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This note concerns multiple weighted inequalities for vector-valued multilinear singular integral operator with nonsmooth kernel
and its corresponding commutators containing multilinear commutator and iterated commutator generated by the vector-valued
multilinear operator andBMOfunctions. By theweighted estimates for a class of newvariantmaximal and sharpmaximal functions,
the multiple weighted norm inequalities for such operators are obtained.

1. Introduction

It is well known that multiple weighted norm inequalities
for multilinear operators and their related commutators on
various spaces of function is a center topic of harmonic
analysis, which recently attracts a lot of attention, see [1–3]
et al.

In this paper, we will focus on the multiple weighted
estimates for vector valued multilinear singular integral with
nonsmooth kernel and its commutators. Now we give some
information on multilinear Calderón-Zygmund operators.

Themultilinear operator𝑇we study is initially defined on
the𝑚-fold product of Schwartz spaceS(R𝑛

)×⋅ ⋅ ⋅×S(R𝑛

) and
taking values into the space of tempered distributionsS󸀠

(R𝑛

);
that is,

𝑇 : S (R
𝑛

) × ⋅ ⋅ ⋅ ×S (R
𝑛

) 󳨀→ S
󸀠

(R
𝑛

) . (1)

A locally integrable function 𝐾(𝑥, 𝑦
1
, . . . , 𝑦

𝑚
) defined away

from the diagonal 𝑥 = 𝑦
1
= ⋅ ⋅ ⋅ = 𝑦

𝑚
in (R𝑛

)
𝑚+1 is called an

associated kernel of 𝑇 if
𝑇 (𝑓

1
, . . . , 𝑓

𝑚
) (𝑥)

= ∫
(R𝑛)
𝑚

𝐾(𝑥, 𝑦
1
, . . . , 𝑦

𝑚
) 𝑓

1
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦

𝑚
) 𝑑𝑦

1
⋅ ⋅ ⋅ 𝑑𝑦

𝑚
,

(2)

where𝑓
1
, . . . , 𝑓

𝑚
are𝐶∞ functions with compact support and

for all 𝑥 ∉ ⋂
𝑚

𝑗=1
supp𝑓

𝑗
.

Moreover, we assume the associated kernel𝐾 satisfies the
following standard estimates:

󵄨󵄨󵄨󵄨𝐾 (𝑦
0
, 𝑦

1
, . . . , 𝑦

𝑚
)
󵄨󵄨󵄨󵄨 ≤

𝐴

(∑
𝑚

𝑘,𝑙=0

󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑦
𝑙

󵄨󵄨󵄨󵄨)
𝑚𝑛

, (3)

for some 𝐴 > 0 and all (𝑦
0
, . . . , 𝑦

𝑚
) with 𝑦

0
̸= 𝑦
𝑗
for some

𝑗 ∈ {1, . . . , 𝑚}, and

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑦

0
, . . . , 𝑦

𝑗
, . . . , 𝑦

𝑚
) − 𝐾 (𝑦

0
, . . . , 𝑦

󸀠

𝑗
, . . . , 𝑦

𝑚
)
󵄨󵄨󵄨󵄨󵄨

≤

𝐴
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
− 𝑦

󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

𝜀

(∑
𝑚

𝑘,𝑙=0

󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑦
𝑙

󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜀

,

(4)

for some 𝜀 > 0 and all 0 ≤ 𝑗 ≤ 𝑚, where |𝑦
𝑗
− 𝑦

󸀠

𝑗
| ≤ (1/2)

max
0≤𝑘≤𝑚

|𝑦
𝑗
− 𝑦

𝑘
|. These facts can be founded in [4].

We now turn to present the definitions of 𝑚-linear
commutator and iterated commutator of multilinear singular
integral.
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For the multilinear operator 𝑇 and 𝑏⃗ = (𝑏
1
, . . . , 𝑏

𝑚
) in

BMO𝑚, we define the 𝑚-linear commutator 𝑇
Σ
⃗
𝑏
as the

following form:

𝑇
Σ
⃗
𝑏
( ⃗𝑓) (𝑥) =

𝑚

∑

𝑗=1

𝑇
𝑗

𝑏
𝑗

( ⃗𝑓) (𝑥) :=

𝑚

∑

𝑗=1

[𝑏
𝑗
, 𝑇]

𝑗

(𝑓
1
, . . . , 𝑓

𝑚
) (𝑥) ,

(5)

where

𝑇
𝑗

𝑏
𝑗

( ⃗𝑓) (𝑥) = 𝑏
𝑗
(𝑥) 𝑇 (𝑓

1
, . . . , 𝑓

𝑚
) (𝑥)

− 𝑇 (𝑓
1
, . . . , 𝑏

𝑗
𝑓
𝑗
, . . . , 𝑓

𝑚
) (𝑥) .

𝑇
Π

⃗
𝑏
( ⃗𝑓) (𝑥) := [𝑏

1
, [𝑏

2
, . . . [𝑏

𝑚−1
, [𝑏

𝑚
, 𝑇]

𝑚
]
𝑚−1

, . . .]
2

]
1

× (𝑓
1
, . . . , 𝑓

𝑚
) (𝑥) .

(6)

If 𝑇 is associated with a distribution kernel, which coincides
with the function𝐾 defined away from the diagonal 𝑥 = 𝑦

1
=

⋅ ⋅ ⋅ = 𝑦
𝑚
in (R𝑛

)
𝑚+1, then

𝑇
𝑗

𝑏
𝑗

( ⃗𝑓) (𝑥)

= ∫
(R𝑛)
𝑚

𝐾(𝑥, 𝑦
1
, . . . , 𝑦

𝑚
) 𝑓

1
(𝑦

1
) ⋅ ⋅ ⋅

(𝑏
𝑗
(𝑥) − 𝑏

𝑗
(𝑦

𝑗
)) 𝑓

𝑗
(𝑦

𝑗
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦

𝑚
) 𝑑𝑦

1
⋅ ⋅ ⋅ 𝑑𝑦

𝑚
.

(7)

And we also present the iterated commutator 𝑇
Π

⃗
𝑏
,

𝑇
Π

⃗
𝑏
( ⃗𝑓) (𝑥) = ∫

(R𝑛)
𝑚

𝐾(𝑥, 𝑦
1
, . . . , 𝑦

𝑚
)

×

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑥) − 𝑏

𝑗
(𝑦

𝑗
)) 𝑓

𝑗
(𝑦

𝑗
) 𝑑𝑦

1
⋅ ⋅ ⋅ 𝑑𝑦

𝑚
.

(8)

Here the notations of commutators are taken from [5, 6].
The following class of weights were introduced in [1]. Let

1 ≤ 𝑝
1
, . . . , 𝑝

𝑚
< ∞, and 1/𝑚 ≤ 𝑝 < ∞, with 1/𝑝 = 1/𝑝

1
+

⋅ ⋅ ⋅ + 1/𝑝
𝑚
, and 𝑃⃗ = (𝑝

1
, . . . , 𝑝

𝑚
); given 𝜔⃗ = (𝜔

1
, . . . , 𝜔

𝑚
), we

say that 𝜔⃗ satisfies the 𝐴
𝑝⃗
condition if

sup
𝑄

(
1

|𝑄|
∫
𝑄

]
𝜔⃗
)

1/𝑝 𝑚

∏

𝑗=1

(
1

|𝑄|
∫
𝑄

𝜔
1−𝑝
󸀠

𝑗

𝑗
)

1/𝑝
󸀠

𝑗

< ∞, (9)

where ]
𝜔⃗

= ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
, when 𝑝

𝑗
= 1, ((1/|𝑄|) ∫

𝑄

𝜔
1−𝑝
󸀠

𝑗

𝑗
)

1/𝑝
󸀠

𝑗

is understood as (inf
𝑄
𝜔
𝑗
)
−1.

Observe that𝐴
(1,...,1)

is contained in𝐴
𝑃⃗
for each 𝑃⃗. How-

ever, the class 𝐴
𝑃⃗
is not increasing with the natural partial

order, see [1] for detail. Lerner et al. [1] established multiple
weighted estimates for multilinear C-Z operators and that
for 𝑚-linear commutator of multilinear C-Z commutator.
In 2012, Chen and Wu [2] extend their results to 𝑚-linear

commutator and iterated commutator of multilinear C-Z
operatorwith nonsmooth kernel satisfyingAssumptions (H1)
and (H2).

Next we define the vector-valued multilinear operator
𝑇
𝑞
(𝑞 > 0) associated with the operator 𝑇 by

𝑇
𝑞
(𝑓

1
, . . . , 𝑓

𝑚
) (𝑥) =

󵄨󵄨󵄨󵄨𝑇 (𝑓
1
, . . . , 𝑓

𝑚
)
󵄨󵄨󵄨󵄨𝑞 (𝑥)

= (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑇 (𝑓
1𝑘
, . . . , 𝑓

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

,

(10)

where 𝑓
𝑖
= {𝑓

𝑖𝑘
}
∞

𝑘=1
, for 𝑖 = 1, . . . , 𝑚.

This operator was first studied by Grafakos andMartell in
[7]. Later Cruz-Uribe et al. gained the weak boundedness of
this one in [8]. We list them as follows.

Theorem A (see [7]). Let 𝑇 be a multilinear Calderón-
Zygmund operator as before, and let 1/𝑚 < 𝑝 < ∞, 1/𝑝 =

1/𝑝
1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
with 1 < 𝑝

1
, . . . , 𝑝

𝑚
< ∞, 1/𝑚 < 𝑞 < ∞,

and 1/𝑞 = 1/𝑞
1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
with 1 < 𝑞

1
, . . . , 𝑞

𝑚
< ∞. There

exists a constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑞
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
𝑗
(R𝑛)

. (11)

For the sequence { ⃗𝑓
𝑘
}
∞

𝑘=1
= (𝑓

1𝑘
, . . . , 𝑓

𝑚𝑘
)
∞

𝑘=1
, the vector-

valued version of the commutators 𝑇
Σ
⃗
𝑏,𝑞

and 𝑇
Π

⃗
𝑏,𝑞

are given
by

𝑇
Σ
⃗
𝑏,𝑞

( ⃗𝑓) (𝑥) =
󵄨󵄨󵄨󵄨󵄨
𝑇
Σ
⃗
𝑏
( ⃗𝑓)

󵄨󵄨󵄨󵄨󵄨𝑞
(𝑥)

= (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑇Σ ⃗
𝑏
(𝑓

1𝑘
, . . . , 𝑓

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

,

(12)

𝑇
Π

⃗
𝑏,𝑞

( ⃗𝑓) (𝑥) =
󵄨󵄨󵄨󵄨󵄨
𝑇
Π

⃗
𝑏
( ⃗𝑓)

󵄨󵄨󵄨󵄨󵄨𝑞
(𝑥)

= (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑇Π ⃗
𝑏
(𝑓

1𝑘
, . . . , 𝑓

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

.

(13)

In 2008, Tang established weighed norm inequalities for
the commutators of vector-valuedmultilinear operator in [6],
but their results are not the multiple weighted estimates that
are obtained by Lerner et al. in [1].

Now we restore to give some information on the kernel
𝐾 which satisfy Assumptions (H1) and (H2). Let {𝐴

𝑡
}
𝑡>0

be a class of integral operators which play the role of the
approximation to the identity. We always assume that the
operators 𝐴

𝑡
are associated with kernels 𝑎

𝑡
(𝑥, 𝑦) in the sense

that for all 𝑓 ∈ ⋃
𝑝∈[1,∞]

𝐿
𝑝 and 𝑥 ∈ R𝑛

𝐴
𝑡
𝑓 (𝑥) = ∫

R𝑛
𝑎
𝑡
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (14)

and that the kernels 𝑎
𝑡
(𝑥, 𝑦) satisfy the following conditions

󵄨󵄨󵄨󵄨𝑎𝑡 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ

𝑡
(𝑥, 𝑦) := 𝑡

−𝑛/𝑠

ℎ(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑡1/𝑠
) , (15)
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where 𝑠 is a positive fixed constant and ℎ is a positive,
bounded, decreasing function satisfying that for some 𝜂 > 0,

lim
𝑟→∞

𝑟
𝑛+𝜂

ℎ (𝑟
𝑠

) = 0. (16)

Recall that the 𝑗th transpose𝑇∗,𝑗 of the𝑚-linear operator
𝑇 is defined via

⟨𝑇
∗,𝑗

(𝑓
1
, . . . , 𝑓

𝑚
) , 𝑔⟩

= ⟨𝑇 (𝑓
1
, . . . , 𝑓

𝑗−1
, 𝑔, 𝑓

𝑗+1
, . . . , 𝑓

𝑚
) , 𝑓

𝑗
⟩ ,

(17)

for all 𝑓
1
, . . . , 𝑓

𝑚
, 𝑔 in S(R𝑛

). Notice that the kernel 𝐾∗,𝑗 of
𝑇
∗,𝑗 is related to the kernel𝐾 of 𝑇 via the identity

𝐾
∗,𝑗

(𝑥, 𝑗
1
, . . . , 𝑦

𝑗
, . . . , 𝑦

𝑚
) = 𝐾 (𝑦

𝑗
, 𝑦

1
, . . . , 𝑥, . . . , 𝑦

𝑚
) .

(18)

If an 𝑚-linear operator 𝑇 maps a product of Banach
Spaces 𝑋

𝑚
× ⋅ ⋅ ⋅ × 𝑋

𝑚
to another Banach Space 𝑋; then

transpose 𝑇
∗,𝑗 maps the product of Banach Spaces𝑋

1
× ⋅ ⋅ ⋅ ×

𝑋
𝑗−1

×𝑋
∗

𝑗
×𝑋

𝑗+1
× ⋅ ⋅ ⋅ ×𝑋

𝑚
into𝑋

∗

𝑗
. Moreover, the norms of

𝑇 and 𝑇
∗,𝑗 are equal. To maintain uniform notation, we may

occasionally denote 𝑇 by 𝑇
∗,0 and𝐾 by 𝐾

∗,0.

Assumption (H1). Assume that for each 𝑖 = 1, . . . , 𝑚,
there exist operators {𝐴

𝑖

𝑡
}
𝑡>0

with kernel 𝑎𝑖
𝑡
(𝑥, 𝑦) satisfying

conditions 𝑠 and 𝜂 and that for every 𝑗 = 0, 1, . . . , 𝑚, there
exist kernels𝐾∗,𝑗(𝑖)

𝑡
(𝑥, 𝑦

1
, . . . , 𝑦

𝑚
) such that

⟨𝑇
∗,𝑗

(𝑓
1
, . . . , 𝐴

(𝑖)

𝑡
𝑓
𝑗
, . . . , 𝑓

𝑚
) , 𝑔⟩

= ∫
R𝑛

∫
(R𝑛)
𝑚

𝐾
∗,𝑗(𝑖)

𝑡
(𝑥, 𝑦

1
, . . . , 𝑦

𝑚
) 𝑓

1
(𝑦

1
) ⋅ ⋅ ⋅

𝑓
𝑚
(𝑦

𝑚
) 𝑔 (𝑥) 𝑑 ⃗𝑦 𝑑𝑥,

(19)

for all 𝑓
1
, . . . , 𝑓

𝑚
in S(R𝑛

) with ⋂
𝑚

𝑘=1
supp𝑓

𝑘
∩ supp𝑔 = 0.

Also assume that for every 𝑗 = 0, 1, . . . , 𝑚 and every 𝑖 =

1, . . . , 𝑚, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐾
∗,𝑗

(𝑥, ⃗𝑦) − 𝐾
∗,𝑗(𝑖)

𝑡
(𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
𝑘

󵄨󵄨󵄨󵄨)
𝑚𝑛

×

𝑚

∑

𝑘=1,𝑘 ̸= 𝑖

Φ(

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑘

󵄨󵄨󵄨󵄨

𝑡1/𝑠
)

+
𝐴𝑡

𝜖/𝑠

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
𝑘

󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

,

(20)

where 𝑡
1/𝑠

≤ |𝑥 − 𝑦
𝑖
|/2, ⃗𝑦 = (𝑦

1
, . . . , 𝑦

𝑚
).

If 𝑇 satisfies Assumption (H1), we will say that
𝑇 is an 𝑚-linear operator with generalized Caderón-
Zygmund kernel 𝐾. The collection of function 𝐾 satisfying
(19) and (20) with parameters 𝑚,𝐴, 𝑠, 𝜂 and 𝜖 will be
denoted by 𝑚-GCZK(𝐴, 𝑠, 𝜂, 𝜖), we say that 𝑇 is of class

𝑚-GCZK(𝐴, 𝑠, 𝜂, 𝜖) if 𝑇 has an associated kernel 𝐾 in
𝑚-GCZK(𝐴, 𝑠, 𝜂, 𝜖).

Assumption (H2). Assume that there exist operators {𝐵
𝑡
}
𝑡>0

with kernel 𝑏
𝑡
(𝑥, 𝑦) satisfying conditions (15) and (16) with

constants 𝑠 and 𝜂. Let

𝐾
(0)

𝑡
(𝑥, 𝑦

1
, . . . , 𝑦

𝑚
) = ∫

R𝑛
𝐾(𝑧, 𝑦

1
, . . . , 𝑦

𝑚
) 𝑏

𝑡
(𝑥, 𝑧) 𝑑𝑧,

(21)

whenever 2𝑡1/𝑠 ≤ min
1≤𝑗≤𝑚

|𝑥 − 𝑦
𝑗
| and

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑥

󸀠

, ⃗𝑦)
󵄨󵄨󵄨󵄨󵄨
≤

𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
𝑘

󵄨󵄨󵄨󵄨)
𝑚𝑛

×

𝑚

∑

𝑘=1, 𝑘 ̸= 𝑖

Φ(

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑘

󵄨󵄨󵄨󵄨

𝑡1/𝑠
)

+
𝐴𝑡

𝜖/𝑠

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
𝑘

󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

,

(22)

whenever 2|𝑥 − 𝑥
󸀠

| ≤ 𝑡
1/𝑠 and 2𝑡

1/𝑠

≤ max
1≤𝑗≤𝑚

|𝑥 − 𝑦
𝑗
|.

When 𝑇 is of 𝑚 − GCZK(𝐴, 𝑠, 𝜂, 𝜖) and its kernel also
satisfies Assumption (H2), Duong et al. in [5] proved that
multilinear singular integral 𝑇 is bounded from 𝐿

𝑝
1(R𝑛

) ×

⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿
𝑝

(R𝑛

)(𝐿
𝑝,∞

(R𝑛

)) for 0 < 𝑝 < ∞, 1 ≤

𝑝
1
, . . . , 𝑝

𝑚
< ∞ with 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
. And they

also remarked that the above kernel which they studied has
weaker regularity. It is natural to ask whether the vector-
valued multilinear operator 𝑇

𝑞
with kernels satisfying the

same conditions as in [5] and its commutators 𝑇
Σ
⃗
𝑏,𝑞

and 𝑇
Π

⃗
𝑏,𝑞

have multiple weighted estimates or not. These problems will
be addressed by our next theorems.

Now we can formulate our results as follows.

Theorem 1. Assume that 𝑇
𝑞
is a vector-valued multilin-

ear operator defined as (10) associated with 𝑇 being an
𝑚-𝐺𝐶𝑍𝐾(𝐴, 𝑠, 𝜂, 𝜖)whose kernel𝐾 satisfies Assumption (H2).
If there exist 1 ≤ 𝑝

1
, . . . , 𝑝

𝑚
< ∞, with 1/𝑝 = 1/𝑝

1
+⋅ ⋅ ⋅+1/𝑝

𝑚

and 𝜔⃗ = (𝜔
1
, . . . , 𝜔

𝑚
) ∈ 𝐴

𝑃⃗
with 𝑃⃗ = (𝑝

1
, . . . , 𝑝

𝑚
) then

(i) 𝑇
𝑞
can be extended to a bounded operator from

𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝

(]
𝜔⃗
) if all exponents 𝑝

𝑗

are strictly greater than 1;
(ii) 𝑇

𝑞
can be extended to a bounded operator from

𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝,∞

(]
𝜔⃗
) if 1 ≤ 𝑝

𝑗
< ∞,

𝑗 = 1, . . . , 𝑚, and at least one of the 𝑝
𝑗
= 1.

Theorem 2. Assume that 𝑇
𝑞
is a vector-valued multilinear

operator that satisfies the assumptions in Theorem 1, and the
multilinear commutator𝑇

Σ
⃗
𝑏,𝑞

is defined as (12). Let 𝑏⃗ ∈ BMO𝑚,
1 < 𝑝

1
, . . . , 𝑝

𝑚
< ∞, 1 < 𝑝 < ∞with 1/𝑝 = 1/𝑝

1
+⋅ ⋅ ⋅+1/𝑝

𝑚
,

and 𝜔⃗ = (𝜔
1
, . . . , 𝜔

𝑚
) ∈ 𝐴

𝑃⃗
with 𝑃⃗ = (𝑝

1
, . . . , 𝑝

𝑚
). Then there

exists a constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
Σ
⃗
𝑏,𝑞

( ⃗𝑓)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔⃗
)

≤ 𝐶

𝑚

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑏𝑖
󵄩󵄩󵄩󵄩BMO

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
𝑗
(𝜔
𝑗
)

. (23)
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Theorem 3. Assume that 𝑇
𝑞
is a vector-valued multilinear

operator that satisfies the assumptions in Theorem 1, and the
iterated commutator 𝑇

Π
⃗
𝑏,𝑞

is defined as (13). Let 𝑏⃗ ∈ BMO𝑚,
1 < 𝑝

1
, . . . , 𝑝

𝑚
< ∞, 1 < 𝑝 < ∞ with 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ +

1/𝑝
𝑚

𝜔⃗ = (𝜔
1
, . . . , 𝜔

𝑚
) ∈ 𝐴

𝑃⃗
with 𝑃⃗ = (𝑝

1
, . . . , 𝑝

𝑚
). Then

there exists a constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
Π

⃗
𝑏,𝑞

( ⃗𝑓)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑏𝑖
󵄩󵄩󵄩󵄩BMO

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝
𝑗
(𝜔
𝑗
)

, (24)

where ]
𝜔⃗

= ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
, 1 < 𝑞

1
, . . . , 𝑞

𝑚
< ∞, 1/𝑚 < 𝑞 < ∞,

and 1/𝑞 = 1/𝑞
1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
.

The rest of this paper is organized as follows. In Section 2,
we recall some standard definitions and lemmas. In Section 3,
we introduce a class of new maximal functions and prove
some useful estimates which will play key roles in the proofs
of our theorems. In Section 4, it is devoted to the proof
our theorems. Throughout this paper, we use the letter 𝐶 to
denote a positive constant that varies from line to line, but it
is independent of the essential variable.

2. Some Preliminaries

Lemma4 (see [1, Lemma 6.1]). Assume that 𝜔⃗ = (𝜔
1
, . . . , 𝜔

𝑚
)

satisfies 𝐴
𝑃⃗
condition, then there exists a finite constant 𝑟 > 1

such that 𝜔⃗ ∈ 𝐴
𝑃⃗/𝑟

.

We recall the definition of theHardy-Littlewoodmaximal
function and the sharp maximal function:

𝑀(𝑓) (𝑥) = sup
𝑄∋𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦,

𝑀
♯

(𝑓) (𝑥) = sup
𝑄∋𝑥

inf
𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑐
󵄨󵄨󵄨󵄨 𝑑𝑦

≈ sup
𝑄∋𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓
𝑄

󵄨󵄨󵄨󵄨 𝑑𝑦,

(25)

and their variants 𝑀
𝛿
(𝑓)(𝑥) = 𝑀(|𝑓|

𝛿

)
1/𝛿

(𝑥) and 𝑀
♯

𝛿
(𝑓)(𝑥)

= 𝑀
♯

(|𝑓|
𝛿

)
1/𝛿

(𝑥).
We will use the following inequality (see [9]):

∫
R𝑛

(𝑀
𝛿
(𝑓) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶∫
R𝑛

(𝑀
♯

𝛿
(𝑓) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥,

(26)

all functions𝑓 forwhich the left-hand side is finite, andwhere
0 < 𝑝, 𝛿 < ∞, 𝜔 ∈ 𝐴

∞
.

Now we introduce some facts on Orlicz spaces. Let Φ:
[0,∞) → [0,∞) be a Young function, that is, a continuous,
convex, increasing function with Φ(0) = 0 and such that
Φ(𝑡) → ∞ as 𝑡 → ∞. In this paper, any Young function
Φ will be doubling, namely Φ(2𝑡) ≤ 𝐶Φ(𝑡) for 𝑡 > 0. We
define the Φ-average of function 𝑓 over a cube 𝑄 by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Φ,𝑄 = inf {𝜆 > 0 :

1

|𝑄|
∫
𝑄

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 ≤ 1} . (27)

It is a simple but important observation that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Φ,𝑄 > 1 iff 1

|𝑄|
∫
𝑄

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 > 1. (28)

A particular case of interest, and especially in this paper, is
the Young functionΦ(𝑡) = 𝑡(1 + log+𝑡), the average ‖𝑓‖

Φ,𝑄
of

a function 𝑓 given by the Luxemburg norm ‖𝑓‖
𝐿(log𝐿),𝑄.

Associated with this average, we have amaximal function

𝑀
𝐿(log𝐿)𝑓(𝑥)=sup

𝑄∋𝑥

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄, (29)

where the supremum is taken over all the cubes containing 𝑥.
By the generalized Hölder’s inequality, we also get

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥) 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMO

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄. (30)

3. New Maximal Functions

In this section, we will introduce certain variant multilinear
maximal functions and establish the multiple weighted esti-
mates for such functions, which are one of the main parts in
this paper.

Recall the definitions of these maximal functions, which
are introduced by Lerner et al. in [1]

M ( ⃗𝑓) (𝑥) = sup
𝑄∋𝑥

𝑚

∏

𝑗=1

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦,

M
𝑟
( ⃗𝑓) (𝑥) = sup

𝑄∋𝑥

𝑚

∏

j=1
(

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦)

1/𝑟

,

M
𝐿(log𝐿) (

⃗𝑓) (𝑥) = sup
𝑄∋𝑥

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄.

(31)

The fact that 𝑟 > 1, there exists a constant𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄 ≤ 𝐶(

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦)

1/𝑟

, (32)

so it is easy to check that

M ( ⃗𝑓) (𝑥) ≤ M
𝐿(log𝐿) (

⃗𝑓) (𝑥) ≤ M
𝑟
( ⃗𝑓) (𝑥) . (33)

Characterizations of the multiple weights in terms of M
were proven inTheorems 3.3 and 3.7 in [1].

Lemma 5. Let 1 ≤ 𝑝
1
, . . . , 𝑝

𝑚
< ∞, 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
,

and 𝑃⃗ = (𝑝
1
, . . . , 𝑝

𝑚
),

(i) If 1 < 𝑝
1
, . . . , 𝑝

𝑚
< ∞, then M is bounded from

𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝

(]
𝜔⃗
) if and only if 𝜔⃗ =

(𝜔
1
, . . . , 𝜔

𝑚
) ∈ 𝐴

𝑃⃗
;

(ii) If 1 ≤ 𝑝
1
, . . . , 𝑝

𝑚
< ∞, then M is bounded from

𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝,∞

(]
𝜔⃗
) if and only if

𝜔⃗ = (𝜔
1
, . . . , 𝜔

𝑚
) ∈ 𝐴

𝑝⃗
.
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In the following, we introduce the modified multilinear
maximal functions.

Let 𝑟 > 1, 1 ≤ 𝑙 < 𝑚, 󰜚 = {𝑗
1
, . . . , 𝑗

𝑙
} ⊆ {1, . . . , 𝑚} and 󰜚

󸀠

=

{1, . . . , 𝑚} \ 󰜚. We defined the following multilinear maximal
functions:

M
󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

:= sup
𝑄∋𝑥

∞

∑

]=0
2
−]𝑛𝑙

∏

𝑗∈󰜚

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

× ∏

𝑗∈󰜚
󸀠

1

|2
]𝑄|

∫
2
]
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗
,

(34)

M
󰜚,𝐿(log𝐿) (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

:= sup
𝑄∋𝑥

∞

∑

]=0
2
−]𝑛𝑙

∏

𝑗∈󰜚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄

× ∏

𝑗∈󰜚
󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),2]𝑄
,

(35)

M
󰜚,𝑟

(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

:= sup
𝑄∋𝑥

∞

∑

]=0
2
−]𝑛𝑙

∏

𝑗∈󰜚

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑞
𝑗

𝑑𝑦
𝑗
)

1/𝑟

× ∏

𝑗∈󰜚
󸀠

(
1

|2
]𝑄|

∫
2
]
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑞
𝑗

𝑑𝑦
𝑗
)

1/𝑟

,

(36)

where |𝑓
𝑗
|
𝑞
𝑗

= (∑
∞

𝑘=1
|𝑓
𝑗𝑘
(𝑦

𝑗
)|
𝑞
𝑗)
1/𝑞
𝑗 .

We remark that when 󰜚 = 1, . . . , 𝑙 and ⃗𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
),

M
󰜚
was first introduced byGrafakos el al. in [10] and denoted

M
󰜚
by M

𝑙
. Chen and Wu [2] proved the multiple weighted

norm inequality forM
󰜚,𝑟
. Similarly to (33), for any 𝑟 > 0, we

have

M
󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) ≤ M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) ≤ M

󰜚,𝑟
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) . (37)

Lemma 6. Let 1 < 𝑝
1
, . . . , 𝑝

𝑚
< ∞, 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
,

𝑃⃗ = (𝑝
1
, . . . , 𝑝

𝑚
), 𝜔⃗ ∈ 𝐴

𝑝⃗
, and 󰜚 = {𝑗

1
, . . . , 𝑗

𝑙
} ⊆ {1, . . . , 𝑚},

1 ≤ 𝑙 < 𝑚. Then for some 𝑟 > 1 (𝑟 depending only on 𝜔⃗),
M

𝑟
andM

󰜚,𝑟
defined by (36) are bounded from 𝐿

𝑝
1(𝜔

1
)× ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝

(]
𝜔⃗
). M, M

𝐿(log𝐿), M󰜚
, and M

󰜚,𝑟
are bounded

from 𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑚
) to 𝐿

𝑝

(]
𝜔⃗
).

4. Weighted Inequalities for Vector-Valued
Singular Integral and Its Commutators

To prove our theorems, we first give two Lemmas
about vector-valued operator 𝑇

𝑞
associated with 𝑇 in

𝑚-GCZO(𝐴, 𝑠, 𝜂, 𝜖) which were obtained by Duong et al. in
[5].

Lemma 7. Let 𝑇 be a multilinear operator in 𝑚-GCZO
(𝐴, 𝑠, 𝜂, 𝜖) with 𝐾 satisfying Assumption (H2). And let 1/𝑚 <

𝑝 < ∞, 1 < 𝑝
1
, . . . , 𝑝

𝑚
< ∞ with 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ +

1/𝑝
𝑚
, 1/𝑚 < 𝑞 < ∞, and 1 < 𝑞

1
, . . . , 𝑞

𝑚
< ∞ with

1/𝑞 = 1/𝑞
1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
. Then there exists a constant 𝐶 > 0

such that
󵄩󵄩󵄩󵄩󵄩
𝑇 ( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝
𝑗
(R𝑛)

. (38)

Lemma 8. Let 𝑇 be a multilinear operator in 𝑚-GCZO
(𝐴, 𝑠, 𝜂, 𝜖) with 𝐾 satisfying Assumption (H2). And let 1/𝑚 <

𝑝 < ∞, 1 ≤ 𝑝
1
, . . . , 𝑝

𝑚
< ∞ with 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
,

and 1/𝑚 < 𝑞 < ∞, 1 < 𝑞
1
, . . . , 𝑞

𝑚
< ∞ with 1/𝑞 =

1/𝑞
1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
. Then there exists a constant 𝐶 > 0 such

that
󵄩󵄩󵄩󵄩󵄩
𝑇 ( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,∞(R𝑛)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝
𝑗
(R𝑛)

. (39)

Before proving Theorem 1, we first present the estimates
on the pointwise estimates for sharp Fefferman-stein maxi-
mal function action on 𝑇

𝑞
.

Proposition 9. Let 𝑇 be an 𝑚-linear operator in GCZO
(𝐴, 𝑠, 𝜂, 𝜖) and 𝑇

𝑞
satisfy the assumption inTheorem 1. Assume

that 󰜚
0

= {1, . . . , 𝑚} and 0 < 𝛿 < 1/𝑚. For any {𝑓
1𝑚

, . . . ,

𝑓
𝑚𝑘

}
∞

𝑘=1
in the product spaces 𝐿

𝑝
1(𝑙

𝑞
1) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝑙

𝑞
𝑚) with

1 < 𝑝
𝑗
, 𝑞

𝑗
< ∞ for 𝑗 = 1, . . . , 𝑚, then these exists a constant

𝐶 > 0 such that

𝑀
♯

𝛿
(𝑇

𝑞
( ⃗𝑓)) (𝑥) ≤ 𝐶 (M (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) +M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)) .

(40)

The ideas and arguments used in the proof are similar to
those in [1] with some modifications. For completeness, we give
the proof as follows.

Proof of Proposition 9. For a point 𝑥 and a cube 𝑄 ∋ 𝑥, since
||𝛼|

𝑟

− |𝛽|
𝑟

| ≤ |𝛼 − 𝛽|
𝛽, for 0 < 𝑟 < 1, to obtain (40), it suffices

to prove for 0 < 𝛿 < 1/m

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
( ⃗𝑓) (𝑧) − 𝐶

𝑄

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶(M (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) +M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)) ,

(41)

for some constant 𝐶
𝑄
to be determined later.

Let {𝑓
1𝑘
, . . . , 𝑓

𝑚𝑘
}
∞

𝑘=1
be any smooth vector-valued func-

tions. Set each ⃗𝑓
𝑘
= ⃗𝑓

0

𝑘
+ ⃗𝑓

∞

𝑘
, where { ⃗𝑓

0

𝑘
}
∞

𝑘=1
= { ⃗𝑓

𝑘
𝜒
𝑄
∗}
∞

𝑘=1
=

{𝑓
1𝑘
𝜒
𝑄
∗ , . . . , 𝑓

𝑚𝑘
𝜒
𝑄
∗}
∞

𝑘=1
and 𝑄

∗

= (8√𝑛 + 4)𝑄, then we can
write

𝑚

∏

𝑗=1

𝑓
𝑗𝑘

(𝑦
𝑗
) =

𝑚

∏

𝑗=1

𝑓
𝑗𝑘

(𝑦
𝑗
) (𝑓

0

𝑗𝑘
(𝑦

𝑗
) + 𝑓

∞

𝑗𝑘
(𝑦

𝑗
))

= ∑

𝛼
1
,...,𝛼
𝑚

𝑓
𝛼
1

1𝑘
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚𝑘
(𝑦

𝑚
)

=

𝑚

∏

𝑗=1

𝑓
0

𝑗𝑘
(𝑦

𝑗
) +

󸀠

∑𝑓
𝛼
1

1𝑘
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚𝑘
(𝑦

𝑚
) ,

(42)

where each term of ∑󸀠 contains at least one 𝛼
𝑗

̸= 0.
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Hence, we can write

𝑇
𝑞
( ⃗𝑓) (𝑧) = 𝑇

𝑞
( ⃗𝑓

0

) (𝑧) +

󸀠

∑𝑇
𝑞
(𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑧) . (43)

Applying Kolmogorov’s inequality to the term

𝑇
𝑞
( ⃗𝑓

0

) (𝑧) = 𝑇
𝑞
(𝑓

0

1𝑘
, . . . , 𝑓

0

𝑚𝑘
) (𝑧) , (44)

with 𝑝 = 𝛿 and 𝑞 = 1/𝑚, we derive

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
( ⃗𝑓

0

) (𝑧)
󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑞
( ⃗𝑓

0

)
󵄩󵄩󵄩󵄩󵄩𝐿1/𝑚,∞(𝑄, 𝑑𝑥/|𝑄|)

≤ 𝐶

𝑚

∏

𝑗=1

1

|𝑄
∗
|
∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶M (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) ,

(45)

since 𝑇 : 𝐿
1

× ⋅ ⋅ ⋅ × 𝐿
1

→ 𝐿
1/𝑚,∞.

To estimate the remaining terms, we now set 𝐶
𝑄

= ∑
󸀠

𝑇
𝑞

(𝑓
𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
)(𝑥) and will show that, for any 𝑧 ∈ 𝑄,

󸀠

∑
󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
(𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑧) − 𝑇

𝑞
(𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶M (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) .

(46)

Consider the case when 𝛼
1
= ⋅ ⋅ ⋅ = 𝛼

𝑚
= ∞ and define

𝑇
𝑞
( ⃗𝑓

∞

) = 𝑇
𝑞
(𝑓

∞

1𝑘
, . . . , 𝑓

∞

𝑚𝑘
) . (47)

So

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
(𝑓

∞

1𝑘
, . . . , 𝑓

∞

𝑚𝑘
) (𝑧) − 𝑇

𝑞
(𝑓

∞

1𝑘
, . . . , 𝑓

∞

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
(R𝑛\𝑄∗)

𝑚

𝐾(𝑧, ⃗𝑦) 𝑓
1𝑘

(𝑦
1
) ⋅ ⋅ ⋅

𝑓
𝑚𝑘

(𝑦
𝑚
) 𝑑 ⃗𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

− (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
(R𝑛\𝑄∗)

𝑚

𝐾(𝑥, ⃗𝑦) 𝑓
1𝑘

(𝑦
1
) ⋅ ⋅ ⋅

𝑓
𝑚𝑘

(𝑦
𝑚
) 𝑑 ⃗𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

≤ [

∞

∑

𝑘=1

(∫
(R𝑛\𝑄∗)

𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1) ⋅ ⋅ ⋅ 𝑓𝑚𝑘 (𝑦𝑚)

󵄨󵄨󵄨󵄨 𝑑 ⃗𝑦)

𝑞

]

1/𝑞

≤ [

∞

∑

𝑘=1

(∫
(R𝑛\𝑄∗)

𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑧, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1) ⋅ ⋅ ⋅ 𝑓𝑚𝑘 (𝑦𝑚)

󵄨󵄨󵄨󵄨 𝑑 ⃗𝑦)

𝑞

]

1/𝑞

≤ (

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

]=0
∫
(2

]+1
𝑄
∗
\2

]
𝑄
∗
)
𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑧, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1) ⋅ ⋅ ⋅ 𝑓𝑚𝑘 (𝑦𝑚)

󵄨󵄨󵄨󵄨 𝑑 ⃗𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

:= 𝐼.

(48)

Since 𝑥, 𝑧 ∈ 𝑄, 𝑦
𝑗
∈ R𝑛

\ (8√𝑛 + 4)𝑄, and 𝑡 = (2√𝑛𝑙(𝑄))
𝑠,

then |𝑥 − 𝑦
𝑗
| ∼ |𝑧 − 𝑦

𝑗
|, |𝑧 − 𝑦

𝑗
| > (4√𝑛 + 1)𝑙(𝑄) > 2𝑡

1/𝑠,
|𝑥 −𝑦

𝑗
| > 2𝑡

1/𝑠, and |𝑥 − 𝑧| < 2𝑡
1/𝑠. Hence, 𝜙(|𝑦

𝑗
−𝑧|/𝑡

1/𝑠

) = 0

for 𝑗 = 1, 2. By Assumption (H2), we can infer

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑧, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐴𝑡
𝜖/𝑠

(∑
𝑚

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

,

󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐴𝑡
𝜖/𝑠

(∑
𝑚

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

.

(49)

Thus,

𝐼 ≤ 𝐶(

∞

∑

𝑘=1

(

∞

∑

]=0
∫
(2

]+1
𝑄
∗
\2

]
𝑄
∗
)
𝑚

𝐴𝑡
𝜖/𝑠

(∑
𝑚

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

×

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

)

1/𝑞

≤ 𝐶(

∞

∑

𝑘=1

(

∞

∑

]=0

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2𝑛|𝑄
∗
|
1/𝑛

)
𝑚𝑛+𝜖

× ∫
(2

]+1
𝑄
∗
)
𝑚

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

)

1/𝑞
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≤ 𝐶(

∞

∑

𝑘=1

(

∞

∑

]=0

1

2]𝜖

1

(2]+1|𝑄∗
|
1/𝑛

)
𝑚𝑛

×∫
(2

]+1
𝑄
∗
)
𝑚

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

)

1/𝑞

≤ 𝐶

∞

∑

]=1

1

2]𝜖

𝑚

∏

𝑗=1

[

[

∞

∑

𝑘=1

(
1

(2]+1|𝑄∗
|
1/𝑛

)
𝑛

× ∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

]

1/𝑞
𝑗

≤ 𝐶

∞

∑

]=1

1

2]𝜖

𝑚

∏

𝑗=1

1

(2]+1|𝑄∗
|
1/𝑛

)
𝑛
∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶M (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) .

(50)

It remains to estimate the terms in (46) with 𝛼
𝑗
1

= ⋅ ⋅ ⋅ = 𝛼
𝑗
𝑙

=

0, for some 󰜚 = {𝑗
1
, . . . , 𝑗

𝑙
} ⊂ {1, . . . , 𝑚} = 󰜚

0
for 1 ≤ 𝑙 < 𝑚

and 󰜚
󸀠

= 󰜚
0
\ 󰜚, by Assumption (H2), we have

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
(𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑧) − 𝑇

𝑞
(𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ [

∞

∑

𝑘=1

(∫
(R𝑛)
𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓

𝛼
1

1
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦

𝑚
)
󵄨󵄨󵄨󵄨 𝑑 ⃗𝑦)

𝑞

]

1/𝑞

≤ [

∞

∑

𝑘=1

(∫
(R𝑛)
𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑧, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓

𝛼
1

1
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦

𝑚
)
󵄨󵄨󵄨󵄨 𝑑 ⃗𝑦)

𝑞

]

1/𝑞

≤ 𝐶
{

{

{

∞

∑

𝑘=1

[

[

∏

𝑗∈󰜚

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗

× (∫
(R𝑛\𝑄∗)

𝑚

(
𝑡
𝜖/𝑡

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

+
1

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛

)

×∏

𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)]

]

𝑞

}

}

}

1/𝑞

≤ 𝐶
{

{

{

∞

∑

𝑘=1

[

[

∏

𝑗∈󰜚

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗

× (

∞

∑

]=0
(

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛+𝜖

+
1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

)

× ∫
(2

]+1
𝑄
∗
)
𝑚

∏

𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)]

]

𝑞

}

}

}

1/𝑞

≤ 𝐶

∞

∑

]=0
(

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛+𝜖

+
1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

)

× ∏

𝑗∈󰜚

[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

1/𝑞
𝑗

× ∏

𝑗∈󰜚
󸀠

[

∞

∑

𝑘=1

(∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

1/𝑞
𝑗

≤ 𝐶

∞

∑

]=0

1

2]𝜖

1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

∏

𝑗∈󰜚

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

× ∏

𝑗∈󰜚
󸀠

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

+ 𝐶

∞

∑

]=0

1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

∏

𝑗∈󰜚

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

× ∏

𝑗∈󰜚
󸀠

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶

∞

∑

]=0

1

2]𝜖

1

(2]+1|𝑄∗
|
1/𝑛

)
𝑚𝑛

𝑚

∏

𝑗=1

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

+ 𝐶

∞

∑

]=0

1

2]𝑛𝑙
∏

𝑗∈󰜚

1

|𝑄
∗
|
∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

× ∏

𝑗∈󰜚
󸀠

1

(
󵄨󵄨󵄨󵄨2

]+1𝑄∗
󵄨󵄨󵄨󵄨

1/𝑛

)

𝑛
∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶(M (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) +M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)) .

(51)

This finishes the proof of Proposition 9.

Now we restore to proveTheorem 1.



8 Journal of Function Spaces and Applications

Proof of Theorem 1. By the definition of 𝜔⃗ ∈ 𝐴
𝑃⃗
implies

that ]
𝜔⃗

∈ 𝐴
∞
. Using Proposition 9 and the Fefferman-Stein

inequality (26) and observing that 0 < 𝛿 < 1/𝑚, we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑞
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑀

𝛿
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
M (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+ ∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

.

(52)

Then following from (52) and Lemma 6, Theorem 1 can be
proved.

We are left to check that ‖𝑀
𝛿
(𝑇

𝑞
( ⃗𝑓))‖

𝐿
𝑝
(]
𝜔
)

is finite. The
method of proof is similar to that of Theorem 3.19 in [2]. So
we omit it here.

Here is a crucial proposition on commutator 𝑇
Σ
⃗
𝑏,𝑞

to
proveTheorem 2.

Proposition 10. Let𝑇
𝑞
be a vector-valuedmultilinear operator

associated with an 𝑚-linear operator 𝑇 in GCZO(𝐴, 𝑠, 𝜂, 𝜖)

whose kernels satisfie the Assumption (H2). Suppose that 𝑇
Σ
⃗
𝑏,𝑞

is the corresponding commutator of 𝑇
𝑞
with 𝑏⃗ ∈ BMO𝑚. Let

0 < 𝛿 < min{𝜖, 1/𝑚}, 𝑟 > 1. Then there exists a constant𝐶 > 0

depending on 𝛿 and 𝜖, such that

𝑀
♯

𝛿
(𝑇

Σ
⃗
𝑏,𝑞

( ⃗𝑓)) (𝑥)

≤ 𝐶

𝑚

∑

𝑖=1

(𝑀
𝜖
(𝑇

𝑞
( ⃗𝑓)) (𝑥) +M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

+ ∑

0 ̸= 󰜚⊂󰜚
0

M
󰜚,𝐿(log𝐿) (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥))

(53)

holds for all bounded measurable vector functions { ⃗𝑓
𝑘
}
∞

𝑘=1
=

{𝑓
1𝑘
, . . . , 𝑓

𝑚𝑘
}
∞

𝑘=1
.

Proof of Proposition 10. By linearity, it suffices to consider the
operator with only symbols. Without loss of generality, we
only consider the case: 𝑗 = 1 and denote 𝑏

1
by 𝑏 for conve-

nience.
Note that for any constant 𝜆 we have

𝑇
Σ
⃗
𝑏,𝑞

( ⃗𝑓) (𝑧) = (𝑏 (𝑧) − 𝜆) 𝑇
𝑞
(𝑓

1
, . . . , 𝑓

𝑚
) (𝑧)

− 𝑇
𝑞
(𝑏𝑓

1
, . . . , 𝑓

𝑚
) (𝑧) .

(54)

Fix 𝑥, for any cube 𝑄 centered at 𝑥 and a constant 𝑐 deter-
mined later, we have

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑏,𝑞

( ⃗𝑓) (𝑧)
󵄨󵄨󵄨󵄨󵄨

𝛿

− |𝑐|
𝛿

𝑑𝑧)

1/𝛿

≤ (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑏,𝑞

( ⃗𝑓) (𝑧) − 𝑐
󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ (
𝐶

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑏 (𝑧) − 𝜆) 𝑇

𝑞
( ⃗𝑓) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

+ (
𝐶

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

1
, . . . , 𝑓

𝑚
) (𝑧) − 𝑐

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

:= 𝐼 + 𝐼𝐼.

(55)

We analyze each term separately. Recall that𝑄∗

= (8√𝑛+4)𝑄

and 𝜆 = 𝑏
𝑄
∗ and thanks to Hölder’s inequality and note that

1 < 𝑞 < 𝜖/𝛿, it follows that

𝐼 ≤ 𝐶(
1

|𝑄|
∫
𝑄

|𝑏 (𝑧) − 𝜆|
𝛿𝑞
󸀠

𝑑𝑧)

1/𝛿𝑞
󸀠

× (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
( ⃗𝑓) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿𝑞

𝑑𝑧)

1/𝛿𝑞

≤ 𝐶‖𝑏‖BMO𝑀𝜖
(𝑇

𝑞
( ⃗𝑓)) (𝑥) .

(56)

To estimate 𝐼𝐼, we split again each ⃗𝑓
𝑘
into ⃗𝑓

0

𝑘
+ ⃗𝑓

∞

𝑘
, where

⃗𝑓
0

𝑘
= ⃗𝑓

𝑘
𝜒
𝑄
∗ = {𝑓

1𝑘
𝜒
𝑄
∗ , . . . , 𝑓

𝑚𝑘
𝜒
𝑄
∗}. This yields

𝑚

∏

𝑗=1

𝑓
𝑗𝑘

(𝑦
𝑗
) = ∑

{𝛼1 ,...,𝛼𝑚}∈{0,∞}

𝑓
𝛼
1

(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚𝑘
(𝑦

𝑚
)

=

𝑚

∏

𝑗=1

𝑓
0

𝑗𝑘
(𝑦

𝑗
) +

󸀠

∑𝑓
𝛼
1

1𝑘
(𝑦

1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚𝑘
(𝑦

𝑚
) ,

(57)

where each term in ∑
󸀠 contains at least one 𝛼

𝑗
̸= 0.

Choose 𝑐 = ∑
󸀠

𝐶
𝛼
1
,...,𝛼
𝑚

with 𝐶
𝛼
1
,...,𝛼
𝑚

= 𝑇
𝑞
((𝑏 −𝜆)𝑓

𝛼
1

1𝑘
, . . . ,

𝑓
𝛼
𝑚

𝑚𝑘
)(𝑥), then

𝐼𝐼 ≤ 𝐶(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

0

1𝑘
, . . . , 𝑓

0

𝑚𝑘
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

+

󸀠

∑(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑧)

−𝐶
𝛼
1
,...,𝛼
𝑚

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

:= 𝐼𝐼
0
+

󸀠

∑𝐼𝐼
𝛼
1
,...,𝛼
𝑚

.

(58)

Noting that 𝛿 < 1/𝑚 and 𝑇
𝑞
: 𝐿

1

× ⋅ ⋅ ⋅ × 𝐿
1

→ 𝐿
1/𝑚,∞ and

using Hölder’ inequality, we obtain

𝐼𝐼
0
= 𝐶(

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

0

1𝑘
, . . . , 𝑓

0

𝑚𝑘
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

0

1𝑘
, . . . , 𝑓

0

𝑚𝑘
)
󵄩󵄩󵄩󵄩󵄩𝐿1/𝑚,∞(𝑄, 𝑑𝑥/|𝑄|)
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≤ 𝐶
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
0

1

󵄨󵄨󵄨󵄨󵄨𝑞
𝑑𝑦

1

𝑚

∏

𝑗=2

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶
1

|𝑄|
∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1

󵄨󵄨󵄨󵄨𝑞 𝑑𝑦
1

𝑚

∏

𝑗=2

1

|𝑄|
∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶‖𝑏‖BMO
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨𝑞

󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄∗

𝑚

∏

𝑗=2

(
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

)
𝑄
∗

≤ 𝐶‖𝑏‖BMOM𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) .

(59)
Now consider the term 𝐼𝐼

∞,...,∞
. By Hölder’s and

Minkoswki’s inequalities as well as Assumptions (H1) and
(H2), we obtain

𝐼𝐼
∞,...,∞

= (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

∞

1𝑘
, . . . , 𝑓

∞

𝑚𝑘
) (𝑧)

−𝑇
𝑞
((𝑏 − 𝜆) 𝑓

∞

1𝑘
, . . . , 𝑓

∞

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶
1

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
(R𝑛\𝑄∗)

𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑏 (𝑦

1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=2

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

𝑑𝑧

≤ 𝐶
1

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
(R𝑛\𝑄∗)

𝑚

(
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑧, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨
)

×
󵄨󵄨󵄨󵄨𝑏 (𝑦

1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=2

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

𝑑𝑧

:= 𝐼𝐼
󸀠

∞,...,∞
.

(60)

Since 𝑥, 𝑧 ∈ 𝑄, 𝑦
𝑗
∈ R𝑛

\ (8√𝑛 + 4)𝑄, and 𝑡 = (2√𝑛𝑙(𝑄))
𝑠,

then |𝑥 − 𝑦
𝑗
| ∼ |𝑧 − 𝑦

𝑗
|, |𝑧 − 𝑦

𝑗
| > (4√𝑛 + 1)𝑙(𝑄) > 2𝑡

1/𝑠,
|𝑥 − 𝑦

𝑗
| > 2𝑡

1/𝑠 and |𝑥 − 𝑧| < 2𝑡
1/𝑠. Hence, 𝜙(|𝑦

𝑗
− 𝑧|/𝑡

1/𝑠

) = 0

for 𝑗 = 1, 2.
Thus from the Assumption (H2), we can follow that

𝐼𝐼
󸀠

∞,...,∞
≤

𝐶

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
(R𝑛\𝑄∗)

𝑚

𝐴𝑡
𝜖/𝑠

(∑
𝑚

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

×
󵄨󵄨󵄨󵄨𝑏 (𝑦

1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=2

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

𝑑𝑧

≤ 𝐶[

[

∞

∑

𝑘=1

(

∞

∑

]=0

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛+𝜖

× ∫
(2

]+1
𝑄
∗
)
𝑚

󵄨󵄨󵄨󵄨𝑏1 (𝑦1) − 𝜆
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1 (𝑦1)

󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦

𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

≤ 𝐶

∞

∑

]=0

1

2]𝜖

1

(2]+1|𝑄∗
|
1/𝑛

)
𝑚𝑛

× [

∞

∑

𝑘=1

(∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨𝑏1 (𝑦1) − 𝜆
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓1 (𝑦1)

󵄨󵄨󵄨󵄨 𝑑𝑦1)

𝑞
1

]

1/𝑞
1

×

𝑚

∏

𝑗=2

[

∞

∑

𝑘=1

(∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦

𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

1/𝑞
𝑗

≤ 𝐶

∞

∑

]=0

1

2]𝜖

1

(2]+1|𝑄∗
|
1/𝑛

)
𝑚𝑛

× ∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨𝑏1 (𝑦1) − 𝜆
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1

󵄨󵄨󵄨󵄨𝑞
1

𝑑𝑦
1

×

𝑚

∏

𝑗=2

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶

∞

∑

]=0

]
2]𝜖

‖𝑏‖BMO
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨𝑞
1

󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),2]+1𝑄∗

×

𝑚

∏

𝑗=2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),2]+1𝑄∗

≤ 𝐶‖𝑏‖BMOM𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) ,

(61)

where we use the fact that ‖𝑏 − 𝜆‖exp𝐿,2]+1𝑄 ≤ 𝐶]‖𝑏‖exp𝐿,𝑄.
What remains to be considered is the term 𝐼𝐼

𝛼
1
,...,𝛼
𝑚

such
that 𝛼

𝑗
1

= ⋅ ⋅ ⋅ = 𝛼
𝑗
𝑙

= 0, for some 󰜚 = {𝑗
1
, . . . , 𝑗

𝑙
} ⊂ {1, . . . , 𝑚}

for 1 ≤ 𝑙 < 𝑚 and denote 󰜚
󸀠

= 󰜚
0
\ 󰜚. We consider only the

case 1 ∈ 󰜚, by Assumption (H2), we have

𝐼𝐼
𝛼
1
,...,𝛼
𝑚

= (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑧)

−𝑇
𝑞
((𝑏 − 𝜆) 𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿
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≤
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑞
((𝑏 − 𝜆) 𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑧)

−𝑇
𝑞
((𝑏 − 𝜆) 𝑓

𝛼
1

1𝑘
, . . . , 𝑓

𝛼
𝑚

𝑚𝑘
) (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑧

≤
1

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
(R𝑛)
𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑏 (𝑦

1
) − 𝜆

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
0

1𝑘
(𝑦

1
)
󵄨󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝛼
𝑗

𝑗𝑘
(𝑦

𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

𝑑𝑧

≤
1

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
(R𝑛)
𝑚

(
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑧, ⃗𝑦) − 𝐾

(0)

𝑡
(𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑧, ⃗𝑦) − 𝐾 (𝑥, ⃗𝑦)

󵄨󵄨󵄨󵄨󵄨
)

×
󵄨󵄨󵄨󵄨𝑏 (𝑦

1
) − 𝜆

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
0

1𝑘
(𝑦

1
)
󵄨󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑗=2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝛼
𝑗

𝑗𝑘
(𝑦

𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑 ⃗𝑦)

𝑞

]

]

1/𝑞

𝑑𝑧

≤
𝐶

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨 𝑑𝑦1

× ∏

𝑗∈󰜚\{1}

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗

× ∫
(R𝑛\𝑄∗)

𝑚−𝑙

× (
𝑡
𝜖/𝑡

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

+
1

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛

)

×∏

𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞

]

]

1/𝑞

𝑑𝑧

≤
𝐶

|𝑄|
∫
𝑄

[

[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨 𝑑𝑦1

× ∏

𝑗∈󰜚\{1}

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗

×

∞

∑

]=0
∫
(2

]+1
𝑄
∗
\2

]
𝑄
∗
)
𝑚−𝑙

× (
𝑡
𝜖/𝑡

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛+𝜖

+
1

(∑
𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑦

𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑚𝑛

)

× ∏

𝑗∈󰜚󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞

]

]

1/𝑞

𝑑𝑧

≤ 𝐶[

[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨 𝑑𝑦1

× ∏

𝑗∈󰜚\{1}

∫
Q∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗

×

∞

∑

]=0
(

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛+𝜖

+
1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

)

× ∫
(2

]+1
𝑄
∗
)
𝑚−𝑙

∏

𝑗∈󰜚
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞

]

]

1/𝑞

≤ 𝐶[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1𝑘 (𝑦1)

󵄨󵄨󵄨󵄨 𝑑𝑦1)

𝑞
1

]

1/𝑞
1

× ∏

𝑗∈󰜚\{1}

[

∞

∑

𝑘=1

(∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

1/𝑞
𝑗

×

∞

∑

]=0
(

󵄨󵄨󵄨󵄨𝑄
∗󵄨󵄨󵄨󵄨

𝜖/𝑛

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛+𝜖

+
1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

)

× ∏

𝑗∈󰜚
󸀠

[

∞

∑

𝑘=1

(∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗𝑘

(𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

𝑗
)

𝑞
𝑗

]

1/𝑞
𝑗

≤ ∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑏 (𝑦
1
) − 𝜆

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1

󵄨󵄨󵄨󵄨𝑞
1

𝑑𝑦
1

× ∏

𝑗∈󰜚\{1}

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

×

∞

∑

]=0
(

1

2]𝜖

1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

+
1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

)

× ∏

𝑗∈󰜚
󸀠

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

≤ 𝐶‖𝑏‖BMO
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨𝑞
1

󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄∗
󵄨󵄨󵄨󵄨𝑄

∗󵄨󵄨󵄨󵄨

× ∏

𝑗∈󰜚\{1}

∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗
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× [

[

∞

∑

]=0

1

2]𝜖

1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

× ∏

𝑗∈󰜚
󸀠

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

+

∞

∑

]=0

1

(2]|𝑄∗
|
1/𝑛

)
𝑚𝑛

× ∏

𝑗∈󰜚
󸀠

∫
2
]+1

𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

𝑑𝑦
𝑗

]

]

≤ 𝐶‖𝑏‖BMO (

∞

∑

]=0

1

2]𝜖

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),2]+1𝑄∗

+

∞

∑

]=0

1

2]𝑛𝑙
∏

𝑗∈󰜚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),𝑄∗

× ∏

𝑗∈󰜚
󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑞
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿(log𝐿),2]+1𝑄∗
)

≤ 𝐶‖𝑏‖BMO (M
𝐿(log𝐿) (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

+M
󰜚,𝐿(log𝐿) (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)) .

(62)

This finishes the proof of Proposition 10.

The next paragraph we will present the proof of
Theorem 2.

Proof of Theorem 2. By Lemma 4, 𝜔⃗ ∈ 𝐴
𝑃⃗
implies that ]

𝜔⃗
∈

𝐴
∞
. For simplicity, we may assume that ∑𝑚

𝑖=1
‖𝑏
𝑖
‖BMO = 1.

Using Proposition 10 and the Fefferman-Stein inequality (26),
with 0 < 𝛿 < 𝜖 < 1/𝑚, we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
Σ
⃗
𝑏,𝑞

( ⃗𝑓)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀

𝛿
(𝑇

Σ
⃗
𝑏,𝑞

( ⃗𝑓))
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑇

Σ
⃗
𝑏,𝑞

( ⃗𝑓))
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑀

𝜖
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝜖
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩󵄩
M (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

) .

(63)

Then following from (63) and Lemma 5,Theorem 2 is proved.

The reminder that we are left to do is similar to the proof
of Theorem 1. Here we omit it.

The proof of Theorem 3 heavily relied on Proposition 11.

Proposition 11. Let𝑇
𝑞
be a vector-valuedmultilinear operator

associated with an 𝑚-linear operator 𝑇 in GCZO(𝐴, 𝑠, 𝜂, 𝜖)

whose kernel satisfies the Assumption (H2). Suppose that 𝑇
Π

⃗
𝑏,𝑞

is the corresponding iterated commutator of 𝑇
𝑞
with 𝑏⃗ ∈

BMO2. Let 0 < 𝛿 < min{𝜖, 1/6}, 𝑟 > 1, and 󰜚 ⊂ 󰜚
0

=

{1, . . . , 𝑚}. Then there exists a constant 𝐶 > 0 depending on
𝛿 and 𝜖, such that

𝑀
♯

𝛿
(𝑇

Π
⃗
𝑏
( ⃗𝑓)) (𝑥)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏1

󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩𝑏2

󵄩󵄩󵄩󵄩BMO

× (𝑀
𝜖
(𝑇

𝑞
( ⃗𝑓)) (𝑥) +M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)

+M
{1},𝐿(log𝐿) (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥) +M

{2},𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
) (𝑥)) .

(64)

The proof of Proposition 11 may be omitted since it is easy
to get by the similar arguments of the proof of Proposition 10
and [3].

Finally we will give the proof of Theorem 3.

Proof of Theorem 3. By Lemma 4, 𝜔⃗ ∈ 𝐴
𝑃⃗
implies that ]

𝜔⃗
∈

𝐴
∞
. For simplicity, we may assume that ∑𝑚

𝑖=1
‖𝑏
𝑖
‖BMO = 1.

Using Proposition 11 and the Fefferman-Stein inequality (26)
with 0 < 𝛿 < 𝜖 < 1/𝑚, we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
Π

⃗
𝑏,𝑞

( ⃗𝑓)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀

𝛿
(𝑇

Π
⃗
𝑏,𝑞

( ⃗𝑓))
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑇

Π
⃗
𝑏,𝑞

( ⃗𝑓))
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑀

𝜖
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

)
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≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝜖
(𝑇

𝑞
( ⃗𝑓))

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩󵄩
M (

󵄨󵄨󵄨󵄨󵄨
⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚
(
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+
󵄩󵄩󵄩󵄩󵄩󵄩
M

𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

+∑

󰜚⊂󰜚
0

󵄩󵄩󵄩󵄩󵄩󵄩
M

󰜚,𝐿(log𝐿) (
󵄨󵄨󵄨󵄨󵄨

⃗𝑓
󵄨󵄨󵄨󵄨󵄨𝑞
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔
)

) .

(65)

Then following from (65) and Lemma 5,Theorem 3 is proved.

How to check that ‖𝑀
𝛿
(𝑇

Σ
⃗
𝑏,𝑞

( ⃗𝑓))‖
𝐿
𝑝
(]
𝜔
)

and

‖𝑀
𝜖
(𝑇

𝑞
( ⃗𝑓))‖

𝐿
𝑝
(]
𝜔
)

are finite is similar to the proof of
Theorem 3.19 in [2]. We omit it here, too.
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