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Abstract  After different disasters the evacuation planning support to remove the residence from accidental areas to safe 

destinations. Contraflow solutions minimize the congestion and make the traffic smooth during evacuation by reversing the 

required road directions from risk areas to safe places. Mathematical models and solution approaches appear for the 

maximum, the quickest and the earliest arrival contraflow problems in the literature. The research on contraflow 

reconfiguration has been motivated from tremendous applications improving both throughput and speed. This note briefly 

revisits the static and dynamic contraflow problems previously investigated.  We also develop models and algorithms that 

obtain optimal solutions to the lexicographically maximum and the earliest arrival contraflow problems. 

 

Keywords  network optimization, evacuation planning, transportation planning, contraflow, complexity 

  
 

1. INTRODUCTION 

Given an evacuation network, the contraflow problem is a challenging issue of  finding a network reconfiguration with 

ideal lane directions satisfying the given constraints that optimizes the given objective. The developed contraflow evacuation 

plans, that seek to remove traffic jams and make the traffic systematic and smooth, are emerging to react to different large 

scale natural and man-made disasters. The application of  contraflow is not only limited to evacuation planning but also in 

traffic planning that reduces congestion and traffic jams during the day-to-day office hours, some accident management 

cases or some street exhibitions. Various mathematical models, heuristics, optimization and simulation techniques taking 

into account of  macroscopic and microscopic behavioral characteristics deal with contraflow for this transportation network, 

however an acceptable contraflow solution even approximately is a lacking due to very high computational costs. 

A polynomial time solution for the maximum dynamic network flow problem can be found in a fundamental work of  

(Ford and Fulkerson, 1958). Linking to its properties, a simplest version of  the quickest flow problem is solved in (Burkard 

et al., 1993). Using the concept of  flows in negative time that is with a permissible negative flow, to realize former decisions, 

the transshipment problem is solved with polynomial time in (Hoppe, 1995; Hoppe and Tardos, 2000). Authors in 

(Wilkinson, 1971; Minieka, 1973) maximize the two-terminal flow simultaneously in each step of  time by maintaining the 

optimal solutions in earlier steps.  However, its time complexity is pseudo-polynomial time. A multi-source earliest arrival 

solution for the given supplies and demand has been achieved in (Baumann and Skutella, 2006).   

In addition to a wider class of  research on auto-based evacuation, the low-mobility population dominated large cities 

and developing countries highly demand a research in transit-based and multi-modal evacuation models.  Authors in 

(Pardalos and Arulselvan, 2009) employ a branch and price procedure to solve a path-based bi-modal formulation with 

buses and cars. With static demands at origins, static travel times on arcs and given bus routes having loading and unloading 

time zero, they consider an objective of  minimizing the costs for frequency of  buses and paths of  cars. We refer to (Altay 

and Green, 2006; Chen and Miller-Hooks, 2008; Cova and Johnson, 2003; Dhamala, 2015; Hamacher and Tjandra, 2001; 

Moriarty et al., 2007; Pel et al., 2012; Schadschneider et al., 2009; Yusoff  et al., 2008) for survey papers on auto-based 

evacuation models. Pyakurel et al. (2014) study transit-based evacuation models and present a case study of  Kathmandu 

metropolitan city for transit dependent evacuees as an application. Hua et al. (2014) study a multi-modal integrated 

contraflow model for uncertain arrivals of  evacuees in an evacuation region with low mobility population. The transit-based 

models are initiated with vehicle routine problem whereas the integrated strategy contains non-contraflow to shorten the 

strategy setup time, full-lane contraflow to minimize the evacuation network capacity and bus contraflow to realize the 

transit cycle operation.  

Contraflow is a widely accepted model for a good solution rather than an optimal one for practical cases. Many authors 

have presented significant time saving algorithms using contraflow techniques but an acceptable systematic result does not 

exist yet, see (Dhamala, 2014) for a summary. Kim et al. (2008) present a greedy heuristic that finds high quality solutions 

and a bottleneck relief  heuristic for large scale evacuations where the evacuation time has been improved by at least 40 

percent with at most 30 percent of  the total arc reversals. They showed that the problem of  minimizing the evacuation time 
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is NP-hard. Authors in (Kim and Shekhar, 2005) present two heuristics for contraflow. The first heuristic solves a minimum 

cost problem in the time-expanded network in the given time period to record the total number of  flow units that pass 

through each edge during the evacuation time  and flips the direction of  each edge in favor of  the direction of  larger flow. 

The second heuristic is based on simulated annealing iteration that yields a minimum evacuation time locally. 

Authors in (Rebennack et al., 2010) give strongly polynomial time algorithms for the contraflow problems of  

maximizing a static flow, a two-terminal dynamic flow and a two-terminal quickest flow. The latter dynamic contraflows with 

multi-terminal are NP-hard. Dhamala and Pyakurel (2013) give mathematical model for two-terminal earliest arrival 

contraflow and solve it polynomially on two-terminal series-parallel graphs, see also (Pyakurel and Dhamala, 2014a). 

Pyakurel et al. (2014) solve the two-terminal generalized maximum dynamic and earliest arrival contraflow problems on 

lossy networks. The lexicographically maximum static and dynamic contraflows have been dealt in (Pyakurel and Dhamala, 

2014).  

Although the contraflow approach increases the flow value and reduces the evacuation time significantly in comparison 

to the non-contraflow, the arc reversal cost for reconfiguration has to be paid. The authors in (Rebennack et al., 2010) 

consider the contraflow configuration price in terms of  fixed arc switching cost to deliver a feasible amount of  flow.  The 

cost of  arc orientation for contraflow configuration has been considered as flow cost and time cost separately, and 

combined both costs together in (Gross, 2014). The orientation cost for contraflow can be at most two third of  the flow 

value. However, the time cost for the orientation is node dependent. 

Our objective is to look insights into the contraflow approach and look for more analytical solutions and applications. 

Although having significantly importance of  the contraflow approach, its analytical approach has been considered in the 

literature relatively less. In this paper we systematically formulated a class of  evacuation planning problems with arc reversal 

possibility which would contribute to better understanding the properties of  contraflow reconfiguration for practical use. 

We investigate the models, methods and algorithms developed in contraflow evacuation planning network problems. 

Section 2 summarizes the notations, models and solution status of  the evacuation planning problems we are using in this 

paper. We study lexicographically maximum and earliest arrival contraflow problems and present efficient algorithms for 

them in Sections 3 and 4. A series of  investigated contraflow problems have been systematically formulated in both sections. 

The final section concludes the paper. 

 

2. FUNDAMENTAL CONCEPTS 

2.1  Basic Denotations 

A building (or a region) to be evacuated is represented by a network	� = ��, ��, |�| = 
 and |�| = � in which 

the rooms in a building (or places in a region) represent the nodes, and connections between these parts (i.e., doors between 

rooms, or streets in region) correspond to edges. The source nodes contain evacuees and the sink nodes are the safety. The 

set of  multi-terminals is denoted by the sets of  multi-source � and multi-sinks		
 . Nodes � and � represent the 

single-source and single-sink. We assume that		����� = ���� = ∅, where ����� = {��, �� ∈ �} and ���� = {��, �� ∈ �}  

for the node	� ∈ � .  The network consists of  nonnegative functions of  arc capacities	��: � → " , node capacities 

�#: � → "  and arc travel times		$: � → ". The vectors %���  and &��� represent the given supply and demand at each 

source and sink, respectively. We represent by 	���'�,  $�'�, and �#���, the maximum units of  flow that may enter the 

initial node of  arc ' per time period, the time needed to travel one unit of  flow on the arc ' from tail�'� to its 

head�'�, and the amount of  flow allowed to hold at node � respectively. Each arc ' may also have a nonnegative cost 

coefficient	/��'�, for sending one unit of  flow through the arc	'. The group of  evacuees is modeled as a flow which passes 

through the network over time. Two way network configurations will be allowed in case of  lane reversal scenarios.  

The nonnegative functions 	0�1�2  and 	0��2�  define the dynamic and static network flows on � × 4   and 		� , 

respectively. Let �56787
9 = :�, �; ∪ �=> be the residual network of		�. Here, �; = {'; = '|	0��2��'� < 	���'�} denotes the set 

of  forward arcs ';  having capacity 	���'� − 	0��2��'�  and transit time 	$�'� , and 

�= = {'= = �head�'�, tail�'��|	0��2��'� > 0} denotes the set of  backward arcs '= having capacity 	0��2��'� and a transit 

time	−$�'�.  

For a dynamic network		� = ��, �, ��, �# , $, �, 
, C�, the network 	��C� = �	�D , 	�E ∪ 	�F�  defines time-expanded 

network. Here, the node set 		�D = {��G�|� ∈ �, G = 0, 1, … , C} and the sets of  holdover arcs with arc capacity 	�#���  and 

movement arcs with arc capacity		����, ��, respectively, are defined by  

	�F = {���G�, ��G + 1��|� ∈ �, G = 0, 1, … , C − 1} 

	�E = {���G�, ��G + $��, ����|��, �� ∈ �, G = 0, 1, … , C − $��, ��} 

A construction of  two-terminal network �∗, called the extended network, is generalized to the multi-terminal network 

�  by adding a super-terminal node �∗� and introducing arcs �∗, 	��� to each 	�� ∈ � with infinite capacity and zero 

transit time, and arcs �	�� , ∗� to each 	�� ∈ 
 with infinite capacity and transit time −�C + 1� for given time period C.  

Let the reversal of  an arc ' = ��, �� be	'LM = ��, ��. Given a dynamic network � with symmetric travel times, the 



38 

Pyakurel and Dhamala: Models and Algorithms on Contraflow Evacuation Planning Network Problems 
IJOR Vol. 12, No. 2, 036−046 (2015) 

 

1813-713X Copyright © 2015 ORSTW 

auxiliary dynamic network �N = ��, O, �P , �# , $, �, 
, C� consists of  the modified arc capacities and travel times, respectively, 

as  

	�P�'̅� = 	���'� + 	���	'LM�, and			$�'̅� = S $�'�							 if	' ∈ �
$�	'LM� otherwise	 

where, an edge '̅ ∈ O in �N  if '⋁	'LM ∈ � in �. The remaining graph structure and data are unaltered. For a static 

network	� = ��, �, ��, �# , �, 
�, the auxiliary static network �N = ��, O, �P , �# , �, 
� has a similar representation.  

Suppose that 	0��2�   has a standard decomposition into a set of  chains Z = {[M, … , 	[\ 	} with ] ≤ � that allows 

simple source-sink paths and simple cycles. Let 	0��2��[_�  be the flow with value val�0��2�
ab � along 		[_ . It holds 

	0��2� = ∑ [_\_dM , where all chains in Z start and end at the terminal nodes and use the arcs in the same direction as 

	0��2�  does. The lengths of  all chains [_ satisfy $�[_� ≤ C for given	C. A Flow decomposition with zero flows on all 

cycles, known as a path decomposition, is also denoted by	Z. One may assume that there is no flow along any cycle as the 

positive flow along all cycles could be canceled.  

In contrast to the standard chain-decomposition, a nonstandard chain-decomposable flow Γ = {fM, … , 	f\g}  allows 

oppositely directed arc flows. For an arc ' = ��, ��  with travel time	$��, ��, the reversed arc 	'LM has a nonpositive 

travel time	$��, �� = −$��, ��. A unit of  flow on the backward arc 	'LM that starts from �	at time G + $�'� and arrives 

at �	at time G cancels a unit of  flow sent from � at time G	 reaching � at time	G + $�'�. This is equivalent to sending 

one negative unit of  flow from �	at time G which reaches h at time	G + $�'�. Let f be a chain that flows along ��, �� 

in the direction opposite to 	0�1�2  and let f′  be another chain flow through ��, ��   that cancels the f  flow 

along	��, ��. In order to meet the edge capacity constraints, if  f arrives at �	at time G then f′ must arrive at � by time 

Gg ≤ G; and if  f stops using ��, �� at time G then f′ must continue sending flow from � until sometime Gg ≥ G.  

 

2.2. Flow Models 

A � − � flow 	0��2�  of  value val�0��2�� in (1) satisfies the flow conservation and capacity constraints (2) and (3), 

respectively.  

 val�0��2�� = ∑ 0��2��'�k∈		�lmn = ∑ 0��2��'�k∈		�6op7 	  (1) 

 ∑ 0��2��'�k∈		�qmn − ∑ 0��2��'�k∈		�qop7 = 0, ∀� ∈ �\{�, �}	 (2) 

 0 ≤ 0��2��'� ≤ ���'�,			∀' ∈ �  (3) 

The flow can be transformed into a zero circulation by adding an arc ��, ��  with value val�0��2�� through it. If  0��2�  is 

decomposable into a set of  chains (paths)		Z, the above maximum static flow (MSF) problem can be formulated as   

 max	{val�0��2��v∑ val:0��2�
ab > =ab∈Z val�0��2��, ∑ val:0��2�

ab > ≤ ���'�	∀' ∈ �ab∈Z:k∈ab } (4)  

In the setting with costs (in place of  time), a minimum cost flow (MCF) problem minimizes	∑ /��'�0��2� 	�e�k∈� , the total 

cost, to send static flow 0��2�  of  fixed value	val�0��2��.  

Let �M ⊆ ⋯ ⊆ �y ⊆ � and 
M ⊆ ⋯ ⊆ 
\ ⊆ 
 be the sets of  sources and sinks of  a static network, respectively. For 

a maximal flow, if  the greatest units that can enter the sinks in 
∗  be maxval�
∗�, then a maximal flow that delivers 

maxval�
_� units into each 
_ is a lexicographically maximal flow on the sinks. A maximal flow that sends greatest units  

maxval��z� out of  each �z is a lexicographically maximal flow on the sources. 

A dynamic � − � flow 0�1�2  for given time C satisfies the flow conservation and capacity constraints (5-7).  The 

inequality flow conservation constraints allow to wait flow at intermediate nodes, however, the equality flow conservation 

constraints force that flow entering an intermediate node must leave it again immediately. 

 ∑ ∑ 0�1�2k∈�qmn
D{d|�k� :', } − $�'�> − ∑ ∑ 0�1�2k∈�qop7D{d~ �', }� = 0, ∀	� ∉ {�, �}		  (5)  

 ∑ ∑ 0�1�2k∈�qmn
�{d|�k� :', } − $�'�> − ∑ ∑ 0�1�2k∈�qop7�{d~ �', }� ≥ 0, ∀	� ∉ {�, �}, G ∈ 4	 (6)  

 0 ≤ 0�1�2�', G� ≤ ���', G�, ∀' ∈ �, G ∈ 4 (7) 

The earliest arrival flow (EAF) problem maximizes the 	val�0�1�2 , G� in (8) for all G ∈ 4 satisfying the constraints (5-7). 

We denote the maximum flow value by		val����0�1�2 , G�.  

 val�0�1�2 , G� = ∑ ∑ 0�1�2k∈�6op7�{d~ �', }� = ∑ ∑ 0�1�2k∈�lmn
�{d|�k� :', } − $�'�>  (8)  

For a given time C the maximum dynamic flow (MDF) problem maximizes	val�0�1�2 , C�. Remark that a MDF solution 

maximizes the flow in time C and does not care at earlier time periods. For a given � the quickest flow (QF) problem looks 

for a minimal time min C = C��� such that the flow value is at least � satisfying the constraints (5-7).  For given time  

C and an ordered set of  multi-terminals, the lexicographically maximum dynamic flow (LMDF) problem finds a feasible flow that 

lexicographically maximizes the amount leaving each terminal in the given priority.  
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2.3. Solutions and Complexities 

A primal dual algorithm finds a MCF solution in the underlying static network � = ��, �, ��, $, �, �� with respect to 

the time C for a given dynamic network � = ��, �, ��, $, �, �, C�, where arcs transit times are interpreted as cost 

coefficients. A MDF has been obtained in strongly polynomial time by the temporally repeated flows (TRF) of  decomposed 

standard chains over permissible time horizon. A proof  on optimality follows from the max-flow min-cut theorem on 

��C� (Ford and Fulkerson, 1958). With a static flow 0��2� 	and a path decomposition		Z, they calculate the MDF value 

associated to a TRF for given time horizon C as in (9).  The sum on the right depends on only the static flow and not on 

the particular		Z.  

 val�0�1�2 , C� = ∑ �C − $�[_� + 1�	val:0��2�
ab > = �C + 1�	val�0��2�� − ∑ $�'�	0��2�k∈�ab∈Z �'�  (9)  

This MDF can also be obtained by finding a minimum cost circulation (MCCFT) in the static network with an additional 

edge ��, ��of  infinite capacity and −�C + 1� cost. It is known that a MCCFT solution has minimum cost if  and only if  

the corresponding residual network does not contain a cycle with negative cost.  

Burkard et al. (1993) links the QF to the MDF and to linear fractional programming and present a strongly polynomial 

time and several polynomial time algorithms for a solution of  the QF problem. A natural procedure via the solution of  the 

parametric MCCFT problem starting with C = 0 and continuing until the requirement takes pseudo-polynomial time 

because of  exponential number of  slope changes of  the optimal value function and the maximum static flow value. By 

exploiting the properties that 	val����0�1�2 , C� is monotone increasing and C attains only integer values, a binary search 

has been proposed which needs very careful analysis of  the search intervals. Their strongly polynomial time algorithm relies 

on the solution techniques of  linear fractional programming presented in (Megiddo, 1979).  

Minieka (1973) defines the arrival and departure patterns in maximal flows constructed by (Ford and Fulkerson, 1958), 

and prove their independence. Given a maximal static flow 0��2��  with ���� units leaving each � ∈ � and a maximal 

static flow 0��2��  with  ����  units arriving each		� ∈ 
, there exists a maximal flow 0��2�  having these patterns. A 

proof  continues the flow change procedure on the circulations converted from the given maximal flows 0��2��and 0��2��  

until the obtained maximal flow 0��2�  does not obey the required properties. Given a finite graph with integer arc capacity 

and the priority ordering of  the sets of  sources and sinks, he establishes an existence a LMSF on the sources and on the 

sinks. The existence proofs of  all LMSF require only the maximum flow minimum cut theorem on Ford-Fulkerson 

maximum flow algorithm.    

For given	G = 0, 1, … , C, let 
� = ⋃ �����_d~  and �� = ⋃ �����_d~  be the priority subsets of  sinks and sources 

in	��C�. Then a LMSF in ��C� on the sinks (sources) is a MDF in � with earliest arrival (departure) property.  

These results rely on the standard flow decomposition technique (Ford and Fulkerson, 1958). A dynamic flow in � 

within C is equivalent to a static flow in ��C� and vice versa (Ford and Fulkerson, 1958). However, the time dependency 

of  ��C� does not allow natural extensions of  the polynomial time solution procedures. A more advanced nonstandard 

chain decomposition technique allows a polynomial time solution to certain classes of  dynamic flows, (Hoppe and Tardos, 

2000), for example, more general LMDF problem. Recall that their decomposition permits arc flows in either directions at 

different time steps on the availability of  such both directions. However, their algorithm is not practical for MDF or QF as 

it requires a submodular function minimization oracle for a subroutine.  

Consider a	� = ��, �, ��, $, �, 
, C, %���, &���) with specified supply %��� and demand &��� at each source and 

sink, respectively. Given an ordering �M, … , �� of  sources and sinks, the LMDF problem concerns to find a feasible 

dynamic flow with given C that lexicographically maximizes the amounts leaving the terminals in the given order. This 

problem is solvable in time complexity	��� × MCF��, 
��, where � represents the number of  terminals and MCF��, 
� 

represents the time complexity of  the MCF, (Hoppe and Tardos, 2000).  

An � − �  EAF solution that is optimal for each time  G = 1, … , C  for given C  has been obtained in 

pseudo-polynomial time, (Wilkinson, 1971; Minieka, 1973). Minieka's proof  follows the induction steps over the time 

periods. His shortest augmenting path algorithm utilizes its results for G~ time units to extend its results for GM > G~ time 

units by performing only GM − G~	  iterations. Wilkenson's proof  makes an use of  the maximum-flow minimum-cut 

in	��C�. He also recommends the secondary storage of  the dynamic flows as the algorithm never executes any operations 

on dynamic flows. With this, storage of  only augmenting paths and their node numbers would be sufficient to recognize the 

dynamic flows finally. Hoppe (1995) solves the universally maximum flow (also known as the earliest arrival flow) making 

use of  chain decomposable flows. His algorithm is essentially the same as of  (Wilkinson, 1971; Minieka, 1973) with same 

time complexity.  

Kamiyama and Katoh (2014) present a polynomial time algorithm for the universally quickest transshipment problem 

in a single-sink dynamic network that simultaneously maximizes the amount of  supplies which have reached the sink at 

every time step satisfying the uniform path-lengths and fully connected conditions. They first introduce the LMSF problem 

with hierarchies that is a generalization of  classical LMSF problems and present a polynomial time algorithm for this 

problem. Then, they transform a compressed time expanded network so that a LSMF with hierarchies in this network yields 
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a universally quickest transshipment. Their algorithm improves the complexity in this particular network as the time 

expanded network of  a dynamic network with uniform path-lengths can be compressed so that its size is bounded by a 

polynomial in the input size.  

 

3. STATIC CONTRAFLOW PROBLEMS 

The maximum static contraflow (MSCF) problem has been solved earlier. A proof  establishes the fact that a MSCF is 

equivalent to a MSF problem on an undirected auxiliary graph. In this section, the lexicographically maximum static contraflow 

(LMSCF) problem has been introduced and solved efficiently.  

Problem 1.  Given	� = ��, �, ��, �, 
�, the MSCF problem is to determine a maximum flow from � to	
, if the direction of arcs can 

be reversed.  

Authors in (Rebennack et al., 2010) solve the � − � MSF problem in the auxiliary network	�N = ��, O, �P , �, ��, 

decompose the obtained flow into paths and cycles and delete the latter assuring that arcs on either direction will never be 

used in the optimal flow. An arc ��, �� ∈ � is reversed if  and only if  the flow on ��, �� is greater than	����, ��, or if  

there is a nonnegative flow along ��, �� ∉ � and the resulting flow is maximum with arc reversals. The flow obtained by 

their algorithm is feasible and optimal to the � − � MSCF problem, too. It requires ��ℎM�
, �� + ℎ��
, ��� time, where 

ℎM�
, �� = ��
�. √��  and ℎ��
, �� = ��
. �� denote the time required to solve the MSF problem and the flow 

decomposition, respectively.  For the general MSF problem, a prior reduction of  � into the �~ − �~	 MSF problem 

with super-source �~ connecting to each � ∈ �  having arc capacities equal their respective surplus and connecting each 

� ∈ 
  to super-sink �~	 having arc capacities equal their respective deficits is required.  

 

Theorem 1. (Rebennack et al., 2010): The MSCF Problem 1 is solvable with strongly polynomial time complexity.  

 

Problem 2. Given � = ��, �, ��, �, 
�  with ordered sets of  sinks and sources, the LMSCF problem at sinks (sources) is to determine 

a feasible flow that lexicographically maximizes the amounts entering (leaving) the terminals in the given orders, if  the direction of  arcs can be 

reversed.  

 

Algorithm 1 has been presented for an optimal solution to the LMSCF problem.  

Algorithm 1:  Lexicographically Maximum Static Contraflow (LMSCF)  

1. Given, network 	� = ��, �, ��, �, 
� with integer inputs.  

2. Solve the corresponding LMSF problem on 	�N = ��, O, �P , �, 
� by (Minieka, 1973).  

3. Arc ��, �� ∈ � is reversed, if and only if the flow along arc ��, �� is greater than	����, �� or if there is a 

nonnegative flow along arc ��, �� ∉ � and the resulting flow is in LMSF with the arc reversals for the graph	�.  

4. Obtain lexicographically maximum static contraflow solution.  

 

Example 1: Consider a LMSCF problem with 2-sources and 3-sinks in a capacitated static network given in Figure 1���. Figure 1����� 

represents a LMSCF solution 0��2��   with priority ordering of  sinks	��, �M, ��. Because of  priority on		�M, MSCF solution in Figure 

1���� has to be re-optimized in this solution. A LMSCF solution 0��2��   with priority ordering on the sources 	�� and 	�M is obtained in 

Figure 1����, where  MSCF solution in Figure 1���� has to be re-optimized as the first priority is on 	��. The final LMSCF solution 

0��2�  which satisfies both priority orderings results from the independence of  the arrival and departure patterns in a maximal flow as shown in 

Figure 1���.  

 

Theorem 2. Problem 2 can be solved by solving LMSF problem and the flow decomposition in its auxiliary network.  

Proof:  

We show that a solution given by Algorithm 1 is optimal to Problem 2. We transform N for Problem 2 into the auxiliary 

network N .  Recall that the arc capacity is increased by adding the capacities of both directions between the nodes, either 

direction of arc is allowed with modified network, but the priority orderings remain unaltered. An optimal solution to the 

LMSF problem on N  could be obtained by solving iteratively the MSF problem in this network with given order of 

terminals (Minieka, 1973). However, at each iteration a max-flow solution for a given set of terminals is equivalent to the 

MSCF in N by Theorem 1. Therefore, an optimal solution for the LMSCF problem can be solved by solving the LMSF 

problem in N . In addition, a flow decomposition cost should pay for the removal of undesired cycles. This ensures that 

the direction of arcs take only one but not in both as in the MSCF. ∎ 
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Figure 1:  Lexicographically maximum static contraflow solution 

 

Corollary 1. Problem 2 can be solved with polynomial time complexity for given priority ordering of  multi-terminals.  

 

4. DYNAMIC CONTRAFLOW PROBLEMS 

We introduce the lexicographically maximum dynamic contraflow (LMDCF) and the earliest arrival contraflow (EACF) 

problems, and propose respective algorithms. The maximum dynamic contraflow (MDCF), the quickest contraflow (QCF), 

the EACF on two-terminal series-parallel graphs and the EACF on lossy network are studied in (Dhamala and Pyakurel, 

2013; Pyakurel and Dhamala, 2014a; Pyakurel et al., 2014; Rebennack et al., 2010), respectively.  

 

4.1  Maximum Dynamic and Quickest Contraflows  

 

Problem 3.  Given	� = ��, �, ��, $, �, 
, C�, the MDCF problem is to find a maximum flow that can be sent from � to 
 in 

time	C, if  the direction of  arcs can be reversed at time zero.  

 

Dissimilar to the network flows without contraflow, a one-to-one correspondence between MDCF solutions in a 

contraflow network � with arc reversals only at starting time is unlikely to the MSCF solutions in the corresponding 

network ��C� for multi-terminal networks, see Lemma 1. However, the equality is valid in case of  two-terminal networks.  

 

Lemma 1. An optimal MDCF solution � is not greater than an optimal MSCF solution in the corresponding	��C�.  

 

In order to find a � − � MSF solution in the auxiliary network	�N , a MCF solution is obtained and the flow is 

decomposed into paths and removable cycles. An algorithm for � − � MDCF solution determines temporally repeated 

dynamic flow in �N  which is an optimal overall dynamic flows in it. An arc ��, �� ∈ � is reversed if  and only if  the flow 

on ��, �� is greater than	����, ��, or if  there is a nonnegative flow along		��, �� ∉ �. An optimal solution in �N  is at 

most to the optimal solution in � and Lemma 1 holds. Then exploiting the optimality property of  time-expanded network 

according to Ford-Fulkerson (1958) and Theorem 1, the optimal solutions in �  and �N  agree.  

 

Theorem 3. (Rebennack et al., 2010): The � − � MDCF problem can be solved in time	��ℎ��
, �� + ℎ��
, ���, where 

ℎ��
, �� = ��
. ��  and ℎ��
, �� = ��
�. ��. log 
� are the time required for the flow decomposition and the MSF problem, 

respectively.   

 

The multi-terminal MDCF problem remains NP-hard in the strong sense even with two sources and one sink or vice 

versa, sees Example 2. The proofs follow by reductions from the problems 3-SAT and PARTITION, (Kim et al., 2008; 

Rebennack et al., 2010).  
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Example 2. (Rebennack et al., 2010): There is no feasible flow within time C = 6 using only one of  the arcs ��, �� or ��, �� in 

Figure 2. At time 1, one would switch ��, ��  in order to increase the capacity and at time 3, one would switch it back again to achieve a 

feasible flow within a shorter time. Hence, the possibility of  using both arcs leads to the problem NP-Complete.  

 

 

 

 

 

 

Figure 2: Two sources and single sink MDCF scenario and solution 

 

Problem 4.  Given a dynamic network		� = ��, �, ��, $, �, 
�, the QCF problem is to find the minimum time required to send a given 

flow value � from � to 
 having arc reversal capability at time zero.  

 

The parametric search algorithms yield a solution to the � − � QCF problem (Megiddo, 1979; Burkard et al., 1993). A 

weakly polynomial time algorithm can be realized by obtaining an upper bound on the quickest time and performing a 

repeated binary search to the MDCF. The multi-terminal QCF problems are harder than 3-SAT and PARTITION. The 

MSCF solution method with reduction of  the QCF problem back to a supersource-supersink �~ − �~ QCF problem is not 

applicable in this case.  

 

Theorem 4. (Rebennack et al., 2010): The � − � QCF problem is solvable in strongly polynomial time, whereas the multi-terminal QCF 

problem is NP-complete in strong sense.  

 

Let the given supply-demand vector be given and the arc reversals are allowed back and forth at integer time points. 

Then the multi-terminal QCF problem is polynomially solvable as it is equivalent to the QF problem. The solution 

procedure is similar to the MDCF solution algorithm.  

 

4.2  Earliest Arrival Contraflow 

 

We consider the EACF problems with only a single sink as there exists no earliest arrival flow on multiple sinks (Gale, 

1959).  

 

Problem 5.  Given	� = ��, �, ��, $, �, �, C�, the EACF problem is to find a feasible dynamic flow from  � to  � that is maximal 

for all time periods	0 ≤ G ≤ C, if  the directions of  arcs can be reversed.  

 

The more restricted multi-source EACF problem with arc reversals allowed only at zero time must be NP-hard as the 

MDCF problem is NP-hard. However with arc reversals only once at time zero, an optimal solution to the � − � MDCF 

(and � − � EACF) problem on a two-terminal series-parallel graph has been obtained by a modification of  algorithm in 

(Rebennack et al., 2010) using the MCCF algorithm of  (Ruzika et al., 2011). The main advantage in series-parallel graphs is 

that every cycle in the residual network has nonnegative cycle length. This solves the MCCF problem introduced in (Ford 

and Fulkerson, 1958) for the MDF problem in the auxiliary network	�N . The temporally repeated flow thus obtained is an 

optimal solution to the � − � EACF problem on a two-terminal series-parallel graph.  

 

Theorem 5. (Dhamala and Pyakurel, 2013): An optimal solution to the � − � EACF problem for two-terminal series-parallel graphs 

with arc reversal capability at time zero can be obtained in time	��
� + � log ��.  

 

Looking in depth to a structure of  the EAF problem which continues the already obtained flows in earlier steps to 

forthcoming flows in forward steps, the final solution may change the direction of  arcs and obeys the backward flow laws in 

its processing. Therefore, an introduction of  Problem 5 for general graphs is justifiable and solution procedure relaxes the 

arc reversal capability at a number of  times when an EAF solution demands this property. With time to time arc reversals, 

the optimal solutions in Lemma 1 should agree. For the considered general � − � networks, we present Algorithm 2 that 

solves Problem 5.  
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Figure 3: Earliest arrival contraflow solution obtained by Algorithm 2 

 

Algorithm 2: s-d Earliest Arrival Contraflow (EACF)  

1. Given, evacuation network		� = ��, �, ��, $, �, �, C� with integer inputs.  

2. Transform � = ��, �� in to the auxiliary graph		�N = ��, O, �P , $, �, �, C�. 

3. Solve the EAF Problem in the auxiliary graph 	�N  by (Wilkinson, 1971; Minieka, 1973).  

4. An arc ��, �� ∈ � is reversed if and only if the flow along arc ��, �� is greater than	����, ��, or if there is a 

nonnegative flow along arc		��, �� ∉ � and the resulting flow is EAF with the arc reversals for the graph		�.  

5. Obtain an earliest arrival contraflow solution.  

 

Theorem 6. The EACF Algorithm 2 generates an optimal solution to the EACF Problem 5.  

Proof:  

Consider the successive shortest path flows � − �  in �N  by Ford-Fulkerson algorithm (Ford and Fulkerson, 1958) 

for computing maximal flows for each time period		G = 0, 1, … , C. In turn they obtain a static flow 	0��2�  in the 

corresponding time expanded network for each time period G that generates a dynamic flow 	0�1�2 in �N  (Wilkinson, 

1971; Minieka, 1973). However, by the proof  of  Theorem 3, the MDCF solution in � for every time period G equals to 

the MDF solution in the corresponding auxiliary network. Putting together, the statement follows.∎  

 

Corollary 2. The EACF Problem 5 is solvable in pseudo-polynomial time.  

Proof:  

The time complexity of  Algorithm 2 is dominated by Step 3. As the EAF solution given by (Wilkinson, 1971) requires 

pseudo-polynomial time in time expanded network the statement follows. ∎   

 

Example 3. For an evacuation network � in Figure 3	���, we apply Algorithm of  (Wilkinson, 1971) to the auxiliary network �N  in 

Figure 3����. We obtain total 13 units of  flow at time 7 for � − �  EACF, see Figures 3���� − ����. If  we do not use contraflow in		�, 

we obtain only 9 units of  flow sent to the sink at this time. As shown in the final Figure 3��0�, some of  the road lanes are also saved which can 

be used for other purposes.  
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4.3  Lexicographically Maximum Dynamic Contraflow 

 

A polynomial time algorithm has been presented for the LMDCF problem we have introduced. An alternate expensive 

solution procedure to this problem would be through the reduction of  it into ���0� − �z�C�  LMDCF problem 

corresponding to an orderings of  sources �� and sinks �z and applying algorithms in the time-expanded network, see also 

Theorem 2.   

 

Problem 6:  Given � = ��, �, ��, $, �, 
, %���, &���, C� and ordered multi-terminals, the LMDCF problem is to find a feasible 

flow that lexicographically maximizes the amount at each priority terminals, if  the arc directions can be reversed.  

 

We illustrate an example which motivates a contraflow configuration for the LMDF problem.  

Example 4. Given a contraflow network in Figure 4��� with priority order �M�������M of  sources and sinks with given supply-demand 

vectors (17, 14) and (14, 8, 9) on them, respectively, we construct the auxiliary graph in Figure 4����. Figure 4����� gives an optimal solution 

to the LMDCF problem for time C = 6. The solution saves unused lane from sink �M to	�. While computing the solution, the lane reversals 

have to be changed time to time and flow cancellation properties hold. Moreover, the priority orders force in choosing some longer paths even shorter 

paths are available for less priority terminals. This amount of  flow could not be transshipped within this given time without contraflow. For 

instance, with altered capacity on two-ways lanes between �M  and		� , � and	�M , and � and	�� , flow without contraflow decreases 

significantly.  

 

 

 

 

 

 

 

Figure 4: Lexicographically maximum dynamic contraflow solution 

 

An arc reversal capability is assumed to be at each integer time points for the Algorithm 3 which solves the LMDCF 

problem using chain-decomposable flow of  (Hoppe and Tardos, 2000).  

 

Algorithm 3:  Lexicographically Maximum Dynamic Contraflow (LMDCF)  

1. Given, network	� = ��, �, ��, $, �, 
, %���, &���, C� with integer inputs.  

2. Solve the corresponding LMDF problem on	�N = ��, O, �P , $, �, 
, %���, &���, C) by (Hoppe and Tardos, 2000).  

3. An arc ��, �� ∈ � is reversed if and only if the flow along arc ��, �� is greater than	����, ��, or if there is a 

nonnegative flow along arc		��, �� ∉ � and the resulting flow is LMDF with the arc reversals for the graph		�.  

4. Obtain lexicographically maximum dynamic contraflow solution.  

 

Lemma 2. The LMDCF Algorithm 3 solves the LMDCF Problem 6 correctly.  

Proof:  

Recall (Hoppe and Tardos, 2000) that a LMDF solution makes repeated use of  the minimum-cost circulation in the 

residual network. However, the MSCF solution a network is equivalent to the MSF solution in the corresponding auxiliary 

network, by Theorem 1. Moreover, similar result is valid for the � − � MDCF problem, by Theorem 3.  Therefore, the 

algorithm yields LMDF solution in the auxiliary network which is valid for the LMDCF solution in the original network.	∎  

 

Theorem 7.  The LMDCF Algorithm 3 solves the LMDCF Problem 6 in polynomial time complexity.  

Proof:  

The construction of  auxiliary network and Step 3 are solved in linear time. Then, the complexity of  Algorithm 3 

depends on Step 2. The LMDF problem on	�N = ��, O, �P , $, �, 
, %���, &���, C) can be solved in 	�:� × MCF��, 
�>  

time, where � is the number of  iterations and MCF��, 
� represents the time complexity of  the MCF problem in the 

residual network, (Hoppe and Tardos, 2000). Hence, the total complexity of  Algorithm 3 is	�:� × MCF��, 
�>. ∎ 
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5. CONCLUSIONS  

In this paper, we introduced the multi-terminal problems LMSCF and LMDCF as a generalization of  the problem 

MSCF, and as a combination of  the problems MDCF and LMDF, respectively. We also presented polynomial time 

algorithms for these problems. Similarly, we generalized the EACF problem and presented an algorithm for this in 

two-terminal graph.  

The flow values obtained by these algorithms increase significantly, although our extended algorithms on contraflow 

have similar complexity of  algorithms without contraflow. Results from existing literature show that the flow value may be 

doubled for a given time and time required to transship the given value can be two times faster in contraflow than without 

contraflow. Literature illustrate that a number of  emergency and rush hour implementations take benefit from contraflow 

configuration.   

Analytical techniques of  contraflow have been considered recently in the literature of  evacuation planning by realizing 

that it improves the solution approaches quite a lot even unturning a lot of  arcs on the contraflow reconfiguration. These 

unturned arcs could be used for other emergency purposes, like the logistics supports. We have illustrated better optimal 

flows saving some arcs unaltered with at most the same time as conventional algorithms require. A number of  applications, 

insights on solution approaches and their impacts on emergency issues demand a systematic analysis of  them.  

To the best of  our knowledge, these problems we introduced are for the first time in evacuation planning. Further, we 

are interested on the investigation of  the earliest arrival contraflow problems for multi-terminal network with given set of  

demand-supply at respective nodes. Moreover, we are also interested in implementing integrated contraflow techniques for 

Kathmandu metropolitan city.  
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