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Abstract

We give an algebraic description of screw dislocations in a crystal, especially simple cubic (SC) and body centered
cubic (BCC) crystals, using free abelian groups and fibering structures. We also show that the strain energy of a screw
dislocation based on the spring model is expressed by the Epstein-Hurwitz zeta function approximately.
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1 Introduction
Mathematical descriptions of dislocations in crystal
lattices have been studied extensively in the frame-
work of differential geometry or continuum geometry
[1, 2, 14, 17, 21]. However, crystal structures are usu-
ally given as discrete geometry. In fact, a crystal lattice is
governed by a discrete group such as free abelian group
[7, 15, 23]. An abelian group and its group ring provide
fruitful mathematical tools, e.g., abelian varieties, theta
functions, and so on. On the other hand, the continuum
geometric nature of dislocations in the euclidean space
cannot be represented well as long as we use the ordinary
algebraic expressions.
In this article, we give algebraic descriptions of screw

dislocations in the simple cubic (SC) and the body cen-
tered cubic (BCC) crystals in terms of certain “fibrations”
involving group rings. Using such fibering structures, we
describe the continuum geometric property embedded
in the euclidean space, whereas the algebraic structures
involving group rings enable us to describe the discrete
nature of the crystal lattices. More precisely, we first
describe the screw dislocations in continuum picture and
then we use algebraic structures of lattices to embed their
“discrete dislocations” in the continuum description. Our
key idea is to use certain sections of S1-bundles to control
the behavior of dislocations.
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We also show that the strain energy of a screw dis-
location based on the spring model is expressed by the
Epstein-Hurwitz zeta function [9, 10] approximately. This
will be shown by using our algebraic description of a screw
dislocation.
It should be noted that the results presented in this

article arose in our attempt to solve the following prob-
lems proposed in the Study Group Workshop at Kyushu
University and the University of Tokyo, held during July
29–Aug 4, 2015 [22].

1 To find a proper mathematical description of a screw
dislocation in the BCC lattice.

2 To find a proper mathematical description of the
strain energy of a screw dislocation in the BCC lattice.

The present article is organized as follows. In Section 2,
we first introduce certain fibering structures over the
plane involving the celebrated exact sequence 0 → Z →
R → U(1) → 1, which will be essential in this article.
Then, we will describe screw dislocations in continuum
picture, in which certain covering spaces of a punctured
complex plane will play important roles. By using certain
path spaces, we clarify the covering structures of screw
dislocations in Remark 2 and Proposition 1. In Section 3,
we first explain the algebraic structure of the SC lattice as
a free abelian group. Then, we consider the fibering struc-
ture of the SC lattice in terms of the associated group ring
and its quotient. Using these descriptions, we will describe
the screw dislocations in the SC lattice in Propositions 3
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and 4 so that they are embedded in the continuum picture
given in Section 2. In Section 4, we first explain the fiber-
ing structure of the SC lattice in a diagonal direction, using
group ring structures. Then, we explain similar structures
for the BCC lattice. Finally, screw dislocations in the BCC
lattice will be described using all these algebraic materials
in Propositions 7 and 8. Section 5 is devoted to the compu-
tation of the strain or elastic energy of a single screw dis-
location in the SC lattice. In Theorem 1, the elastic energy
of the dislocation corresponding to a bounded annular
region is expressed in terms of the truncated Epstein-
Hurwitz zeta function [9, 10] approximately. In Section 6,
we give some remarks on our results from mathemat-
ical viewpoints. In Section 7, we explain and interpret
our results in details from physical points of view so that
even the readers who may not be familiar with mathe-
matical tools can understand the novelty of our results.
Finally, in the appendix, we show that the total elastic
energy for a pair of parallel screw dislocations with oppo-
site directions does not diverge for unbounded regions
in the continuum picture, and we also show the conver-
gence in the discrete picture for the principal part of the
energy.

1.1 Notations and conventions
Throughout the article, we distinguish the euclidean space
E from the real vector spaceR: in particular,R is endowed
with an algebraic structure, while E is not. We often
identify the 2-dimensional euclidean space E

2 with the
complex plane C. The group U(1) acts on the set S1 sim-
ply transitively. Given a fiber bundle F → M over a base
space M, we denote the set of all continuous sections
f : M → F by �(M,F).

2 Screw dislocations in continuum picture
Let us consider the exact sequence of groups (see [4])

(1)

where Z and R are additive groups, U(1) is a multiplica-
tive group, ι(n) = n for n ∈ Z, and (exp 2π

√−1)(x) =
exp(2π

√−1x) for x ∈ R. Throughout this section, we fix
d > 0. For δ ∈ R, we have the “shifts”

ι̃δ : R → E defined by x �→ d · x + δ, x ∈ R, and

ιδ : U(1) → S1 defined by exp(
√−1θ) �→ exp

√−1(θ+2πδ/d), θ ∈ R,

such that the following diagram is commutative:

where ψ(y) = exp
(

2π
√−1y/d

)

, y ∈ R, and ϕδ = ι̃δ ◦ ι.
Note that for the sequence of maps

we have

ϕδ(Z) = ψ−1(exp(2π
√−1δ/d)), (2)

which is a consequence of the exactness of (1).

2.1 Fibering structures of crystals in continuum picture
Let us consider the 2-dimensional euclidean space E2 and
some trivial bundles over E2; Z-bundle πZ : ZE2 → E

2,
E-bundle πE : EE2 → E

2 and S1-bundle πS1 : S1
E2 → E

2.
We consider the bundle maps ϕ̂δ and ̂ψ ,

(3)

naturally induced by ϕδ and ψ , respectively.
Note that ZE2 = Z × E

2 is a covering space of E2 and
that EE2 is identified with E

3 = E × E
2. We sometimes

use such identifications.
In the following, we often identify E2 with the complex

plane C. For γ ∈ S1, let us consider the global constant
section σγ ∈ �(E2, S1

E2) of S1E2 defined by

σγ (z) = (γ , z) ∈ S1
E2 = S1 × E

2

for z ∈ E
2 = C. The following lemma is straightforward

by virtue of (2).

Lemma 1 For γ = exp(2π
√−1δ/d), we have

ZE2,γ = ϕ̂δ(ZE2),

where

ZE2,γ := ̂ψ−1 (σγ (E2)
) ⊂ E

3.

2.2 Single screw dislocation in continuum picture
For z0 ∈ E

2 = C, let us consider the trivial bundles
EE2\{z0} and S1

E2\{z0} over E
2 \ {z0} as in the previous sub-

section. For γ ∈ S1, let us consider the section σz0,γ ∈
�
(

E
2 \ {z0}, S1

E2\{z0}
)

defined by

σz0,γ (z) =
(

γ
z − z0
|z − z0| , z

)

for z ∈ E
2 \ {z0} = C \ {z0}.

We set

ZE2\{z0},γ := ̂ψ−1 (σz0,γ (E2 \ {z0})
) ⊂ EE2\{z0} ⊂ E

3

and let πz0,γ : ZE2\{z0},γ → E
2 \ {z0} be defined by πz0,γ =

πE|ZE2\{z0},γ .



Hamada et al. Pacific Journal of Mathematics for Industry  (2018) 10:3 Page 3 of 20

Lemma 2 The map πz0,γ : ZE2\{z0},γ → E
2 \ {z0} defines

a universal covering of E2 \ {z0}.

Proof Over each point of E2, ̂ψ is a covering map and it
is trivial as a family of covering maps. Therefore, we see
that πz0,γ defines a covering map.
Furthermore, ZE2\{z0},γ is path-wise connected. This is

seen as follows. Let us take arbitrary two points x1 and x2.
Then πz0,γ (x1) and πz0,γ (x2) are connected by a path in
E
2 \{z0}. By lifting such a path, we see that x1 is connected

in ZE2\{z0},γ to a point x′
1 such that πz0,γ (x′

1) = πz0,γ (x2),
which we denote by x̄. Then, by lifting a loop based at x̄
which turns around z0 for an appropriate number of times,
we see that x′

1 is connected to x2 in ZE2\{z0},γ . Therefore,
ZE2\{z0},γ is path-wise connected.
Moreover, the lift of a loop � inE

2\{z0} by πz0,γ is a loop
if and only if its winding number around z0 vanishes. This
is because the section σz0,γ over � winds around S1 by the
same number of times as it winds around z0. This implies
that the action of π1(E2 \ {z0}) on ZE2\{z0},γ is effective.
Therefore, πz0,γ is a universal covering. This completes
the proof.

Remark 1 It should be noted thatZE2\{z0},γ is embedded
in EE2\{z0} ⊂ E

3. This represents a screw dislocation in a
crystal in continuum picture. The point z0 corresponds to
the position of the dislocation line.

Remark 2 A standard universal covering space ZE2\{z0}
of E2 \ {z0} is constructed as follows. Fixing a point x0 ∈
E
2 \ {z0}, we consider the path space (see [3])

Path
(

E
2 \ {z0}
)

:={continuous maps μ :[0, 1]→ E
2 \ {z0}|

μ(0) = x0}/ ∼,

where two paths μ and ν are equivalent, written as μ ∼
ν, if μ(1) = ν(1) and μ is homotopic to ν relative to
end points in E

2 \ {z0}. The path space is the quotient
space with respect to the equivalence, where it is endowed
with the natural topology induced from that of the locally
simply connected space E

2 \ {z0}. Then the map πPath :
Path
(

E
2 \ {z0}
) 
 μ �→ μ(1) ∈ E

2 \ {z0} defines a univer-
sal covering. Note that π−1

Path(z), z ∈ E
2 \ {z0}, is regarded

as the set of winding numbers around z0, i.e. π−1
Path(z) = Z

up to a shift. Then, we define

ZE2\{z0} := Path
(

E
2 \ {z0}
)

.

It should be noted that the space obtained does not
depend on the choice of the point x0, up to a covering
equivalence.
By virtue of Lemma 2 together with the uniqueness of

the universal covering, we can construct an embedding
ϕ̂z0,δ : ZE2\{z0} → EE2\{z0} such that the diagram

commutes and

ϕ̂z0,δ
(

ZE2\{z0}
) = ZE2\{z0},γ ⊂ E

3

holds for γ = exp(2π
√−1δ/d). In other words, we have

the sequence

(4)

as a non-trivial analogue of (3) in such a way that ̂ψ ◦
ϕ̂z0,δ
(

ZE2\{z0}
) = σz0,γ

(

E
2 \ {z0}
)

and that ϕ̂z0,δ
(

ZE2\{z0}
)

represents a single screw dislocation in a crystal.

2.3 Multi-screw dislocation in continuum picture
Let us now consider multiple screw dislocations that are
parallel to each other. They are described as follows.
Let S = S+

∐

S− be a finite subset of E2, which is
divided into disjoint subsets S+ and S−. Let us consider
the trivial bundles EE2\S and S1

E2\S over E
2 \ S as in

the previous subsections. Then, we consider the section
σS,γ ∈ �(E2 \ S , S1

E2\S) defined by

σS ,γ (z) =
⎛

⎝γ
∏

zi∈S+

z − zi
|z − zi| ·

∏

zj∈S−

z − zj
|z − zj| , z

⎞

⎠ for z ∈ E
2\S = C\S ,

(5)

where z − zj is the complex conjugate of z − zj. We enu-
merate the points in S in such a way that

S+ = {z1, z2, . . . , zs}, S− = {zs+1, zs+2, . . . , zs+t},
where n = s + t is the cardinality of S .

Definition 1 Set

ZE2\S,γ := ̂ψ−1 (σS,γ
(

E
2 \ S)) ⊂ E

3 \ π−1
E

(S) ⊂ E
3

and define πS,γ : ZE2\S,γ → E
2 \S by πS,γ = πE|ZE2\S,γ .

As in Lemma 2, we see that πS,γ defines a covering
map. Note also that the covering space ZE2\S,γ of E2 \ S
is realized in E

3. This represents multiple parallel screw
dislocations in a crystal in continuum picture. The set S
corresponds to the positions of the dislocation lines.
Now, let us clarify the nature of the covering πS,γ :

ZE2\S,γ → E
2 \S . As in Remark 2, we can define the path

space

Path
(

E
2 \ S) := {continuous maps μ :[ 0, 1]→ E

2 \ S |
μ(0) = x0}/ ∼,
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using the same equivalence relation, where we fix a point
x0 ∈ E

2 \S . This is the universal covering space of E2 \S .
However, for our purpose, this space is too big, and we
need to take certain quotients.
Note that the fundamental group G = π1

(

E
2 \ S , x0

)

is a free group of rank n generated by m1,m2, . . . ,mn,
where mi is the element of G represented by a loop based
at x0 which turns around zi once in the counterclockwise
direction and which does not turn around zj, j �= i. Let
G′ = [G,G] be the commutator subgroup of G. By tak-
ing the orbit space under the natural action of G′, we get
the universal abelian covering space of E \ S , denoted by
Patha(E2 \ S). In other words, we have

Patha(E2 \ S) := {continuous maps μ :[ 0, 1]→ E
2 \ S |

μ(0) = x0}/ ∼a,

where for two paths μ and ν, we have μ ∼a ν if μ(1) =
ν(1) and the loop μ ∗ ν based at x0 represents an element
of G′, where μ ∗ ν denotes the product path of μ and the
inverse path of ν.
Note that the homology group H1

(

E
2 \ S ;Z) is iso-

morphic to Z
n, which is freely generated by the

homology classes [m1] , [m2] , . . . , [mn] represented by
m1,m2, . . . ,mn, respectively. Note also thatH1

(

E
2 \ S ;Z)

is isomorphic to the quotient group G/G′. An arbitrary
element κ of H1(E2 \ S ;Z) is represented as

∑

i wi[mi],
where wi ∈ Z is the winding number of κ around zi in the
direction ofmi. Therefore, for a loop � in E

2 \ S , its lift in
Patha(E2 \ S) is a loop if and only if the winding number
of � around each point of S vanishes.
Let us now define

Z
n
E2\S := Patha

(

E
2 \ S) , πPatha : Zn

E2\S → E
2 \ S ,

where πPatha sends the class of each path to its terminal
point. Note that πPatha defines a covering, and that for
each z ∈ E

2 \ S , π−1
Patha(z) can be identified with Z

n up to
a certain “shift”.
Let us now take further quotients. Let h : π1(E2 \ S , x0)

→ Z be the homomorphism defined by

h(mi) =
{

1, 1 ≤ i ≤ s,
−1, s + 1 ≤ i ≤ s + t.

Since Z is abelian, the kernel H of h contains G′. Let
ZE2\S be the orbit space of Path

(

E
2 \ S) under the natural

action of H. In other words, we have

ZE2\S :={continuous maps μ :[0,1]→E
2 \ S |

μ(0) = x0}/ ∼h,

where for twopathsμ and ν, we haveμ ∼h ν ifμ(1) = ν(1)
and the loop μ ∗ ν based at x0 represents an element of H.
We have a natural projection πH : ZE2\S → E

2 \ S which
sends the class of each path to its terminal point. Note that
πH defines a covering map.

Proposition 1 The coverings πS,γ : ZE2\S,γ → E
2 \ S

and πH : ZE2\S → E
2 \ S are equivalent.

Proof Fix a point x̃0 ∈ ZE2\S,γ such that πS,γ (x̃0) = x0.
We define the map � : ZE2\S,γ → ZE2\S as follows. For
x ∈ ZE2\S,γ , since ZE2\S,γ is connected, we can find a
path μ̃ connecting x̃0 and x. Then, the composition μ =
πS,γ ◦ μ̃ can be regarded as an element of ZE2\S as a con-
tinuous path. We see that this map � is well-defined and
injective, by observing that the lift of a loop λ based at x0
in E

2 \ S with respect to πS,γ is again a loop if and only
if h([ λ] ) vanishes, where [ λ]∈ π1

(

E
2 \ S , x0

)

is the class
represented by λ. Furthermore, by the existence of a lift
for paths, we see that � is surjective. Since, we see easily
that � is a local homeomorphism, we conclude that the
map � gives the desired equivalence of coverings.

As a consequence, we can construct an embedding ϕ̂S,δ :
ZE2\S → EE2\S such that the diagram

commutes and

ϕ̂S,δ
(

ZE2\S
) = ZE2\S,γ ⊂ E

3

holds for γ = exp(2π
√−1δ/d). In other words, we have

the sequence

(6)

as a non-trivial analogue of (3) such that ̂ψ◦ϕ̂S,δ
(

ZE2\S
) =

σS,γ
(

E
2 \ S) and that ϕ̂S,δ

(

ZE2\S
)

represents a mul-
tiple parallel screw dislocations in a crystal, which
generalizes (4).
In the following sections, we will consider discrete pic-

tures of dislocations, which will be embedded in these
continuum pictures.

3 Abelian group structure of SC lattice and its
screw dislocations

3.1 Algebraic structure of SC lattice
The simple cubic (SC) lattice is usually expressed by the
additive free abelian group

A
a
3 := Za1 + Za2 + Za3 = 〈a1, a2, a3〉Z,

which is generated by three elements a1, a2 and a3. Here,
by identifying a1 with (a, 0, 0), a2 with (0, a, 0), and a3 with
(0, 0, a) in R

3 endowed with the euclidean inner product,
we see that Aa

3 is naturally embedded in R
3 as a SC lattice

as shown in Fig. 1a. We denote this embedding by ιA3 :
A
a
3 ↪→ R

3. Furthermore, we embed A
a
3 into the euclidean
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ba

Fig. 1 Simple cubic (SC) lattice. (a) shows the unit cell of the SC lattice
given by a1, a2 and a3, whereas the lattice is also expressed by a
graph with loops as in (b)

3-space E3 as follows. By fixing δ = (δ1, δ2, δ3) ∈ E
3 and

g ∈ SO(3), we define ιA3,δ,g : Aa
3 ↪→ E

3 by

ιA3,δ,g(n1a1+n2a2+n3a3) = g(n1a, n2a, n3a)+ (δ1, δ2, δ3)

for n1, n2, n3 ∈ Z. When g ∈ SO(3) is the identity, we
denote it by ιA3,δ : Aa

3 ↪→ E
3, which is defined by

ιA3,δ(n1a1+n2a2+n3a3) = (n1a, n2a, n3a)+(δ1, δ2, δ3).
(7)

Remark 3 We have the natural action of the discrete
subgroup of SO(3) on the SC lattice [7, 13, 15, 23], which
is isomorphic to the symmetric group S4 on a set of four
elements [13], although it does not play an important role
in this article.

In this article, we often use the multiplicative abelian
group

A3 := {αn1
1 α

n2
2 α

n3
3 | abelian, n1, n2, n3 ∈ Z}

rather than the additive group A
a
3 for convenience. Here,

αb corresponds to ab, b = 1, 2, 3. Through the natu-
ral identification of A3 with A

a
3, we continue to use the

symbols ιA3 and ιA3,δ also for A3 by abuse of notation.

Remark 4 The SC lattice is regarded as the universal
abelian covering of a certain geometric object. In fact,
the SC lattice is expressed by the graph as depicted in
Fig. 1b [23]. More precisely, the universal abelian cover-
ing of the graph given by Fig. 1b coincides with the Cayley
graph of the group A3 with respect to the generating set
{α1,α2,α3}.

3.2 Fibering structure of SC lattice: (0, 0, 1)-direction
Let us introduce the group ring

C[A3]= C

[

α1,α2,α3,α−1
1 ,α−1

2 ,α−1
3

]

in order to consider the fibering structure of A3 (and
that of A

a
3). Its projection to the 2-dimensional space

corresponds to taking the quotient as

C[A3] /(α3 − 1) = C

[

α1,α2,α−1
1 ,α−1

2

]

=: C[A2] ,

where

A2 :=
{

α
n1
1 α

n2
2
∣

∣ abelian, n1, n2 ∈ Z
}

,

which is group-isomorphic to A
a
2 := Za1 + Za2, and

(α3 − 1) is the ideal generated by α3 − 1. As in the case
of A3, by assuming that α1 and α2 correspond to (a, 0)
and (0, a) in R

2, respectively, we may regard A
a
2

∼= A2 as
being also naturally embedded in R

2. Thus, we have nat-
ural embeddings ιA2 : A2 ↪→ R

2 and ι
A2,δ̄ : A2 ↪→ E

2

defined by ι
A2,δ̄ (x) = ιA2(x) + δ̄ for δ̄ = (δ1, δ2) ∈ E

2.
The projection above “induces” the fibering structure

where � is the projection defined by �
(

α
n1
1 α

n2
2 α

n3
3
) =

α
n1
1 α

n2
2 , n1, n2, n3 ∈ Z. Its graph expression is given

by Fig. 2: more precisely, the Cayley graph of A2 with
respect to the generating set {α1,α2,α3} coincides with
the graph depicted in Fig. 2. We will see that the above
fibering structure is essential in our description of screw
dislocations.
Note that we may regard the group ring C[A2] as a set

of certain complex valued functions on A2: for an element
of f ∈ C[A2], we have the complex number f (n1, n2) ∈ C

for every element α
n1
1 α

n2
2 ∈ A2 in such a way that we have

f =
∑

(n1,n2)∈Z2

f (n1, n2)αn1
1 α

n2
2 .

In this case, f can take non-zero complex values only
on a finite number of elements of A2. We extend this
space to the whole function space F(Ap,C), where we
use the symbol Ap for A2 viewed as a set or as a discrete
topological space, i.e.,

Ap := {(n1a, n2a) | n1, n2 ∈ Z}.

Fig. 2 Fibering structure of the simple cubic lattice. The fibering
structure is given as an infinite graph with loops
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We denote by S1Ap
the trivial S1-bundle over Ap. For

every fiber bundle FE2 over E2 and for δ̄ = (δ1, δ2) ∈ E
2,

by the natural embedding ιSC
δ̄

: Ap ↪→ E
2 defined by

(n1a, n2a) �→ (n1a + δ1, n2a + δ2), we have the pullback
bundle FAp overAp.
Let S = S+

∐

S− be a finite subset in E
2 as in Sub-

section 2.3. In the following, we assume that δ̄ ∈ E
2

satisfies ιSC
δ̄

(Ap) ∩ S = ∅. Then, the map ιSC
δ̄

is regarded
as the embedding ιSC

δ̄
: Ap ↪→ E

2 \ S . Thus, we have the
following.

Lemma 3 For every fiber bundle FE2\S over E2 \ S , by
the embedding ιSC

δ̄
: Ap ↪→ E

2 \ S , we have the pullback
bundle FAp that satisfies the commutative diagram

where the vertical maps are the projections of the fiber
bundles and ι̂SC

δ̄
is the bundle map induced by ιSC

δ̄
.

Recall that in Section 2, we have fixed d > 0. In the
following, we set d = a. Using the above pullback diagram
(Cartesian square), we have the following.

Lemma 4 We have the following commutative diagram:

where the straight vertical arrows are projections of the
fiber bundles and ̂ψ are the bundle maps induced by ψ

defined in Section 2.

The above lemma is easy to prove, and hence we omit
the proof.
The following proposition corresponds to the case

where S = ∅ and the proof is left to the reader.

Proposition 2 Set γ = exp(2π
√−1δ3/a) ∈ S1 for a

δ3 ∈ R and consider the global section σ̌γ ∈ �
(

Ap, S1Ap

)

that constantly takes the value γ . Then, we have that

ι̂SC
δ̄

(

̂ψ−1 (σ̌γ (Ap)
)) = ι̂SC

δ̄

(

a
2π

√−1
exp−1 (σ̌γ (Ap)

)

)

⊂ EE2\S ⊂ E
3

coincides with ιA3,δ(A
a
3) as a subset in E

3 for δ = (δ̄, δ3) =
(δ1, δ2, δ3), i.e.,

ιA3,δ(A
a
3) = ι̂SC

δ̄

(

̂ψ−1 (σ̌γ (Ap)
))

.

In other words, the SC lattice without dislocation can be
interpreted as the inverse image by ̂ψ of a constant section
σ̌γ of the trivial S1-bundle.

3.3 Screw dislocation in simple cubic lattice
A screw dislocation in the simple cubic lattice appears
along the (0, 0, 1)-direction [21] up to automorphisms of
the SC lattice. In other words, we may assume that the
Burgers vector is parallel to the (0, 0, 1)-direction.
Using the fibering structure of Lemma 4, for the case

where S = {z0}, z0 ∈ C, we can describe a single screw
dislocation in the SC lattice as follows, whose proof is
straightforward. Our principal idea is to use a section in
�(Ap, S1Ap

) in order to describe a screw dislocation. In
the following, we set z′0 = z0 − (δ1 + δ2

√−1), where
δ̄ = (δ1, δ2).

Proposition 3 Let us define the section σ̌z′0,γ ∈
�(Ap, S1Ap

) by

σ̌z′0,γ (n1a, n2a) =
(

γ
(n1a + n2a

√−1) − z′0
|(n1a + n2a

√−1) − z′0|
, (n1a, n2a)

)

,

(n1a, n2a) ∈ Ap,

where γ = exp(2π
√−1δ3/a) ∈ S1. Then, the screw

dislocation around z0 given by

DSC
z0 := ι̂SC

δ̄

(

̂ψ−1
(

σ̌z′0,γ
(

Ap
)

))

= ι̂SC
δ̄

(

a
2π

√−1
exp−1
(

σ̌z′0,γ (Ap)
)

)

is realized in E
3.

We note that DSC
z0 can be regarded as a kind of a

“covering space of the latticeAp”.

Remark 5 (1) Let ZAp,γ be the pullback of ZE2\{z0},γ by
ιSC
δ̄

: Ap → E
2 \ {z0}, and ι̂SC

δ̄
: ZAp,γ → ZE2\{z0},γ the

induced bundle map. Then, we have the equality

DSC
z0 = ι̂SC

δ̄
(ZAp,γ ),

which follows directly from the definition of ZE2\{z0},γ
given in Section 2.2.
(2) Here, S = {z0} corresponds to the position of the

dislocation line (see Fig. 3). As has been mentioned in
the continuummodel,DSC

z0 naturally embeds into the path
space ZE2\{z0} via the identification ϕ̂z0,δ3 : ZE2\{z0} →
ZE2\{z0},γ .
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Fig. 3 Screw dislocation in the SC lattice. The lattice points
correspond toAp ⊂ E

2 and the center point refers to z0

A parallel multi-screw dislocation is described as fol-
lows. Let us define the section σ̌S ′,γ ∈ �(Ap, S1Ap

) by

σ̌S ′ ,γ (n1a, n2a) =
⎛

⎜

⎝
γ
∏

z′i∈S ′+

(n1a+n2a
√−1)−z′i

|(n1a+n2a
√−1)−z′i|

∏

z′j∈S ′−

(n1a+n2a
√−1)−z′j

|(n1a+n2a
√−1)−z′j |

, (n1a, n2a)

⎞

⎟

⎠
,

(n1a, n2a) ∈ Ap,

where

z′i = zi −
(

δ1 + δ2
√−1
)

, z′j = zj −
(

δ1 + δ2
√−1
)

,

S ′+ = {z′i
∣

∣ zi ∈ S+
}

, S ′− =
{

z′j
∣

∣ zj ∈ S−
}

and S ′ = S ′+
∐

S ′−. Then, we have the following, whose
proof is straightforward.

Proposition 4 The parallel multi-screw dislocationDSC
S

given by
DSC

S = ι̂SC
δ̄

(

̂ψ−1 (σ̌S ′ ,γ
(

Ap
)))

= ι̂SC
δ̄

(

a
2π

√−1
exp−1(σ̌S ′ ,γ

(

Ap
))

)

is realized in E
3 as a subset of ZE2\S,γ , where S corre-

sponds to the position of the dislocation lines.

4 Fibering structure of BCC lattice:
(1, 1, 1)-direction and its screw dislocation

4.1 Fibering structure of SC lattice: (1, 1, 1)-direction
In this subsection, let us first consider the fibering struc-
ture along the (1, 1, 1)-direction of the simple cubic lattice.
Although a screw dislocation does not occur along this
direction physically, this construction is useful for analyz-
ing the case of the BCC lattice.
This structure is a little bit complicated; however,

our algebraic approach makes the computation easy and
enables us to have its discrete geometric interpretation.

Let us consider the projection which corresponds to the
quotient ring

Rd = C[A3] /(α1α2α3 − 1),

where A3 is the multiplicative free abelian group of rank 3
generated by α1, α2 and α3.
For the vector a1 + a2 + a3 ∈ A

a
3 ⊂ R

3, we have the
vanishing euclidean inner products

(a1−a3, a1+a2+a3) = 0, (a2−a3, a1+a2+a3) = 0.

Therefore, a1 − a3 and a2 − a3 constitute a basis for the
orthogonal complement of the vector a1 + a2 + a3 in R

3.
This space corresponds to the group ring generated by
α1α

−1
3 and α2α

−1
3 . In other words, we consider

Ad :=
{(

α1α
−1
3

)�1 (

α2α
−1
3

)�2
∣

∣

∣

∣

�1, �2 ∈ Z

}

,

which is a subgroup ofA3.We also consider the group ring

C[Ad]= C

[

α1α
−1
3 ,α2α

−1
3 ,α−1

1 α3,α−1
2 α3
]

,

which is identified, under the relation α1α2α3 = 1, with

C

[

α1α
2
2,α

2
1α2,α−1

1 α−2
2 ,α−2

1 α−1
2

]

.

Note that, as C[Ad] is a sub-ring of C[A3], Rd is also
considered to be a C[Ad]-module.

Lemma 5 We have a natural isomorphism as C[Ad]-
modules:

Rd ∼= C[Ad]⊕C[Ad]α1 ⊕ C[Ad]α1α2.

Proof First, note that every monomial of C[A3] has its
own degree with respect to α1,α2 and α3, each of which
has degree 1. Furthermore, it is easy to verify that a mono-
mial has degree zero if and only if it belongs to C[Ad].
As a result, a monomial has degree r if and only if it
belongs to C[Ad]αr

1, where we can replace αr
1 by any

other monomial of degree r. Note that each C[Ad]αr
1

is a C[Ad]-submodule of C[A3]. Thus, we have the
isomorphism

C[A3]∼=
⊕

r
C[Ad]αr

1

as C[Ad]-modules.
Now, let us consider the C[Ad]-module homomor-

phism induced by the inclusion

q :
2
⊕

r=0
C[Ad]αr

1 →
(

⊕

r
C[Ad]αr

1

)/

(1 − α1α2α3)

∼= C[A3] /(1 − α1α2α3),

where the ideal (1 − α1α2α3) in the ring C[A3] is now
considered as a C[Ad]-submodule. We can easily show
that this homomorphism q is injective, since every non-
zero element of the submodule (1 − α1α2α3) contains
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two non-zero monomials whose degrees are different by
a non-zero multiple of 3. Furthermore, q is surjective,
since we have C[Ad]αr

1 = C[Ad]αr′
1 as long as r ≡ r′

(mod 3), under the relation α1α2α3 = 1. Furthermore,
we have C[Ad]α2

1 = C[Ad]α1α2. Thus, we have the
desired isomorphism of C[Ad]-modules. This completes
the proof.

Remark 6 Lemma 5 can be geometrically interpreted by
using a cube as follows. Let us consider the cube whose
vertices consist of 0, a1, a2, a3, a1+a2, a2+a3, a3+a1 and
a1 + a2 + a3, which are identified with their correspond-
ing elements 1, α1, α2, α3, α1α2, α2α3, α3α1 and α1α2α3,
respectively. We have the natural action of the symmet-
ric group on the three elements α1, α2 and α3 over the
cube, which can be regarded as a subgroup of the octa-
hedral group. The orbits of this action are given by {1},
{α1,α2,α3}, {α1α2,α2α3,α3α1} and {α1α2α3}, which coin-
cide with the classification by their degrees. By identifying
1 and α1α2α3, we get the three classes as described in
Lemma 5.

Remark 7 We have another algebraic proof for
Lemma 5 as follows1. Let us consider the diagonal
monomorphism ι

diag
3 : Z ↪→ A

a
3 defined by ι

diag
3 (n) =

n(a1 + a2 + a3) ∈ A
a
3 for n ∈ Z, and denote its image

by Adiag
3 . Then we naturally haveRd ∼= C[Aa

3/A
diag
3 ]. Fur-

thermore, we also have the epimorphism p3 : Aa
3 → Z

defined by p3(n1a1 + n2a2 + n3a3) = n1 + n2 + n3 for
n1, n2, n3 ∈ Z. Setting A

a
d = Z(a1 − a3) + Z(a2 − a3) =

Ker p3, we have the commutative diagram of exact rows

where the rightmost vertical map is the natural inclusion.
By applying the snake lemma [19] to this diagram, we
obtain the short exact sequence

where p3 is the epimorphism induced by p3. The inverse
images of the three elements of Z/3Z by p3 give the
decomposition ofAa

3/A
diag
3 into three disjoint subsets,Aa

d,
a1 + A

a
d and a1 + a2 + A

a
d . This implies Lemma 5.

Remark 8 Lemma 5 means geometrically that the pro-
jection generates three sheets if we consider them embed-
ded in E

3 as shown in Fig. 4. Each sheet can be regarded
as a set given by the abelian group

〈

α1α
−1
3 ,α2α

−1
3

〉

. More

precisely, let us denote E
a
3/A

diag
3 by Ad when considered

a b

c

Fig. 4 SC lattice and its (1, 1, 1)-direction. The cube in (a) shows the
parallel triangles whose normal direction is (1, 1, 1) in the simple
cubic lattice. If one looks at the cube from the (1, 1, 1)-direction, then
the image is as depicted in (b). Furthermore, if one projects the whole
SC lattice to the plane perpendicular to the (1, 1, 1)-direction, then
one gets the image as in (c), where the black, gray and white dots
correspond to the three sheetsAd

(0) ,Ad
(1) andAd

(2) , respectively

as a set. Then, we have the decomposition

Ad := Ad
(0)
∐

Ad
(1)
∐

Ad
(2),

where

Ad
(0) := {�1(a1−a3)+�2(a2 − a3) | �1, �2 ∈ Z},

Ad
(1) := {�1(a1−a3)+�2(a2 − a3) + a1 | �1, �2 ∈ Z},

Ad
(2) := {�1(a1−a3)+�2(a2 − a3) + a1 + a2 | �1, �2 ∈ Z}.

Note that this corresponds exactly to the decomposition
mentioned in Remark 7. This picture comes from the dis-
crete nature of the lattice. The interval between the sheets
is given by

√
3a/3.

4.2 Algebraic structure of BCC lattice
The BCC (body centered cubic) lattice is the lattice in R

3

generated by a1, a2, a3 and (a1+a2+a3)/2. Algebraically,
it is described as additive group (or Z-module) by

B
a := 〈a1, a2, a3, b〉Z/〈2b − a1 − a2 − a3〉Z,

where 〈2b − a1 − a2 − a3〉Z is the subgroup generated
by 2b − a1 − a2 − a3 (see [7, p. 116], for example). As in
the case of the SC lattice, we assume that a1 = (a, 0, 0),
a2 = (0, a, 0), a3 = (0, 0, a) in the euclidean 3-spaceE3 for
a positive real number a as shown in Fig. 5. The generator
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Fig. 5 Body centered cubic (BCC) lattice. The unit cell of the BCC
lattice is illustrated by a1, a2, a3 and b, where b = (a1 + a2 + a3)/2

b corresponds to the center point of the cube generated by
a1, a2 and a3.
The lattice Ba is group-isomorphic to the multiplicative

group

B :=
{

α
n1
1 α

n2
2 α

n3
3 βn4
∣

∣

∣ abelian, n1, n2, n3, n4∈Z,

β2α−1
1 α−1

2 α−1
3 =1
}

.

Let us denote by A4 the multiplicative free abelian group
of rank 4 generated by α1, α2, α3 and β , i.e.,

A4 :=
{

α
n1
1 α

n2
2 α

n3
3 βn4
∣

∣ abelian, n1, n2, n3, n4 ∈ Z
}

.

Then, B is also described as the quotient group

B = A4
/〈β2α−1

1 α−1
2 α−1

3 〉,

where 〈β2α−1
1 α−1

2 α−1
3 〉 is the (normal) subgroup gener-

ated by β2α−1
1 α−1

2 α−1
3 . We shall consider the group ring

C[B] of B,

R3 :=C[B]= C

[

α1,α2,α3,α−1
1 ,α−1

2 ,α−1
3 ,β ,β−1

]

/(

β2− α1α2α3
)

.

4.3 Fibering structure of BCC lattice
In this subsection, we consider a projection of the BCC
lattice and its associated fibering structure.
As in the case of Rd discussed in Subsection 4.1, let us

consider

Bd := {(α1α
−1
3 )�1(α2α

−1
3 )�2 | �1, �2 ∈ Z},

which is a subgroup of B. Then, we have the following
decomposition as a C[Bd]-module.

Lemma 6 We have a natural isomorphism as C[Bd]-
modules:

R3/(α1α2α3 − 1)∼=C[Bd]⊕C[Bd]α1 ⊕ C[Bd]α1α2
⊕C[Bd]β ⊕ C[Bd]α1β ⊕ C[Bd]α1α2β .

We can prove the above lemma by using an argument
similar to that in the proof of Lemma 5.

Remark 9 As in Remark 7, we can also prove Lemma 6
using the snake lemma [19] as follows. First, note that we
have

R3/(α1α2α3 − 1)
∼= C[α1,α2,α3,α−1

1 ,α−1
2 ,α−1

3 ,β ,β−1] /(β2 − α1α2α3, α1α2α3 − 1)
∼= C[α1,α2,α3,α−1

1 ,α−1
2 ,α−1

3 ,β ,β−1] /(β2 − 1, α1α2α3 − 1)
∼= C[α1,α2,α3,α−1

1 ,α−1
2 ,α−1

3 ]/(α1α2α3−1) ⊕ C[β ,β−1] /(β2−1).

Using the additive version B
a
d of the abelian multiplicative

group Bd, we have the commutative diagram with exact
rows

where the rightmost vertical map and the second horizon-
tal map in the lower sequence are the natural inclusions.
By applying the snake lemma to this diagram, we obtain
the relation in Lemma 6 as in Remark 7.

Thus, we have the following.

Proposition 5 For

R := R3/(β − 1),

we have a natural isomorphism as C[Bd]-modules:

R ∼= C[Bd]⊕C[Bd]α1 ⊕ C[Bd]α1α2.

Remark 10 This corresponds to the triangle diagram
for the projection of the BCC lattice, which is, in fact,
the same as that depicted in Fig. 4c. For the screw dis-
location in the BCC lattice, b ∈ B coincides with the
associated Burgers vector [21]. In other words, geomet-
rically the “base space” corresponds to three sheets if we
consider them as embedded in E

3 as shown in Fig. 4. This
comes from the discrete nature of the lattice. However, the
interval between the sheets is now given by

√
3a/6, which

differs from that in the SC lattice case. More precisely, let
us denote byB the subset ofE3 corresponding to the three
sheets. Then, we have

B := B(0)
∐

B(1)
∐

B(2),
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where
B(0) :={�1(a1−a3)+�2(a2−a3) | �1, �2 ∈ Z},
B(1) :={�1(a1−a3)+�2(a2−a3)+a1−b | �1, �2 ∈ Z},
B(2) :={�1(a1−a3)+�2(a2−a3)+a1+a2 − b | �1, �2 ∈ Z}.
By observing that the degree of b is equal to 3/2, we see
that the three sheets above correspond to the classification
by the degrees (modulo 3/2).

Thus, we have the following.

Lemma 7 As a set, Ba is also decomposed as

B
a = B

(0)
∐

B
(1)
∐

B
(2),

where
B

(0) := {�1(a1 − a3) + �2(a2 − a3) + �3b | �1, �2, �3 ∈ Z},
B

(1) := {�1(a1 − a3) + �2(a2 − a3) + a1 + �3b | �1, �2, �3 ∈ Z},
B

(2) := {�1(a1 − a3) + �2(a2 − a3) + a1 + a2 + �3b |�1,�2, �3∈ Z}.

Let η : R3 → R
3 be the orthogonal transformation that

sends a1, a2 and a3 to the vectors

a

⎛

⎝

√
2/2

−√
6/6√
3/3

⎞

⎠ , a

⎛

⎝

0√
6/3√
3/3

⎞

⎠ and a

⎛

⎝

−√
2/2

−√
6/6√
3/3

⎞

⎠ ,

respectively. For a vector δ = (δ1, δ2, δ3) ∈ E
3, we consider

the embedding

ιBCCδ : Ba ↪→ E
3

defined by x �→ η(x) + δ for x ∈ B
a ⊂ R

3. Note that η

sends the vector 2b = a(1, 1, 1) to
√
3a(0, 0, 1), and there-

fore ιBCCδ sends each B
(c) into a plane parallel to the plane

spanned by (1, 0, 0) and (0, 1, 0) for c = 0, 1, 2.
Let π : E3 → E

2 be the natural projection to the first
and second coordinates. As in the case ofAd, we consider
the natural embedding ι

BCC,c
δ̄

= π ◦ ιBCCδ |B(c) : B(c) =
Z
2 ↪→ E

2, c = 0, 1, 2, where δ̄ = (δ1, δ2) ∈ E
2.

With the help of Fig. 6, we can prove the following
lemma.

Lemma 8 For the embedding ι
BCC,c
δ̄

: B(c) ↪→ E
2, c =

0, 1, 2, we have the following:

ι
BCC,0
δ̄

(x) =
(√

2�1a + √
2�2a/2,

√
6�2a/2
)

+ δ̄

for x = �1(a1 − a3) + �2(a2 − a3) ∈ B(0),

ι
BCC,1
δ̄

(x) =
(√

2�1a + √
2a/2 + √

2�2a/2, (
√
6�2a − √

6a/3)/2
)

+ δ̄

for x = �1(a1 − a3) + �2(a2 − a3) + a1 − b ∈ B(1),

ι
BCC,2
δ̄

(x) =
(√

2�1a + √
2a/2 + √

2�2a/2,
(√

6�2a + 2
√
6a/3
)

/2
)

+ δ̄

for x = �1(a1 − a3)+ �2(a2 − a3) + a1 + a2 − b ∈ B(2).

Let S = S+
∐

S− be a finite subset in E
2 as in Subsec-

tion 2.3. In the following, we assume that δ̄ ∈ E
2 satisfies

a b

Fig. 6 Body centered cubic lattice and its projection along the
(1, 1, 1)-direction. (a) shows the panoramic view of the unit cell of the
BCC lattice which contains two triangles whose normal direction is
(1, 1, 1) as in the simple cubic lattice case. Thus its projection along
the (1, 1, 1)-direction is given by (b)

ι
BCC,c
δ̄

(

B(c)) ∩ S = ∅, c = 0, 1, 2. Then, we have the
following, whose proof is straightforward.

Lemma 9 For every fiber bundle FE2\S over E2 \ S , by
the embedding ι

BCC,c
δ̄

: B(c) ↪→ E
2 \ S , c = 0, 1, 2, we have

the pullback bundle FB(c) that satisfies the commutative
diagram

where the vertical maps are the projections of the fiber
bundles and ι̂

BCC,c
δ̄

is the bundle map induced by ι
BCC,c
δ̄

.

Using this pullback diagram (Cartesian square), we have
the following, whose proof is straightforward.

Lemma10 Wehave the following commutative diagram:

for c = 0, 1, 2, where EB(c) and S1B(c) are the trivial bun-
dles, the straight vertical arrows are projections of the fiber
bundles, ̂ψ are the bundle maps induced by ψ defined in
Section 2, and the positive constant d in Section 2 is now
set d = √

3a/2, which ̂ψ depends on.
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The following proposition corresponds to the case
where S = ∅ and the proof is left to the reader.

Proposition 6 Set γ = exp(4π
√−1δ3/(

√
3a)) ∈ S1

and consider the global sections

σ̃γ ,c ∈ �
(

B(c), S1B(c)

)

, c = 0, 1, 2,

that constantly take the values γ ζ−c
3 , where ζ3 =

exp(2π
√−1/3). Then, we have

ιBCCδ (Ba) =
2
⋃

c=0
ι̂
BCC,c
δ̄

(

̂ψ−1
(

σ̃γ ,c
(

B(c)
)))

⊂ E
3.

4.4 Algebraic description of screw dislocations in BCC
lattice

Recall that a screw dislocation in the BCC lattice is basi-
cally given by the (1, 1, 1)-direction. In other words, the
Burgers vector is parallel to the (1, 1, 1)-direction, or more
precisely it coincides with b itself, up to automorphisms of
the BCC lattice [21].
In the following, for γ ′ ∈ S1 and σ̃ ∈ �

(

B, S1B
)

expressed as σ̃ (x) = (s(x), x) for x ∈ B, we define their
multiplication γ ′σ̃ ∈ �

(

B, S1B
)

by (γ ′σ̃ )(x) = (γ ′s(x), x),
x ∈ B, where S1B is the trivial S1-bundle over B.
Now, as in Proposition 3 for the SC lattice case, we have

the following description of a single screw dislocation in
the BCC lattice. In the following, we set z′0 = z0 − (δ1 +
δ2

√−1).

Proposition 7 The single screw dislocation expressed by

2
⋃

c=0
ι̂
BCC,c
δ̄

(

̂ψ−1
((

γ ζ−c
3 σ̃z′0

) (

B(c)
)))

around z0 ∈ E
2 is a subset of E3, where σ̃z′0 is an element of

�
(

B, S1B
)

given by

σ̃z′0(x) =
( √

2�1a+
√
2�2a/2−x′

0+(
√
6�2a/2−y′0)

√−1
|√2�1a+

√
2�2a/2−x′

0+(
√
6�2a/2−y′0)

√−1| , x
)

for x = �1(a1 − a3) + �2(a2 − a3) ∈ B(0),

σ̃z′0(x) =
( √

2�1a+
√
2a/2+√

2�2a/2−x′
0+((

√
6�2a−

√
6a/3)/2−y′0)

√−1
|√2�1a+

√
2a/2+√

2�2a/2−x′
0+((

√
6�2a−

√
6a/3)/2−y′0)

√−1| , x
)

for x = �1(a1 − a3) + �2(a2 − a3) + a1 − b ∈ B(1),

σ̃z′0(x) =
( √

2�1a+
√
2a/2+√

2�2a/2−x′
0+((

√
6�2a+2

√
6a/3)/2−y′0)

√−1
|√2�1a+

√
2a/2+√

2�2a/2−x′
0+((

√
6�2a+2

√
6a/3)/2−y′0)

√−1| , x
)

for x = �1(a1 − a3) + �2(a2 − a3) + a1 + a2 − b ∈ B(2),

where z′0 = x′
0 + y′

0
√−1 ∈ C and (�1, �2) ∈ Z

2.

Furthermore, for σ̃1 and σ̃2 ∈ �
(

B, S1B
)

expressed as
σ̃a(x) = (sa(x), x) for x ∈ B, a = 1, 2, we define
their multiplication σ̃1σ̃2 by (σ̃1σ̃2)(x) = (s1(x)s2(x), x),
x ∈ B. Using the multiplication, we have the following
description of a parallel multi-screw dislocation in the
BCC lattice.

Proposition 8 The parallel multi-screw dislocation in
the BCC lattice given by

2
⋃

c=0
ι̂
BCC,c
δ̄

⎛

⎜

⎝

̂ψ−1

⎛

⎜

⎝

⎛

⎜

⎝
γ ζ−c

3
∏

z′i∈S ′+

σ̃z′i

∏

z′j∈S ′−

σ̃z′j

⎞

⎟

⎠
(B(c))

⎞

⎟

⎠

⎞

⎟

⎠

=
2
⋃

c=0
ι̂
BCC,c
δ̄

⎛

⎜

⎝

√
3a

4π
√−1

exp−1

⎛

⎜

⎝

⎛

⎜

⎝
γ ζ−c

3
∏

z′i∈S ′+

σ̃z′i

∏

z′j∈S ′−

σ̃z′j

⎞

⎟

⎠
(B(c))

⎞

⎟

⎠

⎞

⎟

⎠

is a subset of E3, where S corresponds to the position of
the dislocation lines, z′i = zi − (δ1 + δ2

√−1), z′j = zj −
(δ1 + δ2

√−1), S ′+ = {z′i | zi ∈ S+}, S ′− = {z′j | zj ∈ S−} and
S ′ = S ′+

∐

S ′−.

In Section 7.1, we will give a more explicit formula for a
single screw dislocation.

5 Energy of screw dislocation
5.1 Energy of screw dislocation in SC lattice
In this section, we consider the strain energy of a single
screw dislocation in the SC lattice along the (0, 0, 1)-
direction as discussed in Section 3.3. We adopt a spring
model, in which certain “edges” of the SC lattice corre-
spond to elastic springs, whose natural lengths are equal
to a or

√
2a.

More precisely, in our model, we have the elastic springs
on the edges

[(n1, n2, n3), (n1+1, n2, n3)] ,

[ (n1, n2, n3), (n1, n2 + 1, n3)] ,
[(n1, n2, n3), (n1, n2, n3+1)] ,
[(n1, n2, n3), (n1+1, n2, n3 ± 1)] ,
[(n1, n2, n3), (n1, n2 + 1, n3±1)] ,
[(n1,n2,n3), (n1+1,n2±1,n3)] ,

for all (n1, n2, n3) ∈ Z
3. Note that the above parametriza-

tion refers to a local one for the SC lattice after the disloca-
tion, in a neighborhood of each vertex sufficiently far from
the dislocation line. It is clear that such a parametrization
does not work globally; however, around each point, such
a parametrizationworks as long as the point is far from the
dislocation center. In this section we will use this param-
eterization for simplicity and compute the strain energy
caused by a screw dislocation.
We note that there are several other possibilities for the

choice of the edges. The choice of the model, however,
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does not affect the essentials of the results, as we will see
later.
Now, let us consider the screw dislocation in the SC

lattice along the (0, 0, 1)-direction around z0 ∈ C, as
described in Section 3.3. For simplicity, throughout this
section, we suppose δ = (0, 0, 0) and δ̄ = (0, 0) so that
z′0 = z0. Furthermore, we assume that z0 = x0 + y0

√−1,
x0, y0 ∈ R, satisfies that x0, y0 and±x0±y0 are not integral
multiples of a.We regard that the original lattice is in a sta-
ble position, and we consider the elastic energy resulting
from the dislocation. For this, we need to investigate the
difference between the original position and the position
resulting from the dislocation.
In the following, we also assume that γ = 1 for sim-

plicity. For notational convention, we will denote σ̌z0,γ etc.
simply by σ̌z0 etc. by suppressing γ .
First, we define the relative height differences ε

(1)
n1,n2 ,

ε
(2)
n1,n2 and ε

(±)
n1,n2 by

ε
(1)
n1,n2 = a

2π
√−1
(

log(σ̌z0 ((n1 + 1)a, n2a)) − log(σ̌z0 (n1a, n2a))
)

,

ε
(2)
n1,n2 = a

2π
√−1
(

log(σ̌z0 (n1a, (n2 + 1)a)) − log(σ̌z0 (n1a, n2a))
)

,

ε
(±)
n1,n2 = a

2π
√−1
(

log(σ̌z0 ((n1+1)a, (n2 ± 1)a))−log(σ̌z0 (n1a, n2a))
)

,

(8)

respectively, where log x = loge x for x ∈ S1 is considered
to be

√−1 times the argument of x, and we choose the
values so that −a/2 < ε

(i)
n1,n2 ≤ a/2 for i = 1, 2 and ±.

Later we will see that it never takes the value a/2.
In what follows, for a section σ̌ ∈ �(Ap, S1Ap

) expressed
as σ̌ (x) = (s(x), x) for x ∈ Ap, we often use the symbol
σ̌ (x) instead of s(x) by abuse of notation. We recall that

σ̌z0 (n1a, n2a) = σ̌z0,γ (n1a, n2a)

= n1a − x0 + (n2a − y0)
√−1

∣

∣n1a − x0 + (n2a − y0)
√−1
∣

∣

for z0 = x0+y0
√−1, x0, y0 ∈ R, and γ =1 in Proposition 3.

Set z = n1a − x0 + (n2a − y0)
√−1, which is not a real

multiple of 1,
√−1 or 1 ± √−1 by our assumption on z0.

Then, we get

ε
(1)
n1,n2 = a

2π
√−1 log

1+a/z
|1+a/z| ,

ε
(2)
n1,n2 = a

2π
√−1 log

1+a
√−1/z

|1+a
√−1/z| ,

ε
(±)
n1,n2 = a

2π
√−1 log

1+a(1±√−1)/z
|1+a(1±√−1)/z| .

(9)

Note that 1 + a/z, 1 + a
√−1/z and 1 + a(1 ± √−1)/z

have non-zero imaginary parts, and therefore ε
(i)
n1,n2 never

takes the value a/2 for i = 1, 2 and ±.
Then, the difference of length in each segment

[ (n1, n2, n3), (n1+1, n2, n3)] or [(n1, n2, n3), (n1, n2+1, n3)]

is given by

�(i)
n1,n2 =

√

a2 + (ε
(i)
n1,n2)

2 − a,

i = 1, 2, whereas the difference of length in each diagonal
segment

[(n1,n2,n3), (n1+1, n2,n3±1)] or [(n1,n2,n3),(n1,n2+1,n3±1)]

is given by

�d(i,±)
n1,n2 =

√

(a ± ε
(i)
n1,n2)

2 + a2 − √
2a, (10)

i = 1, 2, and the difference of length in the diagonal
segment

[ (n1, n2, n3), (n1 + 1, n2 ± 1, n3)]

is given by

�d(±)
n1,n2 =

√

2a2 + (ε
(±)
n1,n2)

2 − √
2a. (11)

On the other hand, the length of the segment
[ (n1, n2, n3), (n1, n2, n3 + 1)] is constantly equal to the
natural length a and thus we set �

(3)
n1,n2 = 0.

Then, we have the following.

Lemma 11 If

a
√

(n1a − x0)2 + (n2a − y0)2

is sufficiently small, then ε
(1)
n1,n2 , ε

(2)
n1,n2 and ε

(±)
n1,n2 are

approximately given by

ε
(1)
n1,n2 = − a

2π
a(n2a − y0)

(n1a − x0)2 + (n2a − y0)2

+ o
(

a
√

(n1a − x0)2 + (n2a − y0)2

)

,

ε
(2)
n1,n2 = − a

2π
a(n1a − x0)

(n1a − x0)2 + (n2a − y0)2

+ o
(

a
√

(n1a − x0)2 + (n2a − y0)2

)

,

ε
(±)
n1,n2 = − a

2π
±a(n1a − x0) + a(n2a − y0)
(n1a − x0)2 + (n2a − y0)2

+ o
(

a
√

(n1a − x0)2 + (n2a − y0)2

)

,

(12)
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respectively, whereas�
(i)
n1,n2,�

d(i,±)
n1,n2 and�

d(±)
n1,n2 are approx-

imately given by

�
(i)
n1,n2 = 1

2a (ε
(i)
n1,n2)

2 + o
(

a√
(n1a−x0)2+(n2a−y0)2

)

,

�
d(i,±)
n1,n2 = ± 1√

2ε
(i)
n1,n2 + o

(

a√
(n1a−x0)2+(n2a−y0)2

)

,

�
d(±)
n1,n2 = 1

2
√
2a (ε

(±)
n1,n2)

2 + o
(

a√
(n1a−x0)2+(n2a−y0)2

)

,

(13)

respectively, i = 1, 2.

Proof Setting

z := (n1a − x0) + (n2a − y0)
√−1,

we have

σ̌z0 ((n1 + 1)a, n2a) = z + a
|z + a|

= σ̌z0 (n1a, n2a)
1 + a/z
|1 + a/z| ,

σ̌z0 (n1a, (n2 + 1)a) = z + a
√−1

|z + a
√−1|

= σ̌z0 (n1a, n2a)
1 + a

√−1/z
|1 + a

√−1/z| ,

σ̌z0 ((n1 + 1)a, (n2 ± 1)a) = z + a ± a
√−1

|z + a ± a
√−1|

= σ̌z0 (n1a, n2a)
1 + a(1 ± √−1)/z
|1 + a(1 ± √−1)/z| .

By Taylor expansion, we have, forw = ξ+ξ ′√−1, ξ , ξ ′ ∈ R,

arg(1 + w) = arctan
ξ ′

1 + ξ
= ξ ′ + o(|w|)

as w → 0. Therefore, we obtain that

arg
(

1 + a
z

)

= Im
a
z

+ o
(

a
|z|
)

= − a
|z|2 (n2a − y0) + o

(

a
|z|
)

,

arg
(

1 + a
√−1
z

)

= Re
a
z

+ o
(

a
|z|
)

= a
|z|2 (n1a − x0) + o

(

a
|z|
)

,

arg
(

1 + a(1 ± √−1)
z

)

= Im
a
z

± Re
a
z

+ o
(

a
|z|
)

= a
|z|2 (−(n2a − y0) ± (n1a − x0)) + o

(

a
|z|
)

.

Then, we get the approximation formula (12) from defi-
nition (8).
Finally, we can prove the approximation formula (13) for

�
(i)
n1,n2 , �

d(i,±)
n1,n2 , i = 1, 2, and �

d(±)
n1,n2 by simple application

of the Taylor expansion. This completes the proof.

Following the spirit of the theory of elasticity [18, 20], in
the following, we assume that

a
√

(n1a − x0)2 + (n2a − y0)2
= a

|z|
is small in Lemma 11 and in particular a/|z| < 1/

√
2. This

assumption means that the node (n1a, n2a) in E
2 is suffi-

ciently far from the center (x0, y0) of dislocation relative to
the lattice length a. Such an approximation does not hold
for the nodes near the center. More explicitly, the approxi-
mation given above is valid for the elastic energy in the far
region

Aρ :=
{

(n1, n2) ∈ Z
2
∣

∣

∣

∣

ρa <

√

(n1a − x0)2 + (n2a − y0)2
}

(14)

for sufficiently large fixed ρ ≥ √
2. On the other hand, in

the core region Z
2 \ Aρ , the approximation fails and we

need to adopt another approach.
Furthermore, for later convenience, let us introduce the

notation

Aρ,N :=
{

(n1, n2) ∈ Z
2
∣

∣

∣

∣

ρa <

√

(n1a − x0)2 + (n2a − y0)2 < Na
}

(15)

for N > ρ, which is bounded and is a finite set.
We can now compute the elastic energy caused by the

screw dislocation. Since our model has the translational
symmetry along the (0, 0, 1)-axis (i.e., the set of lattice
points (n1, n2, n3) together with the edges with springs in
our model is invariant under the translation n3 �→ n3+1),
we will concentrate ourselves on the energy density for
unit length in the (0, 0, 1)-direction, and call it simply the
elastic energy of dislocation again.
Let kp and kd be spring constants of the horizontal

springs and the diagonal springs, respectively. Then, the
elastic energy of dislocation in the annulus region Aρ,N is
given by

Eρ,N (x0, y0) :=
∑

(n1,n2)∈Aρ,N

En1,n2 , (16)

where En1,n2 is the energy density defined by

En1,n2 := 1
2
kp
(

(

�(1)
n1,n2

)2 +
(

�(2)
n1,n2

)2
)

+1
2
kd
(

(

�d(1,+)
n1,n2

)2 +
(

�d(2,+)
n1,n2

)2+
(

�d(1,−)
n1,n2

)2

+
(

�d(2,−)
n1,n2

)2 +
(

�d(+)
n1,n2

)2 +
(

�d(−)
n1,n2

)2
)

.

Proposition 9 (1) For (n1, n2) ∈ Aρ , the energy density
En1,n2 is expressed by a real analytic function E(w,w) of w
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and w̄ ∈ C with |w| < 1/
√
2 in such a way that

En1,n2

=E
(

a
(n1a − x0) + (n2a − y0)

√−1
,

a
(n1a − x0) − (n2a − y0)

√−1

)

.

(2) Let us consider the power series expansion

E(w,w) =
∞
∑

s=0
E (s)(w,w),

E (s)(w,w) :=
∑

i+j=s,i,j≥0
Ci,jw iw j,

for some Ci,j ∈ C. Then, we have the following:
(a) E (0)(w,w) = E (1)(w,w) = 0,
(b) The leading term is given by

E (2)(w,w) = a2

8π2 kdww,

E (2)
(

a
(n1a− x0)+(n2a − y0)

√−1
,

a
(n1a−x0)−(n2a − y0)

√−1

)

= 1
8π2 kd
[

a4

(n1a−x0)2+(n2a−y0)2

]

, (17)

(c) Ci,j = Cj,i, and
(d) for every s ≥ 2, there is a constant Ms > 0 such that

|E (s)(w,w)| ≤ Ms|w|s.

Proof Set

w = a
(n1a − x0) + (n2a − y0)

√−1
= a

z
.

Note that |w| < 1/
√
2 as we have assumed ρ ≥ √

2. We
have seen in (9) that

ε
(1)
n1,n2 = a

2π
√−1 log

1+w
|1+w| ,

ε
(2)
n1,n2 = a

2π
√−1 log

1+w
√−1

|1+w
√−1| ,

ε
(±)
n1,n2 = a

2π
√−1 log

1+w(1±√−1)
|1+w(1±√−1)| .

(18)

Note that if we consider w as a complex variable in C with
|w| < 1/

√
2, then ε

(i)
n1,n2 are real analytic functions of w

and w̄, i = 1, 2,±. Furthermore, we have

En1,n2 = 1
2
kp

(

(
√

a2 + (ε
(1)
n1,n2 )

2 − a
)2

+
(
√

a2 + (ε
(2)
n1,n2 )

2 − a
)2
)

+1
2
kd

(

(
√

(a + ε
(1)
n1,n2 )

2 + a2 − √
2a
)2

+
(
√

(a + ε
(2)
n1,n2 )

2 + a2 − √
2a
)2

+
(
√

(a − ε
(1)
n1,n2 )

2 + a2 − √
2a
)2

+
(
√

(a − ε
(2)
n1,n2 )

2 + a2 − √
2a
)2

+
(
√

2a2 + (ε
(+)
n1,n2 )

2 − √
2a
)2

+
(
√

2a2 + (ε
(−)
n1,n2 )

2 − √
2a
)2
)

.

Thus, En1,n2 can be considered to be a real analytic func-
tion of w and w̄ ∈ C with |w| < 1/

√
2.

(2): Items (a) and (b) are obtained by straightforward
calculations as follows:

En1,n2 = kd
[

1
2

(

ε(1)
n1,n2

)2 + 1
2

(

ε(2)
n1,n2

)2

+ o
(

a2

(n1a − x0)2 + (n2a − y0)2

)]

= 1
8π2 kd
[

a4

(n1a − x0)2 + (n2a − y0)2

+ o
(

a2

(n1a − x0)2 + (n2a − y0)2

)]

. (19)

Since the energy density is a real number, we obtain the
relation in item (c). The analyticity in item (1) implies (d).
This completes the proof.

As the summation in (16) is finite, we have

Eρ,N (x0, y0)=
∞
∑

s=2

∑

(n1,n2)∈Aρ,N

E (s)
(

a
(n1a−x0)+(n2a−y0)

√−1
,

a
(n1a − x0) − (n2a − y0)

√−1

)

.

(20)

At this stage, it seems difficult to estimate the whole series:
however, we can estimate each term in this series using
the truncated Epstein-Hurwitz zeta function ζρ,N (s, z0)
defined by

ζρ,N (s, z0) :=
∑

(n1,n2)∈Aρ,N

1
((n1 + x0)2 + (n2 + y0)2)s/2

,

(21)

where z0 := x0 + y0
√−1. In particular, we have the

following theorem for the “principal part” of the elastic
energy.
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Theorem 1 The principal part of the elastic energy
Eρ,N (x0, y0), defined by

E(p)
ρ,N (x0, y0) :=

∑

(n1,n2)∈Aρ,N

E(2)
(

a
(n1a − x0) + (n2a − y0)

√−1
,

a
(n1a − x0) − (n2a − y0)

√−1

)

= 1
8π2 kd

∑

(n1,n2)∈Aρ,N

[

a4

(n1a − x0)2 + (n2a − y0)2

]

is given by

E(p)
ρ,N (x0, y0) = 1

8π2 kda
2ζρ,N (2,−z0/a). (22)

By Proposition 9 (2) (d), we can estimate each of the
other terms appearing in the power series expansion (20)
by the truncated Epstein-Hurwitz zeta function as follows.

Proposition 10 For each s ≥ 3, there exists a positive
constant M′

s such that

∑

(n1,n2)∈Aρ,N

E(s)
(

a
(n1a − x0) + (n2a − y0)

√−1
,

a
(n1a − x0) − (n2a − y0)

√−1

)

≤ M′
sζρ,N (s,−z0/a).

(23)

6 Remarks frommathematical viewpoints
In this section, we give some remarks on our results from
mathematical viewpoints.
We have described multiple screw dislocations that

are parallel to each other in the continuum picture in
Section 2 as in Definition 1, using the section of a certain
S1-bundle as defined in (5). Although they were known as
topological defects in [11, 21], in Proposition 1 we have
shown that they are also expressed as a quotient space of
the path space or as an abelian covering of E2 \ S . This
means that our screw dislocations are regarded as realiza-
tions of the abelian covering of E2 \ S in the euclidean
three space E3.
In Proposition 4 of Section 3, the discrete picture of

such multiple screw dislocations in the SC lattice has been
obtained as the pullback of the fiber structure of the mul-
tiple screw dislocations in the continuum picture. It can
naturally be extended to the case of the BCC lattice. How-
ever, in the case of the BCC lattice, the Burgers vector
is parallel to the (1, 1, 1)-direction up to automorphisms
of the BCC lattice, and its geometrical structure is a lit-
tle bit complicated. In Section 4, in order to treat the
BCC case, we expressed the fiber structure with respect to
the (1, 1, 1)-direction using algebraic methods. The geo-
metrical properties are determined by purely algebraic

computations as in Lemma 5 and Proposition 5. Appar-
ently, such algebraic methods can be applied to more
general settings.
In Section 5, we have computed the energy of a screw

dislocation. This is, in fact, related to the theory of har-
monic maps as follows. The complete SC lattice is realized
in E

3 via the embeddings ιA3,δ : Aa
3(

∼= Z
3) → E

3 as in
(7). Such embeddings are parametrized by δ ∈ E

3, which
can actually be considered to be elements of the 3-torus
group T3 = R

3/aZ3. This is because if δ − δ′ ∈ aZ3

for δ, δ′ ∈ E
3, then the images of ιA3,δ and ιA3,δ′ coin-

cide. Thus, a slight perturbation of the embedding ιA3,δ
gives rise to a map A

a
3 → T3, and its infinitesimal version

gives a map into the tangent space of T3, which is iden-
tified with R

3. Therefore, we can regard a realization of
the lattice Aa

3 as a minimal point of a certain energy func-
tional related to a harmonic map whose target space is T3,
and we see that such an energy functional is given by our
spring model by imitating the standard energy functional
as introduced in [8, 25] from a discrete point of view.
On the other hand, a screw dislocation loses the sym-

metry except for the third axis. The fibering structure that
we have discussed is related to the action of the subgroup
S1 = {1} × {1} × S1 of T3. The configuration of a disloca-
tion can also be regarded as a minimal point of an energy
functional. Since the relevant map in the theory of har-
monic maps for the dislocations is fromDSC

S to T3 and S1
acts on DSC

S , in Section 5 we have computed the energy
of a screw dislocation by summing up the energy densities
parametrized by (n1, n2) ∈ Z

2 ∼= Ap = πS,γ
(

DSC
S
)

, where
πS,γ is given in Definition 1.
Then, such an energy is approximately obtained in terms

of the truncated Epstein-Hurwitz zeta function (21) in
Theorem 1, where the Epstein-Hurwitz zeta function is
defined by [9, 10, 24] as

ζ(s, z0) =
∑

(n1,n2)∈Z2

1
(

(n1 + x0)2 + (n2 + y0)2
)s/2 (24)

for z0 = x0 + y0
√−1. Note the fact that the zeta func-

tion diverges at s = 2, whereas it converges at s > 2,
which implies that the principal part of the elastic energy
E(p)

ρ,N (x0, y0) described in Theorem 1 diverges forN → ∞,
whereas each of the other terms in the power series expan-
sion (20) of the energy converges by Proposition 10. Since
the energy density En1,n2 comes from the real analytic
function E(w,w) in Proposition 9, it is expected that the
elastic energy Eρ,N (x0, y0) also diverges for N → ∞, i.e.,

Eρ,N (x0, y0) → ∞, for N → ∞,

although we have been unable to prove this conjecture in
the present paper.
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To study the dependence of ζ(s, z0) on z0 is a very
important problem as the Hurwitz zeta function

ζ(s, q) :=
∞
∑

n=0
(n + q)−s

has an interesting dependence on q. For example, the dif-
ference ζ(s,−z0/a) − ζ(s,−z′0/a) for z0, z′0 ∈ C with z0 �=
z′0 is related to the elastic energy of our model. It should
be noted, at least, that if z′0 − z0 is a lattice point of aZ2,
then the difference must vanish.
Since the Epstein-Hurwitz zeta function is based on the

theory of quadratic forms in euclidean spaces and the
study of Minkowski [5], this fact might shed light on new
mathematical aspects of the lattice theory besides [7]. Fur-
thermore, since the SC lattice A

a
2 can be regarded as the

Gauss integers Z[
√−1], these results might also reveal

an important connection between the number theory and
the theory of dislocations.
Finally, we have a remark on the appearance of the

Epstein-Hurwitz zeta functions. We used the zeta func-
tions to derive divergence and convergence results for
our energy described by certain power series. If we just
concentrate ourselves to such results, then the usage of
such zeta functions might not be necessary, since diver-
gence and convergence of the relevant power series can
be proved rather directly. However, we are using the zeta
functions, since they give a unified treatment of the power
series and make our lines of discussions clearer in a rather
essential way. See also Lemma 13 in Appendix.

7 Remarks and discussions from physical
viewpoints

In this section, we give some remarks on our results from
physical viewpoints. They are basically physical interpre-
tations of our results, or some explicit formulas. We also
discuss our results on energy of dislocations from various
aspects. This section is mainly for readers with back-
ground in physics, and the contents will be described
without mathematical rigorousness. We loosely use the
logarithm function as a multiple valued function.

7.1 Configuration description
In this subsection, we exhibit formulas for a single screw
dislocation of the BCC lattice, giving explicit coordinates
of the lattices after the dislocation. We also discuss some
relationships to known researches.
The results in Section 2 are basically well-known, e.g.,

in [11, Chap. 4]. Let us consider multi-screw dislocations,
whose dislocation lines are all parallel to the x3-direction
and are given by points zi in S+ for “positive” screw direc-
tions, and by points zj in S− for “negative” ones, where S+
and S− are disjoint finite subsets of the complex plane C.
Set S = S+

⋃

S−. Setting the lattice unit d, we have seen

that the x3-coordinates of the points in the dislocations
are given by

d
2π

√−1
log

⎛

⎝γ
∏

zi∈S+

z − zi
|z − zi| ·

∏

zj∈S−

z − zj
|z − zj|

⎞

⎠

for z ∈ E
2 \ S = C \ S (25)

for some γ ∈ S1, where z − zj is the complex conjugate of
z − zj. It consists of solutions to the Laplace equations

∂

∂ z̄
∂

∂z
log

z − zk
|z − zk| = 0 on z ∈ C \ S , (26)

for zk ∈ S . In other words, the dislocations are obtained
as a set of minimal points of the elastic energy under a
certain boundary condition [11, 21].
Based on the result (25) in Section 2, we have described

the discrete picture of the dislocation in the SC lattice in
Section 3.3; at a point (n1, n2) of Z2 ⊂ C, the lattice points
are given by
(

n1a, n2a,
a

2π
√−1

·

log
(

γ
∏

zi∈S+

(n1a + n2a
√−1) − zi

|(n1a + n2a
√−1) − zi|

∏

zj∈S−

(n1a + n2a
√−1) − zj

|(n1a + n2a
√−1) − zj|

))

,

(n1a, n2a) ∈ Ap,

where we have set δ̄ = (0, 0). These are realized as points
in the configuration of the continuum picture. In other
words, these are also based on the solutions to the Laplace
equations (26).
For the BCC case, the dislocation layers are split into

three types. Usually, the configuration has been discussed
geometrically; however, in this article, we have shown the
fact by means of an algebraic method. Experimentally, it
is known that a dislocation line in a real material may
not be a straight line, but is a curve in the 3-dimensional
euclidean space E3 [11]. Thus, we need to deal with such
a curved dislocation line mathematically. Our algebraic
approach might enable us to handle such a curve in a lat-
tice locally which could be a part of a curved dislocation
line.We should emphasize that our method is novel in this
field of study.
Using the result (25) in Section 2, we have described the

discrete picture of the dislocation in the BCC lattice in
Section 4. Since we have shown it in Proposition 8 directly,
let us rewrite it only for a single screw dislocation here:
The first layer:
(√

2�1a + √
2�2a/2,

√
6�2a/2,

√
3a

4π
√−1

log
L0
|L0|

)

with L0=√
2�1a + √

2�2a/2 − x0 + (
√
6�2a/2 − y0)

√−1
for x = �1(a1 − a3) + �2(a2 − a3) ∈ B(0),
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The second layer:
(√

2�1a + √
2a/2 + √

2�2a/2, (
√
6�2a − √

6a/3)/2,
√
3a

4π
√−1

log
L1
|L1| − a

2
√
3

)

with L1 = √
2�1a + √

2a/2 + √
2�2a/2 − x0

+ ((
√
6�2a − √

6a/3)/2 − y0)
√−1

for x = �1(a1 − a3) + �2(a2 − a3) + a1 − b ∈ B(1),

The third layer:
(√

2�1a + √
2a/2 + √

2�2a/2, (
√
6�2a + 2

√
6a/3)/2,

√
3a

4π
√−1

log
L2
|L2| − a√

3

)

with L2 = √
2�1a + √

2a/2 + √
2�2a/2 − x0

+ ((
√
6�2a + 2

√
6a/3)/2−y0)

√−1
for x = �1(a1 − a3) + �2(a2 − a3) + a1 + a2 − b ∈ B(2),

where we have set δ̄ = (0, 0).
Recently the configurations of the dislocations are stud-

ied in terms of the ab-initio computations [6]; however,
as mentioned above, the boundary condition is crucial in
the study of dislocations. Since our description of the con-
figuration is for the region far from the dislocation line,
the configuration should obey the classical mechanics as
the continuum theory of dislocation. Even for the ab-initio
computations of the core structure of a dislocation, our
results may provide data for their boundary conditions.
Furthermore, recently crystal structures can be observed
directly and are analyzed in terms of the number theory
[12] as well. In a similar sense, our results might provide
new viewpoints for the study of dislocations.
Furthermore, even if the thermal fluctuation is locally

larger than the elastic energy, our study shows that the
topological defect cannot be neglected, since the con-
tour integral of the configurations of atoms along a circle
around the dislocation line gives the topological invari-
ance, which is described in Remark 2 and Proposition 1
mathematically. For real materials, wemust consider other
effects, e.g., various dislocations, bend of dislocation lines,
etc.; however, some of the properties based on topolog-
ical arguments preserved in the discrete description as
mentioned in Section 3 and Section 4. We note that the
relation to the path space in Section 2 is robust, since the
abelian covering is associated with the contours of certain
integrals as in the case of Riemann surfaces [16].

7.2 Energy description
In Section 5, we have obtained the strain or elastic energy
of the screw dislocation. In this subsection, we give five
remarks, I–V, on the energy of screw dislocations. In I,

we give a remark on the choice of the edges for springs in
our model. In II, we discuss the relationship between the
energy computation in the continuum picture and that in
the discrete one, and we also give physical interpretations
of our result. III is about the core region, IV is about the
BCC lattice case, and in V we apply our result to show
certain finiteness of the energy for a pair of parallel screw
dislocations with opposite directions.
I.Choice of edges. In the computation, we have consid-

ered the spring model of the SC lattice by assuming that
we have springs for a certain set of edges of the lattice
graph. As in Lemma 11, the increase in length caused by
the dislocation strongly depends on the direction: as (13)
shows, it is of order one with respect to the height differ-
ence ε for the edges including the a3-direction, while it is
of order two for the other edges. Note that the latter can be
neglected in the approximate computation of the relevant
energy.
This means that even if we add, for example, a spring for

each edge
[ (n1, n2, n3), (n1 + 1, n2 + 1, n3 + 1)]

etc., the approximate energy basically remains the same as
that given in Theorem 1.
II. Continuum picture versus discrete one. For sim-

plicity, let us suppose that the position of the dislocation
line corresponds to (x0, y0) = (0, 0). As we have investi-
gated the elastic energy for the annulus region

Rρ,N :=
{

(x, y) ∈ E
2
∣

∣

∣

∣

ρa <

√

x2 + y2 < Na
}

of the dislocation for the discrete picture in Theorem 1, let
us also consider its counterpart for the continuum picture.
It is well-known that the strain energy Ecρ,N of the screw
dislocation in the annulus region per unit length along
(0, 0, 1)-direction, in continuum picture, is expressed by

Ecρ,N = a2G
4π

logN/ρ,

where G is the shear modulus and a appears as the length
of the Burgers vector (see [11, eq.(4.20)]). This is given by

∫

Rρ,N

1
2

a2G
(2π)2

1
x2 + y2

dxdy = a2G
8π2

∫ Na

ρa

1
r2

r dr
∫ 2π

0
dθ

= a2G
4π

logN/ρ,

where the integrand comes from the elastic energy
(

1
2π

√−1
∂

∂x
log

x + y
√−1

|x + y
√−1|

)2

+
(

1
2π

√−1
∂

∂y
log

x + y
√−1

|x + y
√−1|

)2

= − 4
(2π)2

(

∂

∂z
1
2
log

z
z̄

)(

∂

∂ z̄
1
2
log

z
z̄

)

= 1
(2π)2

1
zz̄

= 1
(2π)2

1
x2 + y2
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for z = x + y
√−1 (see [11, 18, 21]).

Note that the modulus G is directly related to the spring
constant kd/a in our discrete model, since the integral for
computing the strain energy Ecρ,N in the continuum pic-
ture corresponds to the summation over lattice points in
the region in the discrete picture, and each term is con-
sistent with each other as shown by equation (19). More
precisely, we have considered only a layer of length a to
evaluate the energy Eρ,N (x0, y0) in our discrete model,
whereas Ecρ,N is for the unit length along the dislocation
line. By putting G = kd/a, Eρ,N (0, 0)/a corresponds to
Ecρ,N ; in fact, by dividing the energy by the square a2 of the
length of the Burgers vector, we have that

lim
a→0

(1/a)Eρ,N (0, 0)/a2 = lim
a→0

Ecρ,N/a2

holds. This means that our spring model, in discrete pic-
ture, is consistent with the known dislocation theory in
continuum picture, so that our model is plausible in such
a sense. However, as mentioned in I, the correspondence
between the spring constant kd and the shear modulus G
does depend on the choice of the edges for springs. If we
employ additional edges with their own spring constants,
then the resulting elastic energy may have a different
constant, and thus the correspondencemight bemodified.
For N → ∞, the above energy Ecρ,N in continuum pic-

ture diverges. This should be compared with the discrete
picture: the principal part of the elastic energy E(p)

ρ,N (x0, y0)
in Theorem 1 also diverges for N → ∞ due to the prop-
erty of the Epstein-Hurwitz zeta function [24] (see also
Section 6).
III. Core region. As mentioned just before the defini-

tion of Aρ in (14), our description shows that there is a
criterion for the core region of a screw dislocation from a
viewpoint of elastic energy.
IV. BCC lattice case. The investigation in Section 5 can

also be applied to the case of the BCC lattice with the help
of Proposition 7, although it might be complicated.
V. Double screw dislocation case. Finally, let us

demonstrate an application of our model using the zeta
function as follows. The total strain energy of a pair of
screw dislocations whose dislocation lines are parallel to
each other and correspond to S+ = {(x0, y0)} and S− =
{(x0,−y0)} with y0 �= 0, is well-known in the continuum
picture as follows:

Ecρ,N (S) = C
∫

R′
ρ,N

1
(x − x0)2 + (y − y0)2

dxdy

+ C
∫

R′
ρ,N

1
(x − x0)2 + (y + y0)2

dxdy

− 2C
∫

R′
ρ,N

(x − x0)2 + (y + y0)(y − y0)
((x − x0)2 + (y − y0)2)((x − x0)2 + (y + y0)2)

dxdy,

(27)

where 0 < ρ < N , S = S+ ∪ S−, R′
ρ,N := Rρ,N ,(x0,y0) ∩

Rρ,N ,(x0,−y0), and

Rρ,N ,(x0,±y0) :=
{

(x, y)∈ E
2
∣

∣

∣

∣

ρa<

√

(x−x0)2+(y∓y0)2<Na
}

(see [11, 21]). Then we can show that for ρa > 2|y0|,
Ecρ,N (S) is finite and it converges for N → ∞ (see
Appendix).
It is important to show that this phenomenon occurs

also for the discrete picture, or for the SC lattice. Let us
evaluate the elastic energy in our model used in Section 5
for the double screw dislocation

σ̌z0,z̄0 (n1a, n2a) = σ̌{z0,z̄0},1(n1a, n2a)

= n1a − x0 + (n2a − y0)
√−1

∣

∣n1a − x0 + (n2a − y0)
√−1
∣

∣

n1a − x0 − (n2a + y0)
√−1

∣

∣n1a − x0 − (n2a + y0)
√−1
∣

∣

,

instead of σ̌z0(n1a, n2a), where z0 = x0 + y0
√−1, x0, y0 ∈

R.
Let us put B′

ρ,N := Bρ,N ,(x0,y0) ∩ Bρ,N ,(x0,−y0) for

Bρ,N ,(x0,±y0) :=
{

(n1, n2) ∈ Z
2
∣

∣

∣

∣

ρa <

√

(n1a − x0)2 + (n2a ∓ y0)2 < Na
}

.

Then the elastic energy of the configuration for our S is
given by

Eρ,N (S) :=
∑

(n1,n2)∈B′
ρ,N

Fn1,n2 ,

where Fn1,n2 is the energy density defined by

Fn1,n2 := 1
2
kp
(

(

�(1)
n1,n2

)2 +
(

�(2)
n1,n2

)2
)

+1
2
kd
(

(

�d(1,+)
n1,n2

)2+
(

�d(2,+)
n1,n2

)2 +
(

�d(1,−)
n1,n2

)2

+
(

�d(2,−)
n1,n2

)2 +
(

�d(+)
n1,n2

)2 +
(

�d(−)
n1,n2

)2
)

.

Here, �(1)
n1,n2 etc. denotes the difference in length between

nearby lattice points before/after the double dislocation in
the designated direction at the lattice point correspond-
ing to (n1, n2), as in Subsection 5.1. As in Proposition 9,
we see easily that there exists a real analytic function
F(w+,w+,w−,w−) of w± and w± ∈ C such that Fn1,n2 is
given by the substitution

w± = a
(n1a − x0) + (n2a ± y0)

√−1
.

It is also natural to consider its power series expan-
sion in w± and w± as in Proposition 9. However, it is
expected that its leading term plays an essential role as
in Theorem 1. Thus, in the following, let us evaluate the
principal part of the energy. As we have seen in Subsec-
tion 5.1, we may concentrate ourselves to �

d(i,±)
n1,n2 , which

essentially contribute to the energy.
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In the following, ε(i)
n1,n2 will denote the value correspond-

ing to the vertical elongation as in Subsection 5.1. By
straightforward calculations, we have

�d(i,±)
n1,n2 = ± 1√

2
ε(i)
n1,n2 + o

(

a
√

(n1a − x0)2 + (|n2|a − |y0|)2
)

,

ε(1)
n1,n2 = a

2π

(

− a(n2a − y0)
(n1a − x0)2 + (n2a − y0)2

+ a(n2a + y0)
(n1a − x0)2 + (n2a + y0)2

)

+o
(

a
√

(n1a − x0)2 + (|n2|a − |y0|)2
)

,

ε(2)
n1,n2 = a

2π

(

− a(n1a − x0)
(n1a − x0)2 + (n2a − y0)2

+ a(n1a − x0)
(n1a − x0)2 + (n2a + y0)2

)

+o
(

a
√

(n1a − x0)2 + (|n2|a − |y0|)2
)

.

Then, we have

Fn1,n2 = kd
[

1
2
(ε(1)

n1,n2 )
2 + 1

2
(ε(2)

n1,n2 )
2

+o
(

a2

(n1a − x0)2 + (|n2|a − |y0|)2
)]

= 1
8π2 kd
[

a4

(n1a − x0)2 + (n2a − y0)2

+ a4

(n1a − x0)2 + (n2a + y0)2

−2
a2((n1a − x0)2 + (n2a + y0)(n2a − y0))

((n1a − x0)2 + (n2a − y0)2)((n1a − x0)2 + (n2a + y0)2)

+ o
(

a2

(n1a − x0)2 + (|n2|a − |y0|)2
)]

.

Let us assume that ρ > 2|y0|. Then, using the property of
the Epstein zeta function [24, Cor. 1.4.4], we can show that
the principal part of the energy Eρ,N (S),

E(p)
ρ,N (S) := 1

8π2 kd
∑

(n1,n2)∈B′
ρ,N

[

a4

(n1a − x0)2 + (n2a − y0)2

+ a4

(n1a − x0)2 + (n2a + y0)2

−2
a2((n1a − x0)2 + (n2a + y0)(n2a − y0))

((n1a − x0)2 + (n2a − y0)2)((n1a − x0)2 + (n2a + y0)2)

]

,

is finite even for N → ∞ (see Appendix). Thus, it is
expected that Eρ,N (S) is also finite even for N → ∞ due
to the reason similar to Proposition 10, although we have
not been able to prove this conjecture so far, either.
These results show that the properties of zeta functions

may enable us to evaluate the discrete system in a rigorous
manner. We believe that our investigation is necessary for
clarifying discrete systems, e.g., in the framework of the
classical statistical mechanics.

Appendix
In this appendix, we show that the total energy for the
double screw dislocation discussed in Section 6 converges
for N → ∞ in the continuum picture. We also show the
counterpart in the discrete picture for the principal part.

Lemma 12 Suppose ρa > 2|y0|. Then, the strain energy
Ecρ,N (S) given in (27) for the region R′

ρ,N in the continuum
picture converges for N → ∞.

Proof Note that the integrand is given as

1
(x − x0)2 + (y − y0)2

+ 1
(x − x0)2 + (y + y0)2

− 2((x − x0)2 + (y + y0) (y − y0))
((x − x0)2 + (y − y0)2) ((x − x0)2 + (y + y0)2)

= 4y20
((x − x0)2 + (y − y0)2) ((x − x0)2 + (y + y0)2)

and that R′
ρ,N ⊂ Rρ′,N ,(x0,0) for some ρ′ > 0 with ρ′a >

|y0|. Then, we have
C−1Ecρ,N (S)

≤
∫

Rρ′ ,N ,(x0,0)

4y20
((x − x0)2 + (y − y0)2) ((x − x0)2 + (y + y0)2)

dxdy

=: ES,0.

Wemay assume that y0 is positive. By using the polar coor-
dinate (r, θ) centered at (x0, 0) such that x = x0 + r cos θ

and y = r sin θ , we have

ES,0 =
∫ 2π

0

∫ Na

ρ′a

4y20r
(r2 − 2y0r sin θ + y20) (r2 + 2y0r sin θ + y20)

drdθ

≤
∫ 2π

0

∫ Na

ρ′a

4y20r
(r − y0)4

drdθ

= 8πy20
∫ Na

ρ′a

(

1
(r − y0)3

+ y0
(r − y0)4

)

dr

= 8πy20
(

1
2(ρ′a − y0)2

+ y0
3(ρ′a − y0)3

− 1
2(Na − y0)2

− y0
3(Na − y0)3

)

→ 8πy20
(

1
2(ρ′a − y0)2

+ y0
3(ρ′a − y0)3

)

as N → ∞, which means that ES,0 does not diverge for
N → ∞. This completes the proof.

Lemma 13 Suppose ρa > 2|y0|. Then, the the principal
part of the elastic energy E(p)

ρ,N (S) for the region Bρ,N in the
discrete picture converges for N → ∞.

Proof Set

I := a2

(n1a − x0)2 + (n2a − y0)2
+ a2

(n1a − x0)2 + (n2a + y0)2

−2
a2((n1a − x0)2 + (n2a + y0)(n2a − y0))

((n1a − x0)2 + (n2a − y0)2)((n1a − x0)2 + (n2a + y0)2)

= 4
a2y20

((n1a − x0)2 + (n2a − y0)2)((n1a − x0)2 + (n2a + y0)2)
.

We may assume that y0 > 0. Then, for n2 ≥ 0, we have
(n2a + y0)2 ≥ (n2a − y0)2 and

I ≤ 4a2y20
((n1a − x0)2 + (n2a − y0)2)2

,
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whereas for n2 ≤ 0, we have (n2a+y0)2 ≤ (n2a−y0)2 and

I ≤ 4a2y20
((n1a − x0)2 + (n2a + y0)2)2

.

Furthermore, since for the Epstein zeta function, the value
∑

(n1,n2,...,nn)∈Zn\{(0,0,...,0)}

1
(n21 + n22 + · · · + n2n)s/2

is finite for s > n [24, Cor. 1.4.4], we see that the principal
part of the elastic energy E(p)

ρ,N (S) converges for N → ∞.
This completes the proof.

Note that in Lemma 13, we need the assumption ρ >

2|y0| in order to avoid the core regions around the dislo-
cation centers.

Endnote
1 The authors are indebted to an anonymous referee for

this simple proof as well as that described in Remark 9 for
Lemma 6.

Abbreviations
BCC: Body centered cubic; SC: Simple cubic
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