A Primer on Memory Persistency

Synthesis Lectures on
Computer Architecture

Editor
Natalie Enright Jerger, University of Toronto

Editor Emerita
Margaret Martonosi, Princeton University

Founding Editor Emeritus
Mark D. Hill, University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50- to 100-page books on topics pertaining to
the science and art of designing, analyzing, selecting, and interconnecting hardware components to
create computers that meet functional, performance, and cost goals. The scope will largely follow
the purview of premier computer architecture conferences, such as ISCA, HPCA, MICRO, and
ASPLOS.

A Primer on Memory Persistency
Vaibhav Gogte, Aasheesh Kolli, and Thomas F. Wenisch
2022

In-/Near-Memory Computing
Daichi Fujiki, Xiaowei Wang, Arun Subramaniyan, and Reetuparna Das
2021

Robotic Computing on FPGAs
Shaoshan Liu, Zishen Wan, Bo Yu, and Yu Wang
2021

Al for Computer Architecture: Principles, Practice, and Prospects
Lizhong Chen, Drew Penney, and Daniel Jiménez

2020

Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale
Production

Andres Rodriguez
2020

iii
Parallel Processing, 1980 to 2020

Robert Kuhn and David Padua
2020

Data Orchestration in Deep Learning Accelerators
Tushar Krishna, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer, and Ananda Samajdar
2020

Efficient Processing of Deep Neural Networks
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer
2020

Quantum Computer System: Research for Noisy Intermediate-Scale Quantum
Computers

Yongshan Ding and Frederic T. Chong

2020

A Primer on Memory Consistency and Cache Coherence, Second Edition
Vijay Nagarajan, Daniel]. Sorin, Mark D. Hill, and David Wood
2020

Innovations in the Memory System
Rajeev Balasubramonian

2019

Cache Replacement Policies
Akanksha Jain and Calvin Lin
2019

'The Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition
Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan
2018

Principles of Secure Processor Architecture Design
Jakub Szefer
2018

General-Purpose Graphics Processor Architectures
Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers
2018

Compiling Algorithms for Heterogenous Systems
Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz
2018

iv

Architectural and Operating System Support for Virtual Memory
Abhishek Bhattacharjee and Daniel Lustig
2017

Deep Learning for Computer Architects
Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks
2017

On-Chip Networks, Second Edition
Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh
2017

Space-Time Computing with Temporal Neural Networks
James E. Smith
2017

Hardware and Software Support for Virtualization
Edouard Bugnion, Jason Nieh, and Dan Tsafrir
2017

Datacenter Design and Management: A Computer Architect’s Perspective
Benjamin C. Lee
2016

A Primer on Compression in the Memory Hierarchy
Somayeh Sardashti, Angelos Arelakis, Per Stenstrom, and David A. Wood
2015

Research Infrastructures for Hardware Accelerators
Yakun Sophia Shao and David Brooks
2015

Analyzing Analytics
Rajesh Bordawekar, Bob Blainey, and Ruchir Puri
2015

Customizable Computing
Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao
2015

Die-stacking Architecture
Yuan Xie and Jishen Zhao
2015

Single-Instruction Multiple-Data Execution
Christopher J. Hughes
2015

Power-Efficient Computer Architectures: Recent Advances

Magnus Sjilander, Margaret Martonosi, and Stefanos Kaxiras
2014

FPGA-Accelerated Simulation of Computer Systems
Hari Angepat, Derek Chiou, Eric S. Chung, and James C. Hoe
2014

A Primer on Hardware Prefetching
Babak Falsafi and Thomas F. Wenisch
2014

On-Chip Photonic Interconnects: A Computer Architect’s Perspective
Christopher J. Nitta, Matthew K. Farrens, and Venkatesh Akella
2013

Optimization and Mathematical Modeling in Computer Architecture

Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian Estan, Nilay Vaish, and
David Wood

2013

Security Basics for Computer Architects
Ruby B. Lee
2013

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second Edition

Luiz André Barroso, Jimmy Clidaras, and Urs Holzle

2013

Shared-Memory Synchronization
Michael L. Scott
2013

Resilient Architecture Design for Voltage Variation
Vijay Janapa Reddi and Meeta Sharma Gupta
2013

Multithreading Architecture
Mario Nemirovsky and Dean M. Tullsen
2013

Performance Analysis and Tuning for General Purpose Graphics Processing Units
(GPGPU)

Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu

2012

Automatic Parallelization: An Overview of Fundamental Compiler Techniques
Samuel P. Midkiff
2012

Phase Change Memory: From Devices to Systems
Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran
2011

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar

2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective

Antonio Gonzilez, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, Second Edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can't Avoid It, You Can't Ignore It, You Can’t Fake It

Bruce Jacob

2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

'The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines

Luiz André Barroso and Urs Holzle

2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi

2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, LLance Hammond, and James Laudon

2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

© Springer Nature Switzerland AG 2022
Reprint of original edition © Morgan & Claypool 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

A Primer on Memory Persistency

Vaibhav Gogte, Aasheesh Kolli, and homas F. Wenisch

ISBN: 978-3-031-79193-2 paperback
ISBN: 978-3-031-79205-2 PDF

DOI 10.1007/978-3-031-79205-2

A Publication in the Springer series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #58

Series Editor: Natalie Enright Jerger, University of Toronto

Editor Emerita: Margaret Martonosi, Princeton University

Founding Editor Emeritus: Mark D. Hill, University of Wisconsin, Madison
Series ISSN

Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com

A Primer on Memory Persistency

Vaibhav Gogte
University of Michigan

Aasheesh Kolli

Pennsylvania State University

‘Thomas F. Wenisch
University of Michigan

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #58

ABSTRACT

'This book introduces readers to emerging persistent memory (PM) technologies that promise
the performance of dynamic random-access memory (DRAM) with the durability of traditional
storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such
as Intel’s Optane DC persistent memories, are commercially available today. Unlike traditional
storage devices, PMs can be accessed over a byte-addressable load-store interface with access
latency that is comparable to DRAM. Unfortunately, existing hardware and software systems
are ill-equipped to fully avail the potential of these byte-addressable memory technologies as
they have been designed to access traditional storage media over a block-based interface. Several
mechanisms have been explored in the research literature over the past decade to design hardware
and software systems that provide high-performance access to PMs.

Because PMs are durable, they can retain data across failures, such as power failures and
program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state
and resume program execution. Correct recovery of data requires that operations to the PM are
properly ordered during normal program execution. Memory persistency models define the order
in which memory operations are performed at the PM. Much like memory consistency models,
memory persistency models may be relaxed to improve application performance. Several pro-
posals have emerged recently to design memory persistency models for hardware and software
systems and for high-level programming languages. These proposals differ in several key aspects;
they relax PM ordering constraints, introduce varying programmability burden, and introduce
differing granularity of failure atomicity for PM operations.

'This primer provides a detailed overview of the various classes of the memory persistency
models, their implementations in hardware, programming languages and software systems pro-
posed in the recent research literature, and the PM ordering techniques employed by modern
processors.

KEYWORDS

persistent memory, non-volatile memory, storage-class memory, memory persis-
tency models, strict persistency model, epoch persistency model, strand persistency
model, failure atomicity, logging mechanisms

Contents

Preface XV
Acknowledgments xix
Persistent Memories. il 1
1.1 Introductiono oo 1
1.2 Persistent Memory Technologies. oo .. 2
1.3 Intel Optane DC Persistent Memory, 4
1.3.1 Performance of Optane DC Persistent Memory 4
1.3.2 Modeling Persistent Memory Systems. 5
1.4 System Configurationsttt 6
1.4.1 Traditional Storage Systems i, 6
1.42 Persistent Memory System 8
1.4.3 Persistent Memory Support in Existing File Systems 9
1.4.4 Persistent Memory File Systems 9
1.4.5 Direct Access to Persistent Memories 10
DataPersistence 13
2.1 Ensuring Data Durability oo i 13
2.1.1 Persistence at CPU Caches.............o o oo 14
2.1.2 Persistence at PM Controller 15
2.1.3 Persistence at Persistent Memory Device....................... 16
2.1.4 ARMv8.2 ISAEXensionsovvieieiiieeiinennnnnnnn... 17
2.2 Ordering Memory Operationsto PM 17
221 Whyis Ordering Required? 17
2.2.2 Sources of PM Operation Reordering 18
2.2.3 Applying Correct Memory Orderto PM 20
Memory Persistency Models 21
3.1 Persistency Models 21
3.2 Recovery Observer i 22

3.3 Strict Persistency 23

3.3.1 Buffered Strict Persistency Model 24
3.3.2 Formalizing the Strict Persistency Model 25
3.3.3 Persist Ordering Examplesol 25
3.4 Hardware Implementations of Strict Persistency 26
3.4.1 Naive Implementation 27
342 BulkPersistence i 27
3.4.3 Delegated Persistence i 28
3.5 Drawbacks of Strict Persistency............. o il 30
3.6 Epoch Persistency Model. i i 30
3.6.1 Strong Persist Atomicity........... 31
3.6.2 Buffered Epoch Persistency Model 32
3.6.3 Formalizing the Epoch Persistency Model 33
3.6.4 Persist Ordering Examples 34
3.7 Hardware Implementations of Epoch Persistency 35
3.7.1 Naive Implementation 36
3.7.2 Buffered Epoch Persistency in Hardware....................... 37
3.7.3 Offline Conflict Resolution 38
3.7.4 Separate Ordering and Durability Barriers 41
3.8 Drawbacks of Epoch Persistencyo il 43
3.9 Strand Persistency Model o it 43
3.9.1 Strong Persist Atomicity.t 44
3.9.2 Formalizing the Strand Persistency Model 44
3.9.3 Persist Ordering Examples 45
3.10 Hardware Implementations of Strand Persistency 47
Hardware Mechanisms for Atomic Durability. 51
4.1 Failure AtomiCityottt 51
41.1 Write-Ahead Logging o L. 52
41.2 LogStructuring i 55
413 ShadowPaging i 55
4.2 Failure-Atomic Mechanisms oo i 55
4.3 Hardware Undo Logging o i 56
43.1 Naive Implementation 56
4.3.2 Optimized Undo Logging 57
4.3.3 Software-Assisted Hardware Logging 59
4.4 Hardware Redo Logging il 60

441 Optimized Redo Logging........... 61

4.4.2 Durable Hardware Transactions.............................. 62
4.5 Hardware Checkpointing Mechanisms 63
451 Coarse-Grained Checkpointing oo 63
4.5.2 Checkpointing on Power Failure 64
Programming Persistent Memory Systems 65
51 File Systemsottt 65
511 ExtdDAX ... 65
512 NOVAFile System ...t 67
513 SplitFS. ... o 68
5104 Stratat 69
5.2 Programming PM Systems i i 70
5.2.1 Transactional Failure Atomicity 70
522 Intel's PMDKlibraries i i i 71
5.2.3 Deferred Commit Transactionscooiiiunnnn. 72
5.2.4 Failure Atomicity for Outer-Critical Section 72
5.2.5 Failure Atomicity for Synchronization Free Region 73
5.3 Testing PM Applicationsuuuuun e 75
Conclusion 77
Bibliography 79

Authors’ Biographies 95

Preface

Upcoming persistent memory (PM) technologies aim to revolutionize the landscape of future
storage systems. These memory technologies promise to deliver near-DRAM performance cou-
pled with the non-volatility of traditional storage media, such as hard disks and solid-state
drives (SSDs). PMs provide a byte-addressable load-store interface with access latency similar
to DRAM, unlike hard disks and SSDs, which can only be accessed over a block-based in-
terface. Unfortunately, existing hardware, software, and programming systems are ill-equipped
to utilize the complete potential of these byte-addressable storage technologies, as they have
been designed over generations to access storage over a block-based interface. Existing systems
require an expensive software layer to access hard disks and SSDs. While the software layer in-
troduces negligible overheads relative to the inherent latency of accessing a hard disk or SSD,
the overheads are prohibitive relative to much faster PMs. Several mechanisms have emerged in
the research literature over the past decade and are recently being employed by CPU vendors to
design hardware and software systems that provide high-performance access to PMs.

PMs, such as Intel's Optane DC persistent memories, are commercially available today.
Because PMs are durable, they can retain data across failures, such as power failures and pro-
gram crashes. Upon a failure, recovery mechanisms can inspect the data stored in PM, use it to
reconstruct the application state, and resume program execution. Correct data recovery requires
that the operations to the PM are properly ordered during normal program execution. Unfor-
tunately, ordering PM operations is complicated in modern processor systems by the volatile
cache hierarchy and various buffers throughout the memory system. These hardware mecha-
nisms reorder, coalesce, and elide memory operations, which complicate their ordering at the
PM. For example, write-back caches may lazily drain updates to the PM (e.g., when cacheline
conflicts occur), thereby reordering the updates relative to the original program order. On a fail-
ure, the volatile state in the caches is lost. Recovery mechanisms may then observe unintentional
reordering of memory operations in the PM post-failure.

Memory persistency models guarantee ordering of PM operations. Memory persistency
models are analogous to memory consistency models, which define the visibility order of mem-
ory operations to shared memory. Similarly, memory persistency models define the allowable
order in which memory operations are performed at the PM. Several memory persistency mod-
els have been introduced in the literature. Some proposals have been defined as extensions to the
hardware ISA and others to the semantics of high-level programming languages. The propos-
als differ in several key aspects: they relax PM ordering constraints in different ways, introduce
varying programmability burden, and introduce diftering granularity of failure atomicity for PM
operations. This primer provides a detailed overview of the various classes of memory persistency

xvi PREFACE

models, their implementations in hardware, programming languages, and software systems pro-
posed in the recent research literature, and the PM ordering techniques employed by modern
processor systems. We organize this primer in six chapters, with each chapter detailing different
aspects of PM programming.

Chapter 1 provides a brief overview of different technologies that are considered key con-
tenders for designing PMs. It briefly covers Phase Change Memory, Spin Torque Transfer
RAM, and Ferroelectric RAM that might be used to construct high-density, low-access-latency
PMs. The chapter also provides a performance characterization of the commercially available
Intel Optane DC Persistent Memories. PMs can be used in different configurations by storage
systems. Modern file systems may access them over a block-based interface by directly replacing
hard disks or SSDs with PMs, or file systems may be developed from the ground up and opti-
mized to directly access byte-addressable storage. We cover the trade-offs for these alternatives
in Chapter 1.

Chapter 2 discusses the mechanisms proposed by hardware vendors, such as Intel and
ARM, to provide PM ordering guarantees. We discuss instruction set extensions introduced
by the vendors to durably store and order PM accesses. As discussed earlier, correct recovery
requires that memory operations are ordered to the PM. Chapter 2 provides examples to show
why ordering is required for correct recovery.

Chapter 3 details different memory persistency models. Like memory consistency mod-
els, memory persistency models may be relaxed, albeit at a higher programmability burden, to
improve performance. We cover strict and relaxed persistency models, which offer varying or-
dering constraints on the PM operations. We define these persistency models formally, and also
discuss the hardware implementations proposed in the literature that build each of these models.

The persistency models discussed in Chapter 3 assume atomicity for individual updates
(e.g., 8-byte updates in Intel x86). That is, in the case of a failure, either the entirety of the update
is applied to the PM or the memory location retains its original value. Recovery mechanisms
build from this foundation to provide failure atomicity for multiple updates. They may construct
logging mechanisms to ensure that either all of the updates or none of the updates within a
failure-atomic program region are durable across a failure. Chapter 4 describes these logging
mechanisms. It also focuses on mechanisms proposed in the research literature to construct
failure atomicity in hardware.

Chapter 5 discusses the software mechanisms designed to program persistent memory
systems. It describes file systems, software transactions, and programming frameworks designed
tor PM programming. The testing frameworks aimed at finding memory ordering bugs in the
recovery systems designed for PMs are also covered in Chapter 5. Chapter 6 concludes the
primer.

This primer assumes that the reader is familiar with the basics of computer architecture,
with a basic understanding of hardware caching and the memory hierarchy. We cite relevant
works that readers can use to obtain a complete understanding of the architecture details that

PREFACE xvii

are orthogonal to the topics discussed in this book. Wherever possible, we show quantitative
comparison between different proposals discussed in the research literature.

Vaibhav Gogte, Aasheesh Kolli, and Thomas F. Wenisch
February 2022

Acknowledgments

We would like to thank our reviewer, Jishen Zhao, for her valuable feedback on this book.
We would also like to acknowledge our colleagues at Google, notably David Culler, Rama
Govindaraju, Jack Humphries, Samira Khan, and Parthasarathy Ranganathan, for their com-
ments on the early draft of this synthesis lecture. Special thanks to Natalie Enright Jerger and
Michael Morgan for their endless patience and constant encouragement that helped us finish
this manuscript.

Vaibhav Gogte, Aasheesh Kolli, and Thomas F. Wenisch
February 2022

	Copyright Page

	Title Page
	Contents
	Preface
	Acknowledgments

