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Abundant semigroups with medial
idempotents

Abdulsalam El-Qallali

Abstract. The effect of the existence of a medial or related idempotent in
any abundant semigroup is the subject of this paper. The aim is to naturally
order any abundant semigroup S which contains an ample multiplicative me-
dial idempotent u in a way that L∗ and R∗ are compatible with the natural
order and u is a maximum idempotent. The structure of an abundant semi-
group containing an ample normal medial idempotent studied in [6] will be
revisited.

1 Introduction

A partial order relation 6 on any semigroup S with set of idempotents E is
a natural partial order if for any e, f ∈ E:

e = ef = fe implies e 6 f.

When the natural partial order on S is compatible with the binary operation,
S is said to be naturally ordered. The book of Blyth and Janowitz [3] con-
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tains a substantial literature on partially ordered semigroups. Most of the
results of the theory concentrate on naturally ordered semigroups. Blyth,
McFadden and McAlister (see [2], [4] and [5]) study the structure of sev-
eral classes of naturally partially ordered regular semigroups that contain
maximum idempotents with respect to the imposed orders. Much of this
work and related ideas has already been transferred to the abundant case
(see, for example, [12], [13], [14] and [16]). Blyth and McFadden [4] de-
scribe the structure of all regular semigroups that possess a normal medial
idempotent. Subsequently, medial idempotents played a role in the struc-
ture of certain classes of regular semigroups, leading on to related work for
abundant semigroups. McAlistar and McFadden [19] prove that any regular
semigroup which is locally inverse and contains a medial idempotent can be
naturally ordered with a maximum idempotent. The main objective of this
current paper (Theorem 4.9) is to show that any abundant semigroup with
an ample multiplicative medial idempotent can be naturally ordered with
a maximum idempotent such that L∗ and R∗ are compatible in a specific
way with the partial order, termed as L∗ and R∗ are abundant in the sense
described in Section 4. The approach to this result is an adaptation of that
of [19]. Blyth and McFadden [5] study the structure of regular semigroups
that possess normal medial idempotents. This structure is extended to the
related class of abundant semigroups (see [6]). In this paper, we revisit this
structure to naturally order such abundant semigroups.

In the first section, we review some concepts related to general abundant
semigroups. In Section 3, we present the necessary background on medial
and related idempotents. Seeking for completeness and a self-contained text,
we demonstrate in this section - and perhaps elsewhere - proofs for some
known (or almost known) results. The main result of the paper is contained
in Section 4, where we show that any abundant semigroup with an ample
multiplicative medial idempotent can be naturally ordered with a maximum
idempotent such that L∗ and R∗ are abundant. We revisit in Section 5
the structure of abundant semigroups that possess ample normal medial
idempotents and give an additional order to that presented in Section 4.

Any undefined notation and terminology be as in [15].
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2 Abundant semigroups

We shall review in this section some of the basic concepts which will be used
frequently throughout the paper. The main theme is abundant semigroups.
The study of such semigroups was initiated by Fountain [11], though he
introduced the concept earlier in [10]. The investigation of this class of
semigroups relies heavily on the basic facts of the relations L∗ and R∗. The
relation L∗ is defined on a semigroup S by:

L∗ = {(a, b) | for all s, t ∈ S1 as = at ⇐⇒ bs = bt},

and the relation R∗ is defined dually. Evidently, L∗ is right congruence and
R∗ is left congruence.

As a consequence of the definition we have from [11] the following result.

Lemma 2.1. If e is an idempotent of a semigroup S, then for any a ∈ S;
a L∗ e if and only if the following two statements hold:

(i) ae = a;
(ii) as = at implies es = et; for any s, t ∈ S1.

A dual statement of Lemma 2.1 holds for R∗. A semigroup S is abundant
if each L∗-class and each R∗-class contains an idempotent. It has been
practiced that abundant semigroups may be treated analogously to regular
semigroups (see [9], [11] and [18]). At the same time, the class of abundant
semigroups properly contains the class of regular semigroups. It is well
known and easy to see that for any semigroup S

L ⊆ L∗ and R ⊆ R∗

where L and R are the well know Green’s relations on S. Equality holds
when S is regular.

An abundant semigroup S with set of idempotents E is said to be quasi-
adequate if E is a band and is adequate if E is a semilattice. The class
of quasi-adequate (adequate) semigroups is an analogue to and properly
contains the class of orthodox (inverse) semigroups. The study of adequate
semigroups in general was initiated by Fountain [10], and the investigation
of the class of quasi-adequate semigroups was initiated by El-Qallali and
Fountain [9].
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The L∗-class (R∗-class) containing an element a of a semigroup S is
denoted by L∗a (R∗a) or L∗a(S) (R∗a(S)) in case of ambiguity. For an element
a of an abundant semigroup S, a typical idempotent in L∗a (R∗a) is denoted
by a∗ (a†).

From [10] we have the following result.

Proposition 2.2. If S is an adequate semigroup with semilattice of idem-
potents E, then for any elements a, b ∈ S:

(i) a L∗ b (a R∗ b) if and only if a∗ = b∗ (a† = b†);
(ii) (ab)∗ = (a∗b)∗ and (ab)† = (ab†)†;
(iii) (ab)∗b∗ = (ab)∗ and a†(ab)† = (ab)†.

It is noticeable that for any semigroup homomophism φ : S → T , and
for any a, b ∈ S:

a L(S) b =⇒ aφ L(T ) bφ, and a R(S) b =⇒ aφ R(T ) bφ.

But in general

a L∗(S) b 6=⇒ aφ L∗(T ) bφ, and a R∗(S) b 6=⇒ aφ R∗(T ) bφ.

The following example illustrates this observation.

Example 2.3 (see [7]). Let A be a cancellative monoid and i its only unit.
Let α be the relation defined on A by the rule: (x, y) ∈ α if and only if
x = i = y or x 6= i 6= y. Then α is a congruence on A where equivalence
classes are: {i} and A\{i}. Let B be the semigroup {0, 1} under the usual
multiplication. Let ψ be the semigroup isomorphism from A/α onto B.
Notice that for any a ∈ A\{i}, we have (i, a) ∈ L∗(A). However (iα)ψ = 1
and (aα)ψ = 0. As (1, 0) /∈ L∗(B) then (iα, aα) /∈ L∗(A/α).

In [8], the following restricted class of homomorphisms is considered.
A homomorphism φ : S → T of semigroups is said to be an admissible
homomorphism if for any elements a, b ∈ S,

a L∗(S) b =⇒ aφ L∗(T ) bφ and a R∗(S) b =⇒ aφ R∗(T ) bφ.

Recall that the natural homomorphism of A onto (A/α) of Example 2.3 is
not admissible.

As a direct consequence of the following proposition any admissible ho-
momorphic image of an abundant semigroup is abundant.
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Proposition 2.4 ( [8]). Let S be an abundant semigroup and φ : S → T
be a semigroup homomorphism. Then φ is admissible if and only if for each
a ∈ S there are idempotents e, f ∈ S with e ∈ L∗a, f ∈ R∗a such that:

aφ L∗(T ) eφ and aφ R∗(T ) fφ.

Analogously; a congruence ρ on an abundant semigroup S is admissible
if for any a ∈ S, and any s, t ∈ S1

(as, at) ∈ ρ =⇒ (a∗s, a∗t) ∈ ρ for some a∗ (hence for any a∗)

and

(sa, ta) ∈ ρ =⇒ (sa†, ta†) ∈ ρ for some a† (hence for any a†).

Obviously, any congruence on any regular semigroup is admissible and
any cancellative congruence on any abundant semigroup is admissible. The
congruence α on the cancellative monoid A of Example 2.3 is not admissible.

A subsemigroup U of a semigroup S is a ∗-subsemigroup of S if for any
a ∈ U , there exist idempotents e, f ∈ U such that a L∗(S) e and a R∗(S) f .
Clearly any ∗-subsemigroup is abundant.

The following lemma could be concluded from [8].

Lemma 2.5. Let S be an abundant semigroup with set of idempotents E.
Then for any e ∈ E the set eSe is a ∗-subsemigroup of S.

Proof. Obviously eSe is a subsemigroup of S. Let a be an element in eSe
with f L∗(S) a for some f ∈ E. As ae = a = af , then fe = f and ef is an
idempotent in eSe. Moreover, aef = af = a and for any s, t ∈ S1:

as = at =⇒ fs = ft =⇒ efs = eft.

By Lemma 2.1, ef L∗ a. Together with dual argument, this gives that eSe
is a ∗-subsemigroup.

The easy proof of the following corollary is omitted.

Corollary 2.6. If S is adequate then for any idempotent e in S; eSe is
adequate.
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An adequate semigroup S is called an ample semigroup if for any element
a and any idempotent e in S

ea = a(ea)∗ and ae = (ae)†a.

The following corollary is an easy consequence of Corollary 2.6.

Corollary 2.7. If S is ample then for any idempotent e in S; eSe is ample.

Let 〈E〉 be the semiband generated by a set of idempotents E. It is noted
in [10] that a semiband may be abundant but not regular as demonstrated
by the following example.

Example 2.8. Let A =

(
1 0
0 0

)
, B =

(
1 0
1 0

)
, C =

(
1 1
0 0

)
and D =

(
1 1
1 1

)
; and put

S = {2mA, 2nB, 2nC, 2nD | m > 1, n > 0}.

It is easy to see that S is a semigroup under matrix multiplication. Further
S is generated by B and C and these elements are the only idempotents in S.
It is routine to check that the L∗-classes of S are: {2mA, 2nB |m > 1, n > 0}
and {2nC, 2nD | n > 0}, and the R∗-classes are: {2mA, 2nC | m > 1, n > 0}
and {2nB, 2nD | n > 0}. Thus each L∗-class and each R∗-class contains
an idempotent. Therefore S is an abundant semiband. Clearly, it is not
regular.

Also, not every semiband is abundant, we illustrate this by an example
from [1] as follows.

Example 2.9. Choose a seven element semiband B with representation
〈a, b | a2 = a, b2 = b, (ab)2 = (ba)2〉 from the list of all semibands of type
two in [1, Theorem 2]. Then B = {a, b, ab, ba, (ab)2, bab, aba} and E =
{a, b, (ab)2} is the set of idempotents of B. It is routine to check that neither
L∗ab nor R

∗
ab has an idempotent, so B is not abundant.

The class of ample semigroups properly contains the class of inverse
semigroups and it is contained properly in the class of adequate semigroups
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(see [10] for further details). We follow Lawson [18] in saying that a semi-
group S with set of idempotents E satisfies the regularity condition if 〈E〉
is a regular subsemigroup. The semigroup S of Example 2.8 is an abundant
semigroup which does not satisfy the regularity condition. However, if S is
regular or quasi-adequate then it satisfies the regularity condition [9].

On any semigroup S, it is well known that its set of idempotents E is
partially ordered by ω, where

e ω f if and only if e = ef = fe for any e, f ∈ E.

This order is called the natural order on E. A partial order 6 on S - as we
recall from the introduction - is a natural partial order if it extends ω in the
sense that

e ω f =⇒ e 6 f.
Recall that the natural partial order on S is a natural order if it is compatible
- on both sides - with the binary operation of S.

Let S be an abundant semigroup with set of idempotents E. The two
relations 6l and 6r are defined for any x, y ∈ S by x 6l y if and only if

for any y∗ there is an x∗ such that x∗ ω y∗ and x = yx∗,

and x 6r y if and only if

for any y† there is an x† such that x† ω y† and x = x†y.

These are natural partial order relations on S [18].
Put η =6l ∩ 6r . The relation η is a natural partial order on S. In gen-

eral η is not compatible with the binary operation of S. If S is idempotent-
connected (as defined in [8]) and 〈E〉 is a regular subsemigroup then η is
compatible on S if and only if S is locally ample [18], that is each local
submonoid eSe for e ∈ E is an ample subsemigroup. In particular, if S
is ample, so it is idempotent-connected [8], then as eSe is ample for any
idempotent e in S (Corollary 2.7), the relation η is a natural order on S.
The order relation η on S can be redefined (see [18]); for any x, y ∈ S:

x η y if and only if ey = x = yf for some idempotents e, f ∈ S.

For any x, y ∈ S we get by the fact that S is ample the equivalence of
the following two statements:
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(i) There exists e ∈ E such that x = ey;

(ii) There exists f ∈ E such that x = yf.

Clearly, e η f if and only if e ω f for any e, f ∈ E. So we can state for
reference the following proposition without any further argument which will
be in use frequently.

Proposition 2.10. Let S be an ample semigroup with semilattice of idem-
potents E. Then the relation η defined for any x, y ∈ S by the rule: x η y if
and only if x = ey for some e ∈ E, is a natural order on S.

Corollary 2.11. Let S and η be as in Proposition 2.10. Then for any
x, y ∈ S :

x η y implies x† ω y† and x∗ ω y∗.

Proof. For any x, y ∈ S :

x η y =⇒ ey = x = yf for some e, f ∈ E
=⇒ (ey)† = x†, x∗ = (yf)∗

=⇒ ey† = x†, x∗ = y∗f

=⇒ x† = x†y†, x∗ = y∗x∗

=⇒ x† ω y†, x∗ ω y∗.

Hence the result holds.

3 Medial and related idempotents

The concept of medial idempotents was introduced by Blyth and McFad-
den [5], and used in constructing classes of regular semigroups. It has at-
tracted several authors and has been applied in investigating not only the
class of regular semigroups, but also in studying the structure of classes of
abundant semigroups. As examples of this approach the reader may re-
fer to [6], [16], [17] and [20]. The subject of this section is to concentrate
on some consequences of the existence of medial or related idempotents in
certain class of semigroups.
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Let S be a semigroup and E(S) be the set of idempotents in S. For E =
E(S) let 〈E〉 be the semiband generated by E. From now on for the purpose
of this paper an idempotent u is called a medial idempotent if eue = e for
any e ∈ E. In this case the following terminologies will be adopted which
may be slightly different from the ones that appear in the literature.

(1) The medial idempotent u is strong medial if eue = e for any e ∈ 〈E〉.

(2) The medial idempotent u is normal medial if u is strong medial and
u〈E〉u is a semilattice [5].

(3) The medial idempotent u is ample normal medial if u is normal medial
and uSu is ample (strong normal in the sense of [17]).

(4) The medial idempotent u is ample (adequate) medial if uSu is ample
(adequate).

(5) The medial idempotent u is band medial if uEu is a band [20].

(6) The medial idempotent u is multiplicative medial if uefu ∈ E for any
e, f ∈ E.

(7) The medial idempotent u is ample multiplicative medial if u is multi-
plicative medial and uSu is ample.

Let S be a semigroup with set of idempotents E containing a medial
idempotent u. Observe that Su is a subsemigroup of S, and for any e ∈ E,
eu is an idempotent in Su. Also for any idempotent g in Su, g ∈ Eu. The
following lemma is evident.

Lemma 3.1. If u is a medial idempotent then:
(i) Su, uS and uSu are subsemigroups of S;
(ii) E(Su) = Eu, E(uS) = uE, and E(uSu) = uEu.

Lemma 3.2. If u is strong medial, then it is multiplicative medial.

Proof. Let e, f ∈ E. Then ef ∈ 〈E〉. As u is strong medial efuef = ef.
That is uefuuefu = uefu so uefu ∈ E. Hence the result holds.

Lemma 3.3. The medial idempotent u is multiplicative medial if and only
if u〈E〉u = uEu.
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Proof. Assume u is multiplicative medial and let x ∈ u〈E〉u. Choose z ∈ 〈E〉
such that x = uzu. There exist e1, e2, . . . , en ∈ E and z = e1e2 . . . en. Since
eue = e for any e ∈ E, and by the hypothesis condition;

ue1e2u ∈ E, ue2e3u ∈ E, . . . , uen−1enu ∈ E.

Thus

ue1ue1e2u ∈ E, ue1ue1e2ue2e3u ∈ E, . . . ,
ue1ue1e2ue2e3u . . . uen−1enu ∈ E,

so that,

ue1e2e3 . . . en−1enu ∈ E, uzu ∈ E, and x ∈ uEu.

Therefore u〈E〉u ⊆ uEu. However it is clear that uEu ⊆ u〈E〉u. Hence,
u〈E〉u = uEu.

On the other hand, if u〈E〉u = uEu, then for any e, f ∈ E; uefu ∈ u〈E〉u
and there exists h ∈ E such that uefu = uhu. As uhuuhu = uhu then
uefu ∈ E and u is multiplicative medial.

Corollary 3.4. If u is multiplicative medial then u is band medial.

Proof. Let u be multiplicative medial. By Lemma 3.3; u〈E〉u = uEu. Recall
from Lemma 3.1 that uEu ⊆ E. If x and y are two elements in uEu, x = ueu,
y = ufu for some e, f ∈ E. Then euf ∈ 〈E〉 and ueufu ∈ uEu. So there
is an idempotent z such that u(euf)u = uzu, so then xy = ueuufu =
u(euf)u = uzu and uzu ∈ E. Therefore xy is an idempotent belonging to
uEu. Hence the result holds.

If u is a strong medial idempotent, then it is easy to observe that for any
x ∈ 〈E〉, uxu is an idempotent which is an inverse of x in 〈E〉. This clarifies
the first part of the following proposition.

Proposition 3.5. If u is strong medial then:
(1) 〈E〉 is a regular semigroup;
(2) 〈E〉u = Eu;
(3) u〈E〉 = uE;
(4) u〈E〉u = uEu.
Moreover, Eu, uE and uEu are bands.
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Proof. (1) This is from the previous remark.
(2) For any z ∈ 〈E〉; zuzu = zu so that zu ∈ E and zu ∈ Eu. Therefore

〈E〉u ⊆ Eu. Obviously Eu ⊆ 〈E〉u. Hence Eu = 〈E〉u.
(3) and (4)] follow similarly to (2).
For any e, f ∈ E

(eufu)(eufu) = (euf)u(euf)u = eufu (euf ∈ 〈E〉).

Then Eu is a band. Likewise uE and uEu are bands.

The following result from [4] recognizes a medial idempotent in any nat-
urally ordered semigroup which contains a maximum idempotent.

Proposition 3.6. If (S,6) is a naturally ordered semigroup with set of
idempotents E which contains a maximum idempotent u, then u is medial.

Proof. Since for any e ∈ E, as e 6 u, then eu 6 u and eueu 6 euu = eu.
Also e 6 eu and eeu 6 eueu, that is eu 6 eueu. Hence eueu = eu so that
eue = eueeue and eue ∈ E. Now eeue = eue = euee, and by the natural
order of S eue 6 e. But also e 6 u which implies e 6 eue. Hence eue = e.

Again as in [4] we have the following proposition.

Proposition 3.7. Let (S,6) be a naturally ordered semigroup with set of
idempotents E containing a maximum idempotent u. Then for any e, f ∈ E:

(i) ue is the maximum idempotent in Le;
(ii) f L e if and only if uf = ue;
(iii) eu is the maximum idempotent in Re;
(iv) f R e if and only if fu = eu.

Proof. By Proposition 3.6, it follows directly from the hypothesis that ue ∈
E and e L ue for any e ∈ E. If e, f ∈ E such that e L f, then f 6 u,
f = fe 6 ue, so (i) holds, and then (ii) is evident. (iii) and (iv) follow
similarly.

In what follows - for the rest of the section - let S be an abundant
semigroup with set of idempotents E containing a medial idempotent u.
The easy proof of the following lemma is omitted.

Lemma 3.8. For any a ∈ S; a†ua = a = aua∗.
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The following technical lemma which appears in [20] will be in use fre-
quently.

Lemma 3.9. For any a ∈ S:
(1) a L∗ ua L∗ ua∗;
(2) a R∗ au R∗ a†u;
(3) ua∗u L∗ uau R∗ ua†u.

Proof. Since L∗ is right congruence and R∗ is left congruence, then (3) is a
direct consequence of (1) and (2). As (2) is dual to (1), it suffices to prove
(1). Since for any s, t ∈ S1

as = at =⇒ uas = uat =⇒ a†uas = a†uat =⇒ as = at.

Then a L∗ ua. Also

as = at =⇒ a∗s = a∗t =⇒ ua∗s = ua∗t

=⇒ aua∗s = aua∗t =⇒ as = at,

and a L∗ ua∗. Hence the result holds.

Proposition 3.10. The subsemigroups Su and uS are ∗-subsemigroups of
S.

Proof. Let xu ∈ Su where x ∈ S. Notice that x∗u L∗(S) xu and x∗u ∈
Su ∩E. By Lemma 3.9(2); x†u R∗(S) xu and x†u ∈ Su ∩E. Hence Su is a
∗-subsemigroup of S.

Similarly uS is a ∗-subsemigroup of S.

The following corollary appears in [17] which is a direct consequence of
Lemmas 2.5 and 3.1 and Propositions 3.5 and 3.10.

Corollary 3.11. If u is a strong medial idempotent, then Su, uS and uSu
are quasi-adequate semigroups. Moreover

E(uS) = u〈E〉 = uE, E(Su) = 〈E〉u = Eu

and E(uSu) = u〈E〉u = uEu.

Proposition 3.12. If u is a strong medial idempotent, then uSu is adequate
if and only if uEu is a semilattice.
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Proof. As uSu is a ∗-subsemigroup of S (Lemma 2.5) so it is abundant and
by Corollary 3.11 E(uSu) = uEu. Hence the result holds.

Proposition 3.13. If u is a normal medial idempotent, then:
(1) Eu is a left normal band which is a set of representatives of the

R∗-classes of S;
(2) uE is a right normal band which is a set of representatives of the

L∗-classes of S.

Proof. As (2) is dual to (1) it is suffices to prove (1). Clearly Eu ⊆ E. By
Proposition 3.5 Eu is a band. Moreover, for any eu, fu, gu ∈ Eu (e, f, g ∈ E)

eufugu = euguufu = eugufu

(uEu is a semilattice as a consequence of Lemmas 3.2 and 3.3) and Eu is a
left normal band.

Let x ∈ S and e, f ∈ E such that e R∗ x R∗ f. By Lemma 3.9; x R∗ xu
so e R∗ xu and ue R∗ uxu, where uxu ∈ uSu, and ux†u R∗ uxu. The
idempotents ux†u and ueu are in E(uSu). Notice that ue ∈ E, ue R ux†u
and ue = (ux†u)ue. Thus

ueu = (ux†u)(ueu) = ueuux†u = ueux†u = ux†u.

Likewise ufu = ux†u. Hence ueu = ufu.
Since eu R e, fu R f and eu, fu ∈ Eu, then eu and fu are idempotents

R∗-related to x. Thus eu R fu. But also eu L ueu = ufu L fu. Therefore
eu = fu. Hence the set Eu is as required.

Fountain [10] provides a semigroup H = A ∪ B ∪ {v} where A is the
infinite cyclic semigroup generated by an element a, B is the infinite cyclic
monoid generated by an element b and b0 = v where the binary operation
on H extends that of A and B as follows

ambm = an+m, bnam = an+m; for m > 0, n > 0.

The semigroup H is adequate but is not ample, and v is an adequate medial
idempotent (vHv = H) which is not an ample medial idempotent.

If u is an ample medial idempotent, then as described in Proposition
2.10, η is a natural order relation on uSu. For any e ∈ E(uSu); eu = e so
that e η u, and u is a maximum idempotent in uSu with respect to the order
η. For reference we state the following result.
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Proposition 3.14. If S is an abundant semigroup with an ample medial
idempotent u, then (uSu, η) is a naturally ordered ample semigroup with a
maximum idempotent u.

4 Naturally ordering an abundant semigroup

Let S be an abundant semigroup with set of idempotents E containing an
ample multiplicative medial idempotent u. It follows from Section 3 that:

(1) E(uSu) = uEu = u〈E〉u (Lemmas 3.1 and 3.3), denote this set by E0,
it is clearly a semilattice;

(2) uSu is a ∗-subsemigroup of S (Lemma 2.5);

(3) (uSu, η) is a naturally ordered ample semigroup with a maximum
idempotent u (Proposition 3.14).

The aim of this section is to naturally order S in a way to have a maxi-
mum idempotent with respect to the imposed order. This will be a general-
ization to abundant semigroups of the result of McAlister and McFadden [19]
in regular semigroups.

Consider

T = {(e, x, f) ∈ Eu× uSu× uE | uex = x = xfu}.

Notice that for any e ∈ Eu, f ∈ uE it follows that fe = ufeu ∈ uSu. In
fact by the multiplicativety of u; fe ∈ E0 and clearly T is a semigroup with
respect to the binary operation defined by

(e, x, f)(g, y, h) = (e, xfgy, h) for any (e, x, f) and (g, y, h) ∈ T.

The following lemmas add more information.

Lemma 4.1. The semigroup T is abundant.

Proof. Let (e, a, f) be an element of T. As a ∈ uSu, there exist a∗, a† ∈ E0

(uSu is a ∗-subsemigroup), and uea = a which implies uea† = a† so

a† = ueua† = a†ueua† = a†ea†.
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Therefore (e, a†, a†) is an idempotent in T.
Since (e, a†, a†)(e, a, f) = (e, a†ea, f) = (e, a, f), for any (g, b, h) and

(i, c, k) in T

(g, b, h)(e, a, f) = (i, c, k)(e, a, f)

=⇒ (g, bhea, f) = (i, ckea, f)

=⇒ g = i, bhea = ckea

=⇒ g = i, bhea† = ckea†

=⇒ (g, b, h)(e, a†, a†) = (i, c, k)(e, a†, a†).

Therefore (e, a†, a†) R∗ (e, a, f) (dual of Lemma 2.1).
Similarly; (a∗, a∗, f) is an idempotent in T which is L∗-related to (e, a, f).

Hence the result holds.

For T to play a role in ordering S, an order on T should be defined first.
The obvious choice is to adjust the order on T by coordinates. For ordering
the middle components of the elements of T we choose the natural order η
(of Proposition 2.10) as considered on uSu. For the first components take
the finest partial order on the set Eu and define 6l on Eu to be:

e 6l g if and only if e = g or g = u; e, g ∈ Eu.

Similarly, define 6r on uE by:

f 6r h if and only if f = h or h = u; f, h ∈ uE.

Accordingly, define 6 on T by:

(e, a, f) 6 (g, b, h) if and only if e 6l g, a η b, f 6r h.

for any (e, a, f) and (g, b, h) in T.

Lemma 4.2. The relation 6 is a natural order on the abundant semigroup
T where (u, u, u) is a maximum idempotent.

Proof. Clearly 6 on T is a partial order. Let (e, a, f), (g, b, h) and (i, c, k)
be elements in T such that (e, a, f) 6 (g, b, h), that is e 6l g, a η b and
f 6r h. As u is multiplicative medial fi, hi ∈ E0 and either f = h so then
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fi = hi and - in particular - fi η hi, or h = u so then fi, u ∈ E0 and fi η u
(Proposition 3.14) so that fiu = fi and fiui = fi. In either case fi η hi.
Thus afic η bhic.

Hence (e, a, f)(i, c, k) 6 (g, b, h)(i, c, k). Similarly (i, c, k)(e, a, f) 6 (i, c, k)(g, b, h).
Therefore the order 6 on T is compatible.

Let (e, a, f) be an idempotent in T, that is afea = a, which implies
a∗fea = a∗. As a ∈ uSu (uSu is a ∗-subsemigroup of S) then a∗ can be
chosen to be in E0. Recall that fe ∈ E0, and thus a∗ = (a∗fea)† = a∗fea†.
But also afea† = a† with a† ∈ E0. Therefore a† = aa∗fea† = aa∗ = a and
a ∈ E0.

If (g, b, h) is an idempotent in T (b ∈ E0) such that (e, a, f) ω (g, b, h),
that is

(e, a, f)(g, b, h) = (e, a, f) = (g, b, h)(e, a, f),

then e = g, afgb = a = bhea, and h = f. Hence ab = a and a η b so that
(e, a, f) 6 (g, b, h), and the order on T is natural.

It is clear (u, u, u) is an idempotent in T and for any idempotent (e, a, f)
in T (a ∈ E0), a η u (Proposition 3.14) and (e, a, f) 6 (u, u, u).

To relate the order relation 6 on T to the algebraic structure of T we in-
troduce the abundancy condition of the relations L∗ and R∗ on any naturally
ordered abundant semigroup in the following sense.

The relation L∗ is said to be abundant on any naturally ordered abundant
semigroup (H,6) if for any two elements a and b in H a 6 b implies a∗ 6 b∗,
for some idempotents a∗ and b∗, L∗-related to a and b respectively.

The relation R∗ is abundant on (H,6) is defined similarly.
Recall from Proposition 2.10, the natural order relation η is defined on

any ample semigroup M. It follows from Corollary 2.11 that L∗ and R∗ are
abundant on (M,η).

Corollary 4.3. The relations L∗ and R∗ are abundant on (T,6).

Proof. Let (e, a, f) and (g, b, h) be elements of T such that (e, a, f) 6 (g, b, h),
then a η b, f 6r h. From Corollary 2.11; a η b implies a∗ η b∗ that is a∗b∗ = a∗

(a∗, b∗ ∈ E0). As afu = a, then a∗fu = a∗, a∗fa∗ = a∗ and a∗fb∗a∗ = a∗

so that (b∗, a∗, f) is an idempotent in T and (b∗, a∗, f) 6 (b∗, b∗, h). It is
routine to check that (a∗, a∗, f) L (b∗, a∗, f). So we conclude from the proof
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of Lemma 4.1 that (b∗, a∗, f) L∗ (e, a, f) and (b∗, b∗, h) L∗ (g, b, h). Hence
L∗ is abundant on T.

By a similar argument it follows that R∗ is abundant on T.

Let θ : T → S be defined by (e, a, f)θ = eaf. Obviously θ is a homomor-
phism. Since for any x ∈ S and any x†, x∗; we have x†u ∈ Eu, ux∗ ∈ uE and
ux†uxu = uxu = uxux∗u (see Lemma 3.8). Therefore, (x†u, uxu, ux∗) ∈ T
and (x†u, uxu, ux∗)θ = x. So then θ is an epimorphism. Moreover, if
(e, a, f) and (g, b, h) are elements of T such that (e, a, f)θ = (g, b, h)θ, that
is eaf = gbh, then ueaf = ugbh which implies af = bh, and eafu = gbhu
which implies ea = gb, so a = b. Hence

(e, a, f)θ = (g, b, h)θ if and only if ea = gb, a = b and af = bh.

Lemma 4.4. For any element (e, a, f) in T we have: a∗f, ea† ∈ E and
a∗f L∗ eaf R∗ ea† in S, where a∗ and a† are chosen to be in E0.

Proof. Let a ∈ uSu and a∗ be chosen to be in E0 so that a∗, fu ∈ E0 and

a∗fa∗f = a∗fua∗f = a∗a∗fuf = a∗f,

therefore a∗f ∈ E. Notice that for any s, t ∈ S1:

eafs = eaft =⇒ ueafs = ueaft

=⇒ afs = aft (definition of T)

=⇒ a∗fs = a∗ft

=⇒ aa∗fs = aa∗ft

=⇒ eafs = eaft

Therefore a∗f L∗ eaf. Similarly, ea† is an idempotent R∗-related to eaf.

Corollary 4.5. The homomorphism θ is admissible.

Proof. Let (e, a, f) and (g, b, h) be in T such that (e, a, f) L∗ (g, b, h). Con-
clude from the proof of Lemma 4.1 that (a∗, a∗, f) and (b∗, b∗, h) are idem-
potents in T where a∗ and b∗ are chosen to be in E0 and

(a∗, a∗, f) L∗ (e, a, f), (g, b, h) L∗ (b∗, b∗, h).
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So that (a∗, a∗, f) L (b∗, b∗, h). Thus

(a∗, a∗fb∗, h) = (a∗, a∗, f) and (b∗, b∗ha∗, f) = (b∗, b∗, h).

Therefore a∗fb∗ = a∗, h = f and b∗ha∗ = b∗ where a∗f, b∗h ∈ E (Lemma
4.4). Hence a∗fb∗h = a∗h = a∗f and b∗ha∗f = b∗h and then a∗f L b∗h.

By Lemma 4.4

(e, a, f)θ = eaf L∗ a∗f L b∗h L∗ gbh = (g, b, h)θ.

Similarly
(e, a, f) R∗ (g, b, h) =⇒ (e, a, f)θ R∗ (g, b, h)θ.

Hence the result holds.

Let ρ be the kernel of θ, that is for any two elements (e, a, f) and (g, b, h)
in T :

(e, a, f) ρ (g, b, h) if and only if eaf = gbh

Obviously ρ is a congruence on T. Since θ is epimorphism, T/ρ is isomorphic
to S. Similar to Corollary 4.5, we have the following.

Lemma 4.6. The congruence ρ is admissible.

Proof. Let (e, a, f), (g, s, h) and (i, t, j) be elements in T. Then

((e, a, f)(g, s, h), (e, a, f)(i, t, j)) ∈ ρ
=⇒ eafgsh = eafitj

=⇒ a∗fgsh = a∗fitj (Lemma 4.4)

=⇒ ((a∗, a∗, f)(g, s, h), (a∗, a∗, f)(i, t, j)) ∈ ρ.

Similarly

(g, s, h)(e, a, f), (i, f, j)(e, a, f)) ∈ ρ
=⇒ ((g, s, h)(e, a†, a†), (i, t, j)(e, a†, a†)) ∈ ρ.

Hence the result holds.
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A closed bracelet modulo ρ is a finite subset A of T consisting of 2(n+ 1)
(for n a positive integer) elements

{a1, a2, . . . , an, an+1, b1, b2, . . . , bn, bn+1}

satisfying:

a1 ≡ b1 6 a2 ≡ b2 6 . . . 6 an−1 ≡ bn−1 6 an ≡ bn 6 an+1 ≡ bn+1 6 a1,

where ≡ denotes equivalence module ρ, provided that bi 6= ai+1; for i =
1, 2, . . . , n and bn+1 6= a1. In this case n is said to be the length of the closed
bracelet. Notice that n = m−1 where m is the number of 6’s in A. We may
denote this closed bracelet modulo ρ by A. A sub-closed bracelet of A is a
subset

B = {c1, d1, c2, d2, . . . , cm−1, dm−1, cm, dm}
of A such that B itself can be set up as a closed bracelet modulo ρ. The use
of bracelets in contexts of this kind was introduced in [3].

Lemma 4.7. All the elements of every closed bracelet modulo ρ belong to
the same ρ-class.

Proof. The proof is by induction. Consider the closed bracelet A modulo ρ
of length n, where

ai = (ei, xi, fi), bi = (gi, yi, hi); i = 1, . . . , n+ 1.

Recall that two elements (e, x, f) and (g, y, h) in T are ρ-equivalent if and
only if exf = gyh, and this is so if and only if

ex = gy, xf = yh and x = y.

It follows from of the order of T that

x1 = y1 η x2 = y2 η . . . η xn−1 = yn−1 η xn = yn η xn+1 = yn+1 η x1.

As η is a partial order we conclude that all the elements in the closed bracelet
A have their middle components xi, yi equal. So we may write these elements
in the following form

ai = (ei, x, fi), bi = (gi, x, hi).
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To show that the statement of the lemma is true for any closed bracelet
modulo ρ of length n = 1, consider a subset {a1, a2, b1, b2} of T such that

a1 ≡ b1 6 a2 ≡ b2 6 a1

where

b1 6= a2, b2 6= a1, ai = (ei, x, fi), bi = (gi, x, hi) for i = 1, 2.

There are three cases to be considered in the comparison b2 6 a1 (the case
where b2 = a1 is excluded).

Case 1 (e1 = u = f1): Here x = e1xf1 = g1xh1 while g1 6l e2, h1 6r f2.
Since b1 6= a2, there are only three subcases. The first of these is e2 = u = f2

and this immediately implies a1 = a2. The second is g1 = e2 and f2 = u
which leads to e2x = g1x = e1x (b1 ≡ a1) and xf1 = xf2 (f1 = u = f2).
Hence a2 ≡ a1. The last subcase is e2 = u and h1 = f2 and is completely
analogous to the preceding. Therefore, in these subcases, all the elements
a1, a2, b1, b2 are ρ-related.

Case 2 (e1 = u, h2 = f1): We have in this case the following relations

x = e1x = g1x, g1 6l e2.

There are precisely two ways in which g1 6l e2, namely g1 = e2 or e2 = u.

(i) If g1 = e2, then

x = e1x = g1x = e2x = g2x (a1 ≡ b1, a2 ≡ b2).

(ii) If e2 = u, then

x = e1x, x = e2x = g2x (a2 ≡ b2).

Either way e1x = g2x. From the assumption we have xf1 = xh2. Therefore
a1 ≡ b2. Hence also in this case all the elements a1, a2, b1, b2 are ρ-related.

Case 3 (g2 = e1, f1 = u): This is completely analogous to the case 2.
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Therefore, the lemma is true for any closed bracelet modulo ρ of length
n = 1. For the induction hypothesis, assume the statement of the lemma
is true for any sub-closed bracelet of length n − 1 of the closed bracelet A
modulo ρ of length n. In the comparison bn+1 6 a1 where bn+1 6= a1 we have
- as before - three cases to be considered.

Case i (e1 = u, f1 = u): Here

x = e1xf1 = g1xh1 (a1 ≡ b1).

From b1 6 a2, it follows that g1 6l e2 and h1 6r f2. In this case, as b1 6= a2

we have three subcases:

(i) e2 = u and f2 = u: this implies a1 = a2;

(ii) g1 = e2 and f2 = u: this leads to

e2x = g1x = e1x (b1 ≡ a1)

but also xf2 = xu = xf1. thus a2 ≡ a1;

(iii) e2 = u and h1 = f2 : this is an analogue of (ii).

These subcases lead to a1 ≡ a2, so we have the sub-closed bracelet

a1 ≡ b2 6 . . . 6 an ≡ bn 6 an+1 ≡ bn+1 6 a1

of length n-1. By the induction hypothesis all the elements

a1, b2, . . . , an−1, bn−1, an, bn, an+1, bn+1

belong to the same ρ-class. But also a2 ≡ a1 ≡ b1. Thus all the elements
of the closed bracelet A are ρ-related. Hence the statement of the lemma is
true in this case.

Case ii (e1 = u, hn+1 = f1): We have - in this case - the following relations

x = e1x = g1x (a1 ≡ b1) and g1 6l e2 (b1 6 a2)
e2x = g2x (a2 ≡ b2) and g2 6l e3 (b2 6 a3)

...
...

...
...

enx = gnx (an ≡ bn) and gn 6l en+1 (bn 6 an+1)
en+1x = gn+1x (an+1 ≡ bn+1) and gn+1 6l e1 (bn+1 6 a1).
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When g1 6l e2, either g1 = e2 and so

x = e1x = g1x = e2x = g2x

or e2 = u so then x = e2x = g2x and e1x = x = e2x. In either case:

x = e1x = g1x = e2x = g2x.

Similarly, g2 6l e3 implies

x = e1x = g1x = e2x = g2x = e3x = g3x.

It follows by a simple induction argument that

x = e1x = g1x = e2x = g2x = · · · = enx = gnx = en+1x = gn+1x,

that is gn+1x = e1x. As hn+1 = f1, then xhn+1 = xf1 and bn+1 ≡ a1. Thus
an+1 ≡ a1.

Thus we have the sub-closed bracelet

an+1 ≡ b1 6 a2 ≡ b2 6 . . . 6 an−1 ≡ bn−1 6 an ≡ bn 6 an+1

of length n− 1. By the induction hypothesis all the elements

an+1, b1, a2, . . . , an, bn

are ρ-related. But also a1 ≡ an+1 ≡ bn+1. Hence all the elements of the
closed bracelet A are ρ-related and the statement of the lemma is true in
this case.

Case iii (gn+1 = e1, f1 = u): This is completely analogous to the previous
case.

Hence the result holds.

The main part of the proof of Lemma 4.7 is essentially the same as that
in [19]. Its presentation here is for completing the text.

An open bracelet modulo ρ is a finite subset

{x̄, a1, a2, . . . , an, b1, b2, . . . , bn, ȳ}
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of T with ai = (ei, xi, fi), bi = (gi, yi, hi) for i = 1, . . . , n, x̄ = (e, x, f) and
ȳ = (g, y, h) satisfying

x̄ 6 a1 ≡ b1 6 a2 ≡ b2 6 . . . 6 an ≡ bn 6 ȳ
In this x̄ is called the initial clasp and ȳ the terminal clasp.

The following corollary is a result similar to that of [3, Theorem 6.1].
We present it here with its direct proof.

Corollary 4.8. The abundant semigroup T/ρ can be partially ordered in
such a way that the natural map T → T/ρ is isotone.

Proof. Define 6ρ on T/ρ for any two elements xρ, yρ (x, y ∈ T ) in T/ρ
by xρ 6ρ yρ if and only if there are 2n (n a positive integer) elements
a1, a2, . . . , an, b1, b2, . . . , bn in T such that

x 6 a1 ≡ b1 6 a2 ≡ b2 6 . . . 6 an ≡ bn 6 y.
That is, there is an open bracelet modulo ρ with initial clasp x and terminal
clasp y.

It is obvious that xρ 6ρ xρ for any xρ ∈ T/ρ so the relation 6ρ on T/ρ
is reflexive. Equally clear is that it is transitive. Suppose xρ 6ρ yρ and
yρ 6ρ xρ. Then there are elements

a1, . . . , an, b1, . . . , bn, c1, . . . , ck, d1, . . . , dk

in T such that
x 6 a1 ≡ b1 6 a2 ≡ . . . an ≡ bn 6 y

and
y 6 c1 ≡ d1 6 c2 ≡ . . . 6 ck ≡ dk 6 x.

Notice that if for some positive integer t, bt = at+1, then we may delete
the elements bt, at+1 from the sequence and renumber the rest accordingly.
Thus clearly we can assume without loss of generality that for i = 1, . . . , n
and j = 1, . . . , k

bi 6= ai+1, dj 6= cj+1, x 6= a1, bn 6= y, y 6= c1, dk 6= x.

We then have a closed bracelet modulo ρ. It follows by Lemma 4.7 that
x ≡ y and xρ = yρ. Hence the relation 6ρ on T/ρ is partial order.

As for any x, y ∈ T ; x 6 y (in T ) implies xρ 6ρ yρ in T/ρ then the
natural map T → T/ρ is isotone.
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Armed with these results we can naturally order S as required. The
following theorem completes the process.

Theorem 4.9. The abundant semigroup S with an ample multiplicative me-
dial idempotent u can be naturally ordered in such a way that u is the max-
imum idempotent.

Proof. For any x, y ∈ S; choose x̄, ȳ in T so that x̄θ = x and ȳθ = y. Order
S by δ, where x δ y if and only there exists an open bracelet modulo ρ

x̄ 6 a1 ≡ b1 6 a2 . . . an ≡ bn 6 ȳ.

It is obvious that δ is reflexive. If x, y ∈ S so that x δ y and y δ x where
x̄θ = x, and ȳθ = y for some x̄, ȳ ∈ T, then we have the following two open
bracelets

x̄ 6 a1 ≡ b1 6 a2 . . . an ≡ bn 6 ȳ
and

ȳ 6 c1 ≡ d1 6 c2 . . . cm ≡ dm 6 x̄.
By the same argument as in Corollary 4.8 we get x̄ ≡ ȳ, that is, x̄θ = ȳθ.
Thus x = y and δ is symmetric. The transitivity of δ is evident. Therefore
δ is partial order.

For the compatibility of δ on S, let x δ y in S and z ∈ S where z̄θ = z and
z̄ ∈ T. For any 1 6 i 6 n we have ai ≡ bi, that is aiθ = biθ so aiθz̄θ = biθz̄θ
and aiz̄ ≡ biz̄. Since the order 6 on T is compatible (Lemma 4.2), we have

x̄z̄ 6 a1z̄ ≡ b1z̄ 6 a2z̄ ≡ . . . . . . 6 anz̄ ≡ bnz̄ 6 ȳz̄.

Therefore
xz δ yz.

Similarly zx δ yz. Hence the order δ is compatible on S.
For the order δ to be natural, let e and f be idempotents in S. We may

put
ē = (eu, ueu, ue) and f̄ = (fu, ufu, uf)

and ē, f̄ are idempotents in T such that ēθ = e, f̄θ = f. If ef = e = fe,
then

ufuueu = ufufeu = ufeu = ueu,
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so that ueu η ufu. Choose h̄ = (fu, ueu, uf), then h̄ is an idempotent in T
and h̄ 6 f̄ . Also

h̄θ = fuueuuf = fueuf = fufefuf = fef = e = ēθ.

Hence ē ≡ h̄ 6 f̄ and e δ f in S. Therefore, the order δ on S is natural and
the semigroup (S, δ) is naturally ordered. Finally, let k be an idempotent
in S. Then k̄ = (ku, uku, uk) is an idempotent in T where k̄θ = k; put
ū = (u, u, u) then ū is the maximum idempotent in T (see the proof of
Lemma 4.2) and k̄ 6 ū. By the definition of the order on S this implies
k δ u in S so that u is the maximum idempotent in S. Hence the result
holds.

As uSu is ample, consider the natural order relation η of Proposition
2.10 on uSu. The order relation δ on S (as stated in the proof of Theorem
4.9) has the following property.

Corollary 4.10. For any x, y ∈ uSu

x δ y implies x η y.

Proof. Let x, y ∈ uSu such that x δ y. Then for some a1, . . . , an and
b1, . . . , bn in T we have

x̄ 6 a1 ≡ b1 6 a2 ≡ . . . an ≡ bn 6 ȳ,

where we may put x̄ = (x†, x, x∗), ȳ = (y†, y, y∗) (x†, x, x∗, y†, y, y∗ are in
uSu) and ai = (ei, xi, fi), bi = (gi, yi, hi) for i = 1, . . . , n. Notice that

x̄ 6 a1 implies x η x1 and a1 ≡ b1 implies x1 = y1.

The process will continue so we have

x η x1, x1 = y1, y1 η x2, . . . , xn = yn, yn η y.

Hence x η y.

The easy proof of the following corollary is omitted.

Corollary 4.11. For any e, f ∈ E(uSu),

e δ f if and only if e ω f.
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To introduce another property of δ, consider the elements xi for i =
1, . . . , 5 in T such that:

x1 6 x2 ≡ x3 6 x4 ≡ x5 where xi = (ei, uaiu, fi) (ai ∈ S).

It follows from the order of T and the ρ-equivalence in T that:

(1) e1 6l e2, ua1u η ua2u and ue1ua1u = ua1u;

(2) e2ua2u = e3ua3u and ua2u = ua3u;

(3) e3 6l e4, ua3u η ua4u and ue3ua3u = ua3u;

(4) e4ua4u = e5ua5u and ua4u = ua5u.

These imply correspondingly that:

(i) e1 6l e2, ua
†
1u η ua

†
2u (Corollary 2.11) and ue1ua

†
1u = ua†1u;

(ii) e2ua
†
2u = e3ua

†
3u and ua†2u = ua†3u;

(iii) e3 6l e4, ua
†
3u η ua

†
4u and ue3ua

†
3u = ua†3u;

(iv) e4ua
†
4u = e5ua

†
5u and ua†4u = ua†5u.

Therefore, we have the following.

(a) ue1ua
†
1u = ua†1u and ua†1uua

†
2u = ua†1u. This implies that g1 =

(e1, ua
†
1u, ua

†
2u) is an idempotent in T which isR-related to (e1, ua

†
1u, ua

†
1u).

Then recall from the proof of Lemma 4.1 that x1 R∗ (e1, ua
†
1u, ua

†
1u).

Hence g1 R∗ x1. Clearly g1 6 g2 where g2 = (e2, ua
†
2u, ua

†
2u), and g2

is an idempotent in T which is R∗-related to x2.

(b) e2ua
†
2u = e3ua

†
3u. As ua

†
3u η ua†4u then e3ua

†
3u = e3ua

†
3uua

†
4u and

g3 = (e3, ua
†
3u, ua

†
4u) is an idempotent in T, g2 ≡ g3, and

g3 R (e3, ua
†
3u, ua

†
3u) R∗ x3

and g3 6 g4 where g4 = (e4, ua
†
4u, ua

†
4u). Recall that g4 R∗ x4.
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(c) By the same procedure as above

e4ua
†
4u = e5ua

†
5u, ua†4u = ua†5u,

g5 = (e5, ua
†
5u, ua

†
5u), g5 R∗ x5, g4 ≡ g5.

Hence, we have the open bracelet modulo ρ

g1 6 g2 ≡ g3 6 g4 ≡ g5

where:

gi = (ei, ua
†
iu, ua

†
i+1u); i = 1, 3(xi 6 xi+1i = 1, 3),

gi = (ei, ua
†
iu, ua

†
iu); i = 2, 4, 5(xi ≡ xi+1i = 2, 4),

and gi ∈ E(T ) with gi R∗ xi.
Dually there exists a subset of idempotents {h1, h2, h3, h4, h5} of T such

that hi L∗ xi, where:

hi = (ua∗i+1u, ua
∗
iu, fi); i = 1, 3(x1 6 x2, x3 6 x4),

hi = (ua∗iu, ua
∗
iu, fi); i = 2, 4, 5(x2 ≡ x3, x4 ≡ x5),

and h1 6 h2 ≡ h3 6 h4 ≡ h5 is open bracelet modulo ρ.
By a simple induction we capture the following result.

Corollary 4.12. If {xi | i = 1, 2, . . . , n} is a subset of T such that

x1 6 x2 ≡ x3 6 x4 ≡ . . . 6 xn−1 ≡ xn

where xi = (ei, uaiu, fi), for i = 1, 2, . . . , n (ai ∈ S). Then:
(1) there is a subset {g1, g2, . . . , gn} of idempotents in T such that

g1 6 g2 ≡ g3 6 . . . 6 gn−1 ≡ gn

where gi R∗ xi for i = 1, 2, . . . , n− 1,

gi =

{
(ei, ua

†
iu, ua

†
i+1u) if xi 6 xi+1

(ei, ua
†
iu, ua

†
iu) if xi ≡ xi+1

and gn = (en, ua
†
nu, ua

†
nu);
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(2) there is a subset {h1, h2, . . . , hn} of idempotents in T such that

h1 6 h2 ≡ h3 6 . . . hn−1 ≡ hn

where hi L∗ xi for i = 1, 2, . . . , n− 1

hi =

{
(ua∗i+1u, ua

∗
iu, fi) if xi 6 xi+1

(ua∗iu, ua
∗
iu, fi) if xi ≡ xi+1

and hn = (ua∗nu, ua
∗
nu, fn).

Corollary 4.13. The relations L∗ and R∗ are abundant on (S, δ).

Proof. Let a, b ∈ S such that a δ b. Then there is an open bracelet modulo
ρ

ā ≡ x1 6 x2 ≡ x3 6 . . . 6 xn−1 ≡ xn 6 b̄
where āθ = a and b̄θ = b.

We may write - without loss of generality - ā = (a†u, uau, ua∗) and
b̄ = (b†u, ubu, ub∗). By Corollary 4.12 there is a subset of idempotents
{g0, g1, g2, . . . , gn, gn+1} in T such that

g0 ≡ g1 6 g2 ≡ g3 6 . . . 6 gn−1 = gn 6 gn+1, g0 R∗ ā, gn+1 R∗ b̄

where g0 = (a†u, ua†u, ua†u) and gn+1 = (b†u, ub†u, ub†u). So then g0θ δ gn+1θ
in S. As θ is admissible (Corollary 4.5) we have g0θ R∗ āθ and gn+1θ R∗ b̄θ,
where g0θ = a†u and gn+1θ = b†u.

Then a†u R∗ a, and b†u R∗ b (see Lemma 3.9) where a†u δ b†u. Hence
R∗ is abundant on (S, δ). Similarly L∗ is abundant on (S, δ).

We conclude the section by the following result.

Proposition 4.14. Let S be an abundant semigroup containing an idempo-
tent u such that uSu is an ample subsemigroup of S. The idempotent u is
multiplicative medial if and only if there is a natural order 6 on S such that
u is a maximum idempotent and for any x, y ∈ uSu,

x 6 y implies x η y

where η is the order relation on uSu as defined in Proposition 2.10.
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Proof. If u is multiplicative medial, then - as uSu is ample - the result follows
from the proof of Theorem 4.9 and Corollary 4.10.

Conversely let (S,6) be a naturally ordered abundant semigroup with
set of idempotents E, and u be a maximum idempotent such that uSu is an
ample subsemigroup of S. Moreover suppose for any x, y ∈ uSu that

x 6 y implies x η y.

Then by Proposition 3.6, u is medial and by Lemma 2.5, uSu is a ∗-
subsemigroup of S. Let e, f ∈ E; clearly uefu ∈ uSu. By Lemma 3.9,
uef L∗ u(ef)∗ so that uefu L∗ u(ef)∗u. As u is medial, then u(ef)∗u is an
idempotent and u(ef)∗u ∈ E(uSu). Since uefu 6 u (as e 6 u, f 6 u and 6
is compatible), then uefu 6 u(ef)∗u and by the hypothesis uefu η u(ef)∗u.
In particular, there exists an idempotent g in uSu such that

gu(ef)∗u = uefu.

Hence uefu is an idempotent and u is multiplicative medial as required.

5 Another order for an abundant semigroup

For any abundant semigroup S with set of idempotents E containing a strong
medial idempotent u such that uSu is ample, 〈E〉 is a regular subsemigroup
(Proposition 3.5) and E(uSu) = u〈E〉u = uEu (Corollary 3.11). Thus uEu
is a semilattice. As mentioned in [17], we do not need to impose the following
two conditions:

(1) u〈E〉u is a semilattice (see Proposition 3.12);

(2) 〈E〉 is regular

in the hypothesis of [6, theorem 4.5] as they follow from the premises.
Let S be an abundant semigroup with set of idempotents E containing

a strong medial idempotent u such that uSu is ample. Thus u is ample
multiplicative medial (Lemma 3.2) and the semigroup S can be naturally
ordered in such a way that u is a maximum idempotent (Theorem 4.9) such
that L∗ and R∗ are abundant (Corollary 4.13). The objective of this section
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is to impose a natural order on S which does not coincide with the one
produced in Section 4.

Let S be an abundant semigroup where E(S) = E and S contains a
strong medial idempotent u such that uSu is ample. We identify uEu by
E0 and uSu by S0. Consider

W = {(e, a, f) ∈ Eu× S0 × uE | e L a†, f R a∗; a†, a∗ ∈ E0}.

Then W is a semigroup with the binary operation defined for any two ele-
ments (e, a, f) and (g, b, h) by the rule:

(e, a, f)(g, b, h) = (e(afg)†, afgb, (fgb)∗h).

As a, b, fg ∈ S0, then (afg)† and (fgb)∗ are chosen to be in E0. In fact, we
have from [6] that W is an abundant semigroup containing a strong medial
idempotent ū = (u, u, u) such that ūW ū is ample.

Impose the order 6w onW defined for any elements (e, a, f) and (g, b, h)
in W by the rule

(e, a, f) 6w (g, b, h) if and only if e ω g, a η b, f ω h.

It is evident that 6w is partial order. In fact this order is compatible, for if
(e, a, f) 6w (g, b, h) and (i, c, j) in W then e ω g, a η b, and f ω h. Since
fi, hi ∈ E0 and f = fh, then fi = fhi = fhii = hifi (uE is right normal
from Proposition 3.13). Hence fi ω hi and fi η hi. Thus afi η bhi. By
Corollary 2.11

(afi)† η (bhi)† and (afi)†(bhi)† = (afi)† ((afi)†, (bhi)† ∈ E0).

Notice that:

e(afi)† = e(afi)†(bhi)† = eg(afi)†(bhi)† (e ω g)

= e(afi)†g(bhi)† (Eu is left normal - Proposition 3.13),

and
g(bhi)†e(afi) = ge(bhi)†(afi)† = e(afi)†.

Therefore e(afi)† ω g(bhi)†. Also fi η hi implies fic η hic and again by
Corollary 2.11

(fic)∗ η (hic)∗.
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As (fic)∗j = j(fic)∗j (uE is right normal) then

(hic)∗(fic)∗j = (hic)∗j(fic)∗j.

That is
(fic)∗j = (hic)∗j(fic)∗j,

and clearly
(fic)∗j(hic)∗j = (fic)∗(hic)∗j = (fic)∗j.

Hence (fic)∗j ω (hic)∗j. However afi η bhi so afic η bhic. Therefore,

(e(afi)†, afic, (fic)∗j) 6w (g(bhi)†, bhic, (hic)∗j).

That is (e, a, f)(i, c, j) 6w (g, b, h)(i, c, j). Similarly;

(i, c, j)(e, a, f) 6w (i, c, j)(g, b, h)

and the order 6w on W is compatible.
To see that the order is natural, let (e, a, f) and (g, b, h) be idempotents in

W. Then as in [6], or as can be verified directly, a, b ∈ E0. If (e, a, f)(g, b, h) =
(e, a, f) = (g, b, h)(e, a, f) then

e(afg) = e = g(bhe), afgb = a = bhea, (fgb)h = f = (hea)f.

Notice that ge = e = eg. Then e ω g. Similarly f ω h. As a, fg, he are all in
E0 and

(afg)b = a = b(hea)

then a η b (in uSu). Hence (e, a, f) 6w (g, b, h) in W and the order on W
is natural. In conclusion, we have the following.

Proposition 5.1. The semigroup (W,6w) is a naturally ordered abundant
semigroup.

Corollary 5.2. The relations L∗ and R∗ are abundant on (W,6w).

Proof. Recall from [6], that for any (e, a, f) in W , each of (e, a†, a†) and
(a∗, a∗, f) are idempotents in W, and

(a∗, a∗, f) L∗ (e, a, f) R∗ (e, a†, a†).
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If (e, a, f) 6w (g, b, h) in W, then e ω g, f ω h and a η b. However a η b
implies a† η b† and a∗ η b∗ (a†, b† ∈ E0) (by Corollary 2.11). Then

(e, a†, a†) 6w (g, b†, b†) and (a∗, a∗, f) 6w (b∗, b∗, h).

Hence the result holds.

For any x ∈ S; x∗, x† ∈ E and xu ∈ Su. Also Su is a ∗-subsemigroup
of S (Proposition 3.10) and x†u ∈ R∗xu(S) ∩ Eu (Lemma 3.9(2)). Similarly
ux ∈ uS and ux∗ ∈ L∗ux(S) ∩ uE.

The two idempotents x†u and ux∗ are uniquely determined by x (see [6]),
and ux†u R∗ uxu so that ux†u = (uxu)†, also x†u L ux†u so x†u ∈ L(uxu)† .
Similarly, ux∗ belongs to R(uxu)∗ .

Therefore (x†u, uxu, ux∗) ∈W and θ : S →W defined by xθ = (x†u, uxu, ux∗)
is an isomorphism [6].

Define an order 6S on S for any two elements x and y in S by:

x 6S y (in S) if and only if xθ 6w yθ (in W ).

Since θ is an isomorphism the order 6w on W is a natural order in which
L∗and R∗ are abundant. Thus we have the following proposition.

Proposition 5.3. If S is an abundant semigroup containing a strong medial
idempotent u such that uSu is ample, then S is naturally ordered with respect
to 6S , where for any x, y ∈ S;

x 6S y if and only if x†u ω y†u, uxu η uyu, and ux∗ ω uy∗,

such that L∗ and R∗ are abundant.
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