
Modelling and Analysing Replica- and Fault-aware Management of

Horizontally Scalable Applications

JACOPO SOLDANI, Department of Computer Science, University of Pisa, Italy

MARCO CAMERIERO, Department of Computer Science, University of Pisa, Italy

GIULIO PAPARELLI, Department of Computer Science, University of Pisa, Italy

ANTONIO BROGI, Department of Computer Science, University of Pisa, Italy

Modern enterprise applications integrate multiple interdependent software components, whose management must be suitably

coordinated. This must be done by taking into account all inter-component dependencies, the faults potentially afecting them,

and the fact that each component can be horizontally scaled, i.e., that multiple instances of each component can be spawned

or destroyed depending on application needs. In this paper, we introduce a novel solution for suitably modelling and analysing

the replica- and fault-aware management of multi-component applications, based on topology graphs and management

protocols. More precisely, we irst introduce a compositional model of the management behaviour of the (possibly multiple)

instances of the components forming an application, faults included. We then show how this model enables automating

various useful analyses, from checking the validity of management plans, to automatically determining management plans

allowing the instance of an application to reach and maintain a desired target coniguration.

CCS Concepts: ·Applied computing→ Service-oriented architectures; Service-oriented architectures; Enterprise applications; ·

Software and its engineering→ Orchestration languages; Formal methods; Orchestration languages; Software fault tolerance;

Formal methods.

1 INTRODUCTION

Automating application management is one of the main challenges in enterprise IT nowadays [16]. The eicient
exploitation of cloud computing peculiarities indeed highly depends on the degree of management automation of
deployed applications [18]. At the same time, since modern enterprise applications typically integrate multiple
heterogeneous components [24], automating their management requires suitably coordinating the concurrent
deployment, coniguration, enactment, and termination of the (possibly multiple) instances of their components.
Even if this may be done by diferent independent teams (e.g., DevOps squads), it must be done by considering
all dependencies occurring among all the instances of the components forming an application. As the number
of instantiated components grows, and the need to reconigure them becomes more frequent, application
management becomes more complex, time-consuming, and error-prone [3].

Multi-component applications can be conveniently speciied by means of topology graphs [4] and management
protocols [6, 7]. Topology graphs [4] enable specifying the topology (i.e., the structure) of an application as a
directed graph, whose nodes represent application components and whose oriented arcs model inter-component
dependencies. More precisely, each node in a topology graph represents an application component by also

Authors’ addresses: Jacopo Soldani, Department of Computer Science, University of Pisa, Pisa, Italy, jacopo.soldani@unipi.it; Marco Cameriero,

Department of Computer Science, University of Pisa, Pisa, Italy; Giulio Paparelli, Department of Computer Science, University of Pisa, Pisa,

Italy; Antonio Brogi, Department of Computer Science, University of Pisa, Pisa, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1533-5399/2022/1-ART $15.00

https://doi.org/10.1145/3511302

ACM Trans. Internet Technol.

https://doi.org/10.1145/3511302

2 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

specifying the operations to manage its lifecycle, the requirements it needs to work, and the capabilities it ofers
to satisfy the requirements of other components. Each oriented arc instead represents the dependency of a
component on another by connecting a requirement of the former to a capability of the latter. On the other hand,
management protocols enable modelling the management behaviour of the nodes in an application topology [6, 7].
A management protocol is a inite state machine whose states correspond to the possible states of the node,
and whose transitions indicate whether a management operation can be performed in a state and which is
the state reached by performing it. Transitions and states are also associated with conditions indicating which
requirements must be satisied for a node to reside in a state or to successfully complete a management operation,
as well as which capabilities it actually provides while residing in a state or performing a transition. Management
protocols also indicate how a node reacts to faults, which occur whenever a needed requirement stops being
satisied.

Given the possibility of statically specifying multi-component applications as described above, one can exploit
it to model and analyse the management of actual instances of such an application, therein included all the node
instances used to replicate its components, and their possible faults. This is however not possible with currently
existing modelling and analysis approaches based on topology graphs and management protocols [6, 7]. These
are inherently designed to deal with the static structure given by a topology graph, which means that they can
work with only one instance of each node. Such a restriction is quite limiting, as it does not allow dealing with
the horizontal scaling of applications, i.e., the spawning of multiple replicated instances of their components.

The horizontal scaling of application components is however crucial in application management nowadays [12,
23], as it allows to spawn/destroy replicas of an application component based on the application’s needs [18]. An
incorrect management of application replicas would result in not suitably exploiting horizontal scaling, which
could severely afect the overall application management. A simple example of why properly dealing with replicas
is important is the following. Suppose that two instances f1 and f2 of a frontend component are relying on an
instance b1 of another backend component to deliver their functionalities, and suppose that b1 suddenly fails. The
fault of b1 does not necessarily lead f1 and f2 to stop delivering their functionalities if they can switch to using
another instance of the backend component. On the other hand, if no other instance of the backend component
is available, or if f1 and f2 need precisely the availability of instance b1 (e.g., because they set up a persistent,
encrypted connection to b1), the fault of b1 will lead f1 and f2 to stop delivering their functionalities (and, in the
worst case, even to possibly fail).

In this paper, we overcome the limitations of currently existing approaches based on management protocols
by extending them to enable modelling and analysing the management of horizontally scalable applications. The
key ingredient for this is releasing the assumption of having a łstaticž topology describing the application both at
design-time and at run-time. More precisely, we clearly distinguish the static speciication of applications, given
in terms of topology graphs and management protocols, from the modelling of application instances. We present
a new compositional approach to dynamically and adaptively modelling and analysing runtime application
instances, geared towards enabling to horizontally scale their components, while at the same time considering
the possibility of component instances to fail. The main contributions of this paper are threefold:

(i) We introduce a compositional modelling that enables deriving the allowed management behaviour for
instances of multi-component applications. The modelling distinguishes among the diferent instances of
the nodes in the application speciication, which can be spawned or destroyed to increase or decrease the
replicas of a given application component, hence setting the foundations for modelling the management of
horizontally scalable applications.

(ii) We illustrate how our modelling can be used to automate various useful analyses on the management of
horizontally scalable applications, e.g., checking the validity of existing plans or whether they bring an

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 3

Legend

gui

node

api

maven mongo

install
configure
start
stop
delete

host

host host

host

db

backend data

endpoint

start
stop

start
stop

start
stop

name node

requirement

capability

operation

containment relationship

replica-aware dependency

replica-unaware dependency

install
configure
start
stop
delete

Fig. 1. Topology of the Thinking application.

application to a desired coniguration (e.g., instantiating a given amount of replicas for each component,
and bringing such replicas to given states).

(iii) We show how ourmodelling also enables automatically planning the fault-aware management of horizontally
scalable applications, i.e., automatically deriving management plans allowing an application to reach and/or
maintain a target coniguration, even in presence of faults. We also formally prove that, even if applications
can have ininitely many possible conigurations, it is possible to initely determine whether and how a
target coniguration can be reached.

The rest of this paper is organised as follows. Section 2 provides an example motivating the need for dealing with
replicas when modelling and analysing multi-component application management. Section 3 illustrates how to
compositionally specify the structure and management behaviour of multi-component applications, and how
to model their runtime instances. Section 4 introduces the analyses that can be performed with the presented
modelling, from validating already planned management to automatically planning it. Section 6 and Section 7
discuss related work and draw some concluding remarks, respectively.
This article extends our previous work [7]. The notion of management protocols (Section 3.1) is taken from

[7], while the way of specifying multi-component applications (Section 3.2) suitably extends the corresponding
speciication from [7]. The modelling of the management of horizontally scalable applications (Section 3.3) and
the analysis and planning of the management of horizontally scalable applications (Section 4) are instead entirely
new and presented here for the irst time.

2 MOTIVATING SCENARIO

Consider Thinking (https://github.com/di-unipi-socc/thinking), an open-source application speciically designed
for showcasing solutions for orchestrating multi-component applications. Thinking is a web-based application
allowing its users to share thoughts on a web portal, so that other users can read them. It is composed by three
main components (Figure 1): (i) a database storing the collection of thoughts shared by users, which is obtained
by directly instantiating a mongo Docker container, (ii) a Java-based RESTful api to remotely access the database
of shared thoughts, and (iii) a web-based gui visualising all shared thoughts and allowing to insert new thoughts
into the database. The api is hosted on a maven Docker container, and it requires to be directly connected to
the mongo container (for remotely accessing the database of shared thoughts). The gui is instead hosted on a
node container, and it depends on the availability of an instance of the api to properly work (as it sends HTTP
requests to the api to retrieve/add shared thoughts).
Figure 1 illustrates the application topology of Thinking, depicted according to the OASIS TOSCA graphical

notation [17]. Topology nodes represent the components of the Thinking application, with each node indicating
the requirements of the corresponding component, the capabilities it ofers to satisfy the requirements of other
components, and the operations allowing to manage its lifecycle. Inter-component relationships are represented
as directed arcs connecting a requirement of a node to the capability of another node that is used to satisfy such
requirement. Relationships can be of three types, i.e., containment relationships, and replica-aware and replica-
unaware dependencies, to distinguish three possible inter-component dependencies. Containment relationships

ACM Trans. Internet Technol.

https://github.com/di-unipi-socc/thinking

4 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

Fig. 2. An example of global state for the Thinking application.

configure

g1configure

a1 configure

a2

start

g1

stop

g1
+ +

(a)

configure

g1

configure

a1

configure

a2

start

g1

stop

g1
+ +

(b)

Fig. 3. Management plans for reconfiguring the instances of gui and api.

model the fact that a component is contained in another, as in the case of the gui being hosted on node, for
instance. Replica-aware dependencies indicate that each instance of the source node depends on a speciic instance
of the target node, e.g., each instance of api sets a persistent connection to the instance of mongo it connects to,
hence depending on such speciic instance. Finally, replica-unaware dependencies indicate that each instance of
the source node gets the corresponding requirement satisied as long as there is an instance of the target node
providing the corresponding capability, regardless of which speciic replica is used to actually satisfy it, e.g.,
whenever an instance of gui sends a request to the backend api, any instance of the latter can be used to satisfy
such request.

Consider now the situation shown in Figure 2, in which there are instances for all nodes of Thinking, each in a
given state and with an id uniquely identifying it. According to the igure, there is one instance of the nodes gui,
node, and mongo, and there are two diferent instances of api (a1 and a2) hosted by two diferent instances of
maven (m1 and m2, respectively). The igure also shows the runtime bindings among node instances, with g1

currently exploiting a1 as backend, and with both instances of api being connected to the instance d1 of mongo.
Suppose also that we wish to reconigure the instances of the nodes gui and api. Designing and developing
management plans allowing to do it is however complex, error-prone, and time-consuming, as we must consider
all the dependencies occurring among the instances of the application components [19]. All such dependencies
should be satisied while executing the plan, as violating some dependency may result in causing some faults in
some components, or even worse in disallowing to execute some management operation. Checking the validity
of existing plans is not easy as well [6]: it indeed requires checking all possible evolutions of an application based
on all possible parallel executions of the operations, hence resulting in a problem whose complexity grows (in
the worst case) exponentially with the numbers of involved component instances and management operations.

Suppose, for example, that we devised two diferent management plans for reconiguring the instances of the
nodes gui and api, i.e., the plans (a) and (b) in Figure 3. Both management plans seem to validly reconigure
the instances of gui and api, whereas only plan (b) is actually valid. Some concrete executions of plan (a) may
indeed fail in reconiguring the instance g1 of gui. The instance g1 can indeed successfully execute its configure
operation only if an instance of api is actually providing its endpoint to satisfy the requirement backend of g1.
In other words, it must be that either a1 continues to provide its endpoint capability to satisfy the requirement
backend of g1, or that g1 dynamically switches to the endpoint ofered by a2 to successfully complete its configure
operation. However, both a1 and a2 are not providing any endpoint while they are being reconigured, i.e., while
executing their configure operation. This means that it is not possible to reconigure all the instances of gui and

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 5

scalein

n1
scalein

m1
+ +

scaleout

node,n2

scaleout

gui,g2,n2

install

g2

configure

g2

start

g2
scaleout

maven,m3

scaleout

api,a3,m3

install

a3

start

a3
scalein

m2

scaleout

maven,m4

scaleout

api,a4,m4

install

a4

start

a4

start

n2
start

m3
start

m4

(a)

scalein

n1
scalein

m1
+ +

scaleout

node,n2

scaleout

gui,g2,n2

install

g2
configure

g2

start

g2

scaleout

maven,m3

scaleout

api,a3,m3

install

a3

start

a3
scalein

m2

scaleout

maven,m4

scaleout

api,a4,m4

install

a4

start

a4

start

n2
start

m3
start

m4

(b)

Fig. 4. Management plans for restarting the instances of node and maven.

api in parallel. On the other hand, before and after being reconigured, both instances of api are actually listening
on their endpoint, hence meaning that the parallel execution of operations shown in plan (b) can efectively
work, as there is always an instance of api capable ofering the endpoint needed by g1.

Another interesting scenario is the need to restart all running instances of node and maven from the overall
application state shown in Figure 2, e.g., because of security updates to the corresponding Docker containers.
Figure 4 presents two plans that seem to accomplish the desired management task, but only plan (b) validly does
so. Plan (a) destroys all the instances of node and maven, it creates and starts three new instances replacing
the destroyed ones, on which it creates and starts new instances of gui and api. Given that all three software
stacks are created and started in parallel, the operation to start the newly created instance g2 of gui might be
executed before any instance of api is up and running, which would result in a fault as the requirement backend
of g2 should be satisied for g2 to succesfully start. This hence means that some concrete executions of plan
(a) in Figure 4 may not successfully complete. The same does not hold for plan (b), which validly executes the
operation start on g2 only when the newly created instances of api are up and running.
Even if simple, the two above examples clearly show that it is crucial to take into account the concurrent

management of multiple replicas while analysing the fault-aware management of multi-component applications.
This not only holds for validating plans designed to accomplish given management tasks (such as in the example
above), but also to automatically generate such plans, e.g., to automatically plan the deployment or reconiguration
of an application, as well as to automatically generate recovery plans enabling to restore a desired application
coniguration after some fault occurred. We hereafter present a formal framework that enables both validating
the planned fault-aware management of horizontally scalable applications, and automatically determining the
sequence of management operations allowing applications to reach and maintain a desired coniguration (i.e.,
how many replicas of each component to instantiate, and which is their target state), even in presence of faults.

3 MODELLING THE MANAGEMENT OF HORIZONTALLY SCALABLE APPLICATIONS

Modelling the fault-aware management of horizontally scalable applications requires to take into account two
distinct, but related, aspects, i.e., the speciication of amulti-component application and its runtime instances. In this
section, after recapping how management protocols allow modelling the fault-aware management behaviour of
application components (Section 3.1), we illustrate how to compositionally specify the structure and management
behaviour of a multi-component application (Section 3.2). We then exploit the formalised notion of application
speciication to model the replica- and fault-aware management of application instances (Section 3.3).

Whilst the recap of management protocols in Section 3.1 is retaken from our previous work [7], the notion of
replica-aware application speciication presented in Section 3.2 is obtained by suitably extending the corresponding

ACM Trans. Internet Technol.

6 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

notions from our previous work [7]. The modelling of the replica- and fault-aware management of application
instances presented in Section 3.3 is instead brand new.

3.1 Management Protocols

Multi-component applications are typically represented by indicating the states, requirements, capabilities and
management operations of the nodes composing their topology [1]. Management protocols [7] enable specifying
the management behaviour of a node � by indicating (i) whether/how each management operation of � depends
on other management operations of � , (ii) whether/how it depends on operations of the nodes that provide
capabilities satisfying the requirements of � , and (iii) how � reacts when a fault occurs. The dependencies (i)
among the management operations of � are indicated by means of a transition relation �� , which relates such
operations with its states. The transition relation indicates whether a management operation can be executed in
a state of � , and which state is reached if its execution is successfully completed.
The description of (ii) whether and how the management of � depends on that of other nodes is instead

given by associating (possibly empty) sets of requirements with both states and transitions. The requirements
associated with a state or transition of � must continue to be satisied in order for � to continue residing in such
state or to successfully complete executing such transition. As a requirement is satisied when the corresponding
capability is provided, the requirements associated with states and transitions actually indicate which capabilities
must continue to be provided in order for � to continue to work properly. The description of a node � is then
completed by associating its states and transitions with (possibly empty) sets of capabilities that indicate the
capabilities that are actually provided by � while residing in a state and while executing a transition.

Finally, (iii) faults can occur when � is assuming some requirements to be satisied and some of the capabilities
satisfying such requirements stop being provided by the corresponding nodes. To describe how � reacts to faults,
a transition relation �� models the fault handling of � by indicating the state it reaches when a fault occurs
while it is in a state or executing a transition.

Definition 3.1 (Management Protocols). Let � = ⟨�� , �� , �� , �� , M� ⟩ be the node modelling an
application component, with �� , �� , �� , and �� being the inite sets of states, requirements, capabilities, and
management operations of � , respectively. M� = ⟨�� , �� , �� , �� , �� ⟩ is a inite state machine deining the
management protocol of � , where1

• �� ∈ �� is the initial state,
• �� ⊆ �� ×�� × �� models the transition relation,
• �� : (�� ∪ ��) → P(��) indicates which requirements must hold in each state � ∈ �� and during each
transition ⟨�, �, � ′⟩ ∈ �� ,

• �� : (�� ∪ ��) → P(��) indicates which capabilities of � are ofered in each state � ∈ �� and during each
transition ⟨�, �, � ′⟩ ∈ �� , and

• �� ⊆ (�� ∪ ��) × �� models the fault handling for a node.

Figure 5 illustrates the management protocols of the nodes forming the Thinking application in our motivating
scenario (Section 2). Consider, for instance, the management protocol (b), which describes the management
behaviour of api. Its possible states are unavailable (initial), available, running, and damaged. No requirements
and capabilities are associated with states unavailable, available, and damaged, which means that api does not
require nor provide anything in such states. The same does not hold for the running state, where api concretely
provides its endpoint capability, and where it assumes its requirements host and database to continue to be
satisied. If host or database are faulted while api is running, api goes back to its available state. Finally, the
transitions of the management protocol indicate that api needs host to be satisied while executing its operations,

1In the formulas, we follow the convention of using P(�) to denote the powerset of � .

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 7

(a) (b)

(c) (d)

Fig. 5. Management protocols of the nodes (a) gui, (b) api, (c) node and maven, and (d) mongo in Thinking.

and that it does not feature any capability during their execution. If host is faulted while executing start or stop,
then api gets back to its state available. If host is instead faulted while executing install, uninstall, or config, then
api gets damaged.

To summarise, each component in an application can be modelled by a node describing its states, requirements,
the capabilities it features (to satisfy the requirements of other components), and the operations for managing it.
The management behaviour of the application component can then be modelled by associating the node with a
management protocol describing such node [7].

3.2 Multi-Component Application Specification

Multi-component applications can be conveniently represented by means of topology graphs [4]. The nodes in a
topology graph represent the components of an application (Section 3.1). Oriented arcs instead represent the
dependencies among such components, by associating the requirements of a node with capabilities featured by
other nodes. They hence deine a binding function associating each requirement of each node to the capability
satisfying it. For instance, in our motivating scenario (Section 2), the binding function associates the requirements
host and database of api with the host capability featured by maven and the db capability featured by database,
respectively.

The speciication of the nodes forming an application and the binding function modelling their interconnections
is enough to specify applications whose components are not going to be replicated, as in our previous work
[7]. Our aim here is instead to enable dealing with replicas while modelling and analysing the management of
multi-component applications, therein included the fact that Ðat runtimeÐ we may have multiple replicated
instances of each node in an application. Consider the instance of a node, and suppose that it starts assuming a
requirement � (e.g., after successfully completing the execution of a management operation). The binding function
associates � to a given capability of a given node, which may be in turn available in multiple instances, some of
which are in a state where they concretely provide the needed capability. The actual choice of which instance of
the target component to exploit to satisfy � strictly depends on the application behaviour, e.g., to the policy it
implements to balance the load among the replicas of a node. As the binding function per se is not modelling such
application-speciic choices, the application speciication is completed by a connection policy function speciically

ACM Trans. Internet Technol.

8 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

doing it. Notably, the possible connection policy functions can be many (from random choices to more complex
schemes, e.g., round robin), and diferent policies can be used for diferent requirements of diferent nodes of the
same application. The connection policy function hence provides a łhookž that enables tailoring the speciication
to model the actual behaviour of an application. For instance, in our motivating example (Figure 1), to ensure
that the same instance of the gui will display the same set of thoughts, the connection policy function will be
such that an instance of gui will connect to one of the replicas of api managing the access to the instances of
mongo managing the same data.
We hereafter formally deine the notion of application speciication.2 We do it right after introducing some

shorthand notation for denoting the identiiers that can be possibly assigned to instances of the nodes in an
application, which is needed for actually typing the connection policy function.

Notation 3.1 (Identifiers). We denote with I the universe of possible identiiers for the instances of the nodes
forming an application.

Definition 3.2 (Application Specification). The speciication of a multi-component application is a triple
� = ⟨�,�, �⟩, where

• � is a inite set of nodes modelling the application components,
• � :

⋃

� ∈�
�� →

⋃

� ∈�
�� is the binding function, and

• � :
⋃

� ∈�
�� × P(I) → I is the connection policy function.

In the speciication of each node forming an application, we must distinguish among three diferent types
of requirements, i.e., containment, replica-aware, and replica-unaware requirements. These indeed are sources
of diferent types of relationships modelling diferent type of dependencies, which result in diferent types of
potential faults.

Containment requirements are used to model so-called łverticalž dependencies (e.g., a node hosted on another
node) meaning that the former is actually contained in the latter. Notably, when the instance of a node is destroyed,
all the contained instances immediately disappear. An example for this is the abrupt shutdown of the Docker
container n1 in Figure 1, which immediately results in abruptly shutting down also the software component
running within such container, i.e., g1.

Replica-aware and replica-unaware requirements model łhorizontalž dependencies, e.g., indicating that a node
connects to another node, or that a node exploits some functionality provided by another node. Replica-aware
and replica-unaware requirements difer one another based on whether the actual identity of the target node
instance is important or not. When a replica-aware requirement of the instance of a node stops being satisied, an
explicit fault must be ired to let the node instance handle such fault. This is the case of the database requirement
of api in our motivating scenario: as each instance of api sets a persistent connection to an instance of themongo

database, if the latter stops providing its endpoint, the connection gets broken. A fault has hence to be notiied to
the instance of api, to let it create a new connection to another instance of mongo, if available. Instead, with a
replica-unaware requirement, the identity of the instance used to satisfy the requirement is not important, and
we can avoid iring an explicit fault if another instance of the target node can provide the same capability. This is
the case of the backend requirement of gui in our motivating scenario: whenever an instance of gui needs to
communicate with the backend api, any instance of the latter can be used to satisfy the corresponding requests.

Notation 3.2 (Reqirement Types). Let � = ⟨�� , �� , �� , �� , M� ⟩ be a node. We denote with ��
�
⊆ �� the

containment requirements of� , with��
�
⊆ �� its replica-aware requirements, and with��

�
⊆ �� its replica-unaware

requirements.

2For simplicity, and without loss of generality, we assume that the names of states, requirements, capabilities, and operations of the nodes in

a topology are all disjoint.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 9

The above given notions may allow introducing some inconsistencies while providing an application speciica-
tion. To avoid such inconsistencies, we deine below the notion of well-formed application speciication, which
prescribes that (i) each node can have at most one containment requirement, that (ii) the requirements of each
node are partitioned among containment, replica-aware, and replica-unaware requirements, that (iii) management
protocols enjoy some basic properties, that (iv) the application topology is acyclic, and that (v) the connection
policy function � selects an identiier within the set of possible identiiers given it as input. Condition (iv) is to
align with the existing notion of topology graphs [4], which should be directed and acyclic. In our case, this
means that there is no chain of bindings between the requirements and capabilities of components such that the
initial and inal components in the chain are the same.

Definition 3.3 (Well-Formed Application Specification). Let � = ⟨�,�, �⟩ be an application speciication,
and let � = ⟨�� , �� , �� , �� , M� ⟩ be a generic node in � . � is well-formed if3

(i) ∀� ∈ � . |��
�
| ≤ 1,

(ii) ∀� ∈ � . ��
�
⊎ ��

�
⊎ ��

�
= �� ,

(iii) ∀� ∈ � .M� is well-formed, deterministic, race-free, and complete,4

(iv) ��1, �2, . . . �� ∈ � . (∃�1 ∈ ��1
: � (�1) ∈ ��2

) ∧ (∃�2 ∈ ��2
: � (�2) ∈ ��3

) ∧ · · · ∧
(∃��−1 ∈ ���−1 : � (��−1) ∈ ���

) ∧ (∃�� ∈ ���
: � (��) ∈ ��1

), and
(v) ∀� ⊆ I . � (·, �) ∈ � .

In the following, we assume application speciications to be well-formed.

3.3 Replica-aware Management of Application Instances

The speciication of multi-component applications sets the foundations for modelling the replica- and fault-aware
management behaviour of application instances, which we present hereafter. We irst introduce the notion of
node instance, which can intuitively be seen as a named replica of a node in the application speciication. When a
node is replicated in multiple node instances, each of them is named diferently, and it may be residing in a state
or performing a transition that is potentially diferent from that of the other instances of the same node. The
instance of a node is hence modelled by a pair indicating its unique identiier and the state or transition it is
currently in.

Definition 3.4 (Node Instance). Let � = ⟨�� , �� , �� , �� ,M� ⟩ be a node, and let I be the universe of possible
instance identiiers. An instance of the node � is modelled by a pair ⟨�, �⟩� , where

• � ∈ I is the unique identiier of the node instance,5 and
• � ∈ (�� ∪ ��) is the state or transition in which the instance is residing.

Notably, despite diferent instances of a node � constitute diferent entities, they all feature the same management
behaviour, deined by the management protocol of � itself. In other words, the management behaviour of the
instances replicating a node is ixed, even if they can simultaneously be residing in diferent states or performing
diferent transitions.
The states/transitions of the replicated instances of the nodes forming an application constitute the global

state of the instance of a multi-component application. Such global state also indicates the actual relationships
established among the various node instances, i.e., which node instance is (providing the capability) actually used
to satisfy the requirements of another node instance. The latter are partitioned between two diferent sets � and

3In the formulas, we follow the convention of using ⊎ to denote the disjoint union of sets.
4The notions of well-formedness, determinism and race-freedom of management protocols, as well as the techniques for automatically

completing them, are reported in the supplemental material available online.
5The application management behaviour (Deinition 3.9) ensures that each newly spawned instance of an application component is assigned

with a łfreshž identiier uniquely identifying the instance.

ACM Trans. Internet Technol.

10 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

� , which distinguish the łhorizontalž relationships deined by replica-aware and replica-unaware requirements
from the łverticalž relationships deined by containment requirements.

Definition 3.5 (Global State). Let � = ⟨�,�, �⟩ be an application speciication, and let � = ⟨�� , �� , �� , �� ,

M� ⟩ be a generic node in � . A global state for an instance of � is deined by a triple ⟨�,�,� ⟩ where

• � ⊆ I ×
⋃

� ∈�
(�� ∪ ��) is the set of currently active node instances,

• � ⊆ I ×
⋃

� ∈�
(��

�
∪ ��

�
) × I is the set of łhorizontalž runtime bindings, and

• � ⊆ I ×
⋃

� ∈�
��
�
× I is the set of łverticalž runtime bindings.

The runtime bindings contained in the sets � and � of a global state can be seen as actual łinstancesž of the
relationships deined by the static bindings in the speciication of a multi-component application, i.e., by the
function � in Deinition 3.2. This can be easily observed by looking again at the speciication of the application in
our motivating scenario (Figure 1), and by comparing it with the example of global state provided by Figure 2.
The triple modelling the global state in Figure 2 is also reported hereafter:

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

The speciication indicates that the backend requirement of gui is to be satisied by the endpoint capability of api.
At the same time, the considered global state contains two diferent instances of api, i.e., a1 and a2, and it shows
that the backend requirement assumed by the instance g1 of gui is actually satisied by the endpoint capability
provided by a1, even if a2 is also providing such capability (as both a1 and a2 are in state running, where Ðas
shown by the management protocol in Figure 5(b)Ð api provides the endpoint capability).
The rationale for splitting runtime bindings in two sets � and � deserves a short digression: The vertical

runtime bindings in� deine stronger relationship instances if compared with the horizontal runtime bindings in
� . Each vertical runtime binding is established when its source node instance is created to track which is its
container, and it lasts for the whole lifetime of the source node instance. The same does not hold for horizontal
runtime bindings, which can be created and destroyed multiple times to satisfy the requirements of a node
instance during its lifetime. Consider again the instance g1 of gui in Figure 2: The vertical runtime binding
from g1 to n1 is established when g1 is created, and it lasts until g1 gets destroyed. Conversely, the horizontal
runtime binding from g1 to a1 may change over time, e.g., if a1 stops providing the capability for satisfying the
requirement backend of g1, and a2 becomes the node instance used to satisfy such requirement.
In other words, horizontal runtime bindings are temporary and dynamic, as they allow switching the node

instances used to satisfy their source requirements. Vertical runtime bindings are instead ixed for the entire
lifetime of a node instance. If vertical runtime bindings would instead be dynamically set as for horizontal runtime
bindings, this would allow a sort of łcontainer jumpingž behaviour. Suppose, for example, that an instance � of a
node temporarily stops needing its container to run, e.g., since � is temporarily stopped. Once re-started, it again
needs the container to run. If a new łverticalž runtime binding would be dynamically created, it may be that the
containment requirement of � is bound to another node instance, which would mean that � gets running in a
diferent container with respect to the former, i.e., that it has łjumpedž from a container to another. Even if the
new binding may not violate any topological constraint, the łcontainer jumpingž performed by � would not align
with reality. Each contained instance is bound to its container for its entire lifetime, and the only way to migrate
a node from a container � to another container � ′ is by destroying the instance running in � and creating a brand
new instance on � ′.
In summary, a global state provides the łstructurež to represent the current state of the runtime instances of

the nodes forming a multi-component application and of the actual bindings set among such instances at runtime.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 11

When starting to concretely manage a multi-component application, no node instance is currently active, nor
runtime bindings have been established yet.

Definition 3.6 (Initial Global State). Let � = ⟨�,�, �⟩ be an application speciication. The initial global
state for � is ⟨∅, ∅, ∅⟩.

While managing the application, there will be runtime bindings only for requirements of existing node
instances.6 Such bindings in non-initial global states may however model the fact that some node instance is
broken or failed. The case of broken instances occurs when currently active node instances continue to exist, even
if they were contained in instances that were previously destroyed. When a software component is destroyed, all
the components it contains get destroyed as well, e.g., destroying a Docker container results in deleting also all
the software running within such container. To relect this phenomenon in our modelling, we consider the node
instances vertically bound to previously destroyed node instances as broken, viz., to be destroyed to align the
global state with the real state of the application.

Definition 3.7 (Broken Instances). Let � = ⟨�,�, �⟩ be an application speciication, let � = ⟨�� , �� , �� ,

�� , M� ⟩ be a generic node in � , and let ⟨�,�,� ⟩ be a global state for �. The set of broken instances in ⟨�,�,� ⟩
is deined as:

broken(�,�) = {⟨�, ·⟩� ∈ � | ⟨�, ·, � ′⟩ ∈ � ∧ �⟨� ′, ·⟩� ′ ∈ �}.

Example. Consider the case of scaling in node from the global state in Figure 2, which results in destroying the instance n1. We
obtain the global state

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩,

in which g1 results to be a broken instance. Indeed, g1 is still among the currently active node instances, despite the vertical binding
⟨g1, host, n1⟩ indicates that it is contained in n1, which has however been destroyed. We hence have that

broken({ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩ },

{ ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }) = { ⟨g1,working⟩ }.

The above explicitly denotes the fact that, in reality, by destroying the instance n1, we also destroyed the instance g1 that was

contained therein. Hence, for the model to align with reality, the instance g1 is to be destroyed as well.

The case of faults afecting instances instead occurs when one or more of the currently active node instances
need some requirements to keep staying in their actual state or to successfully complete the execution of the
transition they are currently performing, even if there is no capability provided for satisfying such requirements.
Requirements that are assumed to be satisied while not bound (at runtime) to capabilities that can satisfy
them are considered as pending faults. Pending faults need to be suitably handled. Notably, for replica-unaware
requirements, such handling may be automatically resolved by exploiting suitable capabilities ofered by other
node instances, if any.

Notation 3.3 (Satisfying Reqirements). Let � = ⟨�,�, �⟩ be an application speciication, let � = ⟨�� , �� ,
�� , �� , M� ⟩ be a generic node in � (withM� = ⟨�� , �� , �� , �� , �� ⟩), and let ⟨�,�,� ⟩ be a global state for �.
Let also � be a requirement of a node instance in � . We denote the set of identiiers of node instances in � ofering a
capability that can satisfy � with

satisfy(�,�) = {� | ⟨�, �⟩� ∈ � ∧ � (�) ∈ �� (�)}.

6The application management behaviour (Deinition 3.9) indeed ensures that any global state ⟨�,�,� ⟩ reached from the initial global state

is, by construction, such that ∀⟨�, ·, ·⟩ ∈ � ∪� . ∃⟨�, ·⟩� ∈ � .

ACM Trans. Internet Technol.

12 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

Definition 3.8 (Faults). Let � = ⟨�,�, �⟩ be an application speciication, let � = ⟨�� , �� , �� , �� , M� ⟩ be a
generic node in � (withM� = ⟨�� , �� , �� , �� , �� ⟩), and let ⟨�,�,� ⟩ be a global state for �. The set of pending
faults in ⟨�,�,� ⟩ is deined as

pending(�,�,�) = {⟨�, � ⟩ | ⟨�, �⟩� ∈ � ∧ � ∈ �� (�)∧

(�� ′, � ′ . ⟨�, � , � ′⟩ ∈ (� ∪�) ∧ ⟨� ′, � ′⟩� ′ ∈ � ∧ � (�) ∈ �� ′ (� ′))},

whose subset of resolvable faults is deined as

resolvable(�,�,�) = {⟨�, � ⟩ ∈ pending(�,�,�) | � ∈ ��� ∧ satisfy(�,�) ≠ ∅}.

The pending faults in pending(�,�,�) are hence deined as the set of pairs ⟨�, � ⟩ such that a requirement
� is assumed by an instance � (i.e., ⟨�, �⟩� ∈ � ∧ � ∈ �� (�)), even if there is no instance � ′ that provides a
capability satisfying the requirement � (i.e., �� ′, � ′ . ⟨�, � , � ′⟩ ∈ (� ∪ �) ∧ ⟨� ′, � ′⟩� ′ ∈ � ∧ � (�) ∈ �� ′ (� ′)). The
resolvable faults resolvable(�,�,�) are instead the subset of pending faults, in which each pair ⟨�, � ⟩ concerns a
replica-unaware requirement � (i.e., � ∈ ��

�
), and another node instance can provide the capability needed to

satisfy � (i.e., satisfy(�,�) ≠ ∅).

Example. Consider the following global state for the application in our motivating scenario (Section 2), which involves the same
node instances as in Figure 2, but in diferent states:

⟨{ ⟨a1, available⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, stopped⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

In particular, we have that g1 is working, hence needing both its requirements host and backend to be satisied (Figure 5(a)).
However, none of the two is actually satisied in the considered global state: The vertical binding ⟨g1, host, n1⟩ indicates that
the requirement host is to be satisied by n1, which is however not providing the needed capability in its current state stopped
(Figure 5(c)). Similarly, the horizontal binding ⟨g1, backend, a1⟩ instead indicates that the requirement backend is to be satisied
by a1, which is however not providing the needed capability in its current state available (Figure 5(b)). We hence have that the
requirements host and backend of g1 are faulted, and that the corresponding faults are pending on g1:

pending({ ⟨a1, available⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, stopped⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ })

= { ⟨g1, host⟩, ⟨g1, backend⟩ }

It is also worth noting that the pending fault ⟨g1, backend⟩ can be resolved. The requirement backend is indeed a replica-unaware
requirement, and the instance a2 is providing the capability needed to satisfy such requirement in its current state running
(Figure 5(b)):

resolvable({ ⟨a1, available⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, stopped⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ })

= { ⟨g1, backend⟩ }

The management behaviour for an instance of the multi-component application speciied by � = ⟨�,�, �⟩ is
then deined (in Deinition 3.9) by a labelled transition system, whose conigurations are the possible global states
for �, and whose transition relation ⇒ enables modelling horizontal scaling of nodes, operation execution on a
node instance, and fault propagation and handling.

• The horizontal scaling of node instances is modelled by the transition rules scaleout, scaleout-c and scalein.
scaleout and scaleout-c increase the amount of replicas of a node by adding a new instance, and they
distinguish whether the newly created instance is standalone or to be contained in another instance. scalein
instead reduces the replicas of a node by selectively destroying one of its instances.

• The execution of management operations on node instances is modelled by the transition rules op-start and
op-end. The rule op-start models the starting of execution of a management operation on a node instance,
while op-end enables to observe its successful completion.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 13

• Fault handling and propagation are modelled by the transition rules resolve-fault, handle-fault, and destroy.
The rule resolve-fault automatically resolves a resolvable fault, by replacing the node instance used to
satisfy the corresponding requirement with a node instance providing the needed capability. The rule
handle-fault models the execution of fault handling transitions to explicitly handle pending faults, while
destroy destroys broken instances.

The transition relation⇒ is deined by exploiting a support relation→, so as to allow the rule destroy to take
precedence over all other rules. While→ describes the application management behaviour under the assumption
that no broken instance is to be destroyed,⇒ prescribes that any other management transition deined by→ can
be executed only if there are no-broken-instances. Instead, if there are broken instances,⇒ forces the execution
of destroy to resolve them, before any further management action can be executed. This aligns the model with
the actual behaviour of node instances contained in a destroyed node instance (e.g., by a scalein), which are
immediately destroyed too.

Definition 3.9 (Application Management Behaviour). Let � = ⟨�,�, �⟩ be an application speciication
and let � = ⟨�� , �� , �� , �� , M� ⟩ be a generic node in � (withM� = ⟨�� , �� , �� , �� , �� ⟩). The management
behaviour of the application speciied by � is modelled by a labelled transition system whose conigurations are the
global states ⟨�,�,� ⟩ of �, and whose transition relation ⇒ is deined by the following inference rules

��
�

= ∅ �⟨�, ·⟩� ′ ∈ � � ′
= � ∪ {⟨�, �� ⟩� }

� ′
= � ∪ {⟨�, � , � ′⟩ | � ∈ �� (��) ∧ � ′ = � (�, satisfy(�,�))}

⟨�,�,� ⟩
scaleout(�,�)
−−−−−−−−−−−→ ⟨� ′, � ′,� ⟩

(scaleout)

��
�

= {�� } ⟨�� , ·⟩��
∈ � � (��) ∈ ���

�⟨�, ·⟩� ′ ∈ � � ′
= � ∪ {⟨�, �� ⟩� }

� ′
= � ∪ {⟨�, � , � ′⟩ | � ∈ �� (��) ∧ � ≠ �� ∧ � ′ = � (�, satisfy(�,�))} � ′

= � ∪ {⟨�, �� , �� ⟩}

⟨�,�,� ⟩
scaleout(�,�,��)
−−−−−−−−−−−−−→ ⟨� ′, � ′,� ′⟩

(scaleout-c)

⟨�, �⟩� ∈ � � ′
= � ∖ {⟨�, �⟩� }

� ′
= � ∖ {⟨�, ·, ·⟩, ⟨·, ·, �⟩ ∈ � } � ′

= � ∖ {⟨�, ·, ·⟩ ∈ � }

⟨�,�,� ⟩
scalein(�)
−−−−−−−−→ ⟨� ′, � ′,� ′⟩

(scalein)

⟨�, �⟩� ∈ � ⟨�, �, � ′⟩ ∈ ��
� ′

= (� ∖ {⟨�, �⟩� }) ∪ {⟨�, ⟨�, �, � ′⟩⟩� } � ′
= � (�, �, �, �, ⟨�, �, � ′⟩)

⟨�,�,� ⟩
opstart (�,�)
−−−−−−−−→ ⟨� ′, � ′,� ⟩

(op-start)

⟨�, ⟨�, �, � ′⟩⟩� ∈ � ⟨�, ·⟩ ∉ pending(�,�,�)
� ′

= (� ∖ {⟨�, ⟨�, �, � ′⟩⟩� }) ∪ {⟨�, � ′⟩� } � ′
= � (�, �, �, ⟨�, �, � ′⟩, � ′)

⟨�,�,� ⟩
opend (�,�)
−−−−−−−−→ ⟨� ′, � ′,� ⟩

(op-end)

⟨�, � ⟩ ∈ resolvable(�,�,�)
� ′

= (� ∖ {⟨�, � , ·⟩ ∈ � }) ∪ {⟨�, � , � (�, satisfy(�,�))⟩}

⟨�,�,� ⟩
resolve(�,�)
−−−−−−−−−→ ⟨�,� ′,� ⟩

(resolve-fault)

⟨�, �⟩� ∈ � ⟨�, � ⟩ ∈ (pending(�,�,�) ∖ resolvable(�,�,�))
⟨�, � ′⟩ ∈ �� � ∉ �� (� ′) �⟨�, � ′′⟩ ∈ �� . � ∉ �� (� ′′) ∧ �� (� ′) ⊊ �� (� ′′)

� ′
= (� ∖ {⟨�, �⟩� }) ∪ {⟨�, � ′⟩� } � ′

= � (�, �, �, �, � ′)

⟨�,�,� ⟩
handle(�,�)
−−−−−−−−−→ ⟨� ′, � ′,� ⟩

(handle-fault)

ACM Trans. Internet Technol.

14 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

⟨�, ·⟩� ∈ broken(�,�) ⟨�,�,� ⟩
scalein(�)
−−−−−−−−→ ⟨� ′, � ′,� ′⟩

⟨�,�,� ⟩
destroy(�)
=========⇒ ⟨� ′, � ′,� ⟩

(destroy)

broken(�,�) = ∅ ⟨�,�,� ⟩
�
−→ ⟨� ′, � ′,� ′⟩

⟨�,�,� ⟩
�
==⇒ ⟨� ′, � ′,� ′⟩

(no-broken-instances)

where � (�, �, �, �, � ′) denotes how the set of runtime bindings in � are updated when the node instance ⟨�, �⟩�
changes its state to � ′, i.e.,

� (�, �, �, �, � ′) = (� ∖ {⟨�, � , ·⟩ ∈ � | � ∈ �� (�) ∖ �� (� ′)})

∪ {⟨�, � , � ′⟩ | � ∈ �� (� ′) ∖ �� (�) ∧ � ∉ ��� ∧ � ′ = � (�, satisfy(�,�))}

We hereby discuss more in detail the inference rules of the transition system deining the management behaviour
of a multi-component application.

• scaleout models the creation of a new instance of a node � that does not expose any containment
requirement (i.e., ��

�
= ∅). The identiier � to be assigned to the newly created instance must be un-

used (i.e., �⟨�, ·⟩� ′ ∈ �). If this is the case, a new instance of � with identiier � is added to the global
state and set to reside in the initial state of � (i.e., � ′

= � ∪ {⟨�, �� ⟩� }). The runtime bindings in
� are also updated to satisfy the requirements needed by the newly added instance, if possible (i.e.,
� ′

= � ∪ {⟨�, � , � ′⟩ | � ∈ �� (��) ∧ � ′ = � (�, satisfy(�,�))}).
• scaleout-c models the creation of a new instance of a node � exposing a containment requirement �� (i.e.,
��
�
= {�� }). Its behaviour is analogous to that of scaleout, with the only diference of explicitly indicating

the node instance �� used to contain the newly created node instance. If such instance can provide the
capability needed to satisfy �� (i.e., ⟨�� , ·⟩��

∈ � and � (��) ∈ ���
), the new instance ⟨�, �� ⟩� is added to the

global state (as for scaleout), and the vertical runtime bindings are updated to track that � is contained in ��
(i.e., � ′

= � ∪ {⟨�, �� , ��⟩}).
• scalein models the removal of the active node instance identiied by � (i.e., ⟨�, �⟩� ∈ �). The rule indeed
removes such instance from� (i.e.,� ′

= � ∖ {⟨�, �⟩� }), and it destroys the corresponding runtime bindings:
all horizontal runtime bindings involving � are deleted (i.e., � ′

= � ∖ {⟨�, ·, ·⟩, ⟨·, ·, �⟩ ∈ � }) to explicitly fault
the requirements of the node instances depending on � , if any. Only the vertical runtime binding outgoing
from � is instead removed from � (i.e., � ′

= � ∖ {⟨�, ·, ·⟩ ∈ � }), as the vertical bindings for which � is the
target must be kept to enable explicitly marking the source node instances as łbrokenž (Deinition 3.7).

• op-start indicates how the global state ⟨�,�,� ⟩ evolves when amanagement operation � is started on a node
instance ⟨�, �⟩� ∈ � . For the operation to be started, a corresponding operation transition must be deined
in the management protocol of � (i.e., ⟨�, �, � ′⟩ ∈ ��). As a result, the global state is updated by changing the
actual state of the instance (i.e., � ′

= (� ∖ {⟨�, �⟩� }) ∪ {⟨�, ⟨�, �, � ′⟩⟩� }), and the runtime bindings in � are
updated accordingly. Such bindings are updated by� (�, �, �, �, ⟨�, �, � ′⟩), which irst removes the bindings
of requirements that are no more needed (i.e., the ⟨�, � , ·⟩ ∈ � such that � ∈ �� (�) ∖ �� (� ′)), and then
adds new runtime bindings in � for the newly assumed requirements (i.e., �� (� ′) ∖ �� (�)) analogously to
scaleout and scaleout-c.

• op-end models the successful completion of an operation transition ⟨�, �, � ′⟩ on a node instance, provided
that no fault is pending on such instance (i.e., ⟨�, ·⟩ ∉ pending(�,�,�)). As a result, the global state of the
application is updated analogously to the case of op-start.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 15

• resolve-fault indicates how to solve a resolvable fault ⟨�, � ⟩ ∈ resolvable(�,�,�). This is done by replacing
the runtime binding for � in � , which gets bound to an instance providing the capability needed for
satisfying � (i.e., � ′

= (� ∖ {⟨�, � , ·⟩ ∈ � }) ∪ {⟨�, � , � (�, satisfy(�,�))⟩}).
• handle-fault describes how to update the global state to handle the fault ⟨�, � ⟩ pending on the instance
⟨�, �⟩� . This is done by executing the fault handling transition ⟨�, � ′⟩ ∈ �� , which can be executed only if the
fault is not resolvable otherwise (i.e., ⟨�, � ⟩ ∈ pending(�,�,�) ∖ resolvable(�,�,�)), and if the transition
⟨�, � ′⟩ actually handles the faulted requirement (i.e., � ∉ �� (� ′)). In addition, among all transitions that can
handle the fault, ⟨�, � ′⟩ is that bringing the instance to the state � ′ preserving the largest set of assumed
requirements (i.e., �⟨�, � ′′⟩ ∈ �� . � ∉ �� (� ′′) ∧ �� (� ′) ⊊ �� (� ′′)). The latter condition ensures that fault
handling is deterministic [6].

• destroy models the deletion of a broken instance ⟨�, ·⟩� ∈ broken(�,�), which is destroyed by automatically
invoking the scalein rule. The rationale of destroy is to align the modelled behaviour with reality, as broken
instances are those instances whose container has been destroyed, and which are then to be destroyed as
well (Deinition 3.7).

• no-broken-instances allows destroy to take precedence over all other aforementioned rules. While destroy
can be executed when there is a broken instance, no-broken-instances prescribes that all other rules can
be executed only if there are no broken instances (i.e., broken(�,�) = ∅). The rationale of no-broken-
instances is to make this explicit, without cluttering the deinition of all other rules with the constraint
broken(�,�) = ∅.

Example. Consider again the application in our motivating scenario (Section 2), and suppose that it is in the global state shown in
Figure 2, whose corresponding triple is reported hereafter:

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

Suppose now that we scale in the node maven by selectively removing its instance m1. The corresponding evolution of the global
state is the following:

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

⇓ scalein(m1)

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

In the reached global state, a1 turns out to be a broken instance, as it is contained in an instance that has been previously destroyed
(as indicated by the vertical binding ⟨a1, host,m1⟩). We hence have to apply the destroy rule for deleting such broken instance and
aligning the situation modelled by the global state with reality (where a1 got destroyed together with the deletion of m1):

⟨{ ⟨a1, running⟩, ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a1⟩, ⟨a1, data, d1⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a1, host,m1⟩, ⟨a2, host,m2⟩ }⟩

⇓ destroy(a1)

⟨{ ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

No broken instance is contained in the reached global state, but we have that there is a pending fault: The instance g1 is in
state working, where it needs its requirement backend to be satisied (Figure 5(a)). As per the topology of our motivating example
(Figure 1), such requirement should be satisied by binding it to the capability endpoint ofered by a currently active instance of
api. However, none of the horizontal bindings in the reached global state are binding the requirement backend of g1 to one such
capability. At the same time, there exists an instance a2 of api that is currently active and ofering the capability endpoint needed
to satisfy the requirement backend of g1. Given that such requirement is replica-unaware, we can resolve its corresponding fault

ACM Trans. Internet Technol.

16 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

by dinamically adapting the horizontal bindings:

⟨{ ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

⇓ resolve(g1, backend)

⟨{ ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a2⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

Suppose now that, in the reached global state, we invoke the operation for stopping the instance a2 of api, and that we observe
its completion. The corresponding evolution of the global state is shown hereafter:

⟨{ ⟨a2, running⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a2⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

⇓ opstart (a2, stop)

⟨{ ⟨a2, ⟨running, stop, available⟩⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a2⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

⇓ opend (a2, stop)

⟨{ ⟨a2, available⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a2⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

In the reached global state, the requirement backend of g1 is again faulted. Such requirement is bound to a2, which is however
not providing the capability needed to satisfy g1’s backend in its current state available (Figure 5(b)). No other instance of api
is available, hence not allowing to dynamically resolve the fault pending on g1 and corresponding to its requirement backend.
Such fault is hence to be handled by executing the corresponding fault handler on g1, which leads g1 back to its state configured
(Figure 5(a)):

⟨{ ⟨a2, available⟩, ⟨g1,working⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨g1, backend, a2⟩, ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

⇓ handle(g1, backend)

⟨{ ⟨a2, available⟩, ⟨g1, configured⟩, ⟨d1, running⟩, ⟨m2, running⟩, ⟨n1, running⟩ },

{ ⟨a2, data, d1⟩ }, { ⟨g1, host, n1⟩, ⟨a2, host,m2⟩ }⟩

4 ANALYSING THE MANAGEMENT OF HORIZONTALLY SCALABLE APPLICATIONS

The modelled management behaviour of a multi-component application enables automating various analyses
on the management of horizontally scalable applications, which are all brand new and irst presented in this
article. Such analyses include the validation of planned management (Section 4.2), and automatically determining
management plans allowing to reach and maintain a desired global state (Section 4.3). To simplify the presentation
of such analyses, we irst introduce an abstraction over the rules deining the management behaviour of an
application (Section 4.1), which enables focusing only on the actions that can be actually taken by a human or
software agent orchestrating the management of the node instances forming a multi-component application.

4.1 Focusing on Observable Actions

The transition rules deining the management behaviour of a multi-component application (Deinition 3.9) include
actions that can be executed by an agent orchestrating the application, i.e., scaleout, scaleout-c, and scalein for
horizontally scaling its nodes, and op-start and op-end to invoking management operations and observe their
completion. At the same time, the rules in Deinition 3.9 also model the internal evolution of the application due
to fault handling and propagation, i.e., resolve-fault and handle-fault to handle faults, and destroy to automatically
propagate the deletion of a node instance to the node instances it contains.

We hereby introduce an abstraction over the management behaviour of multi-component applications, which
enables focusing only on the actions that can be executed by an agent to orchestrate their management, while at

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 17

the same time abstracting from the internal evolution of the application. When an agent executes an action to
manage an application (e.g., it starts a management operation on a node instance), it can observe the efects of
the propagation and handling of potential faults due to such action. At the same time, it is not the agent that
invokes fault handlers or explicitly propagates the faults. Fault handling and propagation are indeed internal to
the application itself: they are never directly executed by the agent, even if they can be caused by the actions it
takes.

The proposed abstraction, hereafter called łobservable behaviourž, is a labelled transition system that hides the
execution of fault handling and propagation actions (i.e., resolve-fault, handle-fault, and destroy in Deinition 3.9).
The observable behaviour enables reasoning only in terms of the actions for horizontally scaling nodes, for
starting management operations on node instances, and for observing their termination. Notably, given that an
operation may terminate also due to fault handling, the observable behaviour enables observing the termination
of an operation in both cases. All other internal actions due to fault handling and propagation are absorbed by
observable actions.

Definition 4.1 (Observable Behaviour). Let � = ⟨�,�, �⟩ be an application speciication and let � = ⟨�� ,
�� , �� , �� , M� ⟩ be a generic node in � (with M� = ⟨�� , �� , �� , �� , �� ⟩). The observable behaviour of the
application speciied by � is modelled by a labelled transition system whose conigurations are the global states
⟨�,�,� ⟩ of �, and whose transition relation ↦→ is deined by the following inference rules

⟨�,�,� ⟩
�
==⇒ ⟨� ′, � ′,� ′⟩ � ∈ {scaleout(·, ·), scaleout(·, ·, ·), scalein(·), opstart (·, ·), opend (·, ·)}

⟨�,�,� ⟩
�
↦−→ ⟨� ′, � ′,� ′⟩

(exec)

⟨�,�,� ⟩
handle(�, ·)
==========⇒ ⟨� ′, � ′,� ′⟩ ⟨�, ⟨·, �, ·⟩⟩� ∈ �

⟨�,�,� ⟩
opend (�,�)
↦−−−−−−−−→ ⟨� ′, � ′,� ′⟩

(op-fault)

⟨�,�,� ⟩
�
↦−→ ⟨� ′, � ′,� ′⟩ ⟨� ′, � ′,� ′⟩

resolve(�, ·)
==========⇒ ⟨� ′′, � ′′,� ′′⟩

⟨�,�,� ⟩
�
↦−→ ⟨� ′′, � ′′,� ′′⟩

(absorbe-r)

⟨�,�,� ⟩
�
↦−→ ⟨� ′, � ′,� ′⟩ ⟨�, �⟩� ∈ � ′ � ∈ �� ⟨� ′, � ′,� ′⟩

handle(�, ·)
==========⇒ ⟨� ′′, � ′′,� ′′⟩

⟨�,�,� ⟩
�
↦−→ ⟨� ′′, � ′′,� ′′⟩

(absorbe-h)

⟨�,�,� ⟩
�
↦−→ ⟨� ′, � ′,� ′⟩ ⟨� ′, � ′,� ′⟩

destroy(·)
=========⇒ ⟨� ′′, � ′′,� ′′⟩

⟨�,�,� ⟩
�
↦−→ ⟨� ′′, � ′′,� ′′⟩

(absorbe-d)

We hereby discuss more in detail the inference rules of the transition system deining the observable behaviour
of a multi-component application.

• exec enables executing the actions for horizontally scaling components (i.e., scaleout and scalein), and
for starting management operations on node instances and observing their termination (i.e., opstart and
opend, respectively). Such operations can all be executed by the agent orchestrating the management of
an application, and they must hence be observable from the transition system ↦→ deining the observable
behaviour.

ACM Trans. Internet Technol.

18 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

• op-fault enables observing the termination of a management operation also due to a fault afecting the
corresponding node instance. The rule also uniies this event with that of the successful completion of
the execution of a management operation, whose labels are equal in the transition system ↦→ deining the
observable behaviour.

• absorbe-r, absorbe-h and absorbe-d hide the internal evolution due to the handling and propagation of
faults, whose outcomes are absorbed by the executable action � that caused the corresponding handling
and propagation of faults. Note that op-fault and absorbe-h are mutually exclusive, with the latter only
absorbing the handling of faults afecting a node instance that resides in one of its possible states (i.e.,
⟨�, �⟩� ∈ � ′ and � ∈ ��).

In summary, the observable behaviour of a multi-component application enables reasoning on how to orches-
trate its management by focusing only on executable actions, i.e., scaleout and scalein for increasing or decreasing
the replicas of a node, opstart for starting the execution of a management operation on a node instance, and opend
for observing the termination of the execution of a management operation on a node instance (independently
of whether such operation completed successfully or was terminated by a fault). By looking at the global state
reached after executing one of the above actions, one can then understand its outcomes (therein included the
efects of handling and propagating the faults potentially caused Ðand absorbedÐ by such action).

4.2 Analysing Planned Management

The observable behaviour of a multi-component application enables validating its already planned management.
A sequence of actions to be executed in a global state can be considered valid if (and only if) the actions it contains
can always be executed in the given order.

Definition 4.2 (Valid Management Seqence). Let � = ⟨�,�, �⟩ be an application speciication and let
⟨�,�,� ⟩ be a global state for�. A sequence of management actions�1�2...�� is valid in ⟨�,�,� ⟩ if the corresponding
predicate holds:

valid(�1�2...��, ⟨�,�,� ⟩) ⇔

(� = 0) ∨ (∀⟨� ′, � ′,� ′⟩ : ⟨�,�,� ⟩
�1
↦−−→ ⟨� ′, � ′,� ′⟩ . valid(�2...��, ⟨�

′, � ′,� ′⟩))

The notion of validity for management sequences sets also the foundations for validating plans orchestrating
the management of a multi-component application � (i.e., acyclic worklows orchestrating the management
operations of the instances of the components in �), such as those in Figure 3 and Figure 4. A management
plan �� deines a partial ordering on the actions for orchestrating the management of �, viz., it indicates which
actions must be completed before executing other actions. In addition, each management operation invoked by
�� corresponds to two subsequent actions on the corresponding node instance, viz., starting the execution of
the management operation and observing its completion (in this order). The resulting partial ordering can be
visualised as a DAG, whose vertices model actions, and where each arc indicates that the action corresponding to
its source must be executed before that corresponding to its target.

Example. Consider the management plan in Figure 3(a). Such plan indicates that the execution of the operation stop on the

node instance g1 must be completed before starting the operations config on the node instances g1, a1, and a2. Such instances

can execute their operations config in parallel, and Ðonly when all of them are completedÐ the plan restarts g1 by executing its

operation start. The partial ordering among the corresponding actions is displayed as a DAG in Figure 6.

Notably, the topological sorts of the DAG corresponding to a management plan �� deine its łsequential
tracesž, i.e., all the possible sequences of management actions executing all actions in ��, while at the same time
respecting the ordering constraints deined by �� itself [7]. The validity of management plan �� can hence be
deined in terms of that of its sequential traces: a management plan �� is valid if all its sequential traces are valid.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 19

opstart(g1,stop) opend(g1,start)opstart(g1,start)opend(g1,stop)

opstart(g1,config) opend(g1,config)

opstart(a1,config) opend(a1,config)

opstart(a2,config) opend(a2,config)

Fig. 6. DAG defined by the management plan in Figure 3(a).

A weaker notion of validity is also deined, which requires that some sequential traces (but not necessarily all
traces) are valid. A plan is instead considered not valid if none of the above applies.

Notation 4.1 (Seqential Traces). Let �� be a plan for orchestrating the management of a multi-component
application �. We denote with traces(��) the set of all sequential traces of ��.

Definition 4.3 (Valid Management Plan). Let � = ⟨�,�, �⟩ be an application speciication and let ⟨�,�,� ⟩
be a global state for �. A plan �� orchestrating the management of � from ⟨�,�,� ⟩ is valid or weakly valid in
⟨�,�,� ⟩ if the corresponding predicate holds:

• valid(��, ⟨�,�,� ⟩) ⇔ ∀�1...�� ∈ traces(��) . valid(�1 ...��, ⟨�,�,� ⟩),
• weaklyValid(��, ⟨�,�,� ⟩) ⇔ ∃�1...�� ∈ traces(��) . valid(�1 ...��, ⟨�,�,� ⟩).

The notion of valid plan enables checking whether the plans for reconiguring the application in our motivating
scenario (Figure 3) validly reconigure such application from the global state in Figure 2. One can readily check
that all sequential traces of the plan in Figure 3(b) are valid, hence meaning that such plan is valid. This means
that whichever is the parallel execution of the actions in the plan, we can always execute all of them.

Weak validity is instead useful for reining plans, especially in the case of weakly valid plans that are not fully
valid: even if such plans include non-valid sequential traces that will never complete, the information in their
valid sequential traces can be used to reine weakly valid plans and obtain fully valid plans that will always
succeed being executed. A concrete example of this is given by the plan in Figure 3(a). Some of its sequential
traces are not valid, e.g.,

opstart (g1, stop) opend (g1, stop) opstart (g1, config) opstart (a1, config) opstart (a2, config)

opend (g1, config) opend (a1, config) opend (a2, config) opstart (g1, start) opend (g1, start)

Suppose that we execute the latter sequence in the global state in Figure 2. When observing that the operation
config on g1 has completed (through the underlined action opend (g1, config)), we would realise that such operation
faulted. This is because, to successfully complete, the operation config on an instance of gui requires the
requirement backend to continue to be satisied, but this is not the case when both instances of the api are
executing their operation config (as they are not providing the capability endpoint needed for satisfying such
requirement ÐFigure 5(b)). This hence results in a fault for g1, which the latter handles by getting back to its
state installed (Figure 5(a)). The node instance g1 then remains in such state until the trace reaches the action
opstart (g1, start). However, there is no transition allowing to execute the operation start on an instance of gui
residing in state installed. This means that the action opstart (g1, start) cannot be executed, which in turn means
that the considered sequential trace is not valid.

At the same time, there exist sequential traces of the plan in Figure 3(a) that are valid, e.g.,

opstart (g1, stop) opend (g1, stop) opstart (g1, config) opstart (a1, config) opend (g1, config)

opend (a1, config) opstart (a2, config)opend (a2, config) opstart (g1, start) opend (g1, start) .

In this case, when we execute the action opend (g1, config) for observing the termination of config on g1, there is
one instance of api providing the capability needed to successfully complete the operation, i.e., a2, to which g1

has been reconnected after the (resolvable) fault caused by the fact that a1 started executing its operation conig.
The operation config on g1 hence successfully completes and brings g1 to its state configured, from which it can
later execute its operation start.

ACM Trans. Internet Technol.

20 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

scaleout
n1 scaleout

m1
scaleout

m2 scaleout

d1

start

n1 start

m1
start

m2 start

d1

+ +

scaleout

api,a1,m1

scaleout

api,a2,m2

install

a1

install

a2

start

a1

start

a2

+
scaleout

gui,g1,n1

install

g1

configure

g1

start

g1

Fig. 7. Management plan for deploying the application in our motivating scenario.

The above means that the plan in Figure 3(a) is weakly valid, hence meaning that some of the parallel executions
of the actions forming the plan successfully terminate. Notably, all such traces are those in which the operation
config on g1 is not executed in parallel with that of config on both a1 or a2. This information can hence be
exploited to reine the plan to avoid this to happen, e.g., by postponing the execution of the operation config

on g1 in the weakly valid plan in Figure 3(a), which would result in obtaining a valid plan analogous to that in
Figure 3(b).

Similar considerations can be applied to the much more complex case of the management plans for restarting
the instances of node andmaven in our motivating scenario (Figure 4). While the management plan in Figure 4(b)
is valid, management plan in Figure 4(a) is only weakly valid. Again, the information given by the valid sequential
traces of the weakly valid plan in Figure 4(a) could be used to reine it and obtain a management plan analogous
to that in Figure 4(b).

The management behaviour of a multi-component application and its observable behaviour can be exploited
not only for checking the validity of management plans, or reining them, but also for various other purposes.
For instance, it is also interesting to understand what happens to an application � when executing a valid plan
��. One may indeed wish to determine how many instances of the nodes in � are there after executing ��, which
are their actual states, which capabilities they provide, which requirements they assume to be satisied, and
whether/how requirements and capabilities have been bound. Such information can be excerpted directly from
the global state(s) reached by the sequential traces of ��.

In addition, as there is no assurance that all the sequential traces of a management plan end in the same global
state, it is interesting to characterise deterministic plans. Intuitively, a plan is deterministic if, independently of
how parallel actions are executed, it always ends up in instantiating the same amount of replicas for each node,
and it always brings each replica to the same state. In other words, a plan is deterministic if, given any two of its
sequential traces, such traces bring to global states including the same sets of active node instances.

Definition 4.4 (Deterministic Plan). Let� = ⟨�,�, �⟩ be an application speciication, let ⟨�,�,� ⟩ be a global
state for �, and let �� be a valid management plan for � in ⟨�,�,� ⟩. The plan �� is also deterministic if

∀�1...��, �
′
1 ...�

′
� ∈ traces(��) .

⟨�,�,� ⟩
�1
↦−−→ ...

��
↦−−→ ⟨� ′, ·, ·⟩ ∧ ⟨�,�,� ⟩

�′
1

↦−−→ ...
�′
�

↦−−→ ⟨� ′′, ·, ·⟩ ∧ � ′
= � ′′.

Example. Consider again the application in our motivating scenario (Section 2), and suppose that we developed the deployment

plan in Figure 7. The plan validly deploys the application, by irst creating and starting an instance of node (viz., n1), two instances

of maven (viz., m1 e m2), and an instance of mongo (viz., d1). It then creates, installs, and starts two instances of the api (viz.,

a1 and a2). When started, both a1 and a2 connect to d1, the only running instance of mongo. Afterwards, it creates, installs,

conigures, and starts an instance of gui. The instance of gui can be connected to any of the instances of the api, as both are already

running and ofering their endpoint capability when the latter is needed to satisfy the requirements the instance of gui.

As a result, the application can reach the global state in Figure 2, as well as an analogous global state, where the only diference

is that g1 connects to a2 (instead of a1), e.g., if the connection policy function is such that the instance for satisfying the backend

requirements of gui instances is randomly chosen. Independently from which horizontal bindings are set, however, the deployment

plan Figure 7 can be considered deterministic, as it always creates the same node instances and brings them to the same state.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 21

4.3 Automatically Planning Application Management, Validly

The observable behaviour of a multi-component application also enables automatically planning the orchestration
of its management, i.e., inding whether there is a sequence of management operations allowing an application
to go from a global state ⟨�,�,� ⟩ to a target coniguration � ′ (indicating how many replicas of each node must
be there, and which is the desired state for each of such replicas). Such a planning problem can obviously be
solved with a breadth-irst search (BFS) over the graph deined by the labelled transition system of the observable
behaviour of the application, and starting from ⟨�,�,� ⟩. Unfortunately, such a graph is not inite, as we can
scale out as many replicas as we wish, hence meaning that we potentially have ininite replicas of each node
forming the application. This in turn means that a BFS over such graph may not terminate: even if there is no
sequence of management operations for changing the global state of the application from ⟨�,�,� ⟩ to some
global state ⟨� ′, ·, ·⟩, the BFS could continue traversing arcs corresponding to the action of scaling out one of the
nodes in the application, hence never ending.

A solution to this is to deine a inite search space ensuring that, if no sequence is found in such a search space,
then there is no sequence at all. We hereafter provide the bricks for building such a search space by irst deining
a set of support node instances. Each support node instance is included ład-hocž to enable satisfying a given
requirement of a given node instance that is in the starting or target global state (and only that requirement of
that instance). The set of support node instances contains also instances for satisfying support node instances
themselves. This is because, for example, for a support node instance to get in a state where it can satisfy the
requirement it is associated with, such a support node instance may need its requirements to get satisied as
well. Hence, having a support node instance for each requirement of each support node instance enables to
spawn support node instances whenever they are needed, i.e., whenever the corresponding requirement of a
node instance in the starting or target global state needs to be satisied.

Definition 4.5 (Support Node Instances). Let � = ⟨�,�, �⟩ be an application speciication and let ⟨�, ·, ·⟩ and
⟨� ′, ·, ·⟩ be two global states for �. The set supp(�,� ′) of support node instances for the node instances in � and
� ′ is one of the smallest sets satisfying the following conditions:

(i) ∀⟨�, ·⟩� ∈ � ∪� ′ ∪ supp(�,� ′) .∀� ∈ �� : � (�) ∈ �� ′ . ∃⟨ �, ·⟩� ′ ∈ supp(�,� ′)
(ii) ∀⟨�, ·⟩� ∈ � ∪� ′ ∪ supp(�,� ′) .

∀�, � ′ ∈ �� : (� ≠ � ′ ∧ � (�) ∈ �� ′ ∧ � (� ′) ∈ �� ′′) . ∃⟨ �, ·⟩� ′, ⟨ � ′, ·⟩� ′′ ∈ supp(�,� ′) : � ≠ � ′

(iii) ∀⟨�, ·⟩� , ⟨�
′, ·⟩� ′ ∈ � ∪� ′ ∪ supp(�,� ′) .

∀� ∈ �� , �
′ ∈ �� ′ : � (�) ∈ �� ′′ ∧ � (� ′) ∈ �� ′′ . ∃⟨ �, ·⟩� ′′, ⟨ � ′, ·⟩� ′′ ∈ supp(�,� ′) : � ≠ � ′

Intuitively, the conditions in Deinition 4.5 indicate that (i) each requirement of each node instance in� ∪ � ′ ∪
supp(�,� ′) has a support node instance, (ii) diferent requirements of the same node instance have diferent
support node instances, and (iii) diferent node instances have diferent support node instances. The set of support
node instance is one of the smallest sets satisfying such conditions, and it is also inite.

Proposition 4.1 (Finiteness of Support Node Instances). Let � = ⟨�,�, �⟩ be an application speciication
and let ⟨�, ·, ·⟩ and ⟨� ′, ·, ·⟩ be two global states for �. Any set supp(�,� ′) of support node instances is inite.

Proof. The thesis can be proved constructively. Given that � and � ′ are inite (by Deinition 3.5), we have a
inite number of node instances, each with a inite number of requirements needing a support node instance. Being
� the set containing all such requirements, we can create a diferent support node instance for each requirement
in � . Notably, given that the function � is total, we can always identify the node satisfying a requirement, which
is instantiated in a support node instance.
The newly created set of support node instances may contain node instances exposing themselves some

requirements. Being �′ the set containing all such requirements, we can again create a diferent support node
instance for each requirement in �′. We can then continue with the above approach until there are no more

ACM Trans. Internet Technol.

22 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

support node instances lacking of a support node instance, i.e., exposing some requirements for which separate
support node instance have not been created yet. This is guaranteed to happen, as� is assumed to be well-formed,
which means that its topology is acyclic. Indeed, the lack of cycles of dependencies (together with the initeness
of application topologies) ensures that, for each requirement to be satisied, there is a inite chain of nodes to be
instantied to satisfy such requirement, whose last node is without any requirement. We hence eventually reach
an iteration in which the newly added support node instances do not expose any requirement, hence completing
the construction process.

The above presented approach terminates, as it enables building the set of support node instances after a inite
number of iterations. Given that each iteration consists in adding a inite set of support node instances, it directly
follows that the set of support node instances is inite as well. □

The support node instances enable deining a inite search space for determining whether there is a sequence
of management actions allowing an application to move from global state ⟨�,�,� ⟩ to a target coniguration � ′.
Such a search space, hereafter called łplanning graphž, is given by a labelled graph whose vertices are global
states for the application, and whose labelled arcs correspond to actions leading from a global state to another
(according to the observable behaviour of the application Ð Deinition 4.1). In addition, the graph (i) contains the
starting global state ⟨�,�,� ⟩, (ii) it is obtained by executing all possible sequences of management actions, and
it is such that the (iii) considered global states involve Ðat mostÐ the node instances in the starting global state,
in the target coniguration, and in a corresponding set of support node instances.

Definition 4.6 (Planning Graph). Let � = ⟨�,�, �⟩ be an application speciication, let ⟨�,�,� ⟩ and ⟨� ′, ·, ·⟩
be two global states for �, and let supp(�,� ′) be a set of support node instances for� and� ′. Let also L denotes the
universe of all possible actions in the observable behaviour of �. The planning graph from the global state ⟨�,�,� ⟩
to the coniguration � ′ is a labelled graph pGraph(�,� ′) = ⟨�, �⟩ where:

• � ⊆ P(I ×
⋃

� ∈�
�� ∪ ��) × P(I × (

⋃

� ∈�
��
�
∪ ��

�
) × I) × P(I ×

⋃

� ∈�
��
�
× I) is the set of vertices, each

corresponding to a global state for �,
• � ⊆� × L ×� is the set of arcs, each labelled with a management action,

and they both satisfy the following conditions:

(i) ⟨�,�,� ⟩ ∈� ,

(ii) ∀�,� ′ ∈� . (∃⟨�, �,� ′⟩ ∈ � ⇔ �
�
↦−→ � ′), and

(iii) ∀⟨� ′′, ·, ·⟩ ∈� .∀⟨�, ·⟩� ∈ � ′′ . ∃⟨�, ·⟩� ∈ � ∪� ′ ∪ supp(�,� ′)

The conditions (i-iii) in Deinition 4.6 enable constructively building the planning graph: We can indeed build
pGraph(�,� ′) by starting with� only containing (i) the vertex corresponding to the starting global state, and
then iteratively expand� and � by (ii) adding vertices and arcs for each action that can be performed in a global
state in� for which a corresponding arc has not been added to � yet. More precisely, each iteration consists in
adding, for each global state in� , the arcs corresponding to actions that can be executed in such global state
and that are not yet in �, along with the global states that can be reached with such actions (if not already in
�). Notably, condition (iii) ensure that the planning graph is inite, hence meaning that the above construction
process eventually terminates.

Proposition 4.2 (Finiteness of Planning Graph). Let � = ⟨�,�, �⟩ be an application speciication, and let
⟨�, ·, ·⟩ and ⟨� ′, ·, ·⟩ be two global states for �. The planning graph pGraph(�,� ′) = ⟨�, �⟩ for � and � ′ is inite.

Proof. The thesis directly follows from condition (iii) in Deinition 4.6, which prescribes that the node
instances of any global state in� to be (at most) those contained in the starting global state ⟨�,�,� ⟩, in the
target coniguration � ′, and in the considered set of support node instances supp(�,� ′). This means that the set

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 23

� is (at most) as big as all possible combinations of all possible instances for each node in � in all their possible
states, with all possible runtime bindings. The possible instances in � are initely limited by condition (iii), while
their possible states are initely limited by their management protocols. In addition, the possible bindings are
limited as well, as connecting inite sets of requirements to inite sets of capabilities in all possible (but inite)
ways. It hence follows that the set� is inite, as all possible combinations of all possible instances for each node
in � in all their possible states (with all possible runtime bindings) are inite as well. □

The planning graph deines a inite search space where to look for management sequences allowing an
application to reach the target coniguration � ′ (i.e., to reach some global state ⟨� ′, ·, ·⟩) by starting from
⟨�,�,� ⟩. We indeed now prove that there exists one such management sequence if and only if there is a path in
the planning graph leading from ⟨�,�,� ⟩ to some ⟨� ′, ·, ·⟩.

Theorem 4.1 (Soundness and Completeness of Planning). Let � = ⟨�,�, �⟩ be an application speciication,
let ⟨�,�,� ⟩ and ⟨� ′, ·, ·⟩ be two global states for �, and let pGraph(�,� ′) = ⟨�, �⟩ be the planning graph for �
and � ′.

∃�1 ...�� . valid(�1...��, ⟨�,�,� ⟩) ∧ ⟨�,�,� ⟩
�1
↦−−→ ...

��
↦−−→ ⟨� ′, ·, ·⟩

⇕
∃ a path � ′

1 ...�
′
� in pGraph(�,� ′) from ⟨�,�,� ⟩ to some ⟨� ′, ·, ·⟩.7

Proof. The case (⇑) directly follows from the deinition of planning graph (Deinition 4.6), forwhich valid(� ′
1...�

′
�, ⟨�,�,� ⟩)

holds.
The case (⇓) can instead be proved by contradiction. Assume there is no path in pGraph(�,� ′) leading from

⟨�,�,� ⟩ to some ⟨� ′, ·, ·⟩, i.e.,

� a path in pGraph(�,� ′) from ⟨�,�,� ⟩ to any ⟨� ′, ·, ·⟩, (1)

and suppose that there exists a valid management sequence �1�2 ...�� leading from ⟨�,�,� ⟩ to ⟨� ′, ��,��⟩
not corresponding to a path in pGraph(�,� ′). We have that ⟨�,�,� ⟩ ∈ pGraph(�,� ′) and that ⟨� ′, ��,��⟩ is
obtained by applying a sequence of management actions. By deinition of planning graph (Deinition 4.6), it
must necessarily be that condition (1) is because of the valid sequence traversing an intermediate global state
⟨�� , �� ,��⟩ that is not in pGraph(�,� ′), i.e.,

(⟨�,�,� ⟩
�1
↦−−→ ⟨�1, �1,�1⟩

�2
↦−−→ ...

��
↦−−→ ⟨� ′, ��,��⟩) ∧ (⟨�� , �� ,��⟩ ∉ pGraph(�,� ′)), (2)

where we slightly abuse the notation to say that the global state ⟨�� , �� ,��⟩ is not contained in the set of vertices
of pGraph(�,� ′).

The planning graph pGraph(�,� ′) however includes all the global states that can be reached from ⟨�,�,� ⟩
by applying executable management actions, and by only considering the node instances that are in� ,� ′, or in a
corresponding set supp(�,� ′) of support node instances. For condition (2) to hold, it must hence be that

∃⟨�̂, ·⟩� ∈ �� . ⟨�̂, ·⟩� ∉ (� ∪� ′ ∪ supp(�,� ′)) . (3)

The same does not hold for all previously traversed global states, which (by Deinition 4.6) are all part of
pGraph(�,� ′), i.e.,

∀� ∈ [1, �) . ⟨� � , � � ,�� ⟩ ∈ pGraph(�,� ′). (4)

Conditions (3) and (4) mean that the node instance ⟨�̂, ·⟩� has been created by the action �� , i.e.,

�� = scaleout(�̂, �) ∨ �� = scaleout(�̂, ·, �). (5)

7Formally, ∃{⟨⟨�,�,� ⟩, �′
1, ⟨�1, �1,�1 ⟩⟩, ⟨⟨�1, �1,�1 ⟩, �

′
2, ⟨�2, �2,�2 ⟩⟩... ⟨⟨��−1, ��−1,��−1 ⟩, �

′
�, ⟨�′, ·, ·⟩⟩ } ⊆ �.

ACM Trans. Internet Technol.

24 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

At the same time, since ⟨�̂, ·⟩� ∉ � ′, and since (1) is assumed to hold, there must be an action occurring after ��
that destroys the instance identiied by �̂, i.e.,

∃ � ∈ (�, �] . � � = scalein(�̂). (6)

This is coherent with our initial assumptions (1) and (2), as it would mean that part of the management sequence
�1...�� necessarily occurred outside of the planning graph, i.e.,

⟨�,�,� ⟩
�1
↦−−→ ...

��
↦−−→ ⟨�� , �� ,��⟩

��+1
↦−−−→ ..[★] ..

� �

↦−−→ ⟨� � , � � ,�� ⟩
� �+1
↦−−−→ ...

��
↦−−→ ⟨��, ��,��⟩ (7)

with the evolution identiied by the [★] area is surely occurring outside of pGraph(�,� ′). None of its vertices
indeed correspond to a global state containing the node instance identiied by �̂, while all the global states between
⟨�� , �� ,��⟩ and ⟨� � , � � ,�� ⟩ contain such node instance.
In addition, for condition (1) to hold, we must also have that

⟨� � , � � ,�� ⟩ ∉ pGraph(�,� ′). (8)

Otherwise, such global state would be reachable from the starting global state ⟨�,�,� ⟩, and by Deinition 4.6
also ⟨� ′, ��,��⟩ would be in pGraph(�,� ′). This would then mean that there would be a path from ⟨�,�,� ⟩ to
⟨� ′, ��,��⟩ in pGraph(�,� ′), which would contradict condition (1).
For simplicity, assume now that ⟨�̂, ·⟩� is the only additional node instance involved in the [★] area in (7).

This is not a restriction, as the following reasoning can be readily be generalised and repeated for any number of
additional instances.8

The global state ⟨� � , � � ,�� ⟩ has been obtained from ⟨��−1, ��−1,��−1⟩ by applying a sequence of management
actions �� ...� � allowed by the observable behaviour of �. By Deinition 4.1, we hence have that all the runtime
bindings in� � and�� are generated analogously to all other global state that can be reached from ⟨��−1, ��−1,��−1⟩,
therein included those in pGraph(�,� ′). In addition, condition (6) ensures that the additional instance ⟨�̂, ·⟩� is
not in � � , which hence only contains node instances that are also in � , � ′, or supp(�,� ′), i.e.,

∀⟨�, ·⟩� ∈ � � . ∃⟨�, ·⟩� ∈ (� ∪� ′ ∪ supp(�,� ′)) (9)

For condition (8) to hold, it must hence be that there is at least one management action �� in the [★] area in
(7) that was enabled, while it cannot be ired in pGraph(�,� ′). In particular, since scalein can always be ired,
and since no other scaleout action has been issued (as we assumed ⟨�̂, ·⟩� to be the only additional node instance),
we must have that �� is some operation-related transition that can be ired outside of the pGraph(�,� ′), while it
cannot be ired within pGraph(�,� ′). For this to hold, and given the rules for enacting opstart and opend while
managing � (Deinition 3.9), it must be that there is a requirement that can be satisied by the node instances in
the [★] area in (7), while it is not possible to satisfy it in the planning graph pGraph(�,� ′).
The above leads however to a contradiction: The planning graph pGraph(�,� ′) is intentionally built by

including support node instances so that whenever a requirement is needed we can spawn a support instance
for satisfying it (Deinition 4.5 and Deinition 4.6). We hence obtain a contradiction, from which we can deduce
that ⟨� � , � � ,�� ⟩ ∈ pGraph(�,� ′), which in turn means that there is a path in pGraph(�,� ′) from ⟨�,�,� ⟩ to
⟨� ′, ��,��⟩. This contradicts our initial hypothesis in condition (1), hence meaning that also the case (⇓) of our
theorem holds. □

Obvious consequences of Theorem 4.1 are that a BFS over a planning graph enables checking whether there is
a management sequence allowing an application to move from a global state to a target coniguration, and that
such a check is guaranteed to terminate. In addition, if the BFS inds a path, the latter actually corresponds to the

8As none of them can be in�′, for condition (1) to hold, this means that we eventually reach a global state where they have all been destroyed.

We can then repeat an analogous reasoning from such global state.

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 25

sequence of management actions allowing the application to move from the starting global state to the target
coniguration.
Performing a BFS over a (potentially huge) planning graph is expensive, especially if the outcome of such

search is that there is no management sequence for going from a global state to another. However, there are
cases in which we can be sure that there is a management sequence allowing to an application to reach the target
coniguration, which we characterise hereafter. First, we observe that we can always bring an application back to
its initial global state from any actual global state it actually reached. This can be done by scaling in all the node
instances in the reached global state, as this results in letting the application to step back to a global state with no
node instances nor runtime bindings, i.e., its initial global state.

Proposition 4.3 (Resettability). Let � = ⟨�,�, �⟩ be an application speciication. It is always possible to reach
the initial global state ⟨∅, ∅, ∅⟩ from each global state ⟨�,�,� ⟩ of �.

Proof. The thesis trivially follows from observing that the initial global state is equal to the state reached
after destroying all the node instances in � by performing scalein actions. □

Proposition 4.3 enables characterising those situations in which we are sure that there is a plan allowing an
application to go from its current global state to another. Given a target coniguration � ′ for an application, if a
corresponding global state ⟨� ′, ·, ·⟩ can be reached from the initial global state ⟨∅, ∅, ∅⟩, then there is always a
plan allowing to reach such target coniguration from each possible global state of the application.

Theorem 4.2 (Reachability). Let � = ⟨�,�, �⟩ be an application speciication, and let ⟨� ′, ·, ·⟩ be a global state
for �.

∃�1...�� . valid(�1 ...��, ⟨∅, ∅, ∅⟩) ∧ ⟨∅, ∅, ∅⟩
�1
↦−−→ ...

��
↦−−→ ⟨� ′, ·, ·⟩ ⇒

∀⟨�,�,� ⟩ for �, ∃� ′
1...�

′
� . valid(� ′

1 ...�
′
�, ⟨∅, ∅, ∅⟩) ∧ ⟨�,�,� ⟩

�′
1

↦−−→ ...
�′
�

↦−−→ ⟨� ′, ·, ·⟩.

Proof. The thesis obviously follows from Proposition 4.3, which states that that we can always reach the
initial global state ⟨∅, ∅, ∅⟩ from every global state of an application. □

The above presented reachability result (Theorem 4.2) ensures that a multi-component application can always
get recovered from any possible fault afecting its node instances. Consider a global state ⟨�,�,� ⟩ reached by
executing a management sequence/plan in the initial global state, and suppose that some fault occurs and causes
changes of states to some of its node instances, which result in the application getting into the global state
⟨� ′, � ′,� ′⟩. In the worst case, it may be that some of the node instances in � ′ have become unable to perform
any other management operation, i.e., they entered in a sort of łsinkž state, where there is no outgoing transition
allowing to execute some management operation. Theorem 4.2 however ensures that Ðeven in the worst caseÐ
there exists a management sequence allowing the application to get back to the ⟨�,�,� ⟩, which can be computed
with a BFS over a planning graph.9 In other words, whichever is the global state ⟨�,�,� ⟩ reached by performing
management actions from the initial global state, and whichever are the faults afecting the application in such
global state, there always exists a management sequence allowing to recover from such faults, hence enabling to
maintain the global state ⟨�,�,� ⟩.

5 PROOF-OF-CONCEPT IMPLEMENTATION

9This provides a much stronger result if compared with the łhard recoveryž in [6]. While the latter was assuming to have only one instance

of each node at a time, and it was able to recover only those nodes that were hosted on other nodes, Theorem 4.2 ensures that we can recover

all node instances that changed their state because of some fault.

ACM Trans. Internet Technol.

26 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

main

analyzer

parser

model

cli

core
ramp

JSON

JSON

JSON

app

spec

plan

global

state

(a)

FAILED SEQUENCE:

opStart g1 stop

opEnd g1 stop

opStart g1 config

opStart a1 config

opStart a2 config

opEnd g1 config

opEnd a1 config

opEnd a2 config

opStart g1 start

opEnd g1 start

ACTIVE INSTANCES

api a1 running

api a2 running

node n1 running

maven m1 running

maven m2 running

gui g1 installed

mongo d1 running

FAILED ACTION:

opStart g1 start

(b)

Fig. 8. The (a) architecture of RAMP and (b) a snippet of its output.

To illustrate the feasibility of our solution, we developed RAMP (Replica-Aware Management Protocols), a
proof-of-concept implementation of replica-aware management protocols and of their plan validation support.
We also used RAMP to analyse the planned management for the multi-component application in our motivating
scenario (Section 2).

RAMP is implemented in Java, open-source, and publicly available on GitHub.10 It provides a CLI (Command-
Line Interface) for checking the validity/weak validity of a management plan in a global state of a given application.
As shown in Figure 8(a), RAMP takes as input an application speciication, the plan to validate, and the global
state where the plan should be executed, all given as JSON iles. The JSON iles are passed to the main module
implementing the CLI, which interacts with the parser to generate an internal representation of the application,
plan, and global state in the RAMP model (viz., a Java object model enabling to represent the speciication of
multi-component applications, their management behaviour, and management plans). Such representation is
then passed to the analyzer to check the validity/weak validity of the given plan in the given global state. If the
check fails, RAMP prints information on why the check failed (Figure 8(b)).

The output information given by RAMP can be useful to the application operator to determine and resolve the
issues afecting the given plan. We experimented this by intentionally developing four non-valid plans, one for
deploying the application in our motivating scenario from scratch and three for managing it from the global
state in Figure 2, with the latters including those in Figure 3(a) and Figure 4(a). We also speciied in JSON the
application in Figure 1 and the global state in Figure 2. Then, we ran RAMP to check the validity of the plans,
which Ðas expectedÐ were classiied by RAMP as not valid. The output provided by RAMP enabled us to observe
which trace of each plan cannot successfully complete, the action in such trace that cannot be executed, and
the global state reached right before executing such action, e.g., as in Figure 8(b) for the plan in Figure 3(a). We
exploited such information to refactor the plans so as to ensure that the shown issue could not happen again, e.g.,
that g1 cannot be started because it resides in state installed when the operation start is executed, which can
only be due to the fact that the configure operation formerly invoked on g1 faulted because no instance of api
was capable of satisfying g1’s needed requirements. We repeated the above process of checking the validity of
refactored plans, always exploiting the outcomes provided by RAMP to further refactor them if they were not
valid, until we obtained fully valid plans, such as those in Figure 3(b) and Figure 4(b).11

6 RELATED WORK

Automating the management of multi-component applications became a hot topics in IT research after the cloud
revolution [18]. The proliferation of so-called łconiguration management systemsž also witnesses the need for

10https://github.com/di-unipi-socc/ramp.
11The JSON iles and guidelines for repeating our experiments are publicly available on GitHub at https://github.com/di-unipi-socc/ramp/

tree/master/data/thinking-app.

ACM Trans. Internet Technol.

https://github.com/di-unipi-socc/ramp
https://github.com/di-unipi-socc/ramp/tree/master/data/thinking-app
https://github.com/di-unipi-socc/ramp/tree/master/data/thinking-app

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 27

management automation by the IT industry, with Chef and Puppet being two of the most prominent examples.12

Coniguration management systems provide domain-speciic languages to describe the desired coniguration of
an application, which is enforced though the usage of daemons ensuring that such coniguration is eventually met.
At the same time, the lack of a machine-readable representation of how to efectively manage cloud application
components inhibits the possibility of performing automated analyses on their conigurations and dependencies.

A irst formal modelling of the allowed management of multi-component applications was given by the Aeolus
component model [9]. We share the idea of Aeolus [9] of describing the management behaviour of the application
components through inite-state machines (enriched with conditions describing what is ofered and required
in a state) and of deriving the management behaviour of an application by composing those of its components.
Aeolus however difers from our approach as it focuses on automating the deployment and coniguration of
an application, i.e., instantiating a given number of replicas of each application component and bringing them
running. We instead focus on the whole management lifecycle of the application, from its irst deployment to
managing all instances of its components, therein included recovering such instances from possible faults.
Another noteworthy solution is Engage [13]. Given a partial installation speciication, Engage [13] can

determine a full installation plan, which coordinates the deployment and coniguration of the instances of the
components forming a multi-component application across multiple machines. Engage difers from our approach
since it focuses on determining a deployment of applications whose components are not to be replicated. We
instead focus on the management of applications, by also enabling to replicate components and to explicitly
model faults, analysing the efects of faults on component instances, and reacting to faults to restore a desired
application coniguration.

Similar considerations apply to the solution by Breitenbücher et al. [5], which allows to automatically generate
executable deployment plans from an application speciication given in the OASIS standard TOSCA [17]. Given
such speciication, their solution automatically determines a sequence of management operations allowing to
reach a target coniguration. Breitenbücher et al. [5] however focuses on application deployment, by allowing to
instantiate each application component only once. Our approach instead supports the whole management of
the lifecycle of applications, therein included instantiating multiple replicas of each application component and
allowing to restore the desired coniguration for an application after some faults occurred.
Etchevers et al. [11] propose a decentralized protocol for self-deployment of cloud applications. Etchevers

et al. [11] model cloud applications as a set of virtual machines (VMs), whose interconnections are modelled
by connecting the requirements of a VM (called imports) to the capabilities of another (called exports). Such a
structuring is then exploited to coordinate the deployment of a given number of replicas of the VMs forming an
application, by also ixing the allowed management behaviour for such VMs. In addition, the internals of each
VM are hidden, by assuming that the installation, coniguration, and enactment of the software components in a
VM have already been planned. Our approach instead enables separately modelling the software components
forming an application from the computing nodes used to run them, and to fully customise their management
behaviour. Another diference between our approach and that by Etchevers et al. [11] is that they allow handling
only environmental faults (due to networing issues), while our approach can also deal with application-speciic
faults.
Similar considerations apply to the fault-resilient deployment solution proposed by Duran and Salaün [10].

They also model applications as a set of interconnected VMs. In addition, they provide each VM with a module
managing its lifecycle, called łconiguratorž. An orchestrator then coordinates the deployment and reconiguration
of an application by interacting with the conigurators of the VMs forming the application. The solution by Duran
and Salaün [10] is hence related to our approach as it focuses managing multi-component applications by taking
into account faults and by specifying the management of each component separately. Their solution however

12Chef : https://www.chef.io. Puppet: https://puppet.com.

ACM Trans. Internet Technol.

https://www.chef.io
https://puppet.com

28 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

difers from our approach since it only considers environmental faults, while we also deal with application-speciic
faults. In addition, whilst our approach enables instantiating multiple replicas of each component forming an
application, the approach by Duran and Salaün [10] ixes the topology once for all and considers one instance of
each VM forming the application at a time.
Friedrich et al. [14] instead propose an approach to handle faults is very close in the spirit to ours, even if

for a diferent application domain. As we do for multi-component applications, Friedrich et al. [14] exploit a
model-based approach to specify the worklows orchestrating multiple Web services in a business processes, and
the description of a process includes the possible repair actions for each of its activities. This permits checking
recoverability of actions at design time, and generating recovery plans whenever a fault is detected to have
happened (by an external monitoring tool). The approach by Friedrich et al. [14] however difers from our
approach mainly because of the diferent application domain, which allows them to exploit diferent techniques
(such as heuristics based on branching probabilities) to carry out their analyses, to reason with only one replica
of each service at a time, and to assume faults to happen on one service at a time.
Other approaches worth mentioning relate to the model-driven engineering of horizontally scalable multi-

component applications. Vaquero et al. [21] discuss various scaling strategies, both for software components
and for the computing nodes used to host them. The authors propose a rule-based engine, whose aim is to
dynamically scale application components according to user-deined rules. Despite Vaquero et al. [21] deal with
both horizontal and vertical scaling, their approach relies on users specifying how to actually manage the scaling
of components. Our appraoch instead provides a compositional modelling for the management of horizontally
scalable application, which enables automatically planning the management of such applications.

Tofetti et al. [20] propose a solution for developing self-managing applications. More precisely, they propose
a distributed algorithm for component instances to synchronize between themselves and reach a desired con-
iguration. The target coniguration is expressed by means of a typed graph, whose cardinalities on the edges
represent the desired number of instances of each node. The approach by Tofetti et al. [20] shares our idea of
distinguishing the modelling of the topology of an application from that of its runtime instances. They also share
our idea of obtaining recoverable applications, whose components are monitored by means of health monitors
and restarted if some health probes report some faults. At the same time, their approach is intended to be actually
integrated in the development of application, hence requiring to update the application sources to include an
implementation of the distributed algorithm proposed by Tofetti et al. [20]. Our approach instead provides a
design-time solution for modelling and analysing the management of horizontally scalable applications, without
requiring to update their sources.
Finally, it is worth relating our approach to those dealing with the rigorous engineering of fault-tolerant

systems. Betin-Can et al. [2] and Wang et al. [22] provide tools for fault-localisation in complex applications,
which allows to re-design such applications by avoiding the occurrence of identiied faults. Johnsen et al. [15]
illustrates a methodology for designing fault-resilient applications, which starts from a fault-free application,
and which allows to iteratively reine the application by identifying and handling the faults that may occur. All
such approaches however difer from our approach as they aim to obtain applications that łnever failž, because
potential faults are already identiied and handled. Our approach is instead more recovery-oriented [8], as we
embrace the idea that applications can (and probably will) fail, in both expected and unexpected ways, and we
aim at supporting the design of applications that can be recovered when faults occur.
In summary, to the best of our knowledge, ours is the irst approach enabling to automatically analyse and

plan the replica-aware management of a multi-component application, while at the same time considering the
concurrent management of the instances of its components, and the fact that expected and unexpected faults
might happen while such concurrent management is being executed. We do so by building upon the results of our
previous work [7], which employs inite state machines to describe the behaviour of the application components

ACM Trans. Internet Technol.

Modelling and Analysing Replica- and Fault-aware Management of Horizontally Scalable Applications • 29

(including how they react to both expected and unexpected faults), and by extending such model to keep track of
the runtime evolution of the system, including how instances are created, destroyed, and interconnected.

7 CONCLUSIONS

Automatically coordinating the management of multi-component applications is crucial nowadays [16, 24]. It
requires to suitably coordinate the concurrent deployment, coniguration, enactment, and termination of possibly
multiple instances of the components forming an application, while at the same time taking into account all
inter-component dependencies, as well as that diferent replicas of the same component may reside in diferent
states and get afected by diferent faults.

Starting from an already existing approach for statically specifying the structure and management behaviour
of multi-component applications, we proposed a novel approach enabling to model and analyse the actual
management of instances of speciied applications. More precisely, after formally deining how to specify multi-
component applications by means of topology graphs [4] and management protocols [6, 7], we introduced a novel
compositional modelling for the actual management of applications, which distinguishes among the possibly
multiple replicas of each node in the application, and enables suitably coordinating their management, therein
included how they react to possible faults. We then exploited such modelling to formalise various useful analyses,
from validating existing management plans and checking their efects, to automatically determining management
plans allowing an application to reach a target coniguration. In the latter case, we also observed that the search
space where to look for such management plans is inherently ininite, as the same component may be possibly
ininitely replicated, hence generating ininitely many possible application conigurations. We anyhow formally
proved that checking whether the target coniguration can be reached and the management plan for actually
reaching it can be both initely computed, and discussed a solution for doing so.

The presented solution for planning is however quite expensive, as it requires to constructively build a possibly
huge search space where to look for a plan. As part of our future work, we plan to devise more eicient algorithms
enabling to ind a plan for reaching a target coniguration, e.g., based on the contextual information given by the
starting global state and the target coniguration (i.e., involved replicas, target state of each replica), or based
on suitable heuristics. We also plan to extend RAMP to feature a graphical environment to specify and analyse
the management of multi-component applications, therein included planning their management, and to use the
extended RAMP to validate our approach against real-world case studies. Finally, we plan to extend the current
approach to also consider QoS and costs while analysing the management of applications, e.g., for driving the
horizontal scaling of application components to improve the overall QoS of the application, or to derive the
cheapest plan allowing to reach a target application coniguration.

REFERENCES

[1] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini, Arnor Solberg, Manuel Wimmer, Gerti Kappel, and

Frank Leymann. 2018. A Systematic Review of Cloud Modeling Languages. ACM Comput. Surv. 51, 1, Article 22 (2018), 38 pages.

https://doi.org/10.1145/3150227

[2] Aysu Betin-Can, Tevik Bultan, Mikael Lindvall, Benjamin Lux, and Stefan Topp. 2007. Eliminating synchronization faults in air

traic control software via design for veriication with concurrency controllers. Autom. Softw. Eng. 14 (07 2007), 129ś178. https:

//doi.org/10.1007/s10515-007-0008-2

[3] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA: Portable Automated Deployment and Management of

Cloud Applications. In Advanced Web Services. Springer, New York, NY, USA, 527ś549. https://doi.org/10.1007/978-1-4614-7535-4_22

[4] Tobias Binz, Christoph Fehling, Frank Leymann, Alexander Nowak, and David Schumm. 2012. Formalizing the Cloud through Enterprise

Topology Graphs. In CLOUD 2012. IEEE, USA, 742ś749. https://doi.org/10.1109/CLOUD.2012.143

[5] Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann, and Johannes Wettinger. 2014. Combining Declarative

and Imperative Cloud Application Provisioning based on TOSCA. In IC2E 2014. IEEE, USA, 87ś96. https://doi.org/10.1109/IC2E.2014.56

[6] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. 2018. Fault-aware management protocols for multi-component applications. J.

Syst. Softw. 139 (2018), 189ś210. https://doi.org/10.1016/j.jss.2018.02.005

ACM Trans. Internet Technol.

https://doi.org/10.1145/3150227
https://doi.org/10.1007/s10515-007-0008-2
https://doi.org/10.1007/s10515-007-0008-2
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1109/CLOUD.2012.143
https://doi.org/10.1109/IC2E.2014.56
https://doi.org/10.1016/j.jss.2018.02.005

30 • Jacopo Soldani, Marco Cameriero, Giulio Paparelli, and Antonio Brogi

[7] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. 2018. True Concurrent Management of Multi-component Applications. In ESOCC

2018. Springer, Cham, 17ś32. https://doi.org/10.1007/978-3-319-99819-0_2

[8] George Candea, Aaron Brown, Armando Fox, and David Patterson. 2004. Recovery-oriented computing: Building multitier dependability.

Computer 37 (12 2004), 60ś67. https://doi.org/10.1109/MC.2004.219

[9] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro. 2014. Aeolus: A component model for the cloud.

Information and Computation 239 (2014), 100ś121. https://doi.org/10.1016/j.ic.2014.11.002

[10] Francisco Durán and Gwen Salaün. 2016. Robust and reliable reconiguration of cloud applications. J. Syst. Softw. 122 (2016), 524ś537.

https://doi.org/10.1016/j.jss.2015.09.020

[11] Xavier Etchevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, and Noël De Palma. 2017. Reliable Self-deployment of Distributed

Cloud Applications. Software: Practice and Experience 47, 1 (2017), 3ś20. https://doi.org/10.1002/spe.2400

[12] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. 2014. Cloud Computing Patterns: Fundamentals to

Design, Build, and Manage Cloud Applications. Springer-Verlag, Wien, Austria.

[13] Jefrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. 2012. Engage: A Deployment Management System. SIGPLAN Not. 47, 6

(2012), 263ś274. https://doi.org/10.1145/2345156.2254096

[14] G. Friedrich, M. G. Fugini, E. Mussi, B. Pernici, and G. Tagni. 2010. Exception Handling for Repair in Service-Based Processes. IEEE

Transactions on Software Engineering 36, 2 (March 2010), 198ś215. https://doi.org/10.1109/TSE.2010.8

[15] Einar Broch Johnsen, Olaf Owe, Ellen Munthe-Kaas, and Juri Vain. 2001. Incremental Fault-Tolerant Design in an Object-Oriented

Setting. In APAQS 2001. IEEE, USA, 223ś230. https://doi.org/10.1109/APAQS.2001.990023

[16] Nane Kratzke and Peter-Christian Quint. 2017. Understanding cloud-native applications after 10 years of cloud computing: A systematic

mapping study. J. Syst. Softw. 126 (2017), 1ś16. https://doi.org/10.1016/j.jss.2017.01.001

[17] OASIS. 2013. Topology and Orchestration Speciication for Cloud Applications, Version 1.0.

[18] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018. Architectural Principles for Cloud Software. ACM Trans. Internet Technol. 18,

2, Article 17 (2018), 23 pages. https://doi.org/10.1145/3104028

[19] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel. 2018. The pains and gains of microservices: A Systematic

grey literature review. J. Syst. Softw. 146 (2018), 215ś232. https://doi.org/10.1016/j.jss.2018.09.082

[20] Giovanni Tofetti, Sandro Brunner, Martin Blöchlinger, Florian Dudouet, and Andrew Edmonds. 2015. An Architecture for Self-Managing

Microservices. In AIMC 2015. ACM, USA, 19ś24. https://doi.org/10.1145/2747470.2747474

[21] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. 2011. Dynamically Scaling Applications in the Cloud. SIGCOMM Comput.

Commun. Rev. 41, 1 (Jan. 2011), 45ś52. https://doi.org/10.1145/1925861.1925869

[22] Qiang Wang, Lei Yan, Simon Bliudze, and Xiaoguang Mao. 2015. Automatic Fault Localization for BIP. In SETTA 2015 (LNCS, Vol. 9409).

Springer, Cham, 277ś283. https://doi.org/10.1007/978-3-319-25942-0_18

[23] Bill Wilder. 2012. Cloud Architecture Patterns. O’Reilly Media, USA.

[24] Michael Wurster, Uwe Breitenbücher, Antonio Brogi, Frank Leymann, and Jacopo Soldani. 2020. Cloud-native Deploy-ability: An

Analysis of Required Features of Deployment Technologies to Deploy Arbitrary Cloud-native Applications. In CLOSER 2020. SciTePress,

Setúbal, Portugal, 171ś180. https://doi.org/10.5220/0009571001710180

ACM Trans. Internet Technol.

https://doi.org/10.1007/978-3-319-99819-0_2
https://doi.org/10.1109/MC.2004.219
https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/10.1016/j.jss.2015.09.020
https://doi.org/10.1002/spe.2400
https://doi.org/10.1145/2345156.2254096
https://doi.org/10.1109/TSE.2010.8
https://doi.org/10.1109/APAQS.2001.990023
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1145/3104028
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1145/1925861.1925869
https://doi.org/10.1007/978-3-319-25942-0_18
https://doi.org/10.5220/0009571001710180

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Modelling the Management of Horizontally Scalable Applications
	3.1 Management Protocols
	3.2 Multi-Component Application Specification
	3.3 Replica-aware Management of Application Instances

	4 Analysing the Management of Horizontally Scalable Applications
	4.1 Focusing on Observable Actions
	4.2 Analysing Planned Management
	4.3 Automatically Planning Application Management, Validly

	5 Proof-of-Concept Implementation
	6 Related Work
	7 Conclusions
	References

