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ABSTRACT

'This book introduces readers to emerging persistent memory (PM) technologies that promise
the performance of dynamic random-access memory (DRAM) with the durability of traditional
storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such
as Intel’s Optane DC persistent memories, are commercially available today. Unlike traditional
storage devices, PMs can be accessed over a byte-addressable load-store interface with access
latency that is comparable to DRAM. Unfortunately, existing hardware and software systems
are ill-equipped to fully avail the potential of these byte-addressable memory technologies as
they have been designed to access traditional storage media over a block-based interface. Several
mechanisms have been explored in the research literature over the past decade to design hardware
and software systems that provide high-performance access to PMs.

Because PMs are durable, they can retain data across failures, such as power failures and
program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state
and resume program execution. Correct recovery of data requires that operations to the PM are
properly ordered during normal program execution. Memory persistency models define the order
in which memory operations are performed at the PM. Much like memory consistency models,
memory persistency models may be relaxed to improve application performance. Several pro-
posals have emerged recently to design memory persistency models for hardware and software
systems and for high-level programming languages. These proposals differ in several key aspects;
they relax PM ordering constraints, introduce varying programmability burden, and introduce
differing granularity of failure atomicity for PM operations.

'This primer provides a detailed overview of the various classes of the memory persistency
models, their implementations in hardware, programming languages and software systems pro-
posed in the recent research literature, and the PM ordering techniques employed by modern
processors.

KEYWORDS

persistent memory, non-volatile memory, storage-class memory, memory persis-
tency models, strict persistency model, epoch persistency model, strand persistency
model, failure atomicity, logging mechanisms
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Preface

Upcoming persistent memory (PM) technologies aim to revolutionize the landscape of future
storage systems. These memory technologies promise to deliver near-DRAM performance cou-
pled with the non-volatility of traditional storage media, such as hard disks and solid-state
drives (SSDs). PMs provide a byte-addressable load-store interface with access latency similar
to DRAM, unlike hard disks and SSDs, which can only be accessed over a block-based in-
terface. Unfortunately, existing hardware, software, and programming systems are ill-equipped
to utilize the complete potential of these byte-addressable storage technologies, as they have
been designed over generations to access storage over a block-based interface. Existing systems
require an expensive software layer to access hard disks and SSDs. While the software layer in-
troduces negligible overheads relative to the inherent latency of accessing a hard disk or SSD,
the overheads are prohibitive relative to much faster PMs. Several mechanisms have emerged in
the research literature over the past decade and are recently being employed by CPU vendors to
design hardware and software systems that provide high-performance access to PMs.

PMs, such as Intel's Optane DC persistent memories, are commercially available today.
Because PMs are durable, they can retain data across failures, such as power failures and pro-
gram crashes. Upon a failure, recovery mechanisms can inspect the data stored in PM, use it to
reconstruct the application state, and resume program execution. Correct data recovery requires
that the operations to the PM are properly ordered during normal program execution. Unfor-
tunately, ordering PM operations is complicated in modern processor systems by the volatile
cache hierarchy and various buffers throughout the memory system. These hardware mecha-
nisms reorder, coalesce, and elide memory operations, which complicate their ordering at the
PM. For example, write-back caches may lazily drain updates to the PM (e.g., when cacheline
conflicts occur), thereby reordering the updates relative to the original program order. On a fail-
ure, the volatile state in the caches is lost. Recovery mechanisms may then observe unintentional
reordering of memory operations in the PM post-failure.

Memory persistency models guarantee ordering of PM operations. Memory persistency
models are analogous to memory consistency models, which define the visibility order of mem-
ory operations to shared memory. Similarly, memory persistency models define the allowable
order in which memory operations are performed at the PM. Several memory persistency mod-
els have been introduced in the literature. Some proposals have been defined as extensions to the
hardware ISA and others to the semantics of high-level programming languages. The propos-
als differ in several key aspects: they relax PM ordering constraints in different ways, introduce
varying programmability burden, and introduce diftering granularity of failure atomicity for PM
operations. This primer provides a detailed overview of the various classes of memory persistency




xvi PREFACE

models, their implementations in hardware, programming languages, and software systems pro-
posed in the recent research literature, and the PM ordering techniques employed by modern
processor systems. We organize this primer in six chapters, with each chapter detailing different
aspects of PM programming.

Chapter 1 provides a brief overview of different technologies that are considered key con-
tenders for designing PMs. It briefly covers Phase Change Memory, Spin Torque Transfer
RAM, and Ferroelectric RAM that might be used to construct high-density, low-access-latency
PMs. The chapter also provides a performance characterization of the commercially available
Intel Optane DC Persistent Memories. PMs can be used in different configurations by storage
systems. Modern file systems may access them over a block-based interface by directly replacing
hard disks or SSDs with PMs, or file systems may be developed from the ground up and opti-
mized to directly access byte-addressable storage. We cover the trade-offs for these alternatives
in Chapter 1.

Chapter 2 discusses the mechanisms proposed by hardware vendors, such as Intel and
ARM, to provide PM ordering guarantees. We discuss instruction set extensions introduced
by the vendors to durably store and order PM accesses. As discussed earlier, correct recovery
requires that memory operations are ordered to the PM. Chapter 2 provides examples to show
why ordering is required for correct recovery.

Chapter 3 details different memory persistency models. Like memory consistency mod-
els, memory persistency models may be relaxed, albeit at a higher programmability burden, to
improve performance. We cover strict and relaxed persistency models, which offer varying or-
dering constraints on the PM operations. We define these persistency models formally, and also
discuss the hardware implementations proposed in the literature that build each of these models.

The persistency models discussed in Chapter 3 assume atomicity for individual updates
(e.g., 8-byte updates in Intel x86). That is, in the case of a failure, either the entirety of the update
is applied to the PM or the memory location retains its original value. Recovery mechanisms
build from this foundation to provide failure atomicity for multiple updates. They may construct
logging mechanisms to ensure that either all of the updates or none of the updates within a
failure-atomic program region are durable across a failure. Chapter 4 describes these logging
mechanisms. It also focuses on mechanisms proposed in the research literature to construct
failure atomicity in hardware.

Chapter 5 discusses the software mechanisms designed to program persistent memory
systems. It describes file systems, software transactions, and programming frameworks designed
tor PM programming. The testing frameworks aimed at finding memory ordering bugs in the
recovery systems designed for PMs are also covered in Chapter 5. Chapter 6 concludes the
primer.

This primer assumes that the reader is familiar with the basics of computer architecture,
with a basic understanding of hardware caching and the memory hierarchy. We cite relevant
works that readers can use to obtain a complete understanding of the architecture details that
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are orthogonal to the topics discussed in this book. Wherever possible, we show quantitative
comparison between different proposals discussed in the research literature.

Vaibhav Gogte, Aasheesh Kolli, and Thomas F. Wenisch
February 2022
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