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1. Introduction 
For millennia, human beings have been aware of the 
importance of agricultural products in their life and have 
benefited from plants and their different parts like fruits, 
leaves, and seeds, for food, clothing, medicine, and animal 
feed (Ercisli, 2009; Erturk et al., 2010; Canan et al., 2016; 
Hricova et al., 2016; Yazici and Sahin, 2016). 

From among crop plants, lentil (Lens culinaris) from 
the legume family is an important source of protein, 
fiber, energy, and minerals for both humans and animals 
(Torres et al., 2016). Based on FAO statistics (www.fao.
org), Iran ranks as the 11th largest producer of lentil. Total 
production of lentil in Iran was 334,000 t (Ministry of 
Jihad-e-Agriculture of Iran, 2014).

One of the important areas of research in agriculture is 
yield management. In this area, several investigations have 
been carried out, such as those of Kravchenko and Bullock 
(2000), Kitchen et al. (2003), Jiang and Thelen (2004), 
Park et al. (2005), and Singh et al. (2013). In these studies, 
different approaches like crop models, statistical tools, 
and algorithms have been used to evaluate yield. Multiple 
linear regression (MLR) has been widely used to predict 
yield and determine factors influencing yield (Kravchenko 
and Bullock, 2000; Park et al., 2005; Huang et al., 2010). 
According to Kitchen et al. (2003), MLR fails to properly 

describe the relationship between the relevant parameters 
and variables if they are not linear and hence the results 
may not be trusted. Jiang and Thelen (2004), Huang et 
al. (2010), and Fortin et al.(2010) combined multivariate 
techniques, like principal component analysis and factor 
analysis, with multiple regressions to reduce the problems 
and to facilitate selecting a set of variables from a large 
data set. Some studies also applied artificial intelligence in 
yield management (Huang et al., 2010).

Regression analysis is one of the standard tools in 
analyzing data. The obtained mathematical equation 
can explain the relationship between the dependent and 
independent variables. Its explanatory power lies in its 
multivariate nature. It is available in computer packages 
and is widely used in different fields (Agresti, 1996). As 
is known, there are two types of regression, linear and 
nonlinear. Rousseeuw et al. (2004) listed some difficulties 
arising from nonlinear approaches that may lead to 
inconsistent and biased estimation.

Although nowadays, some researchers are interested in 
nonlinear modeling statistics rather than linear modeling, 
it is highly desirable to have a linear relationship between 
a dependent variable (such as yield) and independent 
variables affecting it, because linear relations are of a 
simple nature and mathematically are easier to work
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with. However, in practice and in many cases, such a 
relationship is nonlinear. If we look at the relationship 
between a dependent variable and independent 
variables from a fuzzy point of view, it is possible to 
consider some nonlinear relations as “fuzzy linear 
relations” in classical mathematics. 

Keeping the above point in mind, the aim of the 
present study was to compare the fuzzy linear 
regression (FLR) model and MLR model in evaluating 
the relationship of lentil yield and independent 
variables. We will also show how the fuzzy approach 
can be employed in working with imprecise data. The 
FLR method was used for yield estimation and its 
inference capabilities were compared with the MLR 
tool.  
 
2. Materials and methods 

2.1.  Data collection 
Data were collected from kernel yield and its 
components in rain-fed lentil from a field experiment 
conducted in the 2010 and 2014 growing seasons at 
different sites of an experimental research field in 
Ahvaz, Iran. Five rows per meter width were planted 
and 8 seeds per row meter were placed (40 seeds/m2), 
and fertilizers and herbicides were applied manually in 
planting and stem elongation. 

 Monthly minimum and maximum air 
temperatures (°C) and rainfall (mm) at the 
experimental site are illustrated in Table 1. Yield and 
yield components were recorded at maturity.  

We studied and analyzed 25 predictor variables to 
detect the yield of lentil genotypes. After data analysis, 
we found that only 12 of those 25 variables were of 
more significance (P < 0.05) for lentil yield estimation. 
Statistical descriptions of studied variables are shown 
in Table 2. They are as follows: hundred-kernel weight 
(HKW), pod number (PN), kernel number per pod 
(KNPP), branch number (BN), leaf area index (LAI), 
length of the internodes (LI), plant height (H), harvest 
index (HI), biological yield (BY), days to flowering 
(DF), total dry matter (TDM), and kernel yield (KY), 
which were measured at the dry seed stage. Kernel yield 
was measured using samples of 5 m2 randomly cut 
from each plot. Days to flowering were calculated based 
on days after sowing.  

Following Yuan et al. (2017), leaf area was 
measured using a leaf area meter (Delta-T Device, UK) 
on four plants when one open flower at any node 
emerged. When one mature pod emerged at every 
node, shoot length, node number, and internode 
lengths were recorded. By using node number divided 
by shoot length, internode length was calculated. It 

should be mentioned that sowing time to harvest 
corresponded to the regular growing period for field-
grown lentil in the experimental site. Then harvest 
index was calculated. 

2.2. Methodology  
To analyze the data, the statistical software SPSS 20, 
Excel 2010, and Lingo ver. 5 were used. Lingo was used 
for model optimization in order to obtain fuzzy linear 
regression equations. For every variable, whenever 
necessary, close data were organized as fuzzy numbers. 
To find MLR equations, SPSS 20 was used. 

2.2.1. Multiple linear regression (MLR)  
Regression analysis was first introduced by Galton in 
the 19th century. He developed a mathematical 
description in which regression describes statistical 
relations between variables (Kutner, 2004): 
𝑌𝑌! = 𝛽𝛽! + 𝛽𝛽!!

!!! 𝑋𝑋!" + 𝜀𝜀! 𝛽𝛽  = 
𝛽𝛽! + 𝛽𝛽!𝑋𝑋!! + 𝛽𝛽!𝑋𝑋!! + ⋯𝛽𝛽!𝑋𝑋!" + 𝜀𝜀! 𝛽𝛽 , 𝑖𝑖 = 1, … , 𝑛𝑛 . 
Or 𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀 . 
The function for the least squares method is: 

𝑆𝑆 𝛽𝛽!, 𝛽𝛽!, 𝛽𝛽!, … , 𝛽𝛽! = 𝑆𝑆 𝛽𝛽 = 𝜀𝜀!! 𝑜𝑜𝑜𝑜 𝜀𝜀!𝜀𝜀!
!!! . 

From Eq. (1), 𝜀𝜀 𝛽𝛽 = 𝑌𝑌 − 𝑋𝑋𝑋𝑋. 
Then, 𝑆𝑆 𝛽𝛽 = 𝑌𝑌 − 𝑋𝑋𝑋𝑋 ! 𝑌𝑌 − 𝑋𝑋𝑋𝑋  
= 𝑌𝑌!𝑌𝑌 − 2𝛽𝛽!𝑋𝑋!𝑌𝑌 + 𝛽𝛽!𝑋𝑋!𝑋𝑋𝑋𝑋. 
To minimize 𝑆𝑆(𝛽𝛽), we have to differentiate 𝑆𝑆(𝛽𝛽) with 
respect to 𝛽𝛽 where !"

!"
𝛽𝛽 is equal to 0:  

!"
!"

𝛽𝛽 = −2𝑋𝑋!𝑌𝑌 + 2𝑋𝑋!𝑋𝑋𝑋𝑋 = 0. 
Hence, the least square estimator is:  

𝛽𝛽^ = (𝑋𝑋!𝑋𝑋)!!𝑋𝑋!𝑌𝑌. 
The value fit by the equation 𝑌𝑌! = 𝛽𝛽! + 𝛽𝛽!𝑋𝑋!! +

𝛽𝛽!𝑋𝑋!! + ⋯𝛽𝛽!𝑋𝑋!" is denoted 𝑖𝑖, and the residuals 𝜀𝜀! are 
equal to 𝑦𝑦! − 𝑦𝑦^, the difference between the observed 
and fitted values. 

2.2.2. Fuzzy theory 
The concept of fuzziness was first introduced by Zadeh 
(1965, 1975a, 1975b, 1975c). According to him, fuzzy 
theory emerged after it was found that traditional 
techniques of systems analysis are incapable of dealing 
with problems in which the relationships between 
variables are too vague or complex. Such problems are 
common in many fields such as biology, economics, 
social sciences, linguistics, and of course agriculture 
studies. According to Zadeh, “a common thread that 
runs through problems of this type is the un-sharpness 
of class boundaries and the concomitant imprecision, 
uncertainty, and partiality of truth” (Bojadziev, 2007). 

Fuzzy theory is a framework within which the 
imprecision, vagueness, and uncertainty of the real 
world are modeled (Zadeh, 1975a). In classical set 
theory, membership in a set is binary. An element 
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either belongs or does not belong to the set. However, 
membership in fuzzy sets is gradual, not binary. 
Elements in fuzzy sets have degrees of membership. 
The cornerstone of fuzzy theory is the concept of fuzzy 
sets. 

Fuzzy sets are a generalization of classical sets, in 
which the membership of every element can be 
considered a number in interval [0,1] instead of 0 or 1. 
The membership function of a fuzzy set 𝐴𝐴 , 𝜇𝜇

!
𝑥𝑥 ,   

specifies the grade or degree to which any element x 
belongs to the fuzzy set 𝐴𝐴. We will identify any fuzzy 
set with its membership function and use these two 
concepts interchangeably.  
A fuzzy subset 𝐴𝐴 of the real numbers ℝ is said to be 
convex if for all  𝑥𝑥, 𝑦𝑦 ∈  ℝ and for every real number ⋋ 
satisfying  0 ≤⋋≤ 1 , we have    

µ! ⋋ 𝑥𝑥 + 1 −⋋ 𝑦𝑦 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚 µ
!
𝑥𝑥 , µ

!
𝑦𝑦 . 

Now a fuzzy number 𝐴𝐴 is defined on the universe 
ℝ a convex and normalized fuzzy set with 
semicontinuous membership function  µ

!
𝑥𝑥  in which 

𝐴𝐴 is called normalized when at least one 𝑥𝑥 ∈  ℝ attains 
the maximum membership grade 1. We denote the set 
of all fuzzy numbers by ℝ. 

Since in the real world, data sometimes cannot be 
precisely recorded or collected, fuzzy theory is 
naturally an appropriate tool in modeling when fuzzy 
data have been observed. In this regard, the concept of 
fuzzy numbers is vital. In particular, let 𝑟𝑟 be a real 
number. Then the trapezoidal fuzzy set 𝑟𝑟 defined by:  

µ! 𝑥𝑥 =

!!!!
!!!!!!!

           𝑎𝑎! ≤ 𝑥𝑥 ≤ 𝑟𝑟 − 𝜀𝜀!
1                               𝑟𝑟 − 𝜀𝜀! ≤ 𝑥𝑥 ≤ 𝑟𝑟 + 𝜀𝜀!

!!!!
!!!!!!!

            𝑝𝑝 + 𝜀𝜀! ≤ 𝑥𝑥 ≤ 𝑎𝑎!
0                                   𝑜𝑜. 𝑤𝑤

. 

 
This is a fuzzy number, which can be expressed as 
being about r or approximately equal to 𝑟𝑟,  and it can 
be denoted by 𝑟𝑟 = 𝑎𝑎!, 𝑟𝑟 − 𝜀𝜀!, 𝑟𝑟 + 𝜀𝜀!, 𝑎𝑎!  .  If 
𝜀𝜀! = 𝜀𝜀! = 0 then the trapezoidal fuzzy number is 
called a triangular fuzzy number and it can be written 
in the form of 𝑎𝑎!, 𝑟𝑟, 𝑎𝑎!  instead of 𝑎𝑎!, 𝑟𝑟, 𝑟𝑟, 𝑎𝑎! . 
In addition, a triangular fuzzy number 𝑎𝑎!, 𝑎𝑎!, 𝑎𝑎!  is 
symmetrical if  

𝑎𝑎! =
!!!!!
!

. 
In such a case it is customary that the symmetrical 

fuzzy number 𝑎𝑎 − 𝜀𝜀 , 𝑎𝑎, 𝑎𝑎 + 𝜀𝜀  be written in the 
form 𝑎𝑎, 𝜀𝜀 . Triangular fuzzy numbers are very often 
used in the applications. Note that every real number 𝑎𝑎 
can be expressed as the triangular fuzzy number 

𝑎𝑎 = 𝑎𝑎, 𝑎𝑎, 𝑎𝑎 . In this way, every real number can be 
regarded as a fuzzy number, i.e. ℝ ⊂  ℝ .  
Let: 
  𝐿𝐿 𝑥𝑥  (𝑎𝑎𝑎𝑎𝑎𝑎  𝑅𝑅 𝑥𝑥  ): [0,∞ ) → 0,1  be decreasing, 
shape function with : 

•  𝐿𝐿 0 = 1;  𝐿𝐿 𝑥𝑥 < 1 for all 𝑥𝑥 > 0, 
•  𝐿𝐿 𝑥𝑥 > 0  for all 𝑥𝑥  ∈ 0, 1 , 
• 𝐿𝐿 1 = 0  𝑜𝑜𝑜𝑜   𝐿𝐿 𝑥𝑥 > 0 for all 𝑥𝑥 and 

lim!→!  𝐿𝐿 𝑥𝑥 = 0. 
Then a fuzzy number 𝐴𝐴 is called L-R type if for 
𝑚𝑚, 𝛼𝛼 ≥ 0,β≥ 0 in ℝ we have the following: 

 µ
!
𝑥𝑥 =

           𝐿𝐿(
𝑚𝑚 − 𝑥𝑥
𝛼𝛼

)           𝑥𝑥 ≤ 𝑚𝑚

𝑅𝑅(
𝑥𝑥 − 𝑚𝑚
β

)            

     0                                   𝑜𝑜. 𝑤𝑤

𝑥𝑥 ≥ 𝑚𝑚 

 
Here, 𝑚𝑚 is called the mode of  𝐴𝐴 , and 𝛼𝛼, β are called 
the left and right spreads, respectively, and we denote 
the set of all L-R fuzzy numbers by ℝ!!!.  In this 
notation, 𝐴𝐴  can be shown as  (𝑚𝑚, 𝛼𝛼, β)!!!. 
A particular case is when 𝐴𝐴 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = (𝑏𝑏, 𝑏𝑏 − 𝑎𝑎, c −
b)!!!, a triangular fuzzy number. Here  
 𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 

1 − 𝑥𝑥  }=

  1 − 𝑥𝑥        − 1 ≤ 𝑥𝑥 ≤ 1

0                                   𝑜𝑜. 𝑤𝑤

 

Therefore, 

 µ
!
𝑥𝑥 =

𝐿𝐿(𝑏𝑏 − 𝑥𝑥 𝑏𝑏 − 𝑎𝑎)           𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

𝑅𝑅(𝑥𝑥 − 𝑏𝑏 𝑐𝑐 − 𝑏𝑏)            𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

0                                   𝑜𝑜. 𝑤𝑤

 

 
Let ⊙ be any binary operation between fuzzy numbers 
𝐴𝐴!, 𝐴𝐴!, … , 𝐴𝐴!. Then the membership function of 
𝐴𝐴! ⊙ 𝐴𝐴! ⊙ …⊙ 𝐴𝐴! is defined by: 
µ!!⊙!!⊙…⊙!!( 𝑧𝑧) =
supmin µ!! 𝑎𝑎! , µ!! 𝑎𝑎! , … , µ!! 𝑎𝑎! 𝑎𝑎! ⊙ 𝑎𝑎! ⊙
…⊙ 𝑎𝑎! = 𝑧𝑧 . 
 
Using the extension principle, in particular if  

𝐴𝐴 = (𝑚𝑚, 𝛼𝛼, β)!!! , 𝐴𝐴′ = (𝑚𝑚′, 𝛼𝛼′, β′)!!!    𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
𝐴𝐴 ⊕ 𝐴𝐴′ = (𝑚𝑚 + 𝑚𝑚!, 𝛼𝛼 + 𝛼𝛼!, β + β′)!!! 

and 
𝐴𝐴 ⊗ 𝐴𝐴′ = (𝑚𝑚𝑚𝑚!,𝑚𝑚𝛼𝛼! + 𝑚𝑚!𝛼𝛼,𝑚𝑚β! + 𝑚𝑚′β)!!! , 𝐴𝐴, 𝐴𝐴′

≥ 0 
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𝐴𝐴 ⊗ 𝐴𝐴′ = (𝑚𝑚𝑚𝑚!,𝑚𝑚!𝛼𝛼 − 𝑚𝑚β!,𝑚𝑚!β − 𝑚𝑚𝛼𝛼!)!!! , 𝐴𝐴 ≤
0, 𝐴𝐴′ ≥ 0, 

𝐴𝐴 ⊗ 𝐴𝐴′ =
(𝑚𝑚𝑚𝑚!, −𝑚𝑚!β − 𝑚𝑚β!, −𝑚𝑚!𝛼𝛼 − 𝑚𝑚𝛼𝛼!)!!! , 𝐴𝐴, 𝐴𝐴! ≤
0 (Wu, 2003). 

2.2.3. Defuzzification 
Defuzzification is the process of mapping a fuzzy set 
onto a crisp value. A number of defuzzification 
methods have been developed and the most widely 
used one is the center of area method (CAM) (Ni, 
2005), as follows: 
Consider µ

!
𝑥𝑥 , the membership function of a fuzzy 

set 𝐴𝐴. The defuzzified value CAM, d
!"#

, is defined as the 
first coordinate of the gravity center of the area under 
the curve of  µ

!
𝑥𝑥  (Ni, 2005). Indeed: 

d
!"#

=
! !
!
! !"!!

!!

!
!
! !"!!

!!
. 

2.2.4. Fuzzy linear regression (FLR) 
Statistical regression has many applications, but it 
causes serious problems if the data are too small, the 
relationship between variables is unclear or the 
verification of the normal distribution of error is 
difficult, there is ambiguity in the event or the linearity 
is an inappropriate assumption, or some of the values 
of independent or dependent variables are fuzzy. These 
are the situations addressed by FLR (Shapiro, 2005). 

The FLR model was first introduced by Tanaka et 
al. (1982) by using linear programming to determine 
the regression coefficients as fuzzy numbers. FLR 
provides tools to study the relationship between 
variables when some of the assumptions of MLR fail.         

After Tanaka et al., FLR has been studied 
extensively by many authors (e.g., Bardossy, 1990; Savic 
and Pedrycz, 1991; Ishibuchi, 1992; Chang et al., 1994; 
Peters, 1994; Redden and Woodal, 1994; Ayyub et al., 
1997; Diamond et al., 1997; Mann et al., 2011; Taheri 
and Kelkinnama, 2012; Torres et al., 2016). There are 
two models to develop: 
1) Models in which the relationship of the variables is 
fuzzy;  
2) Models in which the variables are fuzzy (Shapiro, 
2005). 
In this article, to model the yield of lentil genotypes, we 
used a MLR model and two FLR models, one 
introduced by Tanaka et al. (1982) and the other by 
Savic and Pedrycz (1991). It should be mentioned that 
these two FLR models are both developed based on a 
minimum fuzziness method. 
 According to both, we set 

𝑦𝑦 = 𝐴𝐴! ⊕ 𝐴𝐴!⨂𝑋𝑋!!
!!! , 

in which  𝐴𝐴!, 𝐴𝐴!, … , 𝐴𝐴! are symmetrically triangular 
fuzzy numbers. 

Our aim is to determine these fuzzy numbers. For 
this, we must solve the following linear programming 
problem: 
Min 𝛽𝛽 =  𝑚𝑚𝑐𝑐!+ 𝑐𝑐!!

!!!
!
!!! 𝑥𝑥!"  

s.t.: 
𝑝𝑝!+ 𝑝𝑝!!

!!! 𝑥𝑥!" − 1 − ℎ 𝑐𝑐! + 𝑐𝑐!!
!!! 𝑥𝑥!" ≤  𝑦𝑦! −(1-

h)𝑒𝑒!  
𝑝𝑝!+ 𝑝𝑝!!

!!! 𝑥𝑥!" + 1 − ℎ 𝑐𝑐! + 𝑐𝑐!!
!!! 𝑥𝑥!" ≥  𝑦𝑦! +(1-

h)𝑒𝑒! 
𝑐𝑐!,𝑐𝑐!, … , 𝑐𝑐! !! 

where m is the size of the data set, k is the number of 
independent variables,  {x!",x!",…,x!" } denotes the ith 
observation, {c!, c!, … , c!} denotes the half spreads of 
fuzzy regression coefficients, {p!, p!, … , p!} denotes the 
centers of fuzzy regression coefficients, and h is a 
possibility level predetermined by a decision-maker 
(Figure 1) (Tanaka et al., 1982). However, it is 
necessary to mention that there exists a subtle 
difference between the Savic and Pedrycz model and 
the Tanaka model. 

In the Savic and Pedrycz FLR model (1991), which 
was developed by integrating minimum fuzziness into 
MLR, the centers of fuzzy regression coefficients are 
exactly those coefficients that appear in the MLR 
model, whereas in the Tanaka model, {p!, p!, … , p!} 
and {c!, c!, … , c!} are calculated independently of 
MLR. 
 
3. Results and discussion 
According to our data, the estimated MLR model, after 
defuzzification of the dependent variable (using CAM) 
for lentil yield, is as follows: 

Y = –1063.421 + 2.2𝑋𝑋!(=HKW) + 10.105𝑋𝑋!(=PN) 
+ 1.024𝑋𝑋!(=KNPP) –0.125𝑋𝑋!(=BN) + 4.175𝑋𝑋!(=LAI) 
+ 5.746𝑋𝑋!(=LI) – 0.717𝑋𝑋!(=H) + 24.680𝑋𝑋!(=HI) + 
0.689𝑋𝑋!(=BY) – 0.130𝑋𝑋!"(=DF) – 2.367𝑋𝑋!!(=KY) + 
3.350𝑋𝑋!"(=TDM). 
Now we will apply 2 models of FLR to our data, the 
Tanaka and the Savic and Pedrycz, respectively. 
Applying the Tanaka model with h = 0.5 leads to the 
following results: 

𝑦𝑦 = 𝐴𝐴! ⊕ 𝐴𝐴!⨂𝑋𝑋!!"
!!! , 

where: 
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (0,0) ,  i = 0, 1, 4, 7, 11, 12, 
and  
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (7.895, 0), 
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (4.33, 0), 
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (1.61, 0), 
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𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (3.04, 11.47), 
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (0.68, 0), 
𝐴𝐴! = 𝑝𝑝!, 𝑐𝑐!  = (1.9, 3.1), 
𝐴𝐴!" = 𝑝𝑝!", 𝑐𝑐!"  = (11.56, 0).  
In fact the only two fuzzy coefficients (Figure 2) are  

𝐴𝐴! = 3.04,11.47 , µ
!!
𝑥𝑥

=

𝑥𝑥 + 8.43
11.47

        − 8.43 ≤ 𝑥𝑥 ≤ 3.04

14.51 − 𝑥𝑥
11.47

         3.04  ≤ 𝑥𝑥 ≤ 14.51

0                                   𝑜𝑜. 𝑤𝑤

 

and 

𝐴𝐴! = (1.9,3.1) , µ
!!
𝑥𝑥 =

𝑥𝑥 + 1.2
3.1

      − 2.1 ≤ 𝑥𝑥 ≤ 1.9

5 − 𝑥𝑥
3.1

       1.9 ≤ 𝑥𝑥 ≤ 5

0                                   𝑜𝑜. 𝑤𝑤

 

 
We have:  
𝑌𝑌 = 7.895 ⨂𝑃𝑃𝑃𝑃 ⊕ 4.33 ⨂𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ⊕ 1.61⨂𝐿𝐿𝐿𝐿𝐿𝐿 ⊕
3.04, 11.47 ⨂𝐿𝐿𝐿𝐿 ⊕ 0.68⨂𝐻𝐻𝐻𝐻 ⊕ (1.9,3.1)⨂𝐵𝐵𝐵𝐵 ⊕
11.56⨂𝐷𝐷𝐷𝐷. 
  

On the other hand, applying the Savic and Pedrycz 
model to our data collection, we conclude that:  

𝑦𝑦 = 𝐴𝐴! ⊕ 𝐴𝐴!⨂𝑋𝑋!!"
!!! , 

where 
 

 𝐴𝐴! = −1063.421,20.34 , 
µ
!!
𝑥𝑥

=

𝑥𝑥 + 1063.421
20.34

           − 1063.421 ≤ 𝑥𝑥 ≤ −1043.081

−1022.741 − 𝑥𝑥
20.34

            − 1043.081 ≤ 𝑥𝑥 ≤ −1022.741

0                                   𝑜𝑜. 𝑤𝑤

 

 
𝐴𝐴! = (2.2,0.45) , µ

!!
𝑥𝑥

=

𝑥𝑥 − 1.75
0.45

           1.75 ≤ 𝑥𝑥 ≤ 2.2

2.65 − 𝑥𝑥
0.45

            2.2 ≤ 𝑥𝑥 ≤ 2.65

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴! = 10.105,11.382 , µ
!!
𝑥𝑥

=

𝑥𝑥 + 1.275
11.382

          − 1.275 ≤ 𝑥𝑥 ≤ 10.105

21.487 − 𝑥𝑥
11.382

            10.105 ≤ 𝑥𝑥 ≤ 21.487

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴! = (1.024,0.231) , µ
!!
𝑥𝑥

=

𝑥𝑥 + 1.024
0.231

          − 1.024 ≤ 𝑥𝑥 ≤ −0.793

−0.562 − 𝑥𝑥
0.231

          − 0.793 ≤ 𝑥𝑥 ≤ −0.562

0                                   𝑜𝑜. 𝑤𝑤

 

 
𝐴𝐴! = −0.125,0.05 , µ

!!
𝑥𝑥

=

𝑥𝑥 + 0.130
0.05

          − 0.130 ≤ 𝑥𝑥 ≤ −0.125

−0.120 − 𝑥𝑥
0.05

          − 0.125 ≤ 𝑥𝑥 ≤ −0.120

0                                   𝑜𝑜. 𝑤𝑤

 

 
𝐴𝐴! = (4.175,0.21) , µ

!!
𝑥𝑥

=

𝑥𝑥 − 3.965
0.21

          3.965 ≤ 𝑥𝑥 ≤ 4.175

4.385 − 𝑥𝑥
0.21

          4.175 ≤ 𝑥𝑥 ≤ 4.385

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴! = 5.746,6.201 , µ
!!
𝑥𝑥

=

𝑥𝑥 + 0.455
6.201

         − 0.455 ≤ 𝑥𝑥 ≤ 5.746

11.947 − 𝑥𝑥
6.201

         5.746  ≤ 𝑥𝑥 ≤ 11.947

0                                   𝑜𝑜. 𝑤𝑤
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𝐴𝐴! = −0.717,0.132 , µ
!!
𝑥𝑥

=

𝑥𝑥 + 0.849
0.132

         − 0.849 ≤ 𝑥𝑥 ≤ −0.717

−0.585 − 𝑥𝑥
0.132

        − 0.717  ≤ 𝑥𝑥 ≤ −0.585

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴! = 24.680,5.169 , µ
!!
𝑥𝑥

=

𝑥𝑥 − 19.511
5.169

         19.511 ≤ 𝑥𝑥 ≤ 24.680

29.849 − 𝑥𝑥
5.169

        24.680  ≤ 𝑥𝑥 ≤ 29.849

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴! = (0.689,0.123) , µ
!!
𝑥𝑥

=

𝑥𝑥 − 0.566
0.123

         0.566 ≤ 𝑥𝑥 ≤ 0.689

0.812 − 𝑥𝑥
0.123

        0.689 ≤ 𝑥𝑥 ≤ 0.812

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴!" = −0.130,0.023 , µ
!!"

𝑥𝑥

=

𝑥𝑥 + 0.153
0.023

         − 0.153 ≤ 𝑥𝑥 ≤ −0.130

−0.107 − 𝑥𝑥
0.023

        − 0.130  ≤ 𝑥𝑥 ≤ −0.107

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴!! = −2.367,0.521 , µ
!!!

𝑥𝑥

=

𝑥𝑥 + 2.897
0.521

         − 2.897 ≤ 𝑥𝑥 ≤ −2.376

−1.855 − 𝑥𝑥
0.521

        − 2.376  ≤ 𝑥𝑥 ≤ −1.855

0                                   𝑜𝑜. 𝑤𝑤

 

𝐴𝐴!" = 3.350,0.428 , µ
!!"

𝑥𝑥

=

𝑥𝑥 − 2.922
0.428

         2.922 ≤ 𝑥𝑥 ≤ 3.350

3.778 − 𝑥𝑥
0.428

        3.350  ≤ 𝑥𝑥 ≤ 3.778

0                                   𝑜𝑜. 𝑤𝑤

 

Hence, we have:  

𝑌𝑌 = −1063.421,20.34 ⊕ (2.2,0.45) ⨂HKW⊕
10.105,11.382 ⨂𝑃𝑃𝑃𝑃 ⊕ (1.024,0.231) ⨂𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ⊕
−0.125,0.05 ⨂𝐵𝐵𝐵𝐵 ⊕ (4.175,0.21)⨂𝐿𝐿𝐿𝐿𝐿𝐿 ⊕
5.746,6.201 ⨂𝐿𝐿𝐿𝐿 ⊕ −0.717,0.132 ⨂𝐻𝐻 ⊕
24.680,5.169 ⨂𝐻𝐻𝐻𝐻 ⊕ (0.689,0.123) ⨂𝐵𝐵𝐵𝐵 ⊕
−0.130,0.023 ⨂𝐷𝐷𝐷𝐷 ⊕ −2.367,0.521 ⨂𝐾𝐾𝐾𝐾 ⊕
3.350,0.428 ⨂𝑇𝑇𝑇𝑇𝑇𝑇. 

In Table 3, the root mean square errors (RMSEs) of 
these 3 models and the number of variables involved in 
each model are displayed. Moreover, the number of 
fuzzy coefficients that appear in every equation are 
given (Table 3). 
According to Table 3, every FLR model has an 
advantage in comparison to MLR. Tanaka proved to be 
the best model based on the number of involved 
variables, which leads to the facility and easiness of 
calculations. Savic and Pedrycz was the best model 
regarding RMSE, which is the smallest value of error.  
Now, in the following example, we see how we can 
estimate lentil yield corresponding to a collection of 
data using FLR and algebraic operations on arbitrary 
fuzzy numbers:   
Example: Let     
𝐻𝐻𝐻𝐻𝐻𝐻=(22.8,2.3,2.2.1)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 
1 − 𝑥𝑥  }, 
𝑃𝑃𝑃𝑃=(3.6,1.4,1.8)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = !

!! !
, 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾=(1.8, .6, .6)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = 𝑒𝑒!!! , 
𝐵𝐵𝐵𝐵=(151,8,10)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 
1 − 𝑥𝑥  },  
𝐿𝐿𝐿𝐿𝐿𝐿=(124,5,6)!!!,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }, 
𝐿𝐿𝐿𝐿=(5,2,3)!!!,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }, 
𝐻𝐻=(22,4,6)!!!,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }, 
𝐻𝐻𝐻𝐻=(36.74,5.6,4.8)!!!,  𝐿𝐿 𝑥𝑥 = !

!!!! 
, 𝑅𝑅 𝑥𝑥 = !

!!! !
, 

𝐵𝐵𝐵𝐵=(73.45,5.8,4.2)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 
1 − 𝑥𝑥  }, 
𝐷𝐷𝐷𝐷=(22.37,3.4,4.1)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = !

!! !
, 

𝐾𝐾𝐾𝐾=(21.8,3.5,3.1)!!! ,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = 𝑒𝑒!!! , 
𝑇𝑇𝑇𝑇𝑇𝑇=(45,6,8)!!!,  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }. 
Then, using the CAM defuzzification method, we 
conclude that:  
𝐻𝐻𝐻𝐻𝐻𝐻 ≈21.73, 𝑃𝑃𝑃𝑃 ≈ 4.93, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≈ 1.8, 𝐵𝐵𝐵𝐵 ≈
151.66, 𝐿𝐿𝐿𝐿𝐿𝐿 ≈ 124.33, 𝐿𝐿𝐿𝐿 ≈ 5.33, 𝐻𝐻 ≈ 22.33, 𝐻𝐻𝐻𝐻 ≈
36.15,  𝐵𝐵𝐵𝐵 ≈ 72.92, 𝐷𝐷𝐷𝐷 ≈ 20.36, 𝐾𝐾𝐾𝐾 ≈ 21.63 ,
𝑇𝑇𝑇𝑇𝑇𝑇 ≈ 45.66 . 
Now, by using the fuzzy regression equation, we have:  
𝑌𝑌 = −1063.421,20.34 ⊕ (2.2,0.45) ⨂21.73 ⊕
10.105,11.382 ⨂4.93 ⊕ (1.024,0.231) ⨂1.8 ⊕
−0.125,0.05 ⨂151.66 ⊕ (4.175,0.21)⨂124.33 ⊕
5.746,6.201 ⨂5.33 ⊕ −0.717,0.132 ⨂22.33 ⊕
24.68,5.169 ⨂36.15 ⊕ (0.689,0.123) ⨂72.92 ⊕
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Table 1. Some weather parameters during the study at the experimental site.

Month Rainfall (mm) Tmax (oC) Tmin (°C) Mean
temperature (°C)

Number of
days under 0 °C 

Relative
humidity (%)

September 0.00 33.40 1.80 18.90 0.00 26.00
October 69.60 27.20 1.20 13.00 0.00 60.00
November 71.60 20.80 –4.60 8.30 6.00 65.00
December 70.80 16.60 –7.00 4.10 22.00 63.00
January 40.80 18.80 –7.60 5.90 15.00 61.00
February 68.40 22.40 –2.00 10.60 3.00 61.00
March 86.90 29.80 –1.40 13.00 1.00 57.00
April 22.80 33.60 5.80 19.50 0.00 48.00
May 2.00 36.60 9.60 23.40 0.00 35.00

Table 2.  Evaluation of quantitative traits assessed in study

Traitsa Min Max Mean Coefficient variation

HKW (g) 25.09 43.06 33.26 8.28
PN 36.16 64.60 48.54 3.65
KNPP 20.00 43.40 31.83 5.56
BN 1.00 4.50 2.70 8.70
LAI (mm2) 22.20 31.50 26.95 8.65
LI (mm) 10.25 35.65 21.70 16.25
H (cm) 35.56 57.60 48.09 6.18
HI (%) 34.44 58.40 46.82 11.55
BY (kg ha–1) 1441.8 2650.44 2060.25 8.61
DF (days) 25.00 43.40 31.82 5.65
TDM (g) 118.6 300.87 173.82 13.10
KY (kg ha–1) 527.64 1391.16 969.26 16.08

a Hundred-kernel weight (HKW), pod number (PN), kernel number per pod (KNPP), branch number (BN), leaf 
area index (LAI), length of the internodes (LI), plant height (H), harvest index (HI), biological yield (BY), days to 
flowering (DF), total dry matter (TDM), and kernel yield (KY).
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Figure 1. Membership functions for y∼ and y∼
∧

.
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−0.130,0.023 ⨂20.36 ⊕
−2.367,0.521 ⨂21.63 ⊕
3.350,0.428 ⨂45.66 =(592.441,191.663)!!! , in 

which  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }. 
Finally, by using the CAM method, we conclude that 
𝑌𝑌 ≈ 592.441 (kg ha–1). 

In this paper, our purpose was to emphasize the 
advantages of FLR over MLR in lentil yield 
management. Findings showed that FLR has more 
advantages than MLR. By using the Tanaka model 
instead of MLR, and with the fuzzification of only 2 
coefficients, 5 variables from among 12 variables and 
the constant coefficient were put aside from the 
regression equation. The Tanaka model facilitates 
calculations and creates a more simple relationship 
between independent and dependent variables. In 
addition, 4 out of 5 variables that are not necessary to 
be included in calculations are those that are available 
only after harvest, namely HKW, BN, TDM, and KY, 
and interestingly the two other variables are small. This 
is evidence that the Tanaka FLR model outperforms 
MLR in our case study with simplicity, easiness, and 
reduction of included variables. In addition to enjoying 
the general advantages of other FLR models, the Savic 
and Pedrycz model proved to have the smallest value of 
RMSE.  In the given example, we showed how to 
approach fuzzy data. Here the important point is that if 
we have a collection of close data related to a variable, 
instead of involving every individual member of this set 
in the calculation, we can calculate the yield once by 
using a fuzzy approach. For this, first we describe such 
a collection in the form of a fuzzy number. Then we use 
CAM to obtain a crisp value from this fuzzy number, 
and then we continue the calculation with this number, 
which represents the collection. For instance, in our 
example, the values of BN were a collection of numbers 
close to 151 describable as a triangular fuzzy number 
BN= (151,8,10)!!! in which   L x = R x = max {0, 
1, x  }, which here means a fuzzy number “around 
151” from which the number 151.66 is obtained after 
defuzzification. For other variables of the example, a 
similar process is done.  

 
 
 
 
 
 
 
 
 

Finally, even if we prefer MLR over FLR, if even one 
variable, be it input or output, is not crisp, the fuzzy 
approach should be undertaken for defuzzification 
since MLR is only proper for crisp data. Likewise, in 
our case study, we had to defuzzify yield in order to 
find the MLR equation. This confirms the importance 
and capability of fuzzy approaches in such studies. 

In conclusion, this paper aimed at a comparison of 
FLR and MLR in lentil yield management. Based on 
our results, first the present study showed that a fuzzy 
approach including FLR is a suitable framework in 
lentil yield management. MLR is inefficient if some of 
its preconditions are not satisfied (see Section 2.2.4), as 
in the case of our data, in which some of the variables 
were fuzzy numbers. Even if MLR is applicable, the 
fuzzy approach has some advantages. For instance, 
when the input is huge, it is possible to categorize the 
close data in some limited fuzzy numbers. Second, as 
we have seen in our example, using FLR, the set of 
outputs corresponding to a collection of data can be 
estimated as a fuzzy number. We also found that 
although it indicates a bigger value of error, the Tanaka 
model outperforms MLR in lentil yield estimation 
based on the number of variables appearing in the 
equation, since it has reduced the involved variables 
and has facilitated the calculations. Finally, the Savic 
and Pedrycz model is better than MLR with regard to 
RMSE.  
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Figure 2. Fuzzy coefficients for Tanaka model.

Table 3. A summary of models.

Models of linear regression RMSE Number of involved variables

MLR 43.703 12
FLR (Tanaka) 68.216 7
FLR (Savic and Pedrycz) 40.928 12
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−0.130,0.023 ⨂20.36 ⊕
−2.367,0.521 ⨂21.63 ⊕
3.350,0.428 ⨂45.66 =(592.441,191.663)!!! , in 

which  𝐿𝐿 𝑥𝑥 = 𝑅𝑅 𝑥𝑥 = max {0, 1 − 𝑥𝑥  }. 
Finally, by using the CAM method, we conclude that 
𝑌𝑌 ≈ 592.441 (kg ha–1). 

In this paper, our purpose was to emphasize the 
advantages of FLR over MLR in lentil yield 
management. Findings showed that FLR has more 
advantages than MLR. By using the Tanaka model 
instead of MLR, and with the fuzzification of only 2 
coefficients, 5 variables from among 12 variables and 
the constant coefficient were put aside from the 
regression equation. The Tanaka model facilitates 
calculations and creates a more simple relationship 
between independent and dependent variables. In 
addition, 4 out of 5 variables that are not necessary to 
be included in calculations are those that are available 
only after harvest, namely HKW, BN, TDM, and KY, 
and interestingly the two other variables are small. This 
is evidence that the Tanaka FLR model outperforms 
MLR in our case study with simplicity, easiness, and 
reduction of included variables. In addition to enjoying 
the general advantages of other FLR models, the Savic 
and Pedrycz model proved to have the smallest value of 
RMSE.  In the given example, we showed how to 
approach fuzzy data. Here the important point is that if 
we have a collection of close data related to a variable, 
instead of involving every individual member of this set 
in the calculation, we can calculate the yield once by 
using a fuzzy approach. For this, first we describe such 
a collection in the form of a fuzzy number. Then we use 
CAM to obtain a crisp value from this fuzzy number, 
and then we continue the calculation with this number, 
which represents the collection. For instance, in our 
example, the values of BN were a collection of numbers 
close to 151 describable as a triangular fuzzy number 
BN= (151,8,10)!!! in which   L x = R x = max {0, 
1, x  }, which here means a fuzzy number “around 
151” from which the number 151.66 is obtained after 
defuzzification. For other variables of the example, a 
similar process is done.  

 
 
 
 
 
 
 
 
 

Finally, even if we prefer MLR over FLR, if even one 
variable, be it input or output, is not crisp, the fuzzy 
approach should be undertaken for defuzzification 
since MLR is only proper for crisp data. Likewise, in 
our case study, we had to defuzzify yield in order to 
find the MLR equation. This confirms the importance 
and capability of fuzzy approaches in such studies. 

In conclusion, this paper aimed at a comparison of 
FLR and MLR in lentil yield management. Based on 
our results, first the present study showed that a fuzzy 
approach including FLR is a suitable framework in 
lentil yield management. MLR is inefficient if some of 
its preconditions are not satisfied (see Section 2.2.4), as 
in the case of our data, in which some of the variables 
were fuzzy numbers. Even if MLR is applicable, the 
fuzzy approach has some advantages. For instance, 
when the input is huge, it is possible to categorize the 
close data in some limited fuzzy numbers. Second, as 
we have seen in our example, using FLR, the set of 
outputs corresponding to a collection of data can be 
estimated as a fuzzy number. We also found that 
although it indicates a bigger value of error, the Tanaka 
model outperforms MLR in lentil yield estimation 
based on the number of variables appearing in the 
equation, since it has reduced the involved variables 
and has facilitated the calculations. Finally, the Savic 
and Pedrycz model is better than MLR with regard to 
RMSE.  
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