. In this subsection, we only
assume that h is a finite-dimensional complex vector space equipped
with a nondegenerate symmetric bilinear form (·|·), and σ, ϕ are two
commuting automorphisms of h of finite order preserving (·|·).
Any linear operator σ, such that σN = 1 for some positive integer

N , can be diagonalized with eigenvalues N -th roots of 1 (cf. (3.25)).
Since σ and ϕ commute, they can be diagonalized simultaneously. We
denote by

(4.2) hx,y =
{
h ∈ h

∣
∣σh = e−2πixh, ϕh = e−2πiyh

}

the common eigenspaces for σ and ϕ. Similarly to (3.54), we define
linear operators s and f on h by

(4.3) s(h) = −xh, f(h) = −yh for h ∈ hx,y ,

where the eigenvalues of s and f are chosen to be in the interval (−1, 0],
i.e., 0 ≤ x, y < 1. Hence, by construction,

(4.4) σ = e2πis, ϕ = e2πif ,

and s coincides with the operator previously defined by (3.54).

Consider the σ-twisted Heisenberg algebra ĥσ and its irreducible
highest-weight representation, the σ-twisted Fock space Fσ (see Sec-

tion 3.2). Recall that ϕ induces an automorphism of ĥσ given by (3.78).

Since ϕ preserves the subalgebra ĥ<σ , it also induces a linear operator
ϕ on Fσ such that (cf. (3.12)):

(4.5) ϕ(1) = 1, ϕ(av) = ϕ(a)ϕ(v), a ∈ ĥσ, v ∈ Fσ .

Now we find the trace over Fσ of ϕe2πihqL
tw
0 − r

24 for h ∈ h0. As the
action of h0 on Fσ is trivial, this trace simplifies to

(4.6) χFσ(ϕ, τ) = trFσ ϕq
Ltw
0 − r

24 .

Theorem 4.1. For every two commuting automorphisms σ, ϕ of h as
above, we have

χFσ(ϕ, τ) =
1

Pσ,ϕ(τ)
,

where

(4.7) Pσ,ϕ(τ) = q−∆σ+
r
24

∞∏

m=1

deth(1− ϕqm+s)

and ∆σ is defined by (3.56).
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Proof. Choose a basis {ai}ri=1 for h consisting of common eigenvectors
for σ and ϕ, so that ai ∈ hsi,fi. Then Fσ has a basis of monomials of
the form

w = (ai1t−n1) · · · (aikt−nk)1,

where k ≥ 0 (with k = 0 corresponding to w = 1), 1 ≤ il ≤ r,
nl ∈ −sil + Z, nl > 0 for 1 ≤ l ≤ k, and the pairs (il, nl) are ordered
lexicographically.
As a special case of (3.66), we have that

Ltw
0 w = (n1 + · · ·+ nk +∆σ)w,

while (3.78) and (4.2)–(4.5) imply that

ϕw = e−2πi(fi1+···+fik )w.

Therefore,

ϕqL
tw
0

− r
24w = q∆σ− r

24 e−2πi(fi1+···+fik )qn1+···+nkw

= q∆σ− r
24 (e−2πifi1qm1−si1 ) · · · (e−2πifik qmk−sik )w ,

where ml = nl + sil ∈ Z. Notice that nl > 0 and sil ≥ 0 imply that
ml > 0 for all 1 ≤ l ≤ k.
For each positive integer m that appears in the above product, con-

sider the set of indices l ∈ {1, . . . , k} such thatml = m, and let uj,m ≥ 0
be the number of such l for which il = j (1 ≤ j ≤ r). Then we can
rewrite

ϕqL
tw
0

− r
24w = q∆σ− r

24

( ∞∏

m=1

r∏

j=1

(e−2πifjqm−sj )uj,m

)

w,

where only finitely many uj,m 6= 0. Summing over the eigenvalues of
all basis vectors w ∈ Fσ, we obtain that the trace (4.6) is

χFσ(ϕ, τ) = q∆σ− r
24

∞∏

m=1

r∏

j=1

∞∑

uj,m=0

(e−2πifjqm−sj)uj,m .

On the other hand, for every fixed m, we have

deth(1− ϕqm+s) =
r∏

j=1

(1− e−2πifjqm−sj) ,

as the determinant is the product of eigenvalues. Using a geometric
series expansion, we find

1

deth(1− ϕqm+s)
=

r∏

j=1

∞∑

uj,m=0

(e−2πifjqm−sj)uj,m ,
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and a comparison with the above expression for χFσ(ϕ, τ) completes
the proof of the theorem. �

The products Pσ,ϕ(τ) can be computed more explicitly in the case
when ϕ = σk and the order of σ is prime, by use of the following lemma.

Lemma 4.2. Suppose that σ has a prime order p. Then, for all k,m ∈
Z, we have

deth
(
1− σkqm+s

)
= (1− qm)r0

p−1
∏

j=1

(

1− ω−jkqm− j
p

)d

,

where r0 = dim h0, d = dim h1/p, and ω = e2πi/p.

Proof. This follows directly from the definition of s (see (3.54)) and the
proof of Lemma 3.16 (see (3.58)). �

As a consequence of Lemma 4.2 and Remark 3.17, we see that
Pσl,σkl(τ) = Pσ,σk(τ) for all 1 ≤ l ≤ p − 1, because replacing σ with
σl amounts to performing the permutation j 7→ lj mod p on the index
set {1, . . . , p − 1}. More generally, one can prove such an invariance
without assuming that the order of σ is prime:

(4.8) Pσl,σkl(τ) = Pσ,σk(τ), χF
σl
(σkl, τ) = χFσ(σ

k, τ),

for every l that is coprime to the order N of σ.

4.2. The sublattice R⊥ and a basis for W (µ, ζ). In this subsection
and the next one, our goal is to compute the trace

(4.9) χσ,ϕ
W (µ,ζ)(τ, h) = trW (µ,ζ) ϕe

2πihqL
tw
0 −∆σ , h ∈ h0,

where W (µ, ζ) is one of the irreducible Gσ-modules (see Theorem 3.6).
The factor q∆σ corresponding to the eigenvalue of Ltw

0 in (3.66) is in-
cluded in the trace over the Fock space (4.6). We thereby subtract ∆σ

from the exponent of q in (4.9), so that we have (cf. (4.1), (4.6)):

(4.10) χσ,ϕ
M(µ,ζ)(τ, h) = χFσ(ϕ, τ)χ

σ,ϕ
W (µ,ζ)(τ, h).

From now on, we assume that Q̄ = Q and ϕ ∈ Γσ,µ,ζ (cf. Lemma 3.24,
Corollary 3.25, and (3.82)). The condition ϕ ∈ Γσ,µ,ζ ensures that we
have an action of ϕ on W (µ, ζ) satisfying (3.81) and (3.83).
Recall that a basis for W (µ, ζ) is given in Corollary 3.12. If we take

one of the basis vectors of the form Uγv (γ ∈ CQ, v ∈ BΩ), then by
(3.79), (3.81), we have

ϕ(Uγv) = ϕ(Uγ)ϕ(v) = ηϕ(γ)Uϕγϕ(v).

Notice that, as v ∈ Ω(µ, ζ), it has h0-weight µ, i.e., e
hv = e(h|µ)v for

h ∈ h0. Then the weight of Uγv is π0γ + µ. On the other hand, by
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Lemma 3.29, the weight of ϕ(v) is ϕ(µ); hence, the weight of ϕ(Uγv)
is π0ϕ(γ) + ϕ(µ). Thus, the only representatives γ ∈ CQ contributing
to the trace (4.9) are those satisfying

(4.11) π0γ + µ = π0ϕ(γ) + ϕ(µ).

Notice that this condition trivially holds in the case when ϕ = σk is a
power of σ, because σ(µ) = µ and π0 ◦ σ = π0.
In order to provide a more explicit basis for W (µ, ζ), we recall its

alternate description given by (3.42). For that, we need to pick a max-
imal abelain subgroup A⊥

σ of G⊥
σ , which we can do as follows. Notice

that when α, β ∈ Q ∩ h⊥, the commutator (3.27) reduces to

Cα,β = e2πi(α∗|β), α = (1− σ)α∗ .

Hence, if we choose a maximal sublattice R⊥ ⊂ Q ∩ h⊥ with the pro-
perty that

(4.12) (α∗|β) ∈ Z for α, β ∈ R⊥ ,

then we can take

(4.13) A⊥
σ =

{
c UαN

⊥
σ

∣
∣ c ∈ C×, α ∈ R⊥

}
.

Thus, a basis forW (µ, ζ) consists of elements Uδ1µ,ζ , where δ runs over
a set of representatives of the cosets Q/R⊥.
We can improve the above description even further by introducing

the lattice (cf. [BE]):

(4.14) L = (Q ∩ h⊥) + (Q ∩ h0) .

Note that this sum is direct and Q/L is a finite group. We have a chain
of sublattices in Q:

R⊥ ⊂ Q ∩ h⊥ ⊂ L ⊂ Q,

and L/(Q∩h⊥) ∼= Q∩h0. Let CL ⊂ Q be a set of representatives of the
cosets Q/L, and CR ⊂ Q ∩ h⊥ be a set of representatives of the cosets
(Q ∩ h⊥)/R⊥. Then

{
α + β + γ

∣
∣α ∈ Q ∩ h0, β ∈ CL, γ ∈ CR

}

is a set of representatives of the cosets Q/R⊥. We can summarize the
above discussion as follows.

Proposition 4.3. Let CL ⊂ Q be a set of representatives of the cosets
Q/L, and CR ⊂ Q ∩ h⊥ be a set of representatives of the cosets (Q ∩
h⊥)/R⊥. Then a basis for W (µ, ζ) consists of the elements

UαUβUγ1µ,ζ (α ∈ Q ∩ h0, β ∈ CL, γ ∈ CR).
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Similarly, notice that {Uγ1µ,ζ | γ ∈ CR} is a basis of the irreducible
G⊥

σ -module Ω(µ, ζ), by (3.39). As a consequence, we obtain another
formula for the defect:

(4.15) d(σ) = |(Q ∩ h⊥)/R⊥| = |CR| ,
since d(σ) = dimΩ(µ, ζ) by Remark 3.10. Finally, we point out that
the cosets of Q/L can be replaced with the cosets of π0(Q)/(Q ∩ h0),
as we now show.

Lemma 4.4. For an integral lattice Q with an isometry σ, define L
by (4.14) and let M = Q ∩ h0. Then the map β + L 7→ π0β +M is a
group isomorphism Q/L ∼= π0(Q)/M .

Proof. Consider the map f : Q→ π0(Q)/M given by f(β) = π0β +M .
Then clearly f is a surjective group homomorphism and L ⊂ Ker f . In
order to show that L = Ker f , consider β ∈ Ker f so that α := π0β ∈
M . Then π0(α− β) = 0, which implies α− β ∈ Q ∩ h⊥. Hence β ∈ L,
and the result follows from the First Isomorphism Theorem. �

Remark 4.5. Sections 3.7, 3.8, 4.1, and 4.2 were developed in a more
general setting than needed for the rest of the paper. We hope that
they will be useful for future investigations.

4.3. Calculating the trace over the Gσ-module W (µ, ζ). From
now on, we will assume that Γ = 〈σ〉 is a cyclic group of finite order N
and ϕ = σk is a power of σ. Then, by Lemma 3.29 and Remark 3.31,
we have an action of ϕ on W (µ, ζ) such that ϕ(1µ,ζ) = 1µ,ζ and (3.81)
holds. Now (4.9) reduces to

(4.16) χσ,σk

W (µ,ζ)(τ, h) = trW (µ,ζ) σ
ke2πihqL

tw
0 −∆σ , h ∈ h0.

In this subsection, we will express (4.16) in terms of a theta function
(recall Section 2.4).

Proposition 4.6. Let Q be a positive-definite even integral lattice, and
σ be an isometry of Q of finite order. Then

(4.17) χσ,σk

W (µ,ζ)(τ, h) = d(σ)e−πik|µ|2θµ+π0(Q)(τ + k, h, 0).

As a consequence, we have

(4.18) χσ,σk

W (µ,ζ)(τ, h) = e−πik|µ|2χσ,1
W (µ,ζ)(τ + k, h).

Proof. Let w = UαUβUγ1µ,ζ be a basis element of W (µ, ζ) as in Propo-
sition 4.3. Using (3.81) and σ(1µ,ζ) = 1µ,ζ, we compute the action of σ
on w:

σw = σ(Uα)σ(Uβ)σ(Uγ)1µ,ζ .
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First, by (3.16) and (3.79) with η = ησ, we have

σ(Uα) = η(α)Uσα = Uα , α ∈M := Q ∩ h0 .

Next, we find

σ(Uβ) = η(β)Uσβ = Uβe
2πi(bβ+π0β) , β ∈ Q ,

since Cβ = 1 in Gσ; see (3.29). Similarly,

σ(Uγ) = Uγe
2πi(bγ+π0γ) = Uγ , γ ∈ Q ∩ h⊥ ,

because π0γ = 0 and bγ = −|γ|2/2 ∈ Z. Finally, by (3.22) and (3.43),
we have

e2πi π0βUγ1µ,ζ = Uγe
2πiπ0β1µ,ζ = Uγe

2πi(β|µ)1µ,ζ ,

as (π0β|γ) = 0. Putting the above together, we get

σw = e2πi(bβ+(β|µ))w .

Then the k-th power gives

σkw = e2πik(bβ+(β|µ))w .

On the other hand,

e2πihw = e2πi(h|α+β+µ)w , h ∈ h0 ,

again by (3.43), and

qL
tw
0

−∆σw = q
1

2
|µ+α+π0β|2w,

by (3.66), where we used π0α = α, π0γ = 0. Therefore,

σke2πihqL
tw
0

−∆σw = e2πi(kbβ+k(β|µ)+(h|α+β+µ))q
1

2
|µ+α+π0β|2w .

Then the trace (4.16) is the sum of the eigenvalues:
∑

α∈M

∑

β∈CL

∑

γ∈CR

e2πi(kbβ+k(β|µ)+(h|α+β+µ))q
1

2
|µ+α+π0β|2

The sum over γ gives |CR| = d(σ); see (4.15). To simplify the rest,
we rewrite

2bβ + 2(β|µ) = |π0β|2 − |β|2 + 2(β|µ)
≡ |π0β + µ|2 − |µ|2 mod 2Z

≡ |µ+ α + π0β|2 − |µ|2 mod 2Z ,

where we used that |α|2 ∈ 2Z, |β|2 ∈ 2Z and (α|π0β + µ) = (α|β) +
(α|µ) ∈ Z. For the last claim, we have (α|µ) = (α|λ) ∈ Z if µ = π0λ
for some λ ∈ Q∗.
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Hence, we can express the trace as a multiple of a theta function:

χσ,σk

W (µ,ζ)(τ, h) = d(σ)e−πik|µ|2
∑

α∈M

∑

β∈CL

e2πi(h|µ+α+π0β)eπi(τ+k)|µ+α+π0β|2

= d(σ)e−πik|µ|2
∑

β∈CL

θµ+π0β+M(τ + k, h, 0)

= d(σ)e−πik|µ|2θµ+π0(Q)(τ + k, h, 0),

where in the last equality we used the isomorphism Q/L ∼= π0(Q)/M
from Lemma 4.4. �

Next, we derive some properties of the defect d(σ) that are useful
when describing the characters of σl-twisted modules (cf. Remark 3.10).

Lemma 4.7. Let Q be a positive-definite even integral lattice, and σ
be an isometry of Q of order N .

(i) If l and N are coprime, then d(σl) = d(σ).
(ii) If (1− σ)Q = Q ∩ h⊥, then d(σ) = 1.

Proof. Recall that the defect d(σ) is defined by (3.52):

d(σ)2 =
∣
∣(Q ∩ h⊥)/(Q ∩ (1− σ)Q∗)

∣
∣ .

As l is coprime to N , the space h⊥ is the same for σ and σl. Since 1−σ
divides 1− σl, we have

Q ∩ (1− σl)Q∗ ⊂ Q ∩ (1− σ)Q∗.

It follows that d(σ) ≤ d(σl). But 〈σ〉 = 〈σl〉 similarly implies that
d(σ) ≥ d(σl). Hence d(σ) = d(σl). Finally, (ii) follows from

(1− σ)Q ⊂ Q ∩ (1− σ)Q∗ ⊂ Q ∩ h⊥ .

This completes the proof. �

It will be convenient to have an expression for χσ,σk

W (µ,ζ)(τ, h) in terms

of a theta function corresponding to an integral lattice. Notice that
the lattice π0(Q) is not integral in general. However,

√
Nπ0(Q) is an

even integral lattice by Lemma 3.24, if we assume Q = Q̄. Using the
rescaling property (2.11) of theta functions, we obtain the following.

Proposition 4.8. Let Q be a positive-definite even integral lattice, σ
be an isometry of Q of finite order N , and assume that Q = Q̄. Then√
Nπ0(Q) is an even integral lattice and

(4.19) χσ,σk

W (µ,ζ)(τ, h) = d(σ)e−πik|µ|2θ√Nµ+
√
Nπ0(Q)

(τ + k

N
,
h√
N
, 0
)

.
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Notice that in the left-hand side of (4.19), k can be taken mod N
because σN = 1. Using the transformation (2.13), one can check that
the same is true for the right-hand side of (4.19). It is also not hard to
see that

(4.20)
√
Nµ ∈

(√
Nπ0(Q)

)∗
for all µ ∈ π0(Q

∗) ,

where the dual of
√
Nπ0(Q) is taken in h0.

Finally, we multiply the modified characters from Theorem 4.1 and
Proposition 4.8 as in (4.10) to yield the modified characters of irre-
ducible σ-twisted VQ-modulesM(µ, ζ), given by the following theorem.

Theorem 4.9. Let Q be a positive-definite even integral lattice, σ be
an isometry of Q of finite order N , and assume that Q = Q̄. Then
the modified characters (4.1) for ϕ = σk are given by

(4.21) χσ,σk

M(µ,ζ)(τ, h) = d(σ)e−πik|µ|2 θ
√
Nµ+

√
Nπ0(Q)

(
τ+k
N
, h√

N
, 0
)

Pσ,σk(τ)
.

Remark 4.10. When π0(Q) is an even integral lattice, we have the
simpler formula

(4.22) χσ,σk

M(µ,ζ)(τ, h) = d(σ)
θµ+π0(Q) (τ , h, 0)

Pσ,σk(τ)
,

which follows from (4.17) and (2.13).

Corollary 4.11. Suppose that l is coprime to the order N of σ. Let
µ ∈ π0(Q

∗), let ζ be a central character of G⊥
σ , and ζ ′ be a central

character of G⊥
σl . Denote the irreducible σl-twisted VQ-module corre-

sponding to the pair (µ, ζ ′) as M(µ, ζ ′; σl). Then

(4.23) χσl,σkl

M(µ,ζ′;σl)
(τ, h) = χσ,σk

M(µ,ζ)(τ, h).

Proof. First of all, note that the projection π0 is the same for both σ
and σl. We have

(4.24) χσl,σkl

W (µ,ζ′)(τ, h) = χσ,σk

W (µ,ζ)(τ, h),

due to (4.17) and Lemma 4.7(i). Then (4.23) follows from (4.8), (4.10),
and (4.24). �

Remark 4.12. If l is coprime to the order N of σ, then l has a multi-
plicative inverse mod N . Hence, for fixed l coprime to N , all powers of
σ can be written in the form σkl for some k.

Notice that the characters χσ,σk

M(µ,ζ)(τ, h) are independent of the central

character ζ of G⊥
σ . In the special case when (1− σ)Q = Q ∩ h⊥, there

is a unique ζ for any fixed µ ∈ π0(Q
∗) (see Remark 3.7). Otherwise,
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we will require a choice of ζ when inverting formula (4.19), which we
will do when we compute the modular transformations of characters in
Section 5.2 below.

4.4. Calculating the trace over the untwisted VQ-module Vλ+Q.

In this subsection, we find the modified characters

(4.25) χ1,ϕ
Vλ+Q

(τ, h) = trVλ+Q
ϕe2πihqL0− r

24

of irreducible untwisted VQ-modules Vλ+Q, where ϕ is an isometry of
finite order of the positive-definite even lattice Q, λ ∈ Q∗, h ∈ h, and
r = rankQ. While these may be derived as a special case of previous
results, it is instructive to present a direct calculation here.
Recall from (3.11) the construction of Vλ+Q as F ⊗W (λ), where F

is the Fock space (3.2) and

(4.26) W (λ) = Cε[Q]e
λ = span

{
eλ+α

∣
∣α ∈ Q

}
.

Clearly, W (λ) only depends on the coset λ+Q ∈ Q∗/Q. As in Lemma
3.13, Vλ+Q has a basis consisting of monomials of the form

(4.27) v = ai1−n1
· · · aik−nk

eλ+α ,

where α ∈ Q, {ai}ri=1 is a fixed basis for h, k ≥ 0 (with k = 0 corre-
sponding to v = eλ+α), 1 ≤ il ≤ r, nl ∈ Z, nl > 0 for 1 ≤ l ≤ k, and
the pairs (il, nl) are ordered lexicographically.
Similarly to the action (3.18), we have an action of ϕ on the vectors

(4.27) given by

(4.28) ϕ(v) = ηϕ(λ+ α)ϕ(ai1)−n1
· · ·ϕ(aik)−nk

eϕ(λ+α) .

As in Lemma 3.30, we have:

Lemma 4.13. The linear map ϕ : Vλ+Q → Vϕ(λ)+Q, defined by (4.28),
satisfies

(4.29) ϕ
(
Y (a, z)v

)
= Y (ϕ(a), z)ϕ(v), a ∈ VQ, v ∈ Vλ+Q.

Since the action of ϕ sends Vλ+Q to Vϕ(λ)+Q, the trace (4.25) makes
sense only when

λ+Q = ϕ(λ) +Q, i.e., (1− ϕ)λ ∈ Q.

Let v be as in (4.27). Any h ∈ h acts on v as the zero mode h0 according
to

h0v = (h|λ+ α)v

(cf. (3.6), (3.65)), while the action of L0 is given by

L0v =
(

n1 + · · ·+ nk +
|λ+ α|2

2

)

v
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(cf. (3.66)). Hence,

e2πihqL0v = e2πi(h|λ+α)qn1+···+nk+
1

2
|λ+α|2v.

Therefore, the only basis vectors v that contribute to the trace (4.25)
are those with

ϕ(λ+ α) = λ+ α, α ∈ Q.

If one such α exists, then we can replace the representative λ ∈ Q∗ of
the coset λ+Q with λ+α, and assume without loss of generality that
ϕ(λ) = λ. Then all other α lie in Q∩ hϕ, where hϕ ⊂ h is the subspace
of fixed points under ϕ. Notice that when ϕ(λ + α) = λ + α, we can
assume ηϕ(λ+ α) = 1; cf. (3.16).
Under the above conditions, the trace (4.25) becomes a product of

traces

(4.30) χ1,ϕ
Vλ+Q

(τ, h) =
(

trF ϕq
L0− r

24

)(

trW (λ)ϕ e
2πihqL0

)

,

where λ ∈ Q∗ ∩ hϕ and

W (λ)ϕ = span
{
eλ+α

∣
∣α ∈ Q ∩ hϕ

}
⊂W (λ)

is the subspace of ϕ-invariants.
The first factor in the right-hand side of (4.30) is the special case of

χFσ(ϕ, τ) for σ = 1 (see (4.6)). From Theorem 4.1, we obtain

trF ϕq
L0− r

24 = χF (ϕ, τ) =
1

P1,ϕ(τ)
,

where

P1,ϕ(τ) = q
r
24

∞∏

m=1

deth(1− ϕqm) .

The second factor in the right-hand side of (4.30) is given by

trW (λ)ϕ e
2πihqL0 =

∑

γ∈λ+(Q∩hϕ)
e2πi(h|γ)q

1

2
|γ|2 = θλ+(Q∩hϕ)(τ, h, 0).

We summarize the answers in the following theorem.

Theorem 4.14. Let Q be a positive-definite even integral lattice, ϕ be
an isometry of Q of finite order, and λ ∈ Q∗ be such that (1−ϕ)λ ∈ Q.
If there exists α ∈ Q such that ϕ(λ + α) = λ + α, then the modified
character (4.25) is given by

(4.31) χ1,ϕ
Vλ+Q

(τ, h) =
θλ+α+(Q∩hϕ)(τ, h, 0)

P1,ϕ(τ)
.

If no such α exists, then χ1,ϕ
Vλ+Q

(τ, h) = 0.
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In the rest of the paper, we will restrict to the special case considered
earlier, when σ is an isometry of Q of order N , and ϕ = σk with
k coprime to N . In this case, since 〈σ〉 = 〈σk〉, the subspace hϕ of
ϕ-invariants coincides with hσ = h0. Thus, (4.31) can be rewritten as

(4.32) χ1,σk

Vλ+Q
(τ, h) =

θλ+M (τ, h, 0)

P1,σk(τ)
, λ ∈ Q∗ ∩ h0, M = Q ∩ h0.

We also restate the last claim of Theorem 4.14 as

χ1,σk

Vλ+Q
(τ, h) = 0 if λ ∈ Q∗ , (1− σ)λ ∈ Q,

and (λ+Q) ∩ h0 = {0}.
(4.33)

In particular, for σ = 1 (or directly from (4.31) for ϕ = 1), we recover
the well-known result that the character of Vλ+Q is

(4.34) χ1,1
Vλ+Q

(τ, h) =
θλ+Q(τ, h, 0)

P1,1(τ)
, λ ∈ Q∗ .

For future reference, we denote the numerators of (4.32) and (4.34)
as follows:

χ1,σk

W (λ)(τ, h) = θλ+M(τ, h, 0), λ ∈ Q∗ ∩ h0 ,(4.35)

χ1,1
W (λ)(τ, h) = θλ+Q(τ, h, 0), λ ∈ Q∗ .(4.36)

We can compute the denominators by applying the next lemma, which
is similar to Lemma 4.2.

Lemma 4.15. Suppose that σ has a prime order p. Then, for m ∈ Z

and 1 ≤ k ≤ p− 1, we have

deth
(
1− qm

)
= (1− qm)r ,

deth
(
1− σkqm

)
= (1− qmp)d (1− qm)r−dp ,

where r = dim h and d = dim h1/p.

Proof. The first equation is obvious. For the second one, we compute
using (3.58):

deth
(
1− σkqm

)
= (1− qm)r0

p−1
∏

j=1

(

1− ω−jkqm
)d

,

where r0 = dim h0 and ω = e2πi/p. Notice that the map j 7→ −jk mod
p is a permutation of the set {1, . . . , p−1}; hence, we can replace ω−jk

with ωj in the above product. Then apply the polynomial identity

xp − 1

x− 1
= xp−1 + · · ·+ x+ 1 =

p−1
∏

j=1

(x− ωj)
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to finish the proof. �

In particular, we see from Lemma 4.15 that

(4.37) Pσk,1(τ) = Pσ,1(τ), χ1,σk

Vλ+Q
(τ, h) = χ1,σ

Vλ+Q
(τ, h),

for all 1 ≤ k ≤ p− 1.

4.5. Irreducible orbifold modules and their characters. Let, as
before, Q be a positive-definite even integral lattice and σ be an isom-
etry of Q such that Q = Q̄ (cf. Lemma 3.24 and Corollary 3.25). In
this subsection, we derive the classification of irreducible modules over
the orbifold subalgebra V σ

Q from the general results of [DRX], assuming
that the order N = p of σ is prime. Then we obtain their characters
from the characters of twisted and untwisted VQ-modules. In order to
state the classification, we need to introduce some notation.
First, recall that if σ acts as a linear operator of order N on a vector

space W , then σ is diagonalizable with eigenvalues N -th roots of 1,
and the projections onto the eigenspaces of σ are given by:

(4.38) πj =
1

N

N∑

k=0

ωjkσk
(
0 ≤ j ≤ N − 1, ω = e2πi/N

)
.

We denote by W j = πj(W ) the eigenspace with eigenvalue ω−j. Com-
pared with our earlier notation, we have hj = hj/N (see (3.25), (3.75)).
Second, assuming that N = p is prime, if σ acts on a finite set, then

every orbit has order either 1 or p. In particular, this applies to the
finite set Q∗/Q. The set of singleton orbits is the set of fixed points
(Q∗/Q)σ, and it consists of λ+Q with λ ∈ Q∗ such that (1−σ)λ ∈ Q.
We choose a set O ⊂ Q∗/Q of representatives of the orbits of order p.
Finally, again for N = p prime, every σl with 1 ≤ l ≤ p − 1 is a

generator of the cyclic group Γ = 〈σ〉. Hence, the projection π0 is the

same both for σ and σl, and hσ = hσ
l

= h0. By Theorem 3.9, the
irreducible σl-twisted VQ-modules are classified by pairs (µ, ζ), where
µ ∈ π0(Q

∗) and ζ is a central character of G⊥
σl satisfying the analog of

(3.45) with σl in place of σ:

(4.39) e2πi(γ|µ)ζ
(
U−1
σlγ
Uγ

)
= ησl(γ)e−2πibγ , γ ∈ Q.

Definition 4.16. For fixed µ ∈ π0(Q)
∗ and 1 ≤ l ≤ p − 1, let Zµ,σl

be the set of all central characters ζ of G⊥
σl that satisfy relation (4.39).

For l = 1, we will use the shorter notation Zµ = Zµ,σ.

Proposition 4.17. Let µ ∈ π0(Q
∗), and 1 ≤ k, l ≤ p − 1 be such

that kl ≡ 1 mod p. Then the map ζ 7→ ζk is a bijection Zµ → Zµ,σl .
Moreover, ζp = 1 for all ζ ∈ Zµ.
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Proof. First, note that as in the proof of Lemma 4.7, we have

(1− σ)Q∗ = (1− σl)Q∗ , (1− σ)(Q ∩ h⊥) = (1− σl)(Q ∩ h⊥) .

Hence, we can identify the centers Z(G⊥
σl) and Z(G⊥

σ ) due to (3.38).
Furthermore, since

p π⊥ =

p−1
∑

j=0

(1− σj) = (1− σ)

p−2
∑

i=0

(p− 1− i)σi ,

we have that

p(Q ∩ (1− σ)Q∗) ⊂ p(Q ∩ h⊥) ⊂ (1− σ)(Q ∩ h⊥) .

Therefore, every element of Z(G⊥
σ ) has order 1 or p. This implies ζp = 1

for ζ ∈ Zµ.
It is enough to show that ζk ∈ Zµ,σl for ζ ∈ Zµ, because then the

inverse map Zµ,σl → Zµ will be given by ζ ′ 7→ ζ ′ l. In order to check
that ζk satisfies (4.39), we find ζ(U−1

σlγ
Uγ) by writing

U−1
σlγ
Uγ =

(
U−1
σlγ
Uσl−1γ

)(
U−1
σl−1γ

Uσl−2γ

)
· · ·
(
U−1
σγ Uγ

)

and applying ζ to the product. We obtain

ζ
(
U−1
σlγ
Uγ

)
=

l−1∏

i=0

η(σiγ)e−2πi(σiγ|µ)e−2πib
σiγ

= e−2lπi(γ|µ)e−2lπibγ

l−1∏

i=0

η(σiγ) ,

using (3.45), σµ = µ and bσγ = bγ . On the other hand, since Q = Q̄,
we get from (3.70) that

ησl(γ) =
l−1∏

i=0

η(σiγ) .

Hence,

ζ
(
U−1
σlγ
Uγ

)
= e−2lπi(γ|µ)e−2lπibγησl(γ) .

To finish the proof, we raise this identity to the k-th power and use
that

e2pπi(γ|µ) = 1 ,
(
η(γ)e−2πibγ

)p
= 1 ,

which follow from pµ ∈ p π0(Q
∗) ⊂ Q∗ and ζp = 1. �

We will denote by M(µ, ζ ; σl) the irreducible σl-twisted VQ-module
corresponding to the pair (µ, ζ), where µ ∈ π0(Q

∗) and ζ ∈ Zµ,σl .
Again by Theorem 3.9, two such modules are isomorphic if and only if
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the corresponding pairs (µ, ζ) and (µ′, ζ ′) are related by the following
analog of (3.44):

(4.40) µ′ = µ+ π0α, ζ ′(Uβ) = e−2πi(π0ν|α)ζ(Uβ),

for some fixed α ∈ Q and all β = (1− σl)ν ∈ Q with ν ∈ Q∗.

Remark 4.18. Note that (4.40) is equivalent to (3.44) with σl playing
the role of σ, due to the alternative expression (3.47) for Cα,β. In
particular, (3.47) implies that Cα,β is a p-th root of 1, because p π0λ ∈
Q∗. If β = (1 − σl)ν for some ν ∈ Q∗, then β = (1 − σ)λ with
λ = (1 + σ + · · · + σl−1)ν ∈ Q∗. Hence, π0λ = l π0ν, and Cα,β for
σ is the l-th power of Cα,β for σl. This implies that the bijection
Zµ → Zµ,σl from Proposition 4.17 is compatible with the equivalence
relations (3.44) and (4.40).

Now we can formulate the classification theorem.

Theorem 4.19. Let Q be a positive-definite even integral lattice, σ be
an isometry of Q of prime order p, and assume that Q = Q̄ (which
holds if p is odd, due to Corollary 3.25). Choose a set CM ⊂ π0(Q

∗)
of representatives of the cosets π0(Q

∗)/π0(Q), and a set O ⊂ Q∗/Q
of representatives of the orbits of order p of σ on Q∗/Q. Then the
following is a complete list of non-isomorphic irreducible modules over
the orbifold algebra V σ

Q :

(Type 1) V j
λ+Q (λ+Q ∈ (Q∗/Q)σ, 0 ≤ j ≤ p− 1),

(Type 2) Vλ+Q (λ+Q ∈ O),

(Type 3) M(µ, ζ ; σl)j (µ ∈ CM, ζ ∈ Zµ,σl , 0 ≤ j ≤ p− 1, 1 ≤ l ≤ p− 1).

The characters of these modules are given by:

(Type 1) χj
Vλ+Q

(τ, h) =
1

p

p−1
∑

k=0

ωjkχ1,σk

Vλ+Q
(τ, h) (cf. (4.32)),

(Type 2) χVλ+Q
(τ, h) = χ1,1

Vλ+Q
(τ, h) (cf. (4.34)),

(Type 3) χj
M(µ,ζ;σl)

(τ, h) =
1

p

p−1∑

k=0

ωjkχσl,σk

M(µ,ζ;σl)
(τ, h) (cf. (4.23), (4.21),

and Remark 4.12),

where ω = e2πi/p.
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Proof. Recall that the lattice vertex algebra VQ is regular (see Defini-
tion 2.3 and Theorem 3.1). Then the orbifold subalgebra V Γ

Q = V σ
Q

is also regular for Γ = 〈σ〉, by Theorem 2.5. Due to [DRX, Theorem
3.3], every irreducible V σ

Q -module is a submodule of some irreducible

σl-twisted VQ-module W for 0 ≤ l ≤ p− 1.
The case l = 0 corresponds to untwisted VQ-modules; hence, W ∼=

Vλ+Q for some λ + Q ∈ Q∗/Q, by Dong’s Theorem [D1]. By Lemma
4.13, for any ϕ ∈ Γ, we have a linear map ϕ : Vλ+Q → Vϕ(λ)+Q satisfying
(4.29), which implies that ϕ is a homomorphism of V σ

Q -modules. If

λ + Q ∈ (Q∗/Q)σ, then σ acts on Vλ+Q, and every eigenspace V j
λ+Q is

a V σ
Q -submodule (0 ≤ j ≤ p− 1). As V j

λ+Q = πj(Vλ+Q), its character is

trV j
λ+Q

e2πihqL0− r
24 = trVλ+Q

πje
2πihqL0− r

24

=
1

p

p−1
∑

k=0

ωjk trVλ+Q
σke2πihqL0− r

24 .

If λ + Q 6∈ (Q∗/Q)σ, then σ : Vλ+Q → Vσ(λ)+Q is an isomorphism of
V σ
Q -modules; hence, we can assume that λ+Q ∈ O.

When 1 ≤ l ≤ p−1, we have an irreducible σl-twisted VQ-moduleW .
By Theorem 3.9, W ∼= M(µ, ζ ; σl) for some µ ∈ π0(Q

∗) and ζ ∈ Zµ,σl .
Since pairs (µ, ζ) and (µ′, ζ ′) that are related by (4.40) correspond to
isomorphic modules, we can arrange that µ ∈ CM. By Lemma 3.30 and
Remark 3.31, any ϕ ∈ Γ acts onM(µ, ζ ; σl) so that (3.85) holds. Hence,
ϕ is a homomorphism of V σ

Q -modules, and the eigenspaces M(µ, ζ ; σl)j

are V σ
Q -submodules (0 ≤ j ≤ p− 1). Their characters are found simi-

larly as the characters of V j
λ+Q above.

We have shown that every irreducible V σ
Q -module is a submodule

of one of the listed modules. To finish the proof of the theorem, we
need to check that the listed modules are themselves irreducible and
non-isomorphic to each other. We will derive these claims again from
[DRX, Section 3]. We specialize the setting of [DRX] to the case when
their group G = Γ = 〈σ〉 is cyclic of prime order.
In [DRX], for any ψ ∈ Γ and any irreducible ψ-twisted VQ-module

W , they introduce the subgroup ΓW ⊂ Γ consisting of ϕ ∈ Γ such that
W ∼= W ◦ ϕ as twisted VQ-modules. Here W ◦ ϕ is defined similarly to
our actions from Lemmas 3.30 and 4.13. Since the order of Γ is prime,
we have ΓW = {1} if the automorphism σ does not act on the module
W , and ΓW = Γ if it does.
Then the module W is decomposed under the action of ΓW ; in fact,

more generally, under the group algebra of ΓW twisted by a certain
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2-cocycle. However, when ΓW = Γ is cyclic of order p, the second coho-
mology H2(Γ,C×) ∼= C×/(C×)p is trivial. Therefore, the twisted group
algebra is the usual group algebra C[Γ], whose characters correspond
to p-th roots of unity. Then the decompositions in [DRX] correspond
to our decompositions into eigenspaces of σ in the case when σ acts on
the module W . �

Corollary 4.20. The conformal weights of all irreducible V σ
Q -modules

are positive, except for V σ
Q itself, which has conformal weight 0.

Proof. By Theorem 4.19, every irreducible V σ
Q -module is a submodule

of some twisted or untwisted irreducible VQ-module. Due to Proposi-
tion 3.19, all of them have positive conformal weights, except that the
vacuum vector in VQ has conformal weight 0. �

Notice that, although the irreducible V σ
Q -modules listed in Theorem

4.19 are non-isomorphic to each other, many of them have equal char-
acters. Indeed, by (4.23), we have

(4.41) χj
M(µ,ζ′;σl)

(τ, h) = χjl
M(µ,ζ)(τ, h),

for all

µ ∈ π0(Q
∗), ζ ∈ Zµ, ζ

′ ∈ Zµ,σl , 0 ≤ j ≤ p− 1, 1 ≤ l ≤ p− 1.

In particular, all these characters are independent of ζ . Similarly, we
can derive from (4.37) that

χ0
Vλ+Q

(τ, h) =
1

p
χ1,1
Vλ+Q

(τ, h) +
p− 1

p
χ1,σ
Vλ+Q

(τ, h),(4.42)

χj
Vλ+Q

(τ, h) =
1

p
χ1,1
Vλ+Q

(τ, h)− 1

p
χ1,σ
Vλ+Q

(τ, h),(4.43)

for all λ + Q ∈ (Q∗/Q)σ and 1 ≤ j ≤ p − 1. However, when we find
the modular transformations of characters in the next section, we will
retain the different labels prescribed by Theorem 4.19 as a bookkeeping
device.

5. Transformation Laws for Modified Characters of

Twisted VQ-modules

As before, let Q be a positive-definite even integral lattice, and σ be
an isometry of Q of prime order p such that Q = Q̄ (recall that the last
assumption is superfluous for odd p, by Corollary 3.25). In this section,
we derive how the modified characters of twisted and untwisted VQ-
modules change under the modular transformations τ 7→ τ+1 and τ 7→
−1/τ . Then from Theorem 4.19, we obtain the transformation laws for
the characters of irreducible modules over the orbifold subalgebra V σ

Q .
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5.1. Transformation laws for modified characters of Fσ. In this
subsection, we calculate the modular transformations τ 7→ τ + 1 and
τ 7→ −1/τ for the modified characters

(5.1) χFσ(ϕ, τ) = trFσ ϕq
Ltw
0

− r
24

of the twisted Fock space Fσ (cf. (3.12), (4.6)), where r = rankQ and
q = e2πiτ with τ ∈ C, Im τ > 0. As in Section 4.1, we assume only that
h is a finite-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form (·|·), and σ, ϕ are two commuting
automorphisms of h of finite order preserving (·|·).
At this point, it will be convenient to set some additional notation

for subspaces of h. Recall the notation (4.2)–(4.4) for the common
eigenspaces of σ and ϕ, where the first subscript corresponds to σ and
the second subscript to ϕ. In particular, h0,0 is the invariant subspace
for both σ and ϕ. We designate the perpendicular subspaces by using
a subscript ⊥. Then we have

(5.2) h0 = h0,0 ⊕ h0,⊥, h⊥ = h⊥,0 ⊕ h⊥,⊥,

where using one subscript refers to only the automorphism σ, and

(5.3) h⊥0,0 = h0,⊥ ⊕ h⊥,0 ⊕ h⊥,⊥.

We note that in the special case when ϕ is a power of σ, the subspaces
h0,⊥ and h⊥,0 are trivial, and (5.2), (5.3) simplify to h0 = h0,0 and
h⊥0 = h⊥ = h⊥,⊥.
Recall that, by Theorem 4.1, χFσ(ϕ, τ) is related to the products

Pσ,ϕ(τ) given in (4.7). In order to find the transformation laws of
Pσ,ϕ(τ), we will express Pσ,ϕ(τ)

2 in terms of another function

(5.4) P (τ, ζ) = q1/12
∞∏

n=1

(1− e−2πiζqn)(1− e2πiζqn−1).

We will relate P (τ, ζ) to the functions Kl(τ, ζ ;m) introduced at the
end of Section 2.4 as the quotient of a theta function and the Dedekind
η-function (see (2.23), (2.26), (2.27)). Then we will use the transfor-
mation laws in Proposition 2.19 to obtain the transformation laws for
Pσ,ϕ(τ)

2 and ultimately for χFσ(ϕ, τ).

Lemma 5.1. Define the maps s and f by (4.3), and let Pσ,ϕ(τ) be the
function defined by (4.7). Then

Pσ,ϕ(τ)
2 =

η(τ)2r0,0

deth0,⊥(1− ϕ−1)
deth⊥

0,0
eπiτ(s

2+s)P (τ,−f − τs),

where r0,0 = dim h0,0.
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Proof. We first write

(5.5) Pσ,ϕ(τ) = qr/24 deth

(

eπiτ(s
2+s)/2

∞∏

n=1

(1− e2πi(f+τs)qn)
)

,

using (3.56), (4.4), and (4.7). Then we have

Pσ,ϕ(τ)
2 = qr/12 deth e

πiτ(s2+s)

∞∏

n=1

deth0(1− e2πifqn)(1− e−2πifqn)

×
∞∏

n=1

deth⊥(1− e2πi(f+τs)qn)(1− e2πi(−f+τ(−s−1))qn)

= qr/12 deth e
πiτ(s2+s)

∞∏

n=1

(1− qn)2r0,0

× deth0,⊥
P (τ,−f)

q1/12(1− e−2πif)
deth⊥

P (τ,−f − τs)

q1/12

=
η(q)2r0,0 deth e

πiτ(s2+s)

deth0,⊥(1− ϕ−1)
deth⊥

0,0
P (τ,−f − τs),

using that r0,0 = r − dim h⊥ − dim h0,⊥ (cf. (5.2)), and dim hj/N =
dim h1−(j/N) for 1 ≤ j ≤ N − 1. �

Before moving on, we note some properties of the function P (τ, ζ),
each of which is easy to verify.

Lemma 5.2. For the function P (τ, ζ) given in (5.4), we have

P (τ, ζ) =
1− e2πiζ

1− e−2πiζ
P (τ,−ζ),(5.6)

P (τ, ζ + 1) = P (τ, ζ),(5.7)

P (τ, ζ + τ) = P (τ,−ζ).(5.8)

Next, we express P (τ, ζ) in terms of the functionsKl(τ, ζ ;m), defined
by (2.27). To this end, we employ the Jacobi triple product identity,

∞∏

n=1

(1− qn)(1− zqn−1)(1− z−1qn) =
∑

m∈Z
(−z)mqm(m−1)/2,

which is equivalent to

q−1/12P (τ, ζ)
∞∏

n=1

(1− qn) =
∑

m∈Z
(−z)mqm(m−1)/2, z = e2πiζ.
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It follows that P (τ, ζ) can be written in summation form as

(5.9) P (τ, ζ) =
q1/8

η(τ)

∑

m∈Z
(−z)mqm(m−1)/2, z = e2πiζ .

Lemma 5.3. The function P (τ, ζ) defined in (5.4) can be written as

P (τ, ζ) = eπiζ
(
K−1(τ, ζ ; 4)−K1(τ, ζ ; 4)

)
.

Proof. From the definitions (2.26) and (2.27), we have

Kl(τ, ζ ; 4) =
1

η(τ)

∑

n∈Z
q2(n+l/4)2z2(n+l/4),

where z = e2πiζ . Therefore

eπiζ
(
K−1(τ, ζ ; 4)−K1(τ, ζ ; 4)

)
=
q1/8

η(τ)

∑

n∈Z

(
q2n

2−nz2n − q2n
2+nz2n+1

)

=
q1/8

η(τ)

∑

n∈Z

(
(−z)2nq2n(2n−1)/2 + (−z)2n+1q(2n+1)((2n+1)−1)/2

)

= P (τ, ζ),

using (5.9). �

Now we can use Proposition 2.19 to calculate the following transfor-
mation laws for P (τ, ζ).

Proposition 5.4. The transformation laws for P (τ, ζ) are:

P
(

−1

τ
,
ζ

τ

)

= −ieπiζ(1+ζ−τ)/τP (τ, ζ),(5.10)

P (τ + 1, ζ) = eπi/6P (τ, ζ).(5.11)

Proof. Using the transformation law (2.28), we find

Kl

(

−1

τ
,
ζ

τ
; 4
)

=
1

2
eπiζ

2/τ
(

(−i)−lK−1(τ, ζ ; 4) + (−i)lK1(τ, ζ ; 4)

+K0(τ, ζ ; 4) + (−1)lK2(τ, ζ ; 4)
)

.

Therefore

P
(

−1

τ
,
ζ

τ

)

= eπiζ/τ
(

K−1

(

−1

τ
,
ζ

τ
; 4
)

−K1

(

−1

τ
,
ζ

τ
; 4
))

=
−2i

2
eπi(ζ

2+ζ)/τ
(

K−1(τ, ζ ; 4)−K1(τ, ζ ; 4)
)

= −ieπi(ζ
2+ζ)/τe−πiζP (τ, ζ)

= −ieπiζ(1+ζ−τ)/τP (τ, ζ).
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Using the transformation law (2.29), we find

P (τ + 1, ζ) = eπiζ
(
K−1(τ + 1, ζ ; 4)−K1(τ + 1, ζ ; 4)

)

= eπiζeπi(
1

4
− 1

12
)
(
K−1(τ, ζ ; 4)−K1(τ, ζ ; 4)

)

= eπi/6P (τ, ζ).

This completes the proof. �

Before presenting the final transformation laws for the modified char-
acters χFσ(ϕ, τ), we first point out a particular calculation that will be
needed in the proof.

Lemma 5.5. Suppose that σ, ϕ are two commuting automorphisms of
h, and the maps s, f are defined by (4.3). The we have

deth e
−πi(s+f+2sf) = ir−r0,0 ,

where r = dim h and r0,0 = dim h0,0.

Proof. Notice that

deth e
−πi(s+f+2sf) = exp

(
−πi trh(s+ f)

)
exp
(
−πi trh 2sf

)
.

It is easy to show that

trh(s + f) = −1

2

(
dim h⊥0,0 + dim h⊥,⊥

)

(cf. Remark 3.14) and

trh 2sf =
∑

x,y 6=0

(
(−x)(−y) + (x− 1)(−y)

)
dim hx,y

=
1

2

∑

x,y 6=0

(y + (1− y)) dim hx,y =
1

2
dim h⊥,⊥,

using that dim hx,y = dim h1−x,y = dim hx,1−y. The result follows. �

We are now ready to present the transformation laws for the modified
characters χFσ(ϕ, τ) of the σ-twisted Fock space Fσ.

Theorem 5.6. Let σ, ϕ be two commuting automorphisms of h. Then

χFσ

(

ϕ,−1

τ

)

=

√

deth0,⊥(1− ϕ−1)

deth⊥,0
(1− σ)

(−iτ)−r0,0/2χFϕ(σ
−1, τ),(5.12)

χFσ(ϕ, τ + 1) = e−2πi(−∆σ+
r
24

)χFσ(ϕσ, τ),(5.13)

where r = dim h, r0,0 = dim h0,0, and ∆σ is given by (3.57).
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Proof. Due to Theorem 4.1, it is sufficient to compute the transfor-
mation laws for Pσ,ϕ(τ). First, we find the transformation τ 7→ −1/τ
for Pσ,ϕ(τ)

2. Using Lemma 5.1, Proposition 5.4 with ζ = s − fτ , and
(2.24), we calculate:

Pσ,ϕ

(

−1

τ

)2

=
η
(
− 1

τ

)2r0,0 deth e
−πi

τ
(s2+s)

deth0,⊥(1− ϕ−1)
deth⊥

0,0
P
(

−1

τ
,
s− fτ

τ

)

=
(−iτ)r0,0η(τ)2r0,0

deth0,⊥(1− ϕ−1)

× deth e
−πi

τ
(s2+s)+πiζ

τ
(1+ζ−τ) deth⊥

0,0
(−i)P (τ, s− τf)

=
(−iτ)r0,0η(τ)2r0,0

deth0,⊥(1− ϕ−1)
(−i)r−r0,0

× deth e
πi(−f−2sf−s+(f2+f)τ) deth⊥

0,0
P (τ, s− τf).

Now we use Lemma 5.1 again but with the replacement σ 7→ ϕ and
ϕ 7→ σ−1 (i.e., s 7→ f and f 7→ −s):

(5.14) Pϕ,σ−1(τ)2 =
η(τ)2r0,0

deth⊥,0
(1− σ)

deth e
πiτ(f2+f) deth⊥

0,0
P (τ, s− τf).

Finally, using (5.14) and Lemma 5.5 we have

Pσ,ϕ

(

−1

τ

)2

= (−iτ)r0,0
deth⊥,0

(1− σ)

deth0,⊥(1− ϕ−1)

× (−i)r−r0,0
(
deth e

−πi(s+f+2sf)
)
Pϕ,σ−1(τ)2

= (−iτ)r0,0
deth⊥,0

(1− σ)

deth0,⊥(1− ϕ−1)
Pϕ,σ−1(τ)2.

We then obtain

Pσ,ϕ

(

−1

τ

)

=

√

deth⊥,0
(1− σ)

deth0,⊥(1− ϕ−1)
(−iτ)r0,0/2Pϕ,σ−1(τ)

by choosing the appropriate branch.
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Next we compute the transformation τ 7→ τ + 1. From (4.4) and
(4.7), we have

Pσ,ϕ(τ + 1) = e2πi(−∆σ+
r
24

)q−∆σ+
r
24

∞∏

n=1

deth(1− ϕe2πi(n+s)qn+s)

= e2πi(−∆σ+
r
24

)q−∆σ+
r
24

∞∏

n=1

deth(1− ϕσqn+s)

= e2πi(−∆σ+
r
24

)Pσ,ϕσ(τ).

This completes the proof of the theorem. �

Remark 5.7. If we apply the transformation law for Pσ,σk(τ) twice, as
in the proof of Theorem 5.6, we obtain:

Pσ,σk(τ) =

√

deth⊥,0
(1− σ)

deth0,⊥(1− σ−k)

1

(−iτ)r0,0/2
Pσk ,σ−1

(

−1

τ

)

=

√

deth⊥,0
(1− σk)

deth0,⊥(1− σ−k)
Pσ−1,σ−k(τ)

= Pσ−1,σ−k(τ),

where in the last step we used that h0,⊥ and h⊥,0 are trivial. This is a
special case of (4.8) for l = −1.

While Theorem 5.6 is given for general commuting automorphisms ϕ
and σ, in the following sections we will make the additional assumption
that ϕ is a power of σ, which is the case when the order of σ is prime
and ϕ ∈ 〈σ〉. We first need the following lemma.

Lemma 5.8. If σ is an automorphism of h of prime order p, then

(5.15) deth⊥(1− σk) = pd , d = dim h1/p =
dim h⊥
p− 1

,

for all 1 ≤ k ≤ p− 1.

Proof. Recall from the proof of Lemma 3.16 (cf. (3.58)) that dim hj/p =
d for all 1 ≤ j ≤ p − 1. In particular, dim h⊥ = d(p − 1), as h⊥ =
⊕p−1

j=1 hj/p. Hence the minimal polynomial of σ|h⊥ is the cyclotomic
polynomial

xp − 1

x− 1
= xp−1 + · · ·+ x+ 1,

and the characteristic polynomial is

deth⊥(x− σ) =
(
xp−1 + · · ·+ x+ 1

)d
.
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Setting x = 1, we get deth⊥(1−σ) = pd. The result for σk follows from
the fact that h⊥ is the same for all 1 ≤ k ≤ p− 1, and the order of σk

is again p. �

We are now ready to present how the transformation (5.12) simplifies
in the case we will use later.

Corollary 5.9. Let σ be an automorphism of h of prime order p.
Then

χFσ

(

1,−1

τ

)

= p−d/2(−iτ)−r0/2χF (σ
−1, τ),(5.16)

χFσ

(

σk,−1

τ

)

= (−iτ)−r0/2χF
σk
(σ−1, τ),(5.17)

for 1 ≤ k ≤ p− 1, where r0 = dim h0 and d = dim h1/p.

Proof. These formulas follow from Theorem 5.6 and Lemma 5.8, since
h0,⊥ = 0, h⊥,0 = h⊥ and h0,0 = h0 when ϕ = 1. �

We also present how the transformation (5.12) simplifies for modified
characters of the untwisted Fock space F (cf. Section 3.1).

Corollary 5.10. For any automorphism σ of prime order p, and 1 ≤
k ≤ p− 1, we have

χF

(

1,−1

τ

)

= (−iτ)−r/2χF(1, τ),(5.18)

χF

(

σk,−1

τ

)

= pd/2(−iτ)−r0/2χF
σk
(1, τ),(5.19)

where r = dim h, r0 = dim h0, and d = dim h1/p = (r − r0)/(p− 1).

Finally, we note that the results (5.16)–(5.19) remain unchanged if σ
is replaced with another power of σ not equal to 1, due to the invariance
(4.8).

5.2. Transformation laws for modified characters of W (λ) and

W (µ, ζ). Throughout the rest of this section, we let Q be a positive-
definite even integral lattice, σ be an isometry of Q of prime order p,
and we assume that Q̄ = Q (cf. Lemma 3.24 and Corollary 3.25). We
also fix a set CM ⊂ π0(Q

∗) of representatives of the cosets π0(Q
∗)/π0(Q),

and a set O ⊂ Q∗/Q of representatives of the orbits of order p of σ on
Q∗/Q.
In this subsection, we calculate the modular transformations τ 7→

τ + 1 and τ 7→ −1/τ for the modified characters

χσ,σk

W (µ,ζ)(τ, h) = trW (µ,ζ) σ
ke2πihqL

tw
0

−∆σ ,(5.20)
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where h ∈ h0, k ∈ Z, µ ∈ π0(Q
∗), ζ is a central character of G⊥

σ ,
and W (µ, ζ) is one of the irreducible Gσ-modules (cf. (3.41), (4.16)).
We will also do this for the modified characters (4.35), (4.36) of the
untwisted Cε[Q]-module

(5.21) W (λ) = Cε[Q]e
λ = span

{
eλ+α

∣
∣α ∈ Q

}

(cf. (4.26)).
Before presenting the calculations of these transformation laws, we

need to set a “rule of thumb” for how to write a theta function in
terms of modified characters. In general, this can be tricky due to the
degeneracies (4.8), (4.37), and Corollary 4.11. For fixed µ ∈ π0(Q)

∗,
we denote by Zµ the set of all central characters ζ of G⊥

σ that satisfy
relation (3.45). Then, for every ζ, ζ ′ ∈ Zµ and l ∈ Z, we have the
relations (4.24), which imply that each modified character is equal to
the average of all modified characters taken over the set Zµ. The
following is our “rule of thumb.” If a theta function originates from

the modified character χ1,σk

Vλ+Q
(τ, h) of untwisted type (cf. (4.32)–(4.34)),

then we will choose to use the average over Zµ when writing it in terms
of modified characters:

(5.22) θ√Nµ+
√
Nπ0(Q)

(
τ + k

N
,
h√
N
, 0

)

=
eπik|µ|

2

d(σ)|Zµ|
∑

ζ∈Zµ

χσ,σk

W (µ,ζ)(τ, h).

Alternatively, if a theta function originates from the modified charac-

ter χσ,σk

W (µ,ζ)(τ, h) of twisted type (cf. (4.19)), then we will choose the

corresponding character with the same parameters when writing it in
terms of modified characters:

(5.23) θ√Nµ+
√
Nπ0(Q)

(
τ + k

N
,
h√
N
, 0

)

=
eπik|µ|

2

d(σ)
χσ,σk

W (µ,ζ)(τ, h).

We are now ready to present the transformation laws for modified
characters of W (λ). For convenience, we set M = Q ∩ h0 and define

CL(τ, h) =
(−iτ)(rankL)/2eπi|h|

2/τ

|L∗/L|1/2 ,(5.24)

where h ∈ h0 and L is any positive-definite even integral lattice.

Proposition 5.11. With the above notation, the transformation laws
for modified characters of W (λ) are:

χ1,σk

W (λ)(τ + 1, h) =







eπi|λ|
2

χ1,1
W (λ)(τ, h),

eπi|λ|
2

χ1,σk

W (λ)(τ, h),
(5.25)
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χ1,σk

W (λ)

(

−1

τ
,
h

τ

)

=







CQ(τ, h)
∑

γ+Q∈O
e−2πi(γ|λ)χ1,1

W (γ)(τ, h),

CM(τ, h)

d(σ)|Zµ|
∑

µ∈CM

∑

ζ∈Zµ

e−2πi(λ|µ)χσk ,1
W (µ,ζ)(τ, h),

(5.26)

where in each case the top choice applies when λ ∈ Q∗ and k = 0 and
the bottom choice applies when λ ∈ Q∗ ∩ h0 and 1 ≤ k ≤ p− 1.

Proof. Formulas (5.25) follow from (4.35), (4.36), and (2.13). The top
formula of (5.26) is clear using (4.36), (2.12), and that

θλ+Q(τ, h, 0) = eπi|h|
2/τθλ+Q(τ, h,−|h|2/2τ).

Next, we prove the bottom formula of (5.26). Using (4.35) and (2.12)
for k 6= 0, we have

χ1,σk

W (λ)

(

−1

τ
,
h

τ

)

= CM(τ, h)
∑

γ+M∈M∗/M

e−2πi(λ|γ)θγ+M(τ, h, 0).(5.27)

Using Lemma 3.2, we have the following sequence of sublattices inM∗:

M = Q ∩ h0 = π0(L) ⊂ π0(Q) ⊂ π0(Q)
∗ =M∗(5.28)

(cf. (4.14)). Hence the coset γ +M in M∗/M can be written in the
form

µ+ π0βj +M,

where βj (indexed by j ∈ J) is a representative of a coset in Q/L,
and µ is a representative for a coset in M∗/π0(Q). Since in this case
λ ∈ Q∗ ∩ h0, we have

(π0β|λ) = (β|λ) ∈ Z, β ∈ Q.

Therefore, we can rewrite the sum (5.27) as

χ1,σk

W (λ)

(

−1

τ
,
h

τ

)

= CM(τ, h)
∑

µ+π0(Q)∈M∗/π0(Q)

e−2πi(λ|µ)
∑

j∈J
θµ+π0βj+M(τ, h, 0)

= CM(τ, h)
∑

µ+π0(Q)∈M∗/π0(Q)

e−2πi(λ|µ)θµ+π0(Q)(τ, h, 0)

=
CM(τ, h)

d(σ)

∑

µ+π0(Q)∈M∗/π0(Q)

∑

ζ∈Zµ

e−2πi(λ|µ)

|Zµ|
χσk ,1
W (µ,ζ)(τ, h),
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where we used (4.19) with k = 0, (2.11), (5.22), and d(σk) = d(σ) (cf.
Lemma 4.7). �

Before presenting the transformation laws for the modified characters
of W (µ, ζ), we state a lemma that will be useful in the proof.

Lemma 5.12. Let L ⊂ Q be a sublattice with rankL = rankQ, and
{βj + L | j ∈ J} be the distinct cosets of Q/L. Then for λ ∈ M∗ =
π0(Q

∗), we have

∑

j∈J
e2πi(λ|π0βj) =

{

|π0(Q)/M |, λ ∈ Q∗ ∩ h0,

0, λ /∈ Q∗ ∩ h0.

Proof. Write π0(Q)/M =
⊕

j∈J〈π0βj +M〉 and let

rj = min{n ∈ Z |nβj ∈M}.
If γ =

∑r
j=1 ajπ0βj ∈ π0(Q), where r = |π0(Q)/M | = |Q/L| (cf.

Lemma 4.4), then

∑

γ+M∈π0(Q)/M

e2πi(λ|γ) =
r∏

j=1

rj−1
∑

aj=0

(
e2πi(λ|π0βj)

)aj
.(5.29)

Since π0(Q) is a rational lattice, e2πi(λ|π0βj) is a root of unity for each
j. Hence, the right hand side of (5.29) is zero unless (λ|π0βj) ∈ Z for
all j ∈ J . The result then follows using that (π0(Q))

∗ ∼= Q∗ ∩ h0 by
Lemma 3.2. �

To present the transformation laws for the modified characters of
W (µ, ζ), we set some additional notation that will make the formulas
more compact. For convenience, we set L =

√
pπ0(Q) and define (recall

that M = Q ∩ h0)

(5.30) C(τ, h, σ) = d(σ)CM(τ, h)|π0(Q)/M |,
where CM(τ, h) is given in (5.24). Then, by Lemma 3.2,

M∗ = π0(Q
∗) and L∗ =

1√
p
Q∗ ∩ h0.

We fix a set CM ⊂M∗ of representatives of the cosets λ+M ∈M∗/M
such that λ ∈ Q∗ ∩ h0. For fixed k ∈ Z and µ ∈ π0(Q

∗) we fix a set
CL(k, µ) ⊂ L∗ of representatives of the cosets of the form

√
pν + L ∈

L∗/L such that ν ∈ kµ+Q∗ ∩ h0.

Proposition 5.13. Suppose that p is an odd prime. With the above
notation, the transformation laws for modified characters of W (µ, ζ)
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are:

χσ,σk

W (µ,ζ)(τ + 1, h) = eπi|µ|
2

χσ,σk+1

W (µ,ζ)(τ, h), k ∈ Z,(5.31)

χσ,σk

W (µ,ζ)

(

−1

τ
,
h

τ

)

=







C(τ, h, σ)
∑

λ∈CM

e−2πi(λ|µ)χ1,σ−1

W (λ) (τ, h),

vkτ
r0/2

∑

√
pν∈CL

e−2πi(µ|ν)χσk ,σ−1

W (ν,ζ)(τ, h),
(5.32)

where the top choice applies when k = 0 and the bottom choice applies
when 1 ≤ k ≤ p− 1, and each vk is a complex number.

Proof. First, we prove formulas (5.31). Using (5.23) and Proposition
4.8, we find

χσ,σk

W (µ,ζ)(τ + 1, h) = d(σ)e−πik|µ|2θ√pµ+
√
pπ0(Q)

(
τ + k + 1

p
, h, 0

)

= eπi|µ|
2

χσ,σk+1

W (µ,ζ)(τ, h)

for any 0 ≤ k ≤ p− 1.
Next, we prove the top formula of (5.32). We have from the proof of

Theorem 5.6 that Pσ,1

(
− 1

τ

)
can be written as a multiple of P1,σ−1(τ).

We therefore expect the transformation χσ,1
W (µ,ζ)

(
− 1

τ
, h
τ

)
to be written

as a linear combination of the trace functions χ1,σ−1

W (λ) (τ) for suitable

λ ∈ Q∗ ∩ h0. From (4.35) and Proposition 4.8, we have:

χσ,1
W (µ,ζ)(τ, h) = d(σ)θµ+π0(Q) (τ, h, 0) ,

= d(σ)
∑

j∈J
θµ+π0βj+M(τ, h, 0),(5.33)

where βj + L for j ∈ J are the distinct cosets in Q/L, and

χ1,σ−1

W (λ) (τ, h) = θλ+M (τ, h, 0) = χ1,σ
W (λ)(τ, h), λ ∈ Q∗ ∩ h0.(5.34)
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Then the transformation law (2.12) yields

χσ,1
W (µ,ζ)

(

−1

τ
,
h

τ

)

= d(σ)CM(τ, h)
∑

λ+M∈M∗/M
j∈J

e−2πi(λ|µ+π0βj)θλ+M(τ, h, 0)

= d(σ)CM(τ, h)
∑

λ+M∈M∗/M

(
∑

j∈J
e−2πi(λ|π0βj)

)

e−2πi(λ|µ)θλ+M (τ, h, 0)

= C(τ, h, σ)
∑

λ+M∈M∗/M
λ∈Q∗∩h0

e−2πi(λ|µ)χ1,σ−1

W (λ) (τ, h),

where we used Lemma 5.12 in the last step.
Finally, we prove the bottom formula of (5.32). We have from the

proof of Theorem 5.6 and Corollary 5.15 that Pσ,σk

(
− 1

τ

)
can be writ-

ten as a multiple of Pσk ,σ−1(τ). We therefore expect the transformation

χσ,σk

W (µ,ζ)

(
− 1

τ
, h
τ

)
to be written as a linear combination of the trace func-

tions χσk ,σ−1

W (µ′,ζ′)(τ, h) for suitable µ
′ ∈ π0(Q) and central character ζ ′ of

G⊥
σ (cf. Theorem 3.6). To this end, we set σ′ = σk. Then

σ−1 = (σ′)k
′
= σkk′,

where kk′ ≡ −1 mod p, and we write

(5.35) kk′ + 1 = pm

for a suitable integer m. It will be convenient to also make the trans-
formation

(5.36) τ ′ =
τ + k′

p
, h′ =

h√
p
.

Note that from (5.35) we can write

− 1
τ
+ k

p
=
kτ ′ −m

pτ ′ − k′
= A · τ ′,(5.37)

with

(5.38) A =

(
k −m
p −k′

)

∈ SL2(Z),

where A · τ ′ denotes the action described in Theorem 2.14. Since the
matrix A depends on the exponent k, we relabel the scalar v(A) from
Theorem 2.14 as vk.
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We next employ Theorem 2.14 using the matrix A, the even lattice
L =

√
pπ0(Q), and with τ replaced by τ ′. First, we describe the set

over which the summation in Theorem 2.14 occurs. Using the coset
labeling in the theta function in (4.19), the summation index in the
current case is over the cosets

√
pν + L ∈ 1√

p
Q∗ ∩ h0/L (ν ∈ Q∗ ∩ h0),

since

L∗ = (
√
pπ0(Q))

∗ =
1√
p
Q∗ ∩ h0

by Lemma 3.2. Therefore, we have from Theorem 2.14 that

θ√pµ+L (A · (τ ′, h′, 0)) = vk (pτ
′ − k′)r0/2

×
∑

√
pν+L∈L∗/L
ν∈Q∗∩h0

eπi(−
k′
p
|√pν|2−2m(

√
pµ|√pν)−km|√pµ|2)θ√pν+k

√
pµ+L(τ

′, h′, 0)

= vk τ
r0/2

∑

√
pν+L∈L∗/L

ν∈kµ+Q∗∩h0

eπi(−k′|ν|2−2(µ|ν)+k|µ|2)θ√pν+L(τ
′, h′, 0),

(5.39)

where we used the relation cd|µ|2 = d
c
|cµ|2 and made the shift ν 7→

ν − kµ. In the last step, we used (5.35) to calculate

−k′|ν − kµ|2 − 2mp(µ|ν − kµ)− kmp|µ|2 = −k′|ν|2 − 2(µ|ν) + k|µ|2.

Also recall that the value of β0 in Theorem 2.14 can be set to zero when
p is odd (cf. Remark 2.15 with c = p in this case).
Note that the first equation in (5.39) remains unchanged when re-

placing k′ by k′ + ap for some integer a. Since (5.35) implies that m
gets replaced with m+ k, and (5.36) implies that τ ′ gets replaced with
τ ′ + a, it is clear that the resulting exponentials involving a cancel out
(cf. Theorem 2.13). Hence, (5.39) only depends on k′ modulo p.
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Now we finish the proof using (5.39), (5.23), and Proposition 4.8 to
get

χσ,σk

W (µ,ζ)

(

−1

τ
,
h

τ

)

= d(σ)e−πik|µ|2θ√pµ+
√
pπ0(Q) (A · (τ ′, h′, 0))

= d(σ)vkτ
r0/2

∑

√
pν+L∈L∗/L

ν∈kµ+Q∗∩h0

eπi(−k′|ν|2−2(µ|ν))θ√pν+L(τ
′, h′, 0)

= vkτ
r0/2

∑

√
pν+L∈L∗/L

ν∈kµ+Q∗∩h0

e−2πi(µ|ν)χσk ,σ−1

W (ν,ζ)(τ, h).

This completes the proof of Proposition 5.13. �

5.3. Transformation laws for modified characters of Vλ+M and

M(µ, ζ). In this subsection, we calculate the modular transformations
τ 7→ τ + 1 and τ 7→ −1/τ for the modified characters

(5.40) χσ,σk

M(µ,ζ)(τ, h) = trM(µ,ζ) σ
ke2πihqL

tw
0 − r

24 ,

where r = rankQ, h ∈ h0, k ∈ Z, µ ∈ π0(Q
∗), ζ is a central character

of G⊥
σ , and M(µ, ζ) is one of the irreducible σ-twisted VQ-modules

(see (3.49), (4.1), (4.21)). Since M(µ, ζ) is a tensor product of the
σ-twisted Fock space Fσ and the Gσ-module W (µ, ζ), the trace is a
product of traces over them (see (4.10)). The calculation of modular
transformations of M(µ, ζ) will hence follow from Corollary 5.10 and
Proposition 5.13.
Similarly, we will also do this for the modified characters

(5.41) χ1,σk

Vλ+M
(τ, h) = trVλ+M

σke2πihqL0− r
24

of untwisted VQ-modules, where r = rankQ, k ∈ Z, M = Q ∩ h0, and
λ ∈ Q∗ (see (4.25), (4.30), (4.31)). Note that when k = 0, the cosets
in (5.41) are taken over Q =M . For convenience, we set

(5.42) Dλ(τ, h, σ) =
eπi|h|

2/τpdim h⊥/2(p−1)

|M∗/M |1/2d(σ) ,

when λ ∈ Q∗ ∩ h0 and set Dλ(τ, h, σ) = 0 otherwise.

Proposition 5.14. With the above notation, the transformation laws
for modified characters of Vλ+Q are given by:

χ1,σk

Vλ+M
(τ + 1, h) = eπi(|λ|

2− r
12

)χ1,σk

Vλ+M
(τ, h),(5.43)
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χ1,σk

Vλ+M

(

−1

τ
,
h

τ

)

=







eπi|h|
2/τ

|Q∗/Q|1/2
∑

γ+Q∈O
e−2πi(λ|γ)χ1,1

Vγ+Q
(τ, h),

Dλ(τ, h, σ)

|Zµ|
∑

µ∈CM

∑

ζ∈Zµ

e−2πi(λ|µ)χσk ,1
M(µ,ζ)(τ, h),

(5.44)

where the top choice applies when λ ∈ Q∗ and k = 0, and the bottom
choice applies when λ ∈ Q∗ ∩ h0 and 1 ≤ k ≤ p− 1.

Proof. These results follow easily from Proposition 5.11 and Corollary
5.10, using that Vλ+M is a tensor product of the Fock space F and the
Cε[Q]-module W (λ); see (4.32)–(4.36). �

Before presenting the transformation laws for the modified charac-
ters of M(µ, ζ), we set some additional notation, which will make the
formulas more compact. We let L =

√
pπ0(Q) and

(5.45) v0 = d(σ)p−dim h⊥/2(p−1) |π0(Q)/M |
|M∗/M |1/2 ,

where, as before, M = Q ∩ h0. Then, by Lemma 3.2,

(5.46) M∗ = π0(Q
∗), L∗ =

1√
p
Q∗ ∩ h0.

We fix a set CM ⊂M∗ of representatives of the cosets λ+M ∈M∗/M
such that λ ∈ Q∗ ∩ h0. For fixed k ∈ Z and µ ∈ π0(Q

∗), we fix a set
CL(k, µ) ⊂ L∗ of representatives of the cosets of the form

√
pν + L ∈

L∗/L such that ν ∈ kµ+Q∗ ∩ h0. Finally, recall the constant

(5.47) ∆σ =
p+ 1

24p
dim h⊥

from (3.56) and Lemma 3.16.

Proposition 5.15. Suppose that p is an odd prime. With the above
notation, the following are the transformation laws for modified char-
acters of M(µ, ζ):

χσ,σk

M(µ,ζ)(τ + 1, h) = e2πi(∆σ− r
24

)eπi|µ|
2

χσ,σk+1

M(µ,ζ)(τ, h),(5.48)

χσ,σk

M(µ,ζ)

(

−1

τ
,
h

τ

)

=







v0 e
πi|h|2/τ

∑

λ∈CM

e−2πi(λ|µ)χ1,σ−1

Vλ+M
(τ, h),

vk i
r0/2

∑

√
pν∈CL(k,µ)

e−2πi(µ|ν)χσk ,σ−1

M(ν,ζ)(τ, h),

(5.49)
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where the top choice applies when k = 0 and v0 is given by (5.45), while
the bottom choice applies when 1 ≤ k ≤ p− 1 and each vk is a complex
number.

Proof. These results follow easily from Proposition 5.13 and Corollary
5.9, using that M(µ, ζ) is a tensor product of the σ-twisted Fock space
Fσ and the Gσ-module W (µ, ζ); see (4.10). �

5.4. Orbifold modules and transformation laws for orbifold

characters. In this subsection, we present the main results of this
paper, the calculation of the transformation laws τ 7→ τ + 1 and τ 7→
−1/τ for the irreducible characters given in Theorem 4.19 of the orb-
ifold algebra V σ

Q . As in the previous sections, we let Q be a positive-
definite even integral lattice, σ be an isometry of Q of prime order p,
and we assume that Q̄ = Q (cf. Lemma 3.24 and Corollary 3.25). We
set r = rankQ and fix a set CM ⊂ π0(Q

∗) of representatives of the
cosets π0(Q

∗)/π0(Q), and a set O ⊂ Q∗/Q of representatives of the
orbits of order p of σ on Q∗/Q. We also set M = Q ∩ h0.
Let us recall the complete list of non-isomorphic irreducible modules

over the orbifold algebra V σ
Q given in Theorem 4.19 (cf. Definition 4.16):

(Type 1) V j
λ+Q (λ+Q ∈ (Q∗/Q)σ, 0 ≤ j ≤ p− 1),

(Type 2) Vλ+Q (λ+Q ∈ O),

(Type 3) M(µ, ζ ; σl)j (µ ∈ CM, ζ ∈ Zµ,σl , 0 ≤ j ≤ p−1, 1 ≤ l ≤ p−1).

The characters of these modules are given by (cf. (4.21), (4.23), (4.32),
(4.34)):

χj
Vλ+Q

(τ, h) =
1

p

p−1
∑

k=0

ωjkχ1,σk

Vλ+Q
(τ, h),(5.50)

χVλ+Q
(τ, h) = χ1,1

Vλ+Q
(τ, h),(5.51)

χj
M(µ,ζ;σl)

(τ, h) =
1

p

p−1
∑

k=0

ωjkχσl,σk

M(µ,ζ;σl)
(τ, h),(5.52)

where ω = e2πi/p. In the proof, it will be necessary to invert these
formulas as follows:

χ1,1
Vλ+Q

(τ, h) =







p−1
∑

l=0

χl
Vλ+Q

(τ, h), (1− σ)λ ∈ Q,

χVλ+Q
(τ, h), (1− σ)λ /∈ Q,

(5.53)
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χ1,σk

Vλ+Q
(τ, h) =

p−1
∑

l=0

ω−lkχl
Vλ+Q

(τ, h),(5.54)

χσl,σlk

M(µ,ζ)(τ, h) =

p−1
∑

j=0

ω−jkχj
M(µ,ζ;σl)

(τ, h).(5.55)

First, we present the transformation laws for the characters of V j
λ+Q.

For convenience, we set

(5.56) Dσ
λ =







pdim h⊥/2(p−1)

|M∗/M |1/2d(σ) , λ ∈ Q∗ ∩ h0,

0, λ /∈ Q∗ ∩ h0,

where the defect d(σ) is defined in Remark 3.10.

Theorem 5.16. The transformation laws for the characters of the V σ
Q -

modules V j
λ+Q for λ+Q ∈ (Q∗/Q)σ and 0 ≤ j ≤ p− 1 are as follows:

(5.57) χj
Vλ+Q

(τ + 1, h) = eπi(|λ|
2− r

12
)χj

Vλ+Q
(τ, h),

χj
Vλ+Q

(

−1

τ
,
h

τ

)

=
eπi|h|

2/τ

p|Q∗/Q|1/2
∑

γ+Q∈Q∗/Q
(1−σ)γ∈Q

p−1∑

t=0

e−2πi(λ|γ)χt
Vγ+Q

(τ, h)

+
eπi|h|

2/τ

|Q∗/Q|1/2
∑

γ+Q∈O
e−2πi(λ|γ)χVγ+Q

(τ, h)(5.58)

+
Dσ

λe
πi|h|2/τ

p|Zµ|

p−1∑

k=1

∑

µ∈CM

p−1∑

t=0

∑

ζ∈Z
µ,σk

ωjke−2πi(λ|µ)χt
M(µ,ζ;σk)(τ, h).

Proof. The transformation laws are obtained using (5.50) and Proposi-
tion 5.14. While most of the details are straightforward, we emphasize
the nontrivial details regarding the transformation τ 7→ −1/τ .
The details of the third sum in (5.58) are straightforward using

(5.50), (5.44), and the inversion formulas (5.53)–(5.55). For the first
and second sums, we separate the sum over cosets γ + Q in (5.44)
into two sums over cosets for which (1 − σ)γ ∈ Q and (1 − σ)γ /∈
Q. Then we apply the inversion formula (5.53). The terms in the
sum over cosets with (1 − σ)γ /∈ Q simplify further as the σ-orbit
γ + Q, σγ + Q, . . . , σp−1γ + Q of cosets in Q∗/Q correspond to equal
characters over the same orbifold module. Since (1 − σ)λ ∈ Q implies
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σiλ ∈ λ +Q for each i, we obtain sums of the form

∑

δ+Q∈[γ+Q]
(1−σ)γ /∈Q

e−2πi(λ|δ)χVγ+Q
(τ, h) =

p−1
∑

i=0

e−2πi(λ|σiγ)χVγ+Q
(τ, h),

where for γ + Q ∈ O, [γ + Q] is the set of cosets within the orbit of
order p. Using this fact and that Q is integral, we find

p−1
∑

i=0

e−2πi(λ|σiγ) =

p−1
∑

i=0

e−2πi(σ−iλ|γ) = pe−2πi(λ|γ).

This yields the second sum in (5.58). �

Next, we present the transformation laws for the characters of Vλ+Q.
For convenience, we set

(5.59) Eλ,γ =

p−1
∑

i=0

e−2πi(λ|σiγ), λ, γ ∈ Q∗.

Theorem 5.17. The transformation laws for the characters of the V σ
Q -

modules Vλ+Q with λ+Q ∈ O are:

χVλ+Q
(τ + 1, h) = eπi(|λ|

2− r
12

)χVλ+Q
(τ, h),(5.60)

χVλ+Q

(

−1

τ
,
h

τ

)

=
eπi|h|

2/τ

|Q∗/Q|1/2
∑

γ+Q∈Q∗/Q
(1−σ)γ∈Q

p−1
∑

t=0

e−2πi(λ|γ)χt
Vγ+Q

(τ, h)

+
eπi|h|

2/τ

|Q∗/Q|1/2
∑

γ+Q∈O
Eλ,γχVγ+Q

(τ, h).

(5.61)

Proof. The sums and coefficients Eλ,γ in the transformation law (5.61)
are obtained in a similar manner as in the proof of Theorem 5.16 using
(5.44) and inversion formula (5.53). �

In the transformation laws for the characters of M(µ, ζ ; σl)j, we will
use the notation v0, L, and ∆σ from (5.45)–(5.47).

Theorem 5.18. When p is an odd prime, the transformation laws for
the characters of the V σ

Q -modules M(µ, ζ ; σl)j are:

χj
M(µ,ζ;σs)(τ + 1, h) = ω−je2πi∆σeπi(|µ|

2− r
12

)χj
M(µ,ζ;σs)(τ, h),(5.62)
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χj
M(µ,ζ;σl)

(

−1

τ
,
h

τ

)

=
v0
p
eπi|h|

2/τ
∑

λ∈CM

p−1
∑

t=0

e−2πi(λ|µ)ωltχt
Vλ+Q

(τ, h)

+
ir0/2

p

p−1
∑

k=1

∑

√
pν∈CL(k,µ)

p−1
∑

t=0

vkω
jk+kp−2te−2πi(µ|ν)χt

M(ν,ζ;σlk)(τ, h),

(5.63)

where

µ ∈ CM, ζ ∈ Zµ,σl , 0 ≤ j ≤ p− 1, 1 ≤ l ≤ p− 1,

r0 = dim h0, vk ∈ C for each k, and v0 is given in (5.45).

Proof. The transformation laws are obtained using (5.52) and Proposi-
tion 5.15. While most of the details are straightforward, we emphasize
the nontrivial details regarding the transformation τ 7→ −1/τ . This
uses (5.49), (5.52), and inversion formulas (5.54), (5.55). We use (5.49)
and (5.54) to transform the term in (5.52) with k = 0. To transform
the terms in (5.52) with k > 0, we use (5.49) and (5.55), where in
(5.55), k is replaced with k′ = −kp−2 and l is replaced with lk. �

Remark 5.19. Note that Theorems 5.16 and 5.17 hold for p = 2, while
in Theorem 5.18 we assume that p is odd. This is due to the presence
of β0 in Theorem 2.14 for p = 2 (cf. Remark 2.15). The case p = 2 is
considered in detail in the next section.

As an immediate corollary of the transformation laws, we obtain the
asymptotic and quantum dimensions of irreducible orbifold characters
using the coefficients in (5.58) for j = 0 and λ = 0 corresponding to
the vacuum module. This corollary also holds for p = 2, and in this
case it agrees with the previous results of [E2].

Corollary 5.20. Let Q be an even integral lattice, σ be an isometry
of Q of prime order p, and assume that Q = Q̄. Then the asymptotic
dimensions of irreducible V σ

Q -modules are determined by type as follows:

(Type 1) asdim V j
λ+Q = p−1|Q∗/Q|−1/2, where (1− σ)λ ∈ Q,

(Type 2) asdim Vλ+Q = |Q∗/Q|−1/2, where (1− σ)λ /∈ Q,

(Type 3) asdimM(µ, ζ ; σs)j =
pdim h⊥/2(p−1)

p |Zµ| d(σ)
|(Q ∩ h0)

∗/(Q ∩ h0)|−1/2,

where d(σ)2 = |(Q ∩ h⊥)/(Q ∩ (1 − σ)Q∗)| and j = 0, . . . , p − 1 label
the eigenspaces of σ. In all cases, the quantum dimensions are related
to the asymptotic dimensions by:

(5.64) qdimM = (asdimM) p |Q∗/Q|1/2.



70 B. BAKALOV, J. ELSINGER, V. G. KAC, AND I. TODOROV

Proof. We may apply Corollary 2.8, due to Corollary 4.20. Let S0,j be
the coefficient of the vacuum module V 0

Q in the linear combinations in
(5.58), (5.61), (5.63). It is uniquely defined since the character of the
vacuum module does not lie in the span of the remaining modules, by
Corollary 4.20. Then the asymptotic dimensions are S0,j , where j runs
through the labeling of inequivalent irreducible orbifold modules (see
e.g. [DJX, Section 4.2]). For orbifold modules of Type 1, we see from
(5.58) for λ = 0 and j = 0 that

S0,0 =
1

p |Q∗/Q|1/2 ,

S0,j = S0,0 for each term in the first sum, while S0,j = pS0,0 for j
representing orbifold modules of Type 2, and S0,j = (Dσ

0 /|Zµ|)S0,0 for
j representing orbifold modules of twisted type. The result follows. �

Remark 5.21. Since the transformation τ 7→ −1/τ corresponding to
the S-matrix is unitary, we must have in particular that

m∑

j=0

|S0,j|2 = 1,(5.65)

where m is the number of irreducible orbifold modules (cf. Remark
2.11). In general, the number of irreducible orbifold modules of each
type are given in the following table.

Module Number of irreducible orbifold modules

V j
λ+Q p |(Q∗/Q)σ|
Vλ+Q p−1(|Q∗/Q| − |(Q∗/Q)σ|)

M(µ, ζ ; σl)j p(p− 1) |Zµ| |M∗/π0(Q)|

Table 1. Number of irreducible orbifold modules

Recall that the set Zµ was introduced in Section 4.3. In the twisted
case, there are |Zµ||M∗/π0(Q)| many (µ, ζ) pairs describing irreducible
twisted VQ-modules, the factor p− 1 counts the nontrivial powers of σ
which can act, and the factor p counts the eigenspaces corresponding to
the orbifold modules. Then from (5.58) with j = 0, λ = 0, and h = 0,
we get that (5.65) becomes

1

p
+

1− p

p

(Dσ
λ)

2

|Zµ|
|M∗/π0(Q)| = 1,
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where Dσ
λ is given in (5.56). It follows that

pdim h⊥/(p−1) = |Zµ| d(σ)2 |π0(Q)/M |,(5.66)

where we used that |M∗/π0(Q)| |π0(Q)/M | = |M∗/M |. Note that by
Lemma 5.8 the left-hand side of (5.66) is an integer power of the prime
p, where the exponent is the number of orbits of σ of order p. Since
p(Q∩ h⊥) ⊂ (1−σ)Q∩ h⊥, this implies that indeed d(σ)2 and |Zµ| are
a power of p (cf. (3.35) and Remark 3.10). In addition, pπ0(Q) ⊂ M
implies that |π0(Q)/M | is also a power of p.

6. Examples in Order 2

In this section, we consider the lattice Q to be even and positive
definite with an isometry σ of order 2. As before, we will assume that
Q = Q̄, which means explicitly that (α|σα) ∈ 2Z for all α ∈ Q (see
Lemma 3.24).

6.1. The irreducible characters of twisted type in the general

setting. First, we demonstrate how the transformation law (5.32) can
be calculated by using repeatedly Theorem 2.13 rather than Theorem
2.14, which will allow us to determine explicitly the unknown constants
vk in (5.32).
It follows from Theorem 5.6 and Corollary 5.15 that

Pσ,σ

(

−1

τ

)

= (−iτ)r0/2Pσ,σ(τ)(6.1)

when σ has order 2. Therefore, as in the general case, we expect the
transformation χσ,σ

W (µ,ζ)

(
− 1

τ
, h
τ

)
to be written as a linear combination

of the trace functions χσ,σ
W (µ′,ζ′)(τ, h) for suitable µ

′ ∈ π0(Q) and central

character ζ ′ of G⊥
σ (cf. Theorem 3.6).

From Theorem 4.9, we have

χσ,σ
W (µ,ζ)(τ, h) = d(σ)e−πi|µ|2θ√2µ+

√
2π0(Q)

(
τ + 1

2
,
h√
2
, 0

)

.(6.2)

Similarly to (5.36) and (5.37), we set

(6.3) τ ′ =
τ − 1

2

and note that

− 1
τ
+ 1

2
=

τ ′

2τ ′ + 1
= A · τ ′,(6.4)
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where A =

(
1 0
2 1

)

∈ SL2(Z). The group SL2(Z) has generators

(6.5) S =

(
0 −1
1 0

)

and T =

(
1 1
0 1

)

,

and we can write A as

(6.6) A =

(
1 0
2 1

)

= S3T−2S = −ST−2S.

As before, consider the lattices

(6.7) L =
√
2π0(Q), L∗ =

1√
2
Q∗ ∩ h0

(cf. Lemma 3.2). As in Theorem 2.14, fix β0 ∈ C⊗Z L = h0 such that

(6.8) 2|ν|2 ≡ 2(ν|β0) mod 2Z for all ν ∈ L∗ with 2ν ∈ L.
Then we can calculate the constant v1 from Theorem 2.14 using Propo-
sition 2.18 and Remarks 2.16 and 2.18:

v1 = v(−ST−2S) = irv(ST−2S)

= irv(ST−2)v(S)
∑

µ+L∈L∗/L
e−2πi(|µ|2+(µ|β0))

= irv(S)2
∑

µ+L∈L∗/L
e−2πi(|µ|2+(µ|β0))

=
cβ0

|L∗/L| ,

(6.9)

where

cβ0
=

∑

µ+L∈L∗/L
e−2πi(|µ|2+(µ|β0)).(6.10)

Now we are ready to present the analog of Theorems 5.16–5.18 in
the case when the order of the lattice isometry is 2. In this case, we
simplify the notation for orbifold characters of twisted type as

χj
M(µ,ζ;σ)(τ, h) = χj

M(µ,ζ)(τ, h), j = 0, 1.

Theorem 6.1. Let Q be an even integral lattice and σ be an isometry
of Q of order 2 such that Q = Q̄, i.e., (α|σα) ∈ 2Z for all α ∈ Q.
Denote by superscript j the eigenspaces of σ, where j = 0, 1. Let O
be the set of orbits of σ in Q∗/Q of order 2 and set [γ + Q] ∈ O, for
γ ∈ Q∗, to designate the orbits. Consider the lattices

M = Q ∩ h0, M∗ = π0(Q
∗), L =

√
2π0(Q), L∗ =

1√
2
Q∗ ∩ h0,
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and fix β0 ∈ h0 satisfying (6.8).

(i) The transformation laws for the orbifold characters of V j
λ+Q for

λ ∈ Q∗ with (1− σ)λ ∈ Q and j = 0, 1 are:

χj
Vλ+Q

(τ + 1, h) = eπi(|λ|
2− r

12
)χj

Vλ+Q
(τ, h),

χj
Vλ+Q

(

−1

τ
,
h

τ

)

=
eπi|h|

2/τ

2|Q∗/Q|1/2
∑

γ+Q∈Q∗/Q
(1−σ)γ∈Q

e−2πi(λ|γ)(χ0
Vγ+Q

+ χ1
Vγ+Q

)(τ, h)

+
eπi|h|

2/τ

|Q∗/Q|1/2
∑

[γ+Q]∈O
e−2πi(λ|γ)χVγ+Q

(τ, h)

+
Dσ

λe
πi|h|2/τ

2|Zµ|
∑

µ+π0(Q)∈M∗/π0(Q)
ζ∈Zµ

(−1)je−2πi(λ|µ)(χ0
M(µ,ζ) + χ1

M(µ,ζ))(τ, h),

where Dσ
λ =







2dim h⊥/2

|M∗/M |1/2d(σ) , λ ∈ Q∗ ∩ h0,

0, λ /∈ Q∗ ∩ h0.

(ii) The transformation laws for the orbifold characters of Vλ+Q for
λ ∈ Q∗ with (1− σ)λ /∈ Q are:

χVλ+Q
(τ + 1, h) = eπi(|λ|

2− r
12

)χVλ+Q
(τ, h),

χVλ+Q

(

−1

τ
,
h

τ

)

=
eπi|h|

2/τ

|Q∗/Q|1/2
∑

γ+Q∈Q∗/Q
(1−σ)γ∈Q

e−2πi(λ|γ)(χ0
Vγ+Q

+ χ1
Vγ+Q

)(τ, h)

+
eπi|h|

2/τ

|Q∗/Q|1/2
∑

[γ+Q]∈O
(e−2πi(λ|γ) + e−2πi(λ|σγ))χVγ+Q

(τ, h).

(iii) The transformation laws for modified characters of M(µ, ζ)j, with
µ ∈ π0(Q

∗), ζ is a central character of G⊥
σ , and j = 0, 1 are:

χj
M(µ,ζ)(τ + 1, h) = ω−je2πi∆σeπi(|µ|

2− r
12

)χj
M(µ,ζ)(τ, h),

χj
M(µ,ζ)

(

−1

τ
,
h

τ

)

=
v0
2
eπi|h|

2/τ
∑

λ+M∈M∗/M
λ∈Q∗∩h0

e−2πi(λ|µ)(χ0
Vλ+Q

− χ1
Vλ+Q

)(τ, h)
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+
ir0/2v1

2

∑

ν+π0(Q)∈ 1

2
Q∗∩h0/π0(Q)

ν∈µ+Q∗∩h0

(−1)jeπi(−2(ν|µ)+
√
2(ν−µ|β0))(χ0

M(ν,ζ) − χ1
M(ν,ζ))(τ, h),

where r0 = dim h0, v1 is given in (6.9), (6.10), and

v0 =
d(σ)|π0(Q)/M |

2dim h⊥/2|M∗/M |1/2 , ∆σ =
dim h⊥
16

.

Proof. Recall that the transformation laws for orbifold characters of
Types 1 and 2 remain valid for p = 2 (see Theorems 5.16 and 5.17).
The case of Type 3 is similar to the proof of (5.57)–(5.63). Here we
prove the last transformation formula. For convenience we set:

λ =
√
2µ ∈

√
2π0(Q

∗), δ =
√
2ν ∈

√
2(Q∗ ∩ h0) ⊂

√
2π0(Q

∗).

Using Proposition 4.8 and equations (6.1), (6.9), we calculate:

χσ,σ
M(µ,ζ)

(

−1

τ
,
h

τ

)

= d(σ)e−πi|µ|2
θ√2µ+

√
2π0(Q)

(
− 1

τ
+1

2
, h
τ
√
2
, 0
)

Pσ,σ

(
− 1

τ

)

= d(σ)e−πi|µ|2 θλ+L (A · (τ ′, h′, 0))
Pσ,σ

(
− 1

τ

)

=
τ r0/2d(σ)cβ0

e−πi|µ|2

(−iτ)r0/2|L∗/L|
∑

δ+L∈L∗/L
δ∈2L∗

eπi(|ν|
2+

√
2(ν|β0))

θλ+δ+L

(
τ−1
2
, h√

2
, 0
)

Pσ,σ(τ)

=
ir0/2d(σ)cβ0

|L∗/L|
∑

δ+L∈L∗/L
δ∈λ+2L∗

eπi(|ν−µ|2−|µ|2+
√
2(ν−µ|β0))

θδ+L

(
τ−1
2
, h√

2
, 0
)

Pσ,σ(τ)

=
ir0/2d(σ)cβ0

|L∗/L|
∑

δ+L∈L∗/L
δ∈λ+2L∗

eπi(|ν|
2−2(ν|µ)+

√
2(ν−µ|β0))e−2πi|ν|2

θδ+L

(
τ+1
2
, h√

2
, 0
)

Pσ,σ(τ)

=
ir0/2cβ0

|L∗/L|
∑

ν+π0(Q)∈ 1

2
Q∗∩h0/π0(Q)

ν∈µ+Q∗∩h0

eπi(−2(ν|µ)+
√
2(ν−µ|β0))χσ,σ

M(ν,ζ) (τ, h) .

(6.11)

Note that we used (2.13) to change the input of the theta function from
τ−1
2

to τ+1
2
. Now recall that (cf. (5.52))
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χj
M(µ,ζ)(τ) =

1

2
(χσ,1

M(µ,ζ)(τ) + (−1)jχσ,σ
M(µ,ζ)(τ)), j = 0, 1.

The transformation of the trace functions χσ,1
M(µ,ζ)(τ, h) follow similarly

to the proof of (5.32) and (5.49). Hence, the last transformation for-
mula now follows from (6.11) and (5.55). �

Remark 6.2. All formulas in Theorem 6.1 except the last one agree
with (5.57)–(5.63) for p = 2. The only difference in the last formula is
the addition of a possible ingredient β0 (cf. Remark 2.15). In the case
when β0 = 0, this last transformation formula in Theorem 6.1 agrees
with (5.63).

6.2. The irreducible characters and S-matrix of a Z2-orbifold

using the root lattice A2. Consider the simple roots {α1, α2} associ-
ated to the root lattice A2 = Zα1+Zα2, and the Dynkin diagram auto-
morphism σ : α1 ↔ α2. Recall that |α1|2 = |α2|2 = 2 and (α1|α2) = −1.
This example will emphasize the roles of the sublattice Q̄ (cf. Section
3.7) as well as the set Zµ (cf. (5.22) and the discussion before it). The
classification of irreducible orbifold representations for the root lattice
An for even n is treated in [E1]. Another construction of the modules
presented here is discussed in [BE], which uses a previously studied
orbifold in [DN].
For convenience, we set α = α1 + α2 and β = α1 − α2. Then

|α|2 = 2 , |β|2 = 6 , (α|β) = 0 .

Using Lemma 3.24, we find that α1, α2 /∈ Ā2 and Ā2 = Zα ⊕ Zβ. For
the rest of this subsection, we set

Q = Zα⊕ Zβ.

Then for h = C⊗Z Q, we find that

M = Q ∩ h0 = Zα = π0(Q)

and Q ∩ h⊥ = Zβ. Since (1 − σ)Q = Z2β is not equal to Q ∩ h⊥,
the central characters of Gσ are needed in the description of twisted
VQ-modules (cf. Remark 3.7).
Next we describe the irreducible orbifold modules. We first find that

Q∗ = Z
α

2
⊕ Z

β

6
,

and the set of σ-invariants in Q∗/Q is

(Q∗/Q)σ = Z
α

2
⊕ Z

β

2
∼= Z2 × Z2.(6.12)
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We also note that

M∗ = π0(Q
∗) = Z

α

2
.

We then have π0(Q
∗)/π0(Q) ∼= Z2, and that the group G⊥

σ is an abelian
group generated by Uβ such that U−β = Uβ. Therefore, there are four
(µ, ζ) pairs which describe the irreducible twisted VQ-modules (cf. The-
orem 3.6), and this agrees with using the σ-invariant elements in Q∗/Q
to describe the twisted modules (cf. [BK]). Since the automorphism σ
acts on each of these modules, each of them will decompose into two
eigenspaces of σ, resulting in 8 irreducible V σ

Q -modules.
Since σ acts on any untwisted VQ-module Vλ+Q if the coset λ+Q is

fixed under σ, we obtain from (6.12) 8 irreducible V σ
Q -modules of Type

1. The VQ-modules on which σ does not act form orbits comprised
of two modules, each isomorphic as orbifold modules under σ. Hence
there are 1

2
(12−4) = 4 irreducible V σ

Q -modules of Type 2. All together
that makes 20 irreducible V σ

Q -modules given in the following list:

V l
i,j = V l

iα
2
+j β

2
+Q
, i, j = 0, 1,

Vi,j = Viα
2
+j β

6
+Q, i = 0, 1, j = 1, 2,

M(0, ζk)
l, M

(α

2
, ζk

)l

, k = 1, 2,

where l = 0, 1 denotes the eigenspaces of σ and ζ1, ζ2 are the characters
of G⊥

σ . Note that

σ : Viα
2
+j β

6
+Q → Viα

2
−j β

6
+Q.

The characters of the above modules are given by:

χl
i,j(τ) =

1

2

(
θiα

2
+j β

2
+Q (τ)

P1,1(τ)
+ (−1)l

θiα
2
+Zα(τ)

P1,σ(τ)

)

, i, j = 0, 1,

(6.13)

χi,j(τ) =
θiα

2
+j β

6
+Q(τ)

P1,1(τ)
, i = 0, 1, j = 1, 2,

(6.14)

χl
M(0,ζk)

(τ) =
1

2

(
θZα (τ)

Pσ,1(τ)
+ (−1)l

θZα (τ)

Pσ,σ(τ)

)

, k = 1, 2,

(6.15)

χl
M(α

2
,ζk)

(τ) =
1

2

(
θα

2
+Zα (τ)

Pσ,1(τ)
+ (−1)l+1i

θα
2
+Zα (τ)

Pσ,σ(τ)

)

, k = 1, 2,

(6.16)
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where we used (2.13) and (4.22), since π0(Q) = Zα is an even integral
lattice.
In this case we find that β0 can be set to zero in Theorem 2.14. We

also calculate that for L = Z
√
2α, (6.10) becomes c0 = 2− 2i, and

(6.17) v1 =
1

2
(1− i)

(cf. (6.9)). Using Theorem 5.16 and (6.17), we obtain the following
transformation laws of orbifold characters:

χl
i,j(τ + 1) = e

πi

6
(3i+9j−1)χl

i,j(τ),(6.18)

χl
i,j

(

−1

τ

)

=
1

2
√
12

1∑

m,n=0

(−1)im+jn(χ0
m,n + χ1

m,n)(τ)

+
1√
12

1∑

m=0

2∑

n=1

(−1)im+jnχm,n(τ)

+
1

4

1∑

r=0

2∑

k=1

(−1)l+ir(χ0
M(r α

2
,ζk)

+ χ1
M(r α

2
,ζk)

)(τ),

(6.19)

where l = 0, 1 and i, j = 0, 1,

χi,j(τ + 1) = e
πi

6
(3i+j2−1)χi,j(τ),(6.20)

χi,j

(

−1

τ

)

=
1√
12

1∑

m,n=0

(−1)im+jn(χ0
m,n + χ1

m,n)(τ)

+
1√
12

1∑

m=0

2∑

n=1

(−1)im cosh

(
πi

3
jn

)

χm,n(τ),

(6.21)

where i = 0, 1 and j = 1, 2,

χl
M(0,ζk)

(τ + 1) = (−1)le−πi/24χl
M(0,ζk)

(τ),(6.22)

χl
M(α

2
,ζk)

(τ + 1) = (−1)le7πi/24χl
M(α

2
,ζk)

(τ),(6.23)
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χl
M(0,ζk)

(

−1

τ

)

=
1

4
(χ0

0,0 − χ1
0,0 + χ0

1,0 − χ1
1,0)(τ)

+
1√
2
(−1)l

1∑

r=0

(χ0
M(r α

2
,ζk)

− χ1
M(r α

2
,ζk)

)(τ),

(6.24)

χl
M(α

2
,ζk)

(

−1

τ

)

=
1

4
(χ0

0,0 − χ1
0,0 − χ0

1,0 + χ1
1,0)(τ)

+
1

2
√
2

1∑

r=0

(−1)l+r(χ0
M(r α

2
,ζk)

− χ1
M(r α

2
,ζk)

)(τ),

(6.25)

where l = 0, 1 and k = 0, 1.
In the following table, we present the asymptotic and quantum di-

mensions using the coefficients of the linear combination of characters
in (6.19); see also Corollary 2.8.

M V l
i,j Vi,j M(µ, ζk)

l

asdimM 1
2
√
12

1√
12

1
4

qdimM 1 2
√
3

Table 2. Asymptotic and quantum dimensions

6.3. The irreducible characters and S-matrix of a Z2-orbifold

using the root lattice A3. Consider the simple roots {α1, α2, α3}
associated to the root lattice A3 = Zα1 + Zα2 + Zα3, and the Dynkin
diagram automorphism

σ(α2) = α2 and σ : α1 ↔ α3.(6.26)

Recall that |αi|2 = 2 for all i, (α1|α2) = (α2|α3) = −1, and (α1|α3) = 0.
In this section, we provide an alternative way to do the modular

transformations of characters by computing them more directly. This
example is special in that we are able to also obtain the S-matrix and
fusion rules among irreducible orbifold characters. The classification of
irreducible orbifold representations for the root lattice An for odd n is
treated in [E1].
Using Lemma 3.24, we find that Q = Q̄. Hence we set Q = A3 and

denote the eigenvectors of σ by

α = α1 + α3, β = α1 − α3.
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Then |α|2 = 4 = |β|2, and (α|β) = 0. We also find that

(6.27) M = Q ∩ h0 = Zα2 ⊕ Zα, (1− σ)Q = Q ∩ h⊥ = Zβ.

It follows from Lemma 4.7 that d(σ) = 1. Therefore, the irreducible
twisted VQ-modules can be classified using only µ ∈ π0(Q

∗) (cf. The-
orem 3.6 and Remark 3.7). The dual lattice Q∗ is spanned by the
weights

Λ1 =
1

4
(3α1 + 2α2 + α3), Λ3 =

1

4
(α1 + 2α2 + 3α3),

Λ2 =
1

4
(2α1 + 4α2 + 2α3) =

α

2
+ α2,

and the fundamental group is cyclic of order 4:

Q∗/Q = 〈Λ1 +Q〉 ∼= Z4.(6.28)

Note that Λ2 +M = α
2
+M = π0α1 +M , and

M∗ = π0(Q
∗) =

〈α2

2
,
α

2

〉

.

Now π0 fixes α2 and Λ2, and π0α1 = π0α3 =
α
2
, π0Λ1 = π0Λ3 =

α
2
+ α2

2
,

so that

π0(Q) =
〈α

2
, α2

〉

,(6.29)

π0(Q
∗)/π0(Q) =

〈α2

2
+ π0(Q)

〉

.(6.30)

Hence we may take µ = 0, α2

2
in describing distinct irreducible twisted

VQ-modules. Note that π0(Q) is a self-dual integral lattice.
It turns out that the trace functions (4.1) with h ∈ h0 set to zero

are sufficient to describe all irreducible V σ
Q -modules. Since the only

σ-invariant cosets in Q∗/Q are Λ2+Q and the trivial coset, there are 4
irreducible orbifold modules of Type 1: V ±

Q and V ±
Λ2+Q corresponding to

the eigenspaces of σ on VQ and VΛ2+Q. The generator Λ1 +Q of Q∗/Q
forms an orbit of order 2, and there is only one irreducible orbifold
module of Type 2. In addition, there are 2 irreducible orbifold modules
of twisted type given by µ = 0, α2

2
, and each of them breaks into two

eigenspaces of σ. All together there are 9 irreducible V σ
Q -modules.

For convenience we set θλ+Q(τ) = θλ+Q(τ, 0, 0) (cf. (2.10)). Since the
central characters of G⊥

σ are not needed in this example, we also set for
convenience

(6.31) χσ,σk

M(µ)(τ) = χσ,σk

M(µ,ζ)(τ, 0),

where k = 0, 1 (cf. (4.16)). Using Theorem 4.1 and Proposition 4.8,
we obtain the following trace functions on irreducible untwisted VQ-
modules (the characters corresponding to superscript 1, 1):
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χ1,1
Q (τ) =

θQ(τ)

P1,1(τ)
, χ1,σ

Q (τ) =
θM(τ)

P1,σ(τ)
,

χ1,1
Λ1+Q(τ) =

θΛ1+Q(τ)

P1,1(τ)
, χ1,σ

Λ2+Q(τ) =
θΛ2+M(τ)

P1,σ(τ)
,

χ1,1
Λ2+Q(τ) =

θΛ2+Q(τ)

P1,1(τ)
.

We also get the following trace functions on irreducible twisted VQ-
modules (the characters corresponding to σ, 1):

χσ,1
M(0)(τ) =

θπ0(Q)(τ)

Pσ,1(τ)
, χσ,σ

M(0)(τ) =
θ√2π0(Q)(

τ+1
2
)

Pσ,σ(τ)
,

χσ,1

M(
α2
2
)
(τ) =

θα2
2
+π0(Q)(τ)

Pσ,1(τ)
, χσ,σ

M(
α2
2
)
(τ) =

θ α2√
2
+
√
2π0(Q)(

τ+1
2
)

Pσ,σ(τ)
,

where θπ0(Q)(τ) = θM (τ) + θα
2
+M(τ).

From these trace functions, we compute the irreducible charaters for
the orbifold by taking trace of projections of σ. We label the orbifold
characters as follows:

χ±
Q(τ) =

1

2
(χ1,1

Q ± χ1,σ
Q )(τ),

χ±
Λ2+Q(τ) =

1

2
(χ1,1

Λ2+Q ± χ1,σ
Λ2+Q)(τ),

χΛ1+Q(τ) = χ1,1
Λ1+Q(τ),

χσ,±
M(0)(τ) =

1

2
(χσ,1

M(0) ± χσ,σ
M(0))(τ),

χσ,±
M(

α2
2
)
(τ) =

1

2
(χσ,1

M(
α2
2
)
± χσ,σ

M(
α2
2
)
)(τ).

We compute the transformation laws under τ 7→ −1/τ directly, by
invoking Theorem 2.13 (with z = u = 0) to get:

θQ

(

−1

τ

)

=
1

2
(−iτ)

3

2 (θQ + 2θΛ1+Q + θΛ2+Q)(τ),

θM

(

−1

τ

)

=
1

2
(−iτ)(θM + θα

2
+M + θα2

2
+M + θα+α2

2
+M)(τ),

θα
2
+M

(

−1

τ

)

=
1

2
(−iτ)(θM + θα

2
+M − θα2

2
+M − θα+α2

2
+M

)(τ),
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and Theorem 5.6 to get:

P1,1

(

−1

τ

)

= (−iτ)
3

2P1,1(τ), P1,σ

(

−1

τ

)

=
1√
2
(−iτ)Pσ,1(τ).

Using these, we compute the transformations for the trace functions.
For example,

χ1,1
0

(

−1

τ

)

=
1

2
χ1,1
0 (τ) +

1

2
χ1,1
Λ2
(τ) + χ1,1

Λ1
(τ),

χ1,σ
0

(

−1

τ

)

=
1√
2
χσ,1
0 (τ) +

1√
2
χσ,1

α2
2

(τ).

We find the transformation laws for the other trace functions on ir-
reducible VQ-modules in a similar way and state the answer in the
following lemma.

Lemma 6.3. The transformation laws under τ 7→ −1/τ of the trace
functions on irreducible VQ-modules are:

χ1,1
λ

(

−1

τ

)

=
1

2
χ1,1
0 (τ) + (−1)|λ|

2

χ1,1
Λ1
(τ) +

1

2
χ1,1
Λ2
(τ), λ = 0,Λ2,

χ1,1
Λ1

(

−1

τ

)

=
1

2
χ1,1
0 (τ)− 1

2
χ1,1
Λ2
(τ) ,

χ1,σ
λ

(

−1

τ

)

=
1√
2

(

χσ,1
0 (τ) + (−1)|λ|

2

χσ,1
α2
2

(τ)
)

, λ = 0,Λ2 ,

χσ,1
µ

(

−1

τ

)

=
1√
2

(
χ1,σ
0 (τ) + (−1)(µ|α2)χ1,σ

Λ2
(τ)
)
, µ = 0,

α2

2

χσ,σ
0

(

−1

τ

)

= χσ,σ
α2
2

(τ) , χσ,σ
α2
2

(

−1

τ

)

= χσ,σ
0 (τ).

Proof. We prove the transformations for χσ,σ
0 (τ) and χσ,σ

α2
2

(τ). We have

that

L =
√
2π0(Q) =

√
2
〈α

2
, α2

〉

, L∗ =
1√
2

〈α

2
, α2

〉

=
1√
2
π0(Q) =

1

2
L,

and |L∗/L| = 4. In this case we find that

β0 =
α2√
2

is nonzero and (6.10) becomes cβ0
= |L∗/L|. The transformations now

follow from (6.11) and that r0 = 2. �

Using Lemma 6.3, we can now write the transformation laws for
irreducible orbifold characters, and determine the S-matrix using that
the orbifold characters are linear combinations of the trace functions
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defined above. For example, we show the calculation for the vacuum
module χ+

0 (τ) and the character χσ,+
α2
2

(τ):

χ+
0

(

−1

τ

)

=
1

4
χ1,1
0 +

1

2
χΛ1

+
1

4
χ1,1
Λ2

+
1

2
√
2
χσ,1
0 +

1

2
√
2
χσ,1

α2
2

=
1

4
χ+
0 +

1

4
χ−
0 +

1

2
χΛ1

+
1

4
χ+
Λ2

+
1

4
χ−
Λ2

+
1

2
√
2
(χσ,+

0 + χσ,−
0 + χσ,+

α2
2

+ χσ,−
α2
2

),

χσ,+
α2
2

(

−1

τ

)

=
1√
2
χ1,σ
0 − 1√

2
χ1,σ
Λ2

+ χσ,σ
0

=
1

2
√
2
(χ+

0 − χ−
0 − χ+

Λ2
+ χ−

Λ2
) +

1

2
χσ,+
0 − 1

2
χσ,−
0 .

We compute the transformations for the other orbifold characters in
a similar way. Using the coefficients in these linear combinations, we
then obtain the S-matrix. This is because the the irreducible characters
of this Z2-orbifold are linearly independent, due to the fact that (1 −
σ)Q = Q ∩ h⊥ (see (6.27) and Remark 3.7).

Theorem 6.4. Let Q be the A3 root lattice and σ be the Dynkin dia-
gram automorphism given by (6.26). Consider the vector space spanned
by the irreducible characters of V σ

Q with ordered basis

{
χ+
0 , χ

−
0 , χ

1,1
Λ1
, χ+

Λ2
, χ−

Λ2
, χσ,+

0 , χσ,−
0 , χσ,+

α2
2

, χσ,−
α2
2

}
.

Then the modular transformation τ 7→ −1/τ for characters of irre-
ducible V σ

Q -modules is given by the following S-matrix:

S =
1

4


















1 1 2 1 1
√
2

√
2

√
2

√
2

1 1 2 1 1 −
√
2 −

√
2 −

√
2 −

√
2

2 2 0 −2 −2 0 0 0 0

1 1 −2 1 1
√
2

√
2 −

√
2 −

√
2

1 1 −2 1 1 −
√
2 −

√
2

√
2

√
2√

2 −
√
2 0

√
2 −

√
2 0 0 2 −2√

2 −
√
2 0

√
2 −

√
2 0 0 −2 2√

2 −
√
2 0 −

√
2

√
2 2 −2 0 0√

2 −
√
2 0 −

√
2

√
2 −2 2 0 0


















.

We also present the asymptotic and quantum dimensions using the
coefficients of the linear combination of characters in (6.19); see also
Corollary 2.8.
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M V ±
Q , V

±
Λ2+Q VΛ1+Q M(0)±,M(α2

2
)±

asdimM 1
4

1
2

1
2
√
2

qdimM 1 2
√
2

Table 3. Asymptotic and quantum dimensions

Remark 6.5. These results agree with the quantum dimensions for ir-
reducible representations of orbifold modules computed in [E2] in the
general case of an order 2 automorphism. In general, the quantum
dimensions of the irreducible orbifold modules of untwisted type corre-
sponding to an involution are either 1 or 2, and the quantum dimensions
of the irreducible orbifold modules of twisted type are all equal.

Next we compute the transformation laws for the transformation
τ 7→ τ + 1, which are given in Theorem 2.13 with z = u = 0. For
example,

θΛ1+Q(τ + 1) = e
3

4
πiθΛ1+Q(τ),

θπ0(Q)(τ + 1) = θM(τ + 1) + θα
2
+M(τ + 1) = θM (τ)− θα

2
+M(τ),

θα2
2
+π0(Q)(τ + 1) = θα2

2
+M(τ + 1) + θα2

2
+α

2
+M(τ + 1) = iθα2

2
+π0(Q)(τ).

To use the results of Theorem 5.6, we first find that ∆1 = 0 and
∆σ = 1

16
. Then we obtain

P1,ϕ(τ + 1) = eπi/4P1,ϕ(τ), Pσ,ϕ(τ + 1) = eπi/8Pσ,ϕσ(τ),

for ϕ = 1, σ. We can now compute the transformations τ 7→ τ + 1 for
the trace functions. For example,

χΛ1
(τ + 1) = e−

1

4
πie

3

4
πiχΛ1

(τ) = iχΛ1
(τ).

The other transformations of the trace functions are found in a similar
way and the results are stated in the next lemma.

Lemma 6.6. The transformation laws under τ 7→ τ + 1 of the trace
functions on irreducible VQ-modules are:

χ1,1
0 (τ + 1) = e−πi/4χ1,1

0 (τ), χσ,1
0 (τ + 1) = e−πi/8χσ,σ

0 (τ),

χ1,1
Λ1
(τ + 1) = iχ1,1

Λ1
(τ) χσ,1

α2
2

(τ + 1) = ie−πi/8χσ,σ
α2
2

(τ),

χ1,1
Λ2
(τ + 1) = −e−πi/4χ1,1

Λ2
(τ), χσ,σ

0 (τ + 1) = e−πi/8χσ,1
0 (τ),

χ1,σ
0 (τ + 1) = e−πi/4χ1,σ

0 (τ), χσ,σ
α2
2

(τ + 1) = ie−πi/8χσ,1
α2
2

(τ),
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χ1,σ
Λ2

(τ + 1) = −e−πi/4χ1,σ
Λ2

(τ).

Using Lemma 6.6, we can now write the transformation laws for
irreducible orbifold characters and determine the T -matrix.

Theorem 6.7. In the setting of Theorem 6.4, the modular transforma-
tion τ 7→ τ + 1 for irreducible characters of the orbifold vertex algebra
V σ
Q is given by the following diagonal matrix:

T = e−πi/4diag(1, 1, e3πi/4,−1,−1, eπi/8,−eπi/8, ieπi/8,−ieπi/8).

Next we describe the fusion matrix corresponding to the fusion prod-
uct among irreducible orbifold modules. The 9 irreducible orbifold
modules for the A3 root lattice and Dynkin diagram automorphism are
given in [BE] (where L+ = Q ∩ h0):

V ±
Q

∼=
(
VL+

⊗ V ±
Zβ

)
⊕
(
Vα

2
+L+

⊗ V ±
β
2
+Zβ

)
,(6.32)

V ±
α
2
+Q

∼=
(
VL+

⊗ V ±
β
2
+Zβ

)
⊕
(
Vα

2
+L+

⊗ V ±
Zβ

)
(6.33)

Vλ1+Q
∼=
(
Vα2

2
+L+

⊗ Vβ
4
+Zβ

)
⊕
(
Vα2

2
+α

2
+L+

⊗ Vβ
4
+Zβ

)
,(6.34)

(
VL+

⊗ V T1,±
Zβ

)
⊕
(
Vα

2
+L+

⊗ V T1,±
Zβ

)
,(6.35)

(
VL+

⊗ V T2,±
Zβ

)
⊕
(
Vα

2
+L+

⊗ V T2,∓
Zβ

)
.(6.36)

Their corresponding characters are χ±
0 , χ

±
Λ2
, χ1,1

Λ1
, χσ,±

0 , χσ,±
α2
2

, respectively.

For convenience in writing the matrix describing the fusion algebra, we
make the labelling:

α

2

±
:= V ±

α
2
+Q, λ1 := Vλ1+Q,

and we denote the modules (6.35) by T±
1 and (6.36) by T±

2 . We also
set

Ti = T+
i + T−

i , i = 1, 2,

Um,n = V m
Q + V n

α
2
+Q, m, n ∈ {±}.

Theorem 6.8. With the above notation, consider the fusion matrix
whose (i, j)-entry is the fusion product Vi ⊠ Vj, where Vi, Vj are the
irreducible V σ

Q -modules in position i and j, respectively. Then fusion
matrix is given by:
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















V +
Q V −

Q λ1
α
2
+ α

2
− T+

1 T−
1 T+

2 T−
2

V −
Q V +

Q λ1
α
2
− α

2
+ T−

1 T+
1 T−

2 T+
2

λ1 λ1 U+,+ + U−,− λ1 λ1 T2 T2 T1 T1
α
2
+ α

2
− λ1 V +

Q V −
Q T−

1 T+
1 T+

2 T−
2

α
2
− α

2
+ λ1 V −

Q V +
Q T−

1 T+
1 T−

2 T+
2

T+
1 T−

1 T2 T−
1 T+

1 U+,− U−,+ λ1 λ1
T−
1 T+

1 T2 T+
1 T−

1 U−,+ U+,− λ1 λ1
T+
2 T−

2 T1 T+
2 T−

2 λ1 λ1 U+,+ U−,−

T−
2 T+

2 T1 T−
2 T+

2 λ1 λ1 U−,− U+,+

















7. Examples in Order 3

In this section, we consider the lattice Q to be even and positive
definite with an isometry σ of order 3. Then Q̄ = Q by Corollary 3.25.

7.1. The irreducible characters of twisted type in the general

setting. First, we will determine the complex numbers v1 and v−1 from
(5.63). Recall from Theorem 5.6 and Corollary 5.15 that

Pσ,σk

(

−1

τ

)

= (−iτ)r0/2Pσk,σ−1(τ).(7.1)

As in the general case, we expect the transformation χσ,σk

W (µ,ζ)

(
− 1

τ
, h
τ

)
to

be written as a linear combination of the trace functions χσk ,σ−1

W (µ′,ζ′)(τ, h)

for suitable µ′ ∈ π0(Q) and central character ζ ′ of G⊥
σ (see Theorem

3.6).
We write σ−1 = σkk′, where kk′ + 1 = 3m for some m ∈ Z. This im-

plies that we can take k = ±1, k′ = −k, and m = 0. From Proposition
4.8, we have

χσ,σ
W (µ,ζ)(τ, h) = d(σ)e−πi|µ|2θ√3µ+

√
3π0(Q)

(
τ + 1

3
,
h√
3
, 0

)

,

χσ,σ−1

W (µ,ζ)(τ, h) = d(σ)eπi|µ|
2

θ√3µ+
√
3π0(Q)

(
τ − 1

3
,
h√
3
, 0

)

.

Similarly to (5.36), (5.37), we set

(7.2) τ ′ =
τ − k

3
, h′ =

h√
3
,

and note that

− 1
τ
+ k

3
=

kτ ′

3τ ′ + k
= A · τ ′,
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where A =

(
k 0
3 k

)

and k = ±1. Then A is an element of the group

SL2(Z) with generators

S =

(
0 −1
1 0

)

and T =

(
1 1
0 1

)

.

We find that

(7.3)

(
1 0
3 1

)

= −ST−3S and

(
−1 0
3 −1

)

= ST 3S.

Note that these matricies do not depend on the lattice Q. Our goal
will be to use these decompositions to transform the theta function in
steps, using one generator at a time.
We have that

L =
√
3π0(Q), L∗ =

1√
3
Q∗ ∩ h0

(cf. Lemma 3.2). In this case we find that β0 in Theorem 2.14 can be
set to zero. Therefore we set (cf. (6.10))

c0 =
∑

µ+L∈L∗/L
e3πi|µ|

2

.(7.4)

Then the complex numbers v1 and v−1 in (5.63) can be determined
using Proposition 2.18 and Remarks 2.16 and 2.18 as follows:

v1 = v(−ST−3S) = irv(ST−3S)

= irv(ST−3)v(S)
∑

µ+L∈L∗/L
e−3πi|µ|2

= irv(S)2c̄0

=
c̄0

|L∗/L| ,

(7.5)

and

v−1 = v(ST 3S) = v(ST 3S)

= v(ST 3)v(S)
∑

µ+L∈L∗/L
e3πi|µ|

2

= v(S)2c0

=
(−1)r0/2c0
|L∗/L| .

(7.6)



ORBIFOLDS OF LATTICE VERTEX ALGEBRAS 87

Remark 7.1. Since the above calculations do not depend on the expo-
nent of the generator T , formulas (7.5), (7.6) hold for any odd prime p
in place of 3.

We set ω = e2πi/3 and recall that (cf. (5.52), (5.55)):

χj
M(µ,ζ;σs)(τ, h) =

1

3

2∑

k=0

ωjkχσs,σsk

M(µ,ζ)(τ, h),

χσ,σ−1

M(µ,ζ)(τ, h) =

2∑

l=0

ωlχl
M(µ,ζ;σ)(τ, h),

χσ−1,σ−1

M(µ,ζ) (τ, h) =
2∑

l=0

ω−lχl
M(µ,ζ;σ−1)(τ, h),

where j = 0, 1, 2 and s = 1, 2. For convenience, we also set λ =
√
3µ ∈√

3π0(Q
∗) and δ =

√
3ν ∈

√
3(Q∗ ∩ h0) ⊂

√
3π0(Q

∗). Using (7.5), we
specialize the transformation (5.63) in this case:

χj
M(µ,ζ;σs)

(

−1

τ
,
h

τ

)

=
v0
3
eπi|h|

2/τ
∑

λ+M∈M∗/M
λ∈Q∗∩h0

2∑

l=0

e−2πi(λ|µ)ωslχl
Vλ+Q

(τ, h)

+
ir0/2c̄0
3|L∗/L|

2∑

l=0

∑

δ+L∈L∗/L
δ∈λ+3L∗

ωj+le−2πi(µ|ν)χl
M(ν,ζ;σ)(τ, h)

+
i−r0/2c0
3|L∗/L|

2∑

l=0

∑

δ+L∈L∗/L
δ∈−λ+3L∗

ω−j−le−2πi(µ|ν)χl
M(ν,ζ;σ−1)(τ, h),

where j = 0, 1, 2, r0 = dim h0, s = 1, 2, and

v0 = d(σ)3−dim h⊥/4 |π0(Q)/M |
|M∗/M |1/2 .

7.2. The Z3-orbifold using the root lattice D4. In this subsection,
we consider the lattice Q =

⊕4
i=1 Zαi to be the D4 root lattice and σ to

be the Dynkin diagram automorphism given by a 3-cycle on the outer
nodes of the diagram. We fix the labelling so that α4 is the center
node:

σ(α4) = α4 and σ : α1 7→ α2 7→ α3 7→ α1.

Denote the eigenvectors of σ by

α = α1 + α2 + α3, γ1 = α1 + ωα2 + ω2α3, γ2 = α1 + ω2α2 + ωα3,
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where ω = e2πi/3. The basis vectors of Q ∩ h⊥ are

β1 =
γ1 − ωγ2
1− ω

= α1 − α2, β2 =
γ1 − γ2
ω − ω2

= α2 − α3.

Note that |α|2 = 6 and (βi|α) = 0 = (βi|α4), i = 1, 2. We also find that

M = Q ∩ h0 = Zα4 ⊕ Zα, (1− σ)Q = Q ∩ h⊥ = Zβ1 ⊕ Zβ2,

and L = 〈α, α4〉 ⊕ 〈β1, β2〉. It follows that the defect of σ is d(σ) =
1 (cf. Lemma 4.7) and that the irreducible twisted VQ-modules are
determined only from elements µ ∈ π0(Q

∗) (cf. Remark 3.7 and (3.44)).
Using the relations

α2 = α3 + β2, α1 = α2 + β1, 3α1 = α + 2β1 + β2,

we obtain Q/L = 〈α1 + L〉 ∼= Z3.
The dual lattice D∗

4 is spanned by the weights

λ1 = α1 + α4 +
1

2
(α2 + α3), λ2 = α2 + α4 +

1

2
(α1 + α3),

λ3 = α3 + α4 +
1

2
(α1 + α2), λ4 = α+ 2α4,

and the fundamental group of D4 is

Q∗/Q = 〈λ1 +Q, λ2 +Q〉

=

〈
α2 + α3

2
+Q,

α1 + α3

2
+Q

〉

∼= Z2 × Z2.

We see immediately that (Q∗/Q)σ = {Q} and the other cosets form
an orbit of σ of order 3. It follows that there is a unique irreducible
untwisted VQ-module of Type 1 (the vacuum module) that breaks into
eigenspaces of σ (cf. (4.34)). This provides 3 irreducible V σ

Q -modules
of Type 1. Since the weights λ1, λ2, and λ3 form an orbit of σ, the
corresponding VQ-modules Vλ1+Q, Vλ2+Q, Vλ3+Q become isomorphic as
V σ
Q -modules; we let Vλ1+Q represent the unique irreducible V σ

Q -module
of Type 2.
Next, we evaluate the projection π0 =

1
3
(1 + σ + σ2) on the lattices

Q and Q∗. It is easy to show that (cf. Lemma 3.2)

π0(Q) =
〈α

3
, α4

〉

, Q∗ ∩ h0 = (π0(Q))
∗ = 〈α, α4〉 =M,

and that M ∼=
√
3π0(Q) as lattices. Therefore, M∗ = π0(Q) and

M∗/M ∼= Z3. It is also clear that

π0(Q
∗) = π0(Q)
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since π0λi ∈ π0(Q) for each i. It follows that there is a unique irre-
ducible twisted VQ-module corresponding to µ = 0 (cf. Theorem 3.6).
We denote this module by M(0) (cf. Remark 3.7).
From Corollary 4.9 and equations (4.32), (4.34), (5.50)–(5.52), we

obtain the following characters of the 10 irreducible orbifold modules
described above (j = 0, 1, 2):

χj
VQ
(τ) =

1

3

(
θQ(τ)

P1,1(τ)
+ ωj θM(τ)

P1,σ(τ)
+ ω2j θM (τ)

P1,σ2(τ)

)

,

χVλ1+Q
(τ) =

θλ1+Q(τ)

P1,1(τ)
,

χj
M(0;σ)(τ) =

1

3

(

θ√3π0(Q)(
τ
3
)

Pσ,1(τ)
+ ωj

θ√3π0(Q)(
τ+1
3
)

Pσ,σ(τ)
+ ω2j

θ√3π0(Q)(
τ−1
3
)

Pσ,σ2(τ)

)

,

χj
M(0;σ2)(τ) =

1

3

(

θ√3π0(Q)(
τ
3
)

Pσ2,1(τ)
+ ωj

θ√3π0(Q)(
τ+1
3
)

Pσ2,σ2(τ)
+ ω2j

θ√3π0(Q)(
τ−1
3
)

Pσ2,σ(τ)

)

.

In this case β0 can be set to zero in Theorem 2.14. We also calculate
that for L =

√
3π0(Q), (6.10) becomes c0 = 3, and hence v1 = 1,

v−1 = −1 (cf. (6.9)). Using Theorem 5.16 and (6.17), we obtain the
following transformation laws of orbifold characters, where j = 0, 1, 2
and s = 1, 2:

χj
VQ
(τ + 1) = −ωχj

VQ
(τ),

χj
VQ

(

−1

τ

)

=
1

6

2∑

l=0

χl
VQ
(τ) +

1

2
χVλ1+Q

(τ) +
1

3

2∑

k=1

2∑

l=0

ωjkχl
M(0;σk)(τ),

χVλ1+Q
(τ + 1) = ωχVλ1+Q

(τ),

χVλ1+Q

(

−1

τ

)

=
1

2

2∑

l=0

χl
VQ
(τ)− 1

2
χVλ1+Q

(τ),

χj
M(0;σs)(τ + 1) = −ω1−je

2πi

9 χj
M(0;σs)(τ),

χj
M(0;σs)

(

−1

τ

)

=
1

3

2∑

l=0

ωslχl
VQ
(τ) +

i

3

2∑

l=0

ωj+lχl
M(0;σs)(τ)

− i

3

2∑

l=0

ω−(j+l)χl
M(0;σ−s)(τ).
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In the following table, we present the asymptotic and quantum di-
mensions, which are a special case of Corollary 5.20.

M V j
Q Vλ1+Q M(0, σs)j

asdimM 1
6

1
2

1
3

qdimM 1 3 2

Table 4. Asymptotic and quantum dimensions

Finally, we remark that, even though we have found the modular
transformations of the characters of irreducible orbifold modules, it
remains a challenge to determine the S-matrix from Theorem 2.6. This
is due to the fact that the characters are linearly dependent and in
fact many are just equal; see (4.41), (4.43). If we naively pretend
that the characters are linearly independent and construct an S-matrix
from the coefficients in the above transformation formulas, we obtain
an S-matrix that may produce non-integral fusion rules when used in
Verlinde’s formula (2.9) (see Theorem 2.7).

8. Permutation Orbifolds

In this section, we study the representation theory of a permutation
orbifold of a lattice vertex algebra VQ. We present the irreducible V σ

Q -
modules and their characters in the case when Q is a direct sum of a
prime number of copies of an arbitrary positive-definite even lattice and
the automorphism σ acts as a cyclic shift of the summands. Then we
derive the modular transformations of characters, using Theorem 2.14
for the twisted type modules. Permutation orbifolds of lattice vertex
algebras for σ of order 2 and 3 were studied previously by Dong–Xu–Yu
in [DXY1, DXY2, DXY3]. Their recent paper [DXY4] gives a (rather
complicated) formula for the S-matrix for the permutation orbifold of
any regular vertex algebra, but it is unclear how to derive from it the
results of this section.

8.1. The irreducible characters in the general setting. In this
section, we consider the lattice Q to be an orthogonal direct sum Q⊕p

0

of p copies of an even lattice Q0, where p is prime. We represent the
elements of Q as α = (α1, . . . , αp) with αi ∈ Q0 for 1 ≤ i ≤ p. The
bilinear form for Q is given by

(8.1) (α|β) =
p
∑

i=1

(αi|βi),
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using the bilinear form for Q0. The dual lattice is Q∗ ∼= (Q∗
0)

⊕p, and
we have

(8.2) Q∗/Q ∼= (Q∗
0/Q0)

⊕p .

At this point, the rank of Q0 is arbitrary. The automorphism σ of Q
will be the p-cycle that permutes the entries:

(8.3) σ(α1, . . . , αp) = (α2, . . . , αp, α1).

Let ε0 : Q0 × Q0 → {±1} be a 2-cocycle for Q0 satisfying (3.3) and
(3.5). As a 2-cocycle for Q, we define

(8.4) ε(α, β) =

p
∏

i=1

ε0(αi, βi),

where α = (α1, . . . , αp) and β = (β1, . . . , βp) with αi, βi ∈ Q0 for
1 ≤ i ≤ p. Notice that ε(σα, σβ) = ε(α, β) for all α, β ∈ Q, which
implies that we can choose η = 1 in (3.15). Hence, Q̄ = Q (this also
follows easily from Lemma 3.24). Now for h = C⊗Z Q, we find:

h0 = spanC

{
(α0, . . . , α0)

∣
∣α0 ∈ Q0

}
, dim h0 = rankQ0 = r0,(8.5)

h⊥ =
{

(α1, . . . , αp) ∈ Q
∣
∣
∣

p
∑

i=1

αi = 0
}

, dim h⊥ = r0(p− 1).(8.6)

We have Q ∩ h0 ∼=
√
pQ0 as lattices under the correspondence

(α0, . . . , α0) ↔
√
pα0, α0 ∈ Q0.

Lemma 8.1. With the above setting, we have that (1−σ)Q = Q∩h⊥.

Proof. It is sufficient to show Q ∩ h⊥ ⊂ (1 − σ)Q. Indeed, an element
in Q ∩ h⊥ has the form

(α1, . . . , αp−1,−α1 − · · · − αp−1),

and such elements can be spanned by elements of the form

(1− σ)(0, . . . , 0, α0, 0, . . . , 0) = (0, . . . , 0,−α0, α0, 0, . . . , 0).

�

The above lemma ensures that all twisted VQ-modules can be de-
termined using only µ ∈ π0(Q

∗): relation (3.45) determines a unique
character ζ = ζµ of Z(G⊥

σ ) for every µ ∈ π0(Q
∗); see Remark 3.7.

Moreover, the defect is d(σ) = 1, by Lemma 4.7. Recall the lattice

L = (Q ∩ h0)⊕ (Q ∩ h⊥).

Then the quotient group Q/L can be described in terms of the lattice
Q0 as the next lemma shows.
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Lemma 8.2. For Q = Q⊕p
0 and L as above, we have Q/L ∼= Q0/pQ0

as abelian groups. In particular, there are pr0 cosets of L in Q.

Proof. Consider the composition of maps f : Q→ Q0 → Q0/pQ0 given
by

(α1, . . . , αp) 7→
p
∑

i=1

αi 7→
p
∑

i=1

αi + pQ0.

Clearly, f is surjective and L ⊂ Ker f . Now suppose (α1, . . . , αp) ∈
Ker f so that

∑p
i=1 αi = pβ0 for some β0 ∈ Q0. Then

(α1, . . . , αp)− (β0, . . . , β0) ∈ Q ∩ h⊥,

and (β0, . . . , β0) ∈ Q ∩ h0; hence L = Ker f . The result follows from
the First Isomorphism Theorem. �

Next, we describe the irreducible modules of V σ
Q . We first calculate

the σ-invariants in Q∗/Q to be

(Q∗/Q)σ =
{
(λ0 +Q0, . . . , λ0 +Q0)

∣
∣λ0 ∈ Q∗

0

} ∼= Q∗
0/Q0.(8.7)

We also calculate π0(Q
∗) and π0(Q):

π0(Q
∗) =

{1

p
(λ0, . . . , λ0)

∣
∣
∣ λ0 ∈ Q∗

0

}
∼= 1√

p
Q∗

0,

π0(Q) =
{1

p
(α0, . . . , α0)

∣
∣
∣ α0 ∈ Q0

}
∼= 1√

p
Q0,

where the isomorphisms are as lattices. We obtain

π0(Q
∗)/π0(Q) ∼= Q∗

0/Q0,
√
pπ0(Q) ∼= Q0,

√
pπ0(Q

∗) ∼= Q∗
0

as lattices.
Hence, there are |Q∗

0/Q0| many irreducible σ-twisted VQ-modules.
Since the automorphism σ acts on these modules, each of them will
decompose into p eigenspaces for σ. The same is true for each σs,
s = 1, . . . , p− 1, since the order of σ is prime. This yields

(8.8) p(p− 1)|Q∗
0/Q0|

many irreducible orbifold modules of twisted type. We denote the
eigenspaces using j = 0, . . . , p − 1 and label the irreducible Type 3
orbifold modules by

(8.9) M(λ0; σ
s)j :=M(µ, ζµ; σ

s)j ,

for λ0 ∈ Q∗
0 and s = 1, . . . , p− 1, where

(8.10) µ = π0(λ0, 0, . . . , 0) =
1

p
(λ0, . . . , λ0)
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and ζ = ζµ is uniquely determined by µ from (3.45), due to Lemma
8.1 and Remark 3.7. Notice that the coset λ0 + Q0 is in one-to-one
correspondence with the parameter µ ∈ π0(Q

∗) given by (8.10); cf.
Theorem 3.6. In particular, |λ0|2 = p|µ|2.
Since the lattice Q is a direct sum of copies of Q0, the vertex algebra

VQ can be written as a corresponding tensor product of vertex algebras
VQ0

(cf. [FHL]). The same is true for the irreducible VQ-modules:

V(λ1,...,λp)+Q
∼= Vλ1+Q0

⊗ · · · ⊗ Vλp+Q0
(λi ∈ Q∗

0).

Now σ acts on the VQ-module (Vλ0+Q0
)⊕p for each λ0 ∈ Q∗

0, and each
of these will decompose into p eigenspaces for σ, yielding p irreducible
orbifold modules for each λ0 ∈ Q∗

0. Hence, there are

(8.11) p|Q∗
0/Q0|

many irreducible orbifold modules of Type 1.
We label the eigenspaces by V i

λ+Q, where i = 0, 1, . . . , p − 1 and
λ ∈ Q∗ such that λ = (λ0, . . . , λ0) for λ0 ∈ Q∗

0. The action of σ on the
other VQ-modules is given by

σ : Vλ1+Q0
⊗ · · · ⊗ Vλp+Q0

→ Vλ2+Q0
⊗ · · · ⊗ Vλp+Q0

⊗ Vλ1+Q0
,

and these distinct VQ-modules become isomorphic as V σ
Q -modules. So

the irreducible modules where σ does not act are in orbits of size p,
and each module in the same orbit corresponds to the same orbifold
module. We obtain

(8.12)
1

p
(|Q∗

0/Q0|p − |Q∗
0/Q0|)

many irreducible orbifold modules of Type 2. To label these modules,
we use notation to describe the orbits of σ in Q∗/Q of order p. Let O
be the set of orbits of order p, and denote by [γ + Q] ∈ O the σ-orbit
of the coset γ + Q with (1 − σ)γ /∈ Q. Then the order of O is given
by (8.12), and we label the irreducible orbifold modules of Type 2 by
Vγ+Q for each [γ +Q] ∈ O.
All together, there are

(8.13)
1

p
|Q∗

0/Q0|p +
p3 − 1

p
|Q∗

0/Q0|

many irreducible V σ
Q -modules. We summarize this discussion into a

theorem, which describes the irreducible orbifold modules and their
characters explicitly.

Theorem 8.3. Consider a lattice Q = Q⊕p
0 , where p is prime and

Q0 is a positive-definite even lattice. Let σ be the automorphism of
Q that permutes the summands cyclically. Denote by superscript j the
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eigenspace of σ with eigenvalue ω−j, where ω = e2πi/p. Let O be the set
of orbits of σ in Q∗/Q of order p, and denote the orbit of γ+Q ∈ Q∗/Q
as [γ+Q]. Also choose a set C ⊂ π0(Q

∗
0) of representatives of the cosets

π0(Q
∗
0)/π0(Q0).

Then the following is a complete list of non-isomorphic irreducible
modules over the orbifold algebra V σ

Q :

(Type 1) V j
λ+Q with λ = (λ0, . . . , λ0), λ0 ∈ Q∗

0, j = 0, . . . , p− 1;

(Type 2) Vγ+Q with [γ +Q] ∈ O, γ ∈ Q∗;

(Type 3) M(λ0; σ
s)j with λ0 + Q0 ∈ C, λ0 ∈ Q∗

0, j = 0, . . . , p − 1,
s = 1, . . . , p− 1 (cf. (8.9), (8.10)).

The characters of these modules are given by:

(Type 1) χj
Vλ+Q

(τ) =
1

p

θλ+Q(τ)

P1,1(τ)
+

1

p

p−1
∑

k=1

ωjk θλ0+Q0
(pτ)

P1,σk(τ)
,

(Type 2) χVγ+Q
(τ) =

θγ+Q(τ)

P1,1(τ)
,

(Type 3) χj
M(λ0;σs)(τ) =

1

p

θλ0+Q0
( τ
p
)

Pσs,1(τ)
+

1

p

p−1
∑

k=1

ωjke−
πi

p
k|λ0|2 θλ0+Q0

( τ+k
p
)

Pσs,σsk(τ)
.

Proof. The classification of irreducible V σ
Q -modules is a special case

of Theorem 4.19. The formulas for the characters follow immediately
from Theorem 4.9 and equations (4.32), (4.34), (5.50)–(5.52). For the
Type 1 characters, we used that M =

√
pQ0 and employed identity

(2.11). �

In order to derive the modular transformations of the irreducible
orbifold characters, an important step in the process is to invert the
equations representing these characters, so that each quotient on the
right side is written as a linear combination of the orbifold characters.
We can do this using (5.53)–(5.55), as follows.

Lemma 8.4. Let λ0 ∈ Q∗
0, λ = (λ0, . . . , λ0) ∈ Q∗, and 1 ≤ s, k < p.

Then the formulas for the irreducible orbifold characters of Types 1 and
3 given in Theorem 8.3 can be inverted as follows:

θλ+Q(τ)

P1,1(τ)
=

p−1
∑

j=0

χj
Vλ+Q

(τ),

e−
πi

p
k|λ0|2 θλ0+Q0

( τ+k
p
)

Pσs,σsk(τ)
=

p−1
∑

j=0

ω−jkχj
M(λ0;σs)(τ),
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θλ0+Q0
( τ
p
)

Pσs,1(τ)
=

p−1
∑

j=0

χj
M(λ0;σs)(τ),

θλ0+Q0
(pτ)

P1,σk(τ)
=

p−1
∑

j=0

ω−jkχj
Vλ+Q

(τ).

Proof. The results follow easily from the identity 1+ω+ · · ·+ωp−1 = 0.
To obtain the two formulas involving theta functions with argument
different from τ , we multiply the corresponding characters by ω−jk and
then sum over j to yield the k-th term in the sum. �

Due to Lemma 8.4, to obtain the transformations of irreducible orb-
ifold characters, it is sufficient to transform the quotients involving
theta functions. We first describe intuitively how these quotients should
transform among themselves. Orbifold characters of Type 1 are writ-
ten in terms of two types of theta functions, with arguments τ and pτ ,
respectively, while characters of Type 2 are just one such quotient. The
characters of twisted type are also in terms of two types of theta func-
tions, with arguments τ

p
and τ+k

p
, respectively, where 1 ≤ k < p. As we

will show, the theta functions with argument τ will transform among
themselves. Those with argument pτ will transform to theta functions
with argument τ

p
and vice-versa, because − p

τ
= − 1

τ
p

. It follows that the

theta functions with argument τ+k
p

must transform among themselves.

We now prove these transformations for the separate quotients, and
as a result obtain the transformations of the irreducible permutation
orbifold characters.

Theorem 8.5. With the notation of Theorem 8.3, the modular trans-
formations of the irreducible permutation orbifold characters are as
follows:

χj
Vλ+Q

(τ + 1, h) = eπi(|λ|
2− r

12
)χj

Vλ+Q
(τ, h),(8.14)

χVλ+Q
(τ + 1, h) = eπi(|λ|

2− r
12

)χVλ+Q
(τ, h),(8.15)

χj
M(λ0;σs)(τ + 1, h) = ω−je2πi(∆σ− r

24
)e

πi

p
|λ0|2χj

M(λ0;σs)(τ, h),(8.16)
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χj
Vλ+Q

(

−1

τ

)

=
1

p
√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

p−1
∑

l=0

e−2πi(λ|δ)χl
Vδ+Q

(τ)

+
1

√

|Q∗/Q|
∑

[γ+Q]∈O
e−2πi(λ|γ)χVγ+Q

(τ)

+
1

p
√

|Q∗
0/Q0|

p−1∑

k=1

∑

δ0+Q0∈Q∗
0
/Q0

p−1∑

l=0

ωjke−2πi(λ0|δ0)χl
M(δ0;σk)(τ),

(8.17)

χVλ+Q

(

−1

τ

)

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

p−1
∑

l=0

e−2πi(λ|δ)χl
Vδ+Q

(τ)

+
1

√

|Q∗/Q|
∑

[γ+Q]∈O
Eλ,γχVγ+Q

(τ),

(8.18)

χj
M(λ0;σs)

(

−1

τ

)

=
1

p
√

|Q∗
0/Q0|

∑

δ+Q∈Q∗/Q
δ=(δ0,...,δ0)

p−1
∑

l=0

ωlse−2πi(λ0|δ0)χl
Vδ+Q

(τ)

+
ir0/2

p

p−1
∑

k=1

∑

γ0+Q0∈Q∗
0
/Q0

γ0∈kλ0+pQ∗
0

p−1
∑

l=0

vkω
jk+lkp−2

e−
2πi

p
(λ0|γ0)χl

M(γ0;σks)(τ),

(8.19)

where ∆σ = p2−1
24p

|O|, r = rankQ, Eλ,γ is given by (5.59), and vk is a

complex number.

Proof. The transformation laws for τ 7→ τ+1 are essentially the same as
in Theorem 5.16. The expression for ∆σ follows from writing dim h⊥ =
(p − 1)|O| in Lemma 3.16. The rest of the proof will describe the
transformation τ 7→ −1/τ .
First, we transform characters of Type 1. In terms of theta functions,

this transformation is

χj
Vλ+Q

(

−1

τ

)

=
1

p

θλ+Q(− 1
τ
)

P1,1(− 1
τ
)
+

1

p

p−1
∑

k=1

ωjk θλ0+Q0
(− p

τ
)

P1,σk(− 1
τ
)
.(8.20)
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By Theorem 2.13 and Corollary 5.10, we obtain

θλ+Q(− 1
τ
)

P1,1(− 1
τ
)
=

(−iτ)−r0/2(−iτ)r0/2
√

|Q∗/Q|
∑

δ+Q∈Q∗/Q

e−2πi(λ|δ) θδ+Q(τ)

P1,1(τ)

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ) θδ+Q(τ)

P1,1(τ)

+
1

√

|Q∗/Q|
∑

γ+Q∈Q∗/Q
(1−σ)γ /∈Q

e−2πi(λ|γ) θγ+Q(τ)

P1,1(τ)
.

Using Lemma 8.4, we write the transformation as a linear combination
of irreducible orbifold characters:

θλ+Q(− 1
τ
)

P1,1(− 1
τ
)
=

1
√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ)
p−1
∑

l=0

χl
Vδ+Q

(τ)

+
1

√

|Q∗/Q|
∑

γ+Q∈Q∗/Q
(1−σ)γ /∈Q

e−2πi(λ|γ)χVγ+Q

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ)
p−1
∑

l=0

χl
Vδ+Q

(τ)

+
p

√

|Q∗/Q|
∑

[γ+Q]∈O
e−2πi(λ|γ)χVγ+Q

,

and

θλ0+Q0
(− 1

τ
p

)

P1,σk(− 1
τ
)

=
pr0/2(−iτ)−r0/2(−i τ

p
)r0/2

√

|Q∗
0/Q0|

∑

δ0+Q0∈Q∗
0
/Q0

e−2πi(λ0|δ0)
θδ0+Q0

( τ
p
)

Pσk ,1(τ)

=
1

√

|Q∗
0/Q0|

∑

δ0+Q0∈Q∗
0
/Q0

e−2πi(λ0|δ0)
p−1
∑

l=0

χl
M(δ0;σk)(τ),

using that dim h⊥ = r0(p− 1). The transformation (8.17) now follows
from (8.20) and the above calculations.
Next we prove (8.18). Again from Theorem 2.13 and Corollary 5.10,

we obtain

χVλ+Q

(

−1

τ

)

=
θγ+Q(− 1

τ
)

P1,1(− 1
τ
)
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=
(−iτ)−r0/2(−iτ)r0/2

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q

e−2πi(λ|δ) θδ+Q(τ)

P1,1(τ)

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ) θδ+Q(τ)

P1,1(τ)

+
1

√

|Q∗/Q|
∑

γ+Q∈Q∗/Q
(1−σ)γ /∈Q

e−2πi(λ|γ) θγ+Q(τ)

P1,1(τ)

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ)
p−1
∑

l=0

χl
Vδ+Q

(τ)

+
1

√

|Q∗/Q|
∑

γ+Q∈Q∗/Q
(1−σ)γ /∈Q

e−2πi(λ|γ)χVγ+Q

=
1

√

|Q∗/Q|
∑

δ+Q∈Q∗/Q
(1−σ)δ∈Q

e−2πi(λ|δ)
p−1
∑

l=0

χl
Vδ+Q

(τ)

+
1

√

|Q∗/Q|
∑

[γ+Q]∈O
Eλ,γχVγ+Q

.

Now we prove (8.19). Similarly to transforming theta functions with
argument pτ , the transformation of the first term of the irreducible
orbifold character of twisted type in Theorem 8.3(3) is

θλ0+Q0
(− 1

pτ
)

Pσs,1(− 1
τ
)

=
(−iτ)−r0/2(−ipτ)r0/2

pr0/2
√

|Q∗
0/Q0|

∑

δ0+Q0∈Q∗
0
/Q0

e−2πi(λ0|δ0)θδ0+Q0
(pτ)

P1,σ−s(τ)

=
1

√

|Q∗
0/Q0|

∑

δ+Q∈Q∗/Q
δ=(δ0,...,δ0)

e−2πi(λ0|δ0)
p−1
∑

l=0

ωlsχl
Vδ+Q

(τ).

(8.21)

We use the same method of transforming the term

e−πik
|λ0|2

p

θλ0+Q0
( τ+k

p
)

Pσs,σsk(τ)
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as in the proof of (5.32). As in (5.36) and (5.37), we set

(8.22) τ ′ =
τ + k′

p
,

where kk′ + 1 = mp, and note that

− 1
τ
+ k

p
=
kτ ′ −m

pτ ′ − k′
= A · τ ′, A =

(
k −m
p −k′

)

∈ SL2(Z).(8.23)

We next use Theorem 2.14 with the matrix A and τ replaced by τ ′:

θλ0+Q0

(− 1
τ
+ k

p

)

= θλ0+Q0
(A · τ ′)

= (pτ ′ − k′)r0/2vk
∑

γ0+Q0∈Q∗
0
/Q0

γ0∈pQ∗
0

eπi(−
k′
p
|γ0|2−2m(λ0|γ0)−km|λ0|2)θkλ0+γ0+Q0

(τ ′)

= τ r0/2vk
∑

γ0+Q0∈Q∗
0
/Q0

γ0∈pQ∗
0

eπi(−
k′
p
|γ0|2−2m(λ0|γ0)−km|λ0|2)θkλ0+γ0+Q0

(
τ + k′

p

)

= τ r0/2vk
∑

γ0+Q0∈Q∗
0/Q0

γ0∈kλ0+pQ∗
0

e
πi

p
(−k′|γ0|2−2(λ0|γ0)+k|λ0|2)θγ0+Q0

(
τ + k′

p

)

,

(8.24)

using in the last step that

−k′|γ0 − kλ0|2 − 2mp(λ0|γ0 − kλ0)− kmp|λ0|2

= −k′|γ0|2 − 2(λ0|γ0) + k|λ0|2.

It now follows that

e−
πi

p
k|λ0|2

θλ0+Q0

(
− 1

τ
+k

p

)

Pσs,σsk(− 1
τ
)

= τ r0/2(−iτ)−r0/2vk
∑

γ0+Q0∈Q∗
0
/Q0

γ0∈kλ0+pQ∗
0

e
πi

p
(−k′|γ0|2−2(λ0|γ0))

θγ0+Q0

(
τ+k′

p

)

Pσks,σ−s(τ)

= ir0/2vk
∑

γ0+Q0∈Q∗
0/Q0

γ0∈kλ0+pQ∗
0

e−
2πi

p
(λ0|γ0)e−

πi

p
k′|γ0|2

θγ0+Q0

(
τ+k′

p

)

Pσks,σ−s(τ)
.

(8.25)
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Using (8.21), (8.25), and Lemma 8.4, we finish the calculation:

1

p

p−1
∑

k=1

ωjke−
πi

p
k|λ0|2

θλ0+Q0

(
− 1

τ
+k

p

)

Pσs,σsk

(
− 1

τ

)

=
ir0/2

p

p−1
∑

k=1

ωjkvk
∑

γ0+Q0∈Q∗
0
/Q0

γ0∈kλ0+pQ∗
0

e−
2πi

p
(λ0|γ0)e−

πi

p
k′|γ0|2

θγ0+Q0

(
τ+k′

p

)

Pσks,(σks)k′ (τ)

=
ir0/2

p

p−1
∑

k=1

ωjkvk
∑

γ0+Q0∈Q∗
0/Q0

γ0∈kλ0+pQ∗
0

e−
2πi

p
(λ0|γ0)

p−1
∑

l=0

ω−lk′χl
M(γ0;σks)(τ).

We now obtain (8.19) from (8.21), using that

k′ ≡ −kp−2 mod p.

This completes the proof of Theorem 8.5. �

In the following table, we present the asymptotic and quantum di-
mensions of permutation orbifold modules, which are a special case of
Corollary 5.20.

M V j
(λ0,...,λ0)+Q Vλ+Q M(λ0, σ

s)j

asdimM p−1|Q∗
0/Q0|−p/2 |Q∗

0/Q0|−p/2 p−1|Q∗
0/Q0|−1/2

qdimM 1 p |Q∗
0/Q0|(p−1)/2

Table 5. Asymptotic and quantum dimensions

8.2. The case when p = 3. In this subsection, we let p = 3 and use
the alternative strategy outlined in Sections 6.1 and 7.1 to calculate the
part of the transformation χj

M(µ,ζ;σ)

(
− 1

τ
, h
τ

)
that contributes to orbifold

characters of twisted type without reference to Theorem 2.14.
In this case, (7.4) becomes

cQ0
=

∑

ν+Q0∈Q∗
0
/Q0

e3πi|ν|
2

,(8.26)

and the complex numbers v1 and v−1 in (8.24) can be determined ex-
plicitly using (7.5) and (7.6):

v1 =
c̄Q0

|Q∗
0/Q0|

, v−1 =
(−1)r0/2cQ0

|Q∗
0/Q0|

.(8.27)
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The transformations of the irreducible permutation orbifold characters
of twisted type now follow from (8.19), (8.26) and (8.27):

χj
M(λ0;σs)

(

−1

τ

)

=
1

3
√

|Q∗
0/Q0|

∑

δ+Q∈Q∗/Q
δ=(δ0,δ0,δ0)

2∑

l=1

ωlse−2πi(λ0|δ0)χl
Vδ+Q

(τ)

+
ir0/2c̄Q0

3|Q∗
0/Q0|

∑

γ+Q0∈Q∗
0
/Q0

γ∈λ0+3Q∗
0

2∑

l=1

ω−(λ0|γ)+j+lχl
M(γ;σs)(τ)

+
i−r0/2cQ0

3|Q∗
0/Q0|

∑

γ+Q0∈Q∗
0
/Q0

γ∈−λ0+3Q∗
0

2∑

l=1

ω−(λ0|γ)−j−lχl
M(γ;σ−s)(τ),

where ω = e2πi/3.
For an even more explicit demonstration, we now consider the case

rankQ0 = 1, which has been investigated previously in [DXY3]. Then
we can write

Q = Q⊕3
0 = Zα1 ⊕ Zα2 ⊕ Zα3

with bilinear form given by

(αi|αj) = 2tδij

for some positive integer t. From the general results of Section 8.1, we
have that d(σ) = 1 and all σk-twisted VQ-modules can be described
using the cosets of Q∗

0/Q0.
For convenience, we set α = α1 + α2 + α3. Then |α|2 = 6t and

M = Q ∩ h0 = Zα, Q ∩ h⊥ = Z(α1 − α2) + Z(α2 − α3).

We can also write (4.14) as

L = {x1α1 + x2α2 + x3α3 | x1 + x2 + x3 ≡ 0 mod 3},
and we find that Q/L ∼= Z3 is generated by the coset α1+L. The dual
lattice of Q and its fundamental group are

Q∗ = Z
α1

2t
⊕ Z

α2

2t
⊕ Z

α3

2t
, Q∗/Q ∼= Z2t ⊕ Z2t ⊕ Z2t.

It follows that (Q∗/Q)σ ∼= Z2t, and it consists of the elements

m

2t
α +Q for 0 ≤ m ≤ 2t− 1.

We also find that

Q∗ ∩ h0 = Z
α

2t
.
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For each m, the automorphism σ acts on the irreducible VQ-module
Vm

2t
α+Q, and so it decomposes into 3 irreducible orbifold modules given

by the eigenspaces of σ.
From (8.8)–(8.12), there are 12t irreducible V σ

Q -modules of twisted

type, 6t irreducible V σ
Q -modules of Type 1, and 2

3
(4t3−t) irreducible V σ

Q -
modules of Type 2 (also see the discussion in Section 8.1). Therefore,
we have a total of

18t+
2

3
(4t3 − t)

irreducible V σ
Q -modules. In particular, we obtain 20 irreducible per-

mutation orbifold modules for t = 1, which agrees with [DXY3]. The
orbits of σ in Q∗/Q that are not singletons can be described in four
class types, which we describe in Table 6 below. We use

γi = di
α1

2t
+ ei

α2

2t
+ fi

α3

2t
(0 ≤ di, ei, fi ≤ 2t− 1, i = 1, 2, 3, 4)

to represent a generic element in Q∗ from which to describe the class
types. Notice that the sum of all class sizes is indeed 2

3
(4t3 − t).

Representative Relation among coefficients Class size
γ1 d1 = e1 < f1 2t2 − t
γ2 d2 < e2 = f2 2t2 − t
γ3 d3 < e3 < f3

1
6
(2t− 2)(2t− 1)(2t)

γ4 d4 < f4 < e4
1
6
(2t− 2)(2t− 1)(2t)

Table 6. Cosets γ +Q with γ ∈ Q∗ and (1− σ)γ /∈ Q

Finally, we compute the constant cQ0
, given by (8.26), for t = 1, 2, 3.

Recall from Section 8.1 that
√
3π0(Q) ∼= Q0 and

√
3π0(Q

∗) ∼= Q∗
0. Then

(7.4) becomes

c0 = cQ0
=

2t−1∑

n=0

e3πin
2/2t,(8.28)

and we calculate this explicitly for some values of t in Table 7.

t = 1 c0 = 1− i

t = 2 c0 = 2e
3πi

4

t = 3 c0 = 3 + 3i

Table 7. Values of c0
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