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Abstract

Background: Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-
plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite
growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite
stage. To further evaluate the consequences of this pharmacodyamic feature, the anti-malarial activity of GA
analogs with enhanced drug properties in a Plasmodium-infected animal model have been evaluated for their
capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the
susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a
protective immune response in the host.

Methods: Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of
clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load
was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal
dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were
examined for the presence of antibodies against the parasite proteins using western blot analysis.

Results: Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical
symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites
when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated
animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against
subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite
proteins.

Conclusions: Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by
the inhibition of HSP90 associated functions. Persistence of parasite in ring stage leads to robust humoral immune
response as well as a shift in invasion specificity from normocytes to reticulocyte. It is likely that the treatment with
the water-soluble GA derivative creates an attenuated state (less virulent with altered invasion specificity) that
persists in the host system, allowing it to mount a robust immune response.
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Background
A recent WHO factsheet lists that in 2008, there were
about 225 million cases of malaria and nearly 800,000
deaths [1]. These deaths are largely due to Plasmodium
falciparum infection among young children from sub-
Saharan Africa. Estimates about the reported deaths due

to malaria in other regions of the world are highly
uncertain and are likely to be much greater than the
documented ones [2]. Observation that the repeated
exposures to parasite in endemic regions can lead to
development of immunity has stimulated intensive
efforts to search for protective antigens to develop vac-
cines [3,4]. In last half a century, a variety of strategies
involving immunization with different stages of parasite
has thus far not culminated in any successful vaccine
[5]. At present, malaria is curable, but excessive and

* Correspondence: gkjarori@gmail.com
1Department of Biological Sciences, Tata Institute of Fundamental Research,
Homi Bhabha Road, Colaba, Mumbai 400005, India
Full list of author information is available at the end of the article

Mout et al. Malaria Journal 2012, 11:54
http://www.malariajournal.com/content/11/1/54

© 2012 Mout et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gkjarori@gmail.com
http://creativecommons.org/licenses/by/2.0


non-compliant use of anti-malarial drugs, have resulted
in the emergence of drug resistance that has spread very
rapidly, eliminating the effectiveness of some of these
drugs to cure the disease (for example chloroquine)
[6-10]. There is an urgent need to develop a new class
of anti-malarials that can target pathways and processes
distinct from the existing therapeutic agents. In the last
decade, Plasmodium genome sequencing [11] has greatly
increased the repertoire of potential drug targets and
possibilities for structure based rational drug design
approaches to explore and develop novel anti-malarials
[12]. Meanwhile, time tested approaches of screening
compound libraries in cellular assays have yielded very
promising results [13].
A naturally occurring benzoquinone ansamycin com-

pound, geldanamycin (GA) is a specific inhibitor of heat
shock protein 90 (HSP90) [14,15] and is a potential
anti-cancer agent [16,17]. As the life cycle of Plasmo-
dium requires two different hosts of which one is poiki-
lotherm and other is a homeotherm, it is not surprising
that a significant fraction of parasite genome (~2%) is
dedicated to molecular chaperones [18]. As heat shock
proteins are critical for maintaining a functional comple-
ment of proteins in the parasite, proteins like HSP90,
HSP70/HSP40 and other smaller HSPs have been the
major drug targets for anti-malarials. The blockade of
HSP90 function by geldanamycin (GA) has been reported
to inhibit the growth of the malarial parasite Plasmodium
falciparum in in vitro cultures [19-21]. Using synchro-
nized cultures of P. falciparum, Bhanumathy et al.
observed that the geldanamycin treatment (24 h) causes
specific blockade of the transition from ring to tropho-
zoite stage in the life cycle of the parasite [19]. On the
contrary, Kumar et al. [20] reported that the treatment of
an asynchronous culture of P. falciparum 3D7 with gel-
danamycin resulted in inhibition of all intra-erythrocytic
stages and the parasites were destroyed in a single devel-
opmental cycle. Such a death and disintegration led to
the appearance of pyknotic bodies in the GA treated cul-
tures [20]. Irrespective of these discrepancies, it is clear
that GA is effective in inhibiting the growth of P. falci-
parum in in vitro cultures of chloroquine sensitive (strain
3D7) as well as resistant (strain W2) strains. Thus, it
appears to be a good candidate to develop as a novel
class of anti-malarial.
In past, attempts have been made to develop geldana-

mycin as an anti-cancer drug. However, due to its low
aqueous solubility and high hepatotoxicity [22], efforts
were directed towards development of more water solu-
ble and metabolically stable derivatives of GA. A syn-
thetic analogue of geldanamycin, 17-allylamino-17-
demethoxygeldanamycin (17-AAG) has been through

phase-I trials for cancer treatment [23]. This experimen-
tal drug was found to have acceptable levels of hepato-
toxicity. The growing evidence regarding the potential
for useful anti-malarial activity by these experimental
therapeutic agents and their derivatives warrants contin-
ued pre-clinical evaluation. To date, there has been no
experimental work reported on the evaluation of the
efficacy of geldanamycin-derivatives in curing malaria in
animal model systems. This investigation was underta-
ken to test the anti-malarial activity of 17-AAG and a
highly water soluble geldanamycin derivative, 17-N-(3-
(2-(-2(3-aminopropoxy)ethoxy)propyl)pent-4-ynamide-
17-demethoxygeldanamycin (17-PEG-Alkyn-GA) in an
animal model system.

Methods
Materials
Chloroquine phosphate was a kind gift from BDH
Industries LTD., Mumbai, India. Protease inhibitor
cocktail (cat no. P2714) was obtained from Sigma-
Aldrich. Swiss mice (4-6 weeks old) were provided by
the animal house facility at Tata Institute of Fundamen-
tal Research, Mumbai, India. All chemicals used were of
Analar grade. HRP conjugated anti-mouse IgG was from
Sigma-Aldrich.

Synthesis of geldanamycin derivatives
All reagents and solvents were purchased from commer-
cial sources and used without further purification. 1H
NMR (300 and 500 MHz) and 13 C NMR (75 MHz)
spectra were recorded in CDCl3 solution on a 300 MHz
spectrometer. Chemical shifts were referenced to δ 7.26
and 77.0 ppm for 1H and 13 C spectra, respectively.
High-resolution mass spectra were generated at the Pur-
due Mass Spectrometry Facility. Thin-layer chromato-
graphy (TLC) was performed on 250 μM and 1000 μM
silica gel plates. Flash chromatography was run using
RediSep normal-phase flash columns (230-400 mesh).
Geldanamycin was isolated from fermentation of Strep-
tomyces hygroscopicus var. geldanus that was provided
by Dr. David Newman, NCI-Frederick. The production
of geldanamycin was modified from a previously estab-
lished method [14]. Briefly, 100 mL of production med-
ium in 500 mL tribaffled flasks with silicon closures
were inoculated with confluent oatmeal slants and agi-
tated at 150 rpm in the dark at 28°C. Initial metabolite
productions were monitored from days 4.0 to 7.0 for
harvest using HPLC [24]. Harvest on day 5.5 generally
achieved productions of 1.01 +/- 0.29 nmoles per 5 mL.
A sample of 17-N-allyl-17-demethoxygeldanamycin (17-
AAG) was prepared after the established procedure
from geldanamycin [25].
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N-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)pent-4-
ynamide (Alkyn-PEG-amine)
To a solution containing 1 g (10.2 mmol) of 4-pentynoic
acid in 20 mL anhydrous CH2Cl2 was added 2.1 g (10.2
mmol) of N,N’-Dicyclohexylcarbodiimide (DCC) and 3.1
g (30.5 mmol) of triethylamine at 25°C under N2. The
reaction mixture was stirred at 25°C for 10 min, and then
6.7 g (30.5 mmol) 3,3’-(2,2’-oxybis(ethane-2,1-diyl)bis
(oxy))dipropan-1-amine in 20 mL anhydrous CH2Cl2 was
added. The reaction mixture was stirred at 25°C for
another 3 h. The solution was filtered and concentrated
under reduced pressure. The residue was loaded into 80
g flash silica gel column eluting with two volumes of 95:5
CH2Cl2-methanol. The purified product was eluted using
step gradients of 10:1:1 followed by 10:1:2 methanol:
NH4OH:10% NH4OAC in H2O to yield alkyn-PEG-amine
2.6 g (85%) as a colorless sticky liquid. TLC (80:10:10
methanol: NH4OH:10%NH4OAc in H2O) followed by
Ninhydrin staining showed Rf = 0.37. 1H NMR (CDCl3):
δ 1.32 (dt, 4H), 1.74 (m, 2H), 1.88 (m, 2H), 1.95 (m, 2H),
3.0 (t, 1H), 3.35 (t, 2H), 3.57 (s, 12H), 7.33 (s, 2H), 7.55,
(s, 1H) Mass spectrum (300.2), m/z 301.19 (M + H)+.
17- N-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)

pent-4-ynamide -17-demethoxygeldanamycin (17-PEG-
Alkyn-GA)
To a solution containing 390 mg (1.3 mmol) of Alkyn-

PEG-amine in 8 mL anhydrous CH2Cl2 was added 81
mg (0.14 mmol) of GA at 25°C under N2. The reaction
mixture was stirred at 25°C for 4 h and to the resulting
solution 30 mL CH2Cl2 was added, and washed with
three 10-mL portions of H2O, three 10-mL portion of
saturated brine. The organic layer was dried (Na2SO4)
and concentrated under diminished pressure. The resi-
due was purified by chromatography on a flash column,
Eluted with 98:2 methylene dichloride-methanol gave
17-PEG-Alkyn-GA as purple solid: yield 42 mg (36%);
Mass spectrum, m/z 851.03 (M + Na)+(C34H48O2

requires 828.45). A complete set of 1H and 13 C NMR
data are provided as Additional file 1.

Parasite culture, treatment of infected mice, stage specific
distribution counts
A lethal mouse malarial parasite, P. yoelli 17XL was cul-
tured in six-week old Swiss mice and parasite infected
red blood cells (PRBCs) were used for infecting fresh
mice by intra-peritoneal injection (~106 PRBC). Parasi-
taemia was scored everyday by tail bleeding and prepar-
ing thin blood smears from infected mice. The infected
blood smears were stained with Giemsa; about 300-400
RBCs were examined by microscopy and the infected
erythrocytes were reported as the percent of the total.
The pharmacological agents were dissolved in 10%
DMSO or water and injected intra-peritoneal. The

fractional distribution of various intra-erythrocytic asex-
ual stages of parasites were determined by counting
rings, trophozoites and schizonts and expressed in terms
of percentage of total infected or parasitized RBCs
(PRBC).

Challenging malaria survivor mice after drug treatment
and collection of serum from immune mice
The infected mice that survived the malaria after drug
treatment (17-AAG, 17-Alkyn-PEG-GA and chloro-
quine) were allowed to recuperate for one month after
parasite clearance. Each surviving mouse was re-chal-
lenged by injecting with ~106 P. yoelii 17XL PRBCs and
the parasites were allowed to grow. Thin blood smears
were made every day to estimate percentage parasitae-
mia. Some of these mice did not show disease symp-
toms and cleared parasitaemia completely after 21 days
of parasite infection. Approximately 0.1 to 1.0 ml of
blood samples were collected using capillaries and
allowed to clot for 30 min at room temperature and
then subjected to centrifugation for 10 min at 3000 × g.
The supernatant (serum) was collected and stored at
-80°C until further analysis.
To obtain parasite sensitive serum, mice were injected

with lower doses of parasite (~104) to sustain the viabi-
lity of mice. After 21 days of post-parasite injection,
serum samples were prepared as mentioned above.
Naïve serum was collected from fresh mice.

Preparation of Plasmodium yoelii cells
Plasmodium yoelii cells were prepared as described ear-
lier [26], with slight modification. Briefly, the mice were
infected with P. yoelii 17XL (lethal strain) and the para-
sites were allowed to grow until the infected red blood
cells reached ≥ 30%. At this stage, 1-2 mL of blood was
collected in equal volume of anti-coagulant solution
(136 mM glucose, 42 mM citric acid and 75 mM
Sodium citrate). Red blood cells (RBCs) were collected
by centrifugation (1500 × g for 10 minutes) and washed
three times with phosphate buffer saline (PBS) (137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4,
pH 7.4). The RBCs were re-suspended in PBS contain-
ing 1 mM PMSF and appropriate amounts of protease
inhibitor cocktail as recommended by the supplier
(Sigma-Aldrich). To this suspension of infected RBCs,
0.05% saponin was added and allowed to incubate for 1
min at 37°C. The solutions were then kept at room tem-
perature (~20°C) for 30 minutes to release the parasite
from the infected RBCs. Parasite cells were collected by
centrifugation at 18000 × g for 10 min and the pellets
washed with PBS to remove all the hemoglobin (as
judged by red color). The cell pellet was stored at -80°C
until further analysis.
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Preparation of parasite and RBC cell lysates
Parasite cell pellets (~200 μg) were suspended in 200 μL
of PBS containing 5 mM EDTA, 1 mM PMSF and pro-
tease inhibitor cocktail (Sigma-Aldrich). After incubation
on ice for 10 minutes, the cells were subjected to freeze-
thaw (six cycles) by freezing in liquid nitrogen (2 min-
utes) and thawing at room temperature (2 minutes).
These cells were then subjected to ultrasonification for
10 seconds at constant duty cycle by using Branson
Sonifier 450 and then the sample was incubated on ice
for 1 minute. This process was repeated six times. The
cell extract was centrifuged at 100,000 × g for 30 min-
utes and the supernatant collected was the cytosolic
fraction. Protein concentrations of the samples were
estimated by measuring OD280 nm. To prepare RBC
extract, ~1 mL blood was collected from mice with 0%
(uninfected), ~3% or ~30% parasitaemia in equal volume
of anticoagulant. RBCs were collected by centrifugation
and were lysed by using 0.05% saponin as mentioned
above. The supernatant obtained by centrifuging of the
lysed RBCs at 14000 × g was collected as RBC extract.
Protein concentration of sample extracts was measured
at OD280 nm.

SDS-PAGE and Western blotting
SDS-PAGE and Western blotting was performed as
described earlier [27]. Typically 20 μg of cellular (para-
site or RBC) protein extracts were analyzed using a 12%
SDS-gel and visualized with silver stain or transferred to
a PVDF membrane for Western blotting using Bio-Rad
Trans-Blot Semi-Dry Transfer Cell. The blots were
probed by using various anti-sera (1:1,000 dilution in 1×
PBS), followed by secondary HRP conjugated anti-
mouse IgG (Sigma-Aldrich) used at 1:1,000 dilutions.

Results
Effect of geldanamycin- derivatives on P. yoelii 17XL
growth in infected mice
Two different derivatives of geldanamycin, namely 17-
allylamino-17-demethoxygeldanamycin (17 AAG) and a
highly water soluble pegylated derivative of GA, 17-N-
(3-(2-(-2(3-aminopropoxy)ethoxy)propyl)pent-4-yna-
mide-17-demethoxygeldanamycin (17-PEG-Alkyn-GA)
(Figure 1) were tested on P. yoelii infected mouse
malaria model system. Four groups (each group having
four animals) of mice were infected with the parasite
(intra-peritoneal injection of ~106 PRBCs). After 6 days
when the average parasitaemia reached ~8-12% and all
the animals displayed characteristic symptoms of
malaria, the control group was injected with vehicle
control (10% DMSO). For drug administration, 300
nmoles of each agent constituted a single dose. The sec-
ond group of mice was injected with 300 nmoles of 17-
AAG (MW 585.31; 0.18 mg/mouse/dose; 7.2 mg/Kg

body weight) and the third group was injected with 300
nmoles of 17-PEG-Alkyn-GA (MW 828.45; 0.25 mg/
mouse/dose; 10.2 mg/Kg body weight) (dissolved in 10%
DMSO). The fourth group of mice was injected with
300 nmoles chloroquine phosphate dissolved in water.
Parasitaemia was monitored every day until either the
mice died or could clear the parasites. Figure 2(A-D)
shows the parasitaemia profiles for control (untreated),
17-AAG, 17-PEG-Alkyn-GA and chloroquine treated
mice. The arrowheads mark the 6th and the 12fth day
when the drugs were injected. Figure 2E presents the
average parasitaemia for different groups of mice. In
control groups, the parasitaemia reached almost ~60%
and all the animals died by day 14 post-infection (Figure
2F). Single dose treatment with chloroquine on 6th day
post infection was adequate to clear the parasites and
cure the mice of the disease. Injection of GA derivatives
on day 6 post-infection did result in control of parasi-
taemia. However, a second dose was needed for com-
plete clearance of the parasites. Out of four animals in
two groups treated with GA derivatives, one animal suc-
cumbed to infection. These data support the conclusion
that geldanamycin derivatives can cure malaria. How-
ever, the current data indicates that the GA analogs are
not very effective in a single dose (non-optimized) as
compared to chloroquine.

Treatment with geldanamycin derivatives caused the
parasite to switch its invasion specificity from normocytes
to reticulocytes
The blood smears that were prepared for each mouse
on daily basis were examined for the evaluation of inva-
sion of normocytes and reticulocytes. Before the injec-
tion of drugs (i.e. until the day 6 post-infection),
parasitaemia was exclusively restricted to normocytes.
Mice that were subjected to treatment with 17-AAG
and 17-PEG-Alkyn-GA, preferential invasion of reticulo-
cytes was observed. However, blood smears from control
and chloroquine treated mice continued to show nor-
mocyte invasion until either the death of the animal
(control group) or clearance of the parasites
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Figure 1 Chemical structures of 17-N-Allylamino-17-
demethoxygeldanamycin (17-AAG) and 17-pegylated-N-(4)-
pentynoyl-GA (MW 828.45).

Mout et al. Malaria Journal 2012, 11:54
http://www.malariajournal.com/content/11/1/54

Page 4 of 10



(chloroquine group) (Figure 3). Depending on the strain,
P. yoelii is known to invade both, normocytes, as well as
reticulocytes. Normocytic invasion is lethal while reticu-
locyte invasion is rather benign [28,29]. The P. yoelii
17XL strain is known to invade normocytes [28] and the
same is observed here. However treatment with GA-
derivatives resulted in alteration of this specificity from
normocytes to reticulocytes. It is likely that this change
in invasion specificity renders the parasite benign and
may contribute, in part to why the host system even-
tually succeeds in clearance of the pathogen.

GA-derivative drugs block the progress of ring to
trophozoite stage of the parasite
Daily blood smears prepared for each animal were also
scored for fractional distribution of various intra-ery-
throcytic asexual stages (rings, trophozoites and

schizonts) of the parasite. In each smear, rings, tropho-
zoites and schizonts were counted and plotted as the
percent of total infected cells. Data are presented in Fig-
ure 4. In the control group of mice, initially (1-3 days
post infection), most parasites are in the ring stage.
With time, there is a gradual decrease in the ring popu-
lation with concomitant increase of trophozoites (Figure
4A), suggesting constant transitions of rings to tropho-
zoites. However, on treatment with 17-AAG or 17-PEG-
Alkyn-GA on day 6 post infection, population of rings
increased and stabilized at much greater fraction (Figure
4B, day 7-10 post infection) as compared to the control
group (Figure 4A). Such a distribution can arise if there
is a blockade or reduction in transition from ring to tro-
phozoite stage. The profile of stage specific distribution
of the parasites was rather similar for the both the gel-
danamycin derivatives used (17-AAG or 17-PEG-Alkyn-
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Figure 2 Effect of 17-AAG and 17-PEG-Alkyn-GA treatment on parasite growth and mortality of P. yoelii 17 XL infected mice. Four
groups (A-D) of mice were injected with ~106 P. yoelii 17 XL infected mouse red blood cells and parasitemia was monitored every day. On days
6th and 12fth post-infection, mice were injected with: (A) 10% DMSO (control) (▲); (B) 300 nMoles of 17-AAG dissolved in 10% DMSO (■); (C) 300
nMoles of 17-PEG-Alkyn-GA dissolved in 10% DMSO (○); (D) 300 nMoles of chloroquine (in water and was injected on day 6th only) (x); (E)
average percent parasitemia for the four groups and (F) survival profile. There were 4 animals (n = 4) in each group.
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GA). These observations are in agreement with the con-
clusions arrived at by Bhanumathy et al. [19] where it
was demonstrated that GA blocks the progression of
rings into trophozoites in in vitro cultures of P. falci-
parum. In the blood smears examined here, pycnotic
bodies were never observed. Thus, it is unlikely that
there is any large scale death and disintegration of the
parasite in response to GA treatment as reported earlier
[20].

GA-derivative drug treated mice exhibit resistance to
subsequent infection
In GA-derivatives treated mice, parasite persisted for a
prolonged period (Figure 2E) in the host and eventual
clearance was through reticulocyte invasion. It is likely
that such prolonged exposure to parasite may result in
development of immunity to subsequent challenges of
P. yoelii. To test this hypothesis, the mice that were
cured by GA-derivative drug treatment were allowed
to recover and live a healthy life for 30 days and then
challenged with a fresh dose of P. yoelii 17XL. For
comparison, second group of mice that had been cured
from malaria symptoms by treatment with chloroquine
and allowed to recover for 30 days, were also chal-
lenged for the second time. To ensure that the parasite

is lethal, a control set consisting of four fresh naïve
mice was also included. Parasitaemia profiles in these
three groups of mice were monitored daily and are
shown in Figure 5. As expected control mice had high
parasitaemia (40-60%) that resulted in their death
between days 5 to 8 (Figure 5A). The group treated
with geldanamycin derivatives showed very low parasi-
taemia (< 4%) that peaked on day 2 and got cleared by
day 9 (Figure 5B). Chloroquine-treated mice had inter-
mediate profile with parasitaemia reaching around 8-
13% that did clear by day 16 (Figure 5C). Average
parasitaemia profiles of these three groups are shown
in Figure 5D. These results suggest that mice treated
with HSP90 antagonists developed a robust immunity
against subsequent challenge with the parasite. In
order to examine the profile of antibodies generated in
different groups of mice, serum samples were collected
from each of these mice and pooled together for each
group.

C

(A)

(B)

(C)

17-AAG

17-PEG-Alkyn-GA

Figure 4 Treatment with 17-AAG and 17-PEG-Alkyn-GA of
infected mice showed blockage of ring to trophozoite
transition. Stage (ring, trophozoite or schizont) specific parasite
count was made on all giemsa stained blood smears. Data about
each stage are presented as percent of total infected cells. (A)
Control, (B) 17-AAG treated and (C) 17-PEG-Alkyn-GA treated.

Figure 3 Treatment of P. yoelii infected mice with
geldanamycin (17-AAG and 17-PEG-Alkyn-GA) resulted in
change in invasion specificity of the parasite from normocytes
to reticulocytes. Naïve mice were infected with P. yoelii and
geimsa stained smears were examined everyday from each mice.
After the mice became clinically sick, 17-AAG, 17-PEG-Alkyn-GA and
chloroquine were injected (6th & 12fth days post infection) to three
different groups (four animals in each group) of mice. Control
group mice were not treated with any drug and only a single dose
of chloroquine was injected. Representative blood smears are
shown. Preferential invasion of reticulocytes was observed in 17-
AAG and 17-PEG-Alkyn-GA treated groups of mice. iN, infected
normocytes and iR, infected reticulocytes.
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Sera from 17-AAG and 17-PEG-Alkyn-GA treated mice
have antibodies against multiple parasite proteins
To examine the antibody profiles of serum samples col-
lected from above mentioned three groups of mice, pro-
teins from the whole cell parasite extracts were
separated using a 12% SDS-PAGE and transferred to a
PVDF membrane. These blots were subjected to western
analysis using different serum samples. Results of such
western analysis are shown in Figure 6. Lane 1 is a silver
stained protein profile of the whole cell P. yoelii extract.
Western blots made using the sera collected from naïve
(lane 2) and parasite sensitive mice sera (lane 3) did not
show any reactivity towards the parasite proteins. In
contrast to these, serum samples collected from 17-
AAG or 17-PEG-Alkyn-GA treated mice had antibodies
against vast majority of parasite proteins (lane 4). Sera
collected from the chloroquine treated group showed
antibodies against a subset of the parasite proteins (lane
5). These data are consistent with a hypothesis that
drug-induced antibody response mounted by the host
against the drug-attenuated parasite leads to protection
against a subsequent parasite challenge.

Discussion
Geldanamycin is a benzoquinone ansamycin antibiotic
that exerts its pharmacological effects by binding to the

ATP site of HSP90 and interfering with its chaperoning
functions. HSP90 is a ubiquitous molecular chaperone
critical for the folding, assembly and activity of the sig-
naling proteins that promote the survival and the
growth of dividing cells [17,30-33]. Binding of GA to
HSP90 results in dissociation of chaperone-client pro-
tein complexes and induces the degradation of client
proteins. It is believed that such destabilization of client
proteins (like raf, Src, Lck, Wee1, Mek, Cdk4, Src, Ck2,
Akt, ErbB2 etc.) is responsible for the anti-mitotic and
anti-tumor activity of the drug. As geldanamycin is
highly hepatotoxic, a less toxic derivative of geldanamy-
cin, 17-AAG was tested in Phase-I clinical trials as an
anti-tumor agent [34-36].
As homologs of mammalian HSP90 are present in

most pathogens, there is a possibility of GA emerging as
a broad spectral anti-parasitic agent. Effects of inhibiting
the functional activity of HSP90 using geldanamycin
have been investigated on few pathogens. In Leishmania
donovani, it is known that transition from insect stage
promastigote to pathogenic mammalian stage, the amas-
tigote is triggered by the rise in ambient temperature.
Inactivation of HSP90 by GA mimics the temperature-
induced differentiation from promastigote to amastigote.
However, GA treatment of cultured promastigotes
induced a growth arrest [37,38]. Macro-filaricidal
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Figure 5 P. yoelii infected mice that were cured with geldanamycin derivatives exhibit robust immunity against subsequent infection.
Infection was induced by injecting ~106 P. yoelii infected mice rbcs. Response of infection was studied in four different groups of mice. (A)
Naïve 10 weeks old Swiss mice (control) (▲); mice that were cured of malaria by treatment with (B) 17-AAG or 17-PEG-Alkyn-GA (■) and (C)
chloroquine (○) (see Figure 1 for B and C groups of mice). (D) Average parasitemia profile of the three groups. Each group had 6 animals.
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activity of GA against cat and dog filaria has also been
reported [39]. Recent observations about the ability of
GA to kill adult male and female worms of Brugia
malayi (that causes lymphatic filariasis] and Schistosoma
japonicum (that causes schistosomiasis) suggests possibi-
lities of wider therapeutic potential of this drug [40]. GA
resistant homolog of HSP90 has been reported in nema-
tode Caenorhabditis elegans [41,42] raising the possibi-
lity for the quick emergence of resistance against the
drug.
As mentioned earlier, anti-plasmodial activity of gelda-

namycin has been investigated using Plasmodium cul-
tures [18-21]. In the experiments reported here, these
studies have been extended to an animal model and
tested the anti-malarial potential of this drug. The two
derivatives of geldanamycin (17-AAG & 17-PEG-Alkyn-
GA) that were tested here, show anti-malarial activity
and injection of two doses of 300 nmoles each per
mouse were sufficient to clear the parasites (Figure 2).
Detailed examination of distribution of parasites in var-
ious intra-erythrocytic stages (rings, trophozoites and
schizonts) in drug treated and untreated (control) mice
showed that in the treated group ring stage parasite per-
sists resulting in the fractional increase of rings as com-
pared to trophozoite. Such a distribution can arise if the

drug treatment blocks the transition from ring to tro-
phozoite stage. Infected erythrocytes with the blocked
ring stage parasites may eventually haemolyse, releasing
the parasite in the host circulatory system. Immune
response to such released parasites may result in robust
antibody response that conferred immunity to subse-
quent parasite challenges. The ability of the geldanamy-
cin to block stage transition in the parasite life cycle
appears to be equivalent to immunization with an atte-
nuated strain of a pathogen. Attenuated Plasmodium
sporozoites prepared by irradiation [43] or genetic
manipulation [44] are known to induce immunity. The
sera collected from geldanamycin derivative-treated ani-
mals exhibited reactivity against most of the parasite
proteins indicating a robust humoral response. Such
sera have proved to be very useful reagent for the detec-
tion of unknown parasite proteins in analytical
experiments.
For malaria vaccine development, efforts have been

made to target liver, blood and/or sexual transmission
stages using conventional vaccine approach of exposing
the host to relevant antigens. A compilation of different
antigen formulations and evaluations of field trials can
be found at WHO site [45]. Despite these efforts, there
is currently no licensed, effective malaria vaccine. It is
clear that for the purpose of malaria elimination, vac-
cines with much better efficacies are required [46]. An
emerging approach to counteract the immune-modulat-
ing effects of the parasite is to co-administer the anti-
gens along with sub-optimal doses of immune-
modulating anti-malarial drugs [47,48]. The approach
involves administration of virulent Plasmodium with sub
therapeutic dose of an anti-malarial sufficient to contain
the growth of the parasite to prevent symptoms while
allowing induction of a protective immune response
[49,50]. Robust immunity observed here in GA treated
mice against a lethal strain of P. yoelii suggests that this
drug can be a potential candidate for co-administration
with pathogen for the induction of immunity.
As mentioned above, clearance of parasite in geldana-

mycin treated mice showed sequential changes in infec-
tivity from mature red blood cells to reticulocytes. This
change in invasion specificity was also associated with
loss of virulence and self-resolution of infection. Many
host and parasite factors may influence such transitions
between virulent and non-virulent states of the parasite.
Genetic polymorphism involving a single amino acid sub-
stitution in P. yoelii erythrocyte binding-like protein
(Pyebl) has been reported to be one such factor [51-53].
Similar changes in invasion specificity for P. yoelii (from
mature rbcs to reticulocytes) were observed in experi-
ments where immune protection conferred by P. falci-
parum enolase was investigated (unpublished data). As
strong host mounted immune responses occurred in

1 2 3 4 5 6 7 8 9 10 11

(A) (B)

Figure 6 Serum samples from geldanamycin treated mice have
antibodies against vast majority of parasite proteins. Protein
extracts from (A) P. yoelii and (B) mouse rbcs were analyzed on 12%
SDS-PAGE. Gels were either silver stained (lanes 1, 6, 8 & 10) or
blotted on PVDF membrane and probed with various serum
samples collected from mice. (A) P. yoelii cell extract: silver stained
(lane 1); Western using naïve mice serum (lane 2); malaria sensitive
mouse serum (lane 3); serum from GA treated mice (lane 4) and
serum from chloroquine treated mice (lane 5). (B) Mouse RBC
extract: un-infected (lanes 6 & 7), ~3% parasitemia (lanes 8 & 9) and
~30% parasitemia (lanes 10 & 11). Lanes 6, 8 & 10 are silver stained
while lanes 7, 9 & 11 are western blots developed using pooled
sera from GA treated mice.
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HSP90 inhibitor treated animals, it could be directly asso-
ciated with the cause of preferential invasion of reticulo-
cytes. It is possible that the observed change in host cell
invasion specificity in response to geldanamycin treat-
ment may have arisen due to a point mutation as
reported earlier [52]. Since this change in invasion speci-
ficity (from normocytes to reticulocytes) of P. yoelii 17XL
occurred in all the drug treated mice, it is highly unlikely
that it can be due to a mutation in Pyebl [52]. As this
change in specificity of invasion is associated with the
slow growth as well as loss of virulence in the parasite, it
is expected that the expressed proteomes of the normo-
cyte invading and the reticulocyte invading parasites may
have significant differences. It may be interesting to com-
pare expressed proteomes from these two states (normo-
cyte invading and reticulocyte invading) of P. yoelii 17XL
to identify the molecular players that participate in deter-
mining the host cell invasion specificity and virulence.

Additional material

Additional file 1: Structural characterization of 17-PEG-Alkyn-GA.
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