
-- --

STRING EDITING ON AN SIMD HYPERCUBE MULTICOMPUTER +

Sanjay Ranka and Sartaj Sahni

University of Minnesota

 + This research was supported in part by the National Science Foundation under grants DCR84-

20935 and MIP 86-17374

Abstract

SIMD hypercube algorithms to determine a minimum cost edit

sequence to transform one string into another are developed. If the two

strings are of length n, our algorithms take O
��
√
�����

p
nlogn______ + log2n �� time when

n2p, 1 ≤ p ≤ n, processors are available. When p2 , nlogn ≤ p2 < n2 processors are

available, the complexity of our algorithm is O
��

p
n1.5_____ √���	�	�logn �� .

Keywords and Phrases

SIMD hypercube multicomputers, string editing.

1

-- --

2

1 INTRODUCTION

The input to the string editing problem consists of two strings

A =a1a2a . . . an −1 and B =b1b2b . . . bm −1; and three cost functions C, D, and I where:

C (ai,bj) = cost of changing ai to bj

D (ai) = cost of deleting ai from A

I (ai) = cost of inserting ai into A

Three edit functions: change, delete and insert are available. C, D, and I give

the cost of one application of each of these functions. The cost of a sequence

of edit functions is the sum of the costs of the individual functions in the

sequence. In the string edit problem, we are required to find a minimum cost

editing sequence that transforms string A into string B.

Wagner and Fischer [WAGN74] obtained an O (nm) time dynamic pro-

gramming algorithm for the problem. The dynamic programming formula-

tion is in terms of a function cost where

cost (i, j) = cost of a minimum cost edit sequence to transform a1a2
 . . . ai

into b1b2
 . . . b j

The following recurrence for cost is obtained in [WAGN74]:

(1) cost (i, j) =

�� �
cost´(i, j) i > 0, j > 0
cost (0, j − 1) + I (bj) i = 0, j > 0
cost (i − 1, 0) + D (ai) i > 0, j = 0
0 i = j =0

cost´(i, j) =min{cost (i − 1, j) + D (ai),

cost(i − 1, j − 1) + C (ai,bj),

cost(i, j − 1) + I (b j)}

Once cost (i, j), 0 ≤ i < n, 0 ≤ j < m has been computed a minimum cost edit

sequence may be found by a simple backward trace from cost (n − 1, m − 1). This

-- --

3

backward trace is facilitated by recording which of the three options for

i > 0, j > 0 yielded the minimum for each i and j.

The string edit problem is identical to the weighted Levenshtein dis-

tance problem [LIU85]. The longest common subsequence problem

[WAGN74] and the time warping distance problem [LIU85] are special

cases of the string edit problem.

Many researchers have studied parallel solutions to the string edit and

related problems. All such attempts begin with the dynamic programming

recurrence (1). Cheng and Fu [CHEN87] propose an n×m VLSI array to

compute cost in O (n + m) time. Liu and Fu [LIU85] propose n×m arrays to solve

minimum distance classification, time warping, and weighted Levenshtein

distance problems in O (n + m) time. An O (m) processor pipelined architecture

for string editing has been proposed by Edminston and Wagner [EDMI87].

This takes O (n + m) time. Champion and Rothstein [CHAM87] solve the

longest common subsequence problem in O (1) time using an n2m processor

bus automaton. Ibarra, Pong and Sohn [IBAR88] develop an SIMD hyper-

cube algorithm for the case n = m. Their algorithm has complexity

O (n /p + log2n) on an SIMD hypercube with O (n2p), 1 ≤ p ≤n processors. The algo-

rithm is easily modified to work for the case n ≠ m.

In this paper, we develop an SIMD hypercube algorithm for the string

edit problem. This algorithm has time complexity O (√���������������(nlogn)/p + log2n) on an

SIMD hypercube with n2p, 1 ≤ p ≤ n processors. Like other previous algorithms

for this problem, ours require O (1) memory per processor. It is easily adapted

to the case n ≠ m. Comparing our algorithm to that of [IBAR88], we see that

ours is asymptotically superior for i ≤ p < n /log2n and asymptotically the same

for n/log2n ≤ p ≤ n. It is worth noting that when p = 1, our algorithm has com-

plexity O (√���������nlogn) while that of [IBAR88] has complexity O (n). In fact, all pre-

-- --

4

vious parallel algorithms that use O (n2) processors have complexity O (n). So,

our algorithm is the first to be able to solve the string editing problem in less

than O (n) time while using only O (n2) processors.

Using the same strategy as used in our first algorithm, we can obtain

another SIMD hypercube algorithm for the case when p2, nlogn ≤ p2 ≤ n2 pro-

cessors are available.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

76543210

3

2

1

0

j
i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1 : Lattice graph

2 ALGORITHM OVERVIEW

The dependencies in the dynamic programming formula (1) may be

represented by a lattice graph (Figure 1). The vertex in position (i, j) of the

lattice graph represents entry (i, j) of the cost matrix of (1). Each edge of the

lattice graph is assigned a weight equal to the cost of the corresponding edit

-- --

5

operation. The weights are obtained as follows:

1) The weight of an edge of type <(e, f) , (e, f + 1)> is I (bf +1)

2) The weight of an edge of type <(e, f) , (e + 1, f)> is D (ae +1)

3) An edge of type <(e, f) , (e + 1, f + 1)> has weight C (ae +1 ,b f +1)

.

.

..

.. .. .

......

.

..

.

.

..

..

kkk

k

k

Figure 2 : Decomposition of lattice graph into k×k subgraphs

It is easy to see that with this weight assignment, cost (i, j) is the length of

the shortest path from vertex (0, 0) to vertex (i, j), 0 ≤ i < n, 0 ≤ j < m. So, the

string edit problem is really that of finding a shortest path from vertex (0, 0)

to vertex (n − 1, m − 1). As a result, the string editing problem may be solved in

parallel using parallel algorithms previously developed for the shortest path

-- --

6

problem. This will be quite expensive in terms of processor requirement.

For example, when n = m we can use the SIMD hypercube shortest path algo-

rithm of [DEKE82] and find a shortest path in O (log 2n) time. The number of

processors required is O (n6/logn). Our concern here is to find a shortest path

using far fewer processors. For convenience, we assume n = m = 2q for some

natural number q in the sequel. The development is easily extended to the

case n≠m and also to the case when n and m are not powers of 2.

Our strategy to find a shortest path from (0, 0) to (n − 1, n − 1) consists of

two phases:

Phase 1: Compute cost (n − 1, n − 1)

Phase 2: Trace back to obtain the path

2.1 Computing cost (n − 1, n − 1)

The first phase itself is accomplished in two stages:

Phase 1, Stage 1: The lattice graph is decomposed into k×k sublattice

graphs for some k that is a power of 2 (Figure 2). The

optimal value of k will be determined later. For each

k×k sublattice graph the shortest distance from each

vertex on the top and left boundaries to each vertex

on the bottom and right boundaries is found.

Phase 1, Stage 2: The boundary to boundary distances computed in

Stage 1 are combined to obtain cost (n, n).

-- --

7

2 B3B

0 T1T

00L 1 R1

R332L1

Figure 3 : A 8×8 lattice graph decomposed into 4 4×4 subgraphs

2.1.1 Computing Boundary Distances

Boundary to boundary distances may be computed recursively. Figure 3

shows a 2a×2a lattice graph made up of four a×a lattice graphs. The smaller

lattice graphs have been labeled 0−3.

Let Ti, Bi , Li , and Ri , respectively, denote the top, bottom, left, and right

boundary vertices in the smaller lattice graph i, 0 ≤ i ≤ 3. We shall use the

notation XY (i, j) to refer to the shortest distance from the i’th vertex in boun-

-- --

8

dary X to the j’th vertex in boundary Y, X, Y ∈ { Ti, Bi , Li , Ri}. Vertices are

numbered 0, ..., a −1 left to right for top and bottom boundaries and bottom to

top for left and right boundaries. Note that vertex 0 of a top boundary is also

the vertex 0 of a left boundary. Similarly, vertex a − 1 of a top boundary is

vertex 0 of a right boundary, etc. T0R0(i, j) is the length of a shortest path from

the i’th vertex of the top boundary of the lattice graph 0 to the j’th vertex of

the right boundary of lattice graph 0.

The boundary distances we are to compute for the 2a×2a lattice graph

are:

T0R1 , T0R3 , T1R1 , T1R3 , T0B2 , T0B3 , T1B2 , T1B3 , L0R1 , L0R3 , L2R1 , L2R3 , L0B2 , L0B3 , L2B2 ,

and L2B3. Because of the edge structure of our lattice graph (Figure 1) we

know that all distances in L2R1 and T1B0 are ∞. From Figure 1, we see that

T0R1(i, j) is given by:

(2) T0R1(i, j) = min{
0 ≤ s < a

min {T0R0(i, s) + R0L1(s, s) + L1R1(s, j)},

0 ≤ s < a −1
min {T0R0(i, s) + R0L1(s, s + 1) + L1R1(s + 1, j)} }

Since R0L1(s, s) and R0L1(s, s + 1) are simply edge costs, T0R1(i, j), 0 ≤ i, j < a

can be computed if T0R0 and L1R1 are known. T0R0 and L1R1 are boundary dis-

tances for a×a lattice subgraphs. The computation of T0R3 from a×a boundary

distances is more complex. The equations needed are:

(3) T0R2(i, j) = min{
0 ≤ s < a

min {T0B0(i, s) + B0T2(s, s) + T2R2(s, j)},

0 ≤ s < a −1
min {T0B0(i, s) + B0T2(s, s + 1) + T2R2(s + 1, j)} }

(4) T0R´3(i, j) = min {
0 ≤ s < a

min {T0R2(i, s) + R2L3(s, s) + L3R3(s, j)},

0 ≤ s < a −1
min {T0R2(i, s) + R2L3(s, s + 1) + L3R3(s + 1, j)}}

(5) T0B1(i, j) = min{
0 ≤ s < a

min {T0R0(i, s) + R0L1(s, s) + L1B1(s, j)},

0 ≤ s < a −1
min {T0R0(i, s) + R0L1(s, s + 1) + L1B1(s + 1, j)}}

-- --

9

(6) T0R´´3(i, j) = min{
0 ≤ s < a

min {T0B1(i, s) + B1T3(s, s) + T3R3(s, j)},

0 ≤ s < a −1
min {T0B1(i, s) + B1T3(s, s + 1) + T3R3(s + 1, j)}}

(7) T0R3(i, j) = min{T0R3´(i, j), T0R´´3(i, j), T0B0(i, a − 1) + B0T3(a − 1, 0) + T3R3(0, j)}

T1R1 and L2B2 for the 2a×2a graph are the same as for the corresponding

a×a graphs. The equations for T1R3 ,T0B2 , T1B2 , T1B3 , L0R1 , L2R3 , L0B2 , and L0B3 the

equations are similar to those for Tsub0R3. For a 1×1 graph,

TR (0, 0) = TB (0, 0) = LR (0, 0) = LB (0, 0) = 0

Hence the boundary distances for any k×k lattice subgraph may be com-

puted by computing these distances for 2×2 subgraphs, then for 4×4 subgraphs,

then for 8×8 subgraphs,

Complexity on a CREW PRAM

If the boundary distances for the four a×a graphs is known, then those

for a 2a×2a graph may be computed in O (loga) time using an O (a3/loga) processor

CREW PRAM. We simply use a /loga processors to compute the distances for

each pair (i, j). Hence, to compute the distances for a k×k graph beginning

with those for the 1×1 subgraphs takes:

O (
i =1
Σ
logk

i) = O (log2k)

time.

-- --

10

1

4 5 6 7

6543

2 3 4 5

432a b c d

e f g h

i j k l

m n o p

(0, 0)

(n-1,

n-1)

Figure 4 : An n×n subgaph and its composite k×k subgraphs n = 4k

2.1.2 Obtaining cost (n − 1, n − 1)

After the boundary distances for each k×k subgraph have been com-

puted, we compute for each k×k subgraph the shortest distance from vertex

(0, 0) (of the whole graph) to each of the vertices on the top, bottom, left and

right boundaries of the k×k subgraph. Figure 4 shows an n×n graph and its

composite k×k subgraphs. The figure is for the case n = 4k. The k×k subgraphs

are labeled a −p.

-- --

11

The shortest distances from (0, 0) to the boundary vertices of (k×k) sub-

graphs is computed in several iterations. In iteration i the distances to the

boundary vertices of all subgraphs assigned the number i in Figure 4 are

computed.

Let TiTi(l, j) be the length of the shortest path from the l’th vertex of the

top boundary of the k×k subgraph i to the j’th vertex of its top boundary,

0 ≤ l ≤ j < k. Clearly, TiTi(l, j) =
r =l
Σ
j −1

TiTi(r, r + 1) where TiTi(r, r + 1) is the cost of the

directed edge between the top boundary vertices r and r + 1. Let LiLi(l, j) be the

length of the shortest path from the l’th vertex of the left boundary of the k×k

subgraph i to the j’th vertex of its left boundary, 0 ≤ l ≤ j < k. We see that

LiLi(l, j) =
r =l
Σ
j −1

LiLi(r, r + 1) where LiLi(r, r + 1) is the cost of the directed edge

between the left boundary vertices r and r + 1. Let Ti(j), Bi(j), Li(j), and Ri(j),

respectively, denote the shortest distance from vertex (0, 0) to the j’th vertex

of the top, bottom, left, and right boundaries of the k×k subgraph i. For sub-

graph a of Figure 4, we have:

Ta(j) = TaTa(0, j)

La(j) = LaLa(0, j)

Ra(j) = TaRa(0, j)

Ba(j) = TaBa(0, j)

where TaRa and TaBa are boundary distances computed in Phase 1 , Stage 1

(Section 2.1.1). For subgraphs b and e of Figure 4, we have:

Lb(j) = min{
0 ≤ s ≤ j
min {Ra(s) + RaLb(s, s) + LbLb(s, j)},

0 ≤ s < j
min {Ra(s) + RaLb(s, s + 1) + LbLb(s + 1, j)}}

Tb(j) = Lb(0) + TbTb(0, j)

Rb(j) =
0 ≤ s ≤ j
min {Lb(s) + LbRb(s, j)}

-- --

12

Bb(j) =
0 ≤ s ≤ j
min {Lb(s) + LbBb(s, j)}

Te(j) = min{
0 ≤ s ≤ j
min {Ba(s) + BaTe(s, s) + TeTe(s, j)},

0 ≤ s < j
min {Ba(s) + BaTe(s, s + 1) + TeTe(s + 1, j)} }

Le(j) = Te(0) + LeLe(0, j)

Re(j) =
0 ≤ s ≤ j
min {Te(s) + TeRe(s, j)}

Be(j) =
0 ≤ s ≤ j
min {Te(s) + TeBe(s, j)}

where RaLb and BaTe are edge costs and LbRb , LbBb , TeRe , and TeBe are boundary

distances for the respective k×k subgraphs. The last case to consider is that of

subgraph f of Figure 4. For this, we obtain:

Tf(0) = Lf(0) = min{Ba(k −1) + BaTf(k −1,0),

Bb(0) + BbTf(0, 0),

Re(0) + ReTf(0, 0)}

Tf(j) = min{Tf(0) + TfTf(0, j),

0 ≤ s ≤ j
min {Bb(s) + BbTf(s, s) + TfTf(s, j)},

0 ≤ s < j
min {Bb(s) + BbTf(s, s + 1) + TfTf(s + 1, j)}} , j > 0

Lf(j) = min{Lf(0) + LfLf(0, j),

0 ≤ s ≤ j
min {Re(s) + ReLf(s, s) + LfLf(s, j)},

0 ≤ s < j
min {Re(s) + ReLf(s, s + 1) + LfLf(s + 1, j)}} , j > 0

Rf(j) = min{
0 ≤ s ≤ j
min {Tf(s) + TfRf(s, j)},

0 ≤ s ≤ j
min {Lf(s) + LfRf(s, j)}}

Bf(j) = min{
0 ≤ s ≤ j
min {Tf(s) + TfBf(s, j)},

0 ≤ s ≤ j
min {Lf(s) + LfBf(s, j)}}

The k×k subgraphs of an n×n lattice graph (Figure 4) may be partitioned

into four classes:

-- --

13

(1) Top left corner subgraph (subgraph a of Figure 4)

(2) Remaining top boundary subgraphs (subgraphs b, c, and d of Figure 4)

(3) Remaining left boundary subgraphs (e, i, and m of Figure 4)

(4) All other subgraphs

We see that the formulas obtained above for subgraphs a, b, e, and f can

be easily adapted to cover all subgraphs. A close examination of the formu-

las for a, b, e, and f reveals the following computations are not required.

(1) T and L values of top corner subgraph

(2) T values of the remaining top boundary subgraphs

(3) L values of the remaining left boundary subgraphs

(4) B values of the bottom boundary subgraphs

(5) R values of the right boundary subgraphs (excluding R(k − 1) of the bot-

tom right corner subgraph).

Note that cost (n − 1, n − 1) = R (k − 1) of the bottom right corner subgraph.

Complexity on a CREW PRAM

The TiTi and LiLi values for a k×k subgraph can be computed in O (logk) time

as this is just a prefix sum computation [DEKE83]. The Ti, Li, Bi , and Ri values

of subgraph i can also be computed in O (logk) time as each value requires the

computation of the min of O (k) other values. Since all subgraphs with the

same numeric label (Figure 4) can be handled in parallel, the total time

needed to compute the Ti, Li , Bi, and Ri values of all the k×k subgraphs of an n×n

lattice graph is O (
k
n__ logk). The number of processors needed is O ((nk)/logk).

The boundary distances of all (n2/k 2) k×k subgraph can be computed in

O (log2k) time using O (n2k/logk) processors (cf. Section 2.1.1.). Hence, we can

compute cost (n − 1, n − 1) in O (log 2k +
k
n__ logk) time on a CREW PRAM with

O (n2k/logk) processors. When k = n/logn we get an O (log2n) complexity and an

-- --

14

O (n3 /log2n) processor requirement.

2.2 Traceback

The shortest path from (0, 0) to (n − 1, n − 1) (i.e., the least cost edit

sequence) can be obtained in two stages:

Stage1:Each k×k subgraph determines the vertex (if any) at which this path

enters the subgraph and the vertex (if any) from which it leaves the sub-

graph.

Stage2:The subgraphs that have an entry and exit vertex determine a shor-

test path in the subgraph from entry to exit.

2.2.1 Subgraph entry/exit vertices

These can be determined easily if with each Li(j), Ti(j), Bi(j), and Ri(j) com-

puted in Section 2.1.2 we record ’how’ the minimum of the quantities on the

right hand side of the respective equation was achieved. So, when comput-

ing Bf(j) we will also record a value (X, u), X∈{L, T}, 0 ≤ u ≤ j such that

Bf(j) = Xf(u) + XfBf(u, j). Using this information, we begin at Rz(k − 1) where z is the

bottom right corner subgraph and work our way back to Ta(0) where a is the

top left subgraph. For the graph of Figure 4, beginning at Rp(k − 1) we obtain

the entry vertex for subgraph p. >From this entry vertex and the recorded

information, we obtain the exit vertex from subgraphs k, o, or l that was used

to get to the entry vertex of p. Suppose this exit vertex is in subgraph l. From

Bl we obtain the entry vertex for l and so on.

Because of the edge structure of the graph, exactly one of the subgraphs

with any given numeric label (cf. Figure 4) will have an entry and exit ver-

tex.

Complexity on a CREW PRAM

The entry and exit vertices can be computed sequentially by a single

-- --

15

processor in O (n /k) time.

2.2.2 Shortest path in a subgraph

This can be computed if during the computation of boundary distances

(Section 2.1.1), we record ’how’ each decision is made. Since O (k 2 logk) deci-

sions are made, this much memory is needed to record the decision informa-

tion. The actual path computation follows a process similar to that of Sec-

tion 2.2.1. Entry/exit points in k /2×k /2 blocks are found; then in k /4×k /4 blocks;

etc.

Complexity on a CREW PRAM

The shortest path in each k×k subgraph can be found in O (logk) time using

O (n2) processors. Hence, we can find the shortest path from (0, 0) to (n − 1, n − 1)

in O (n /k + logk) time. The additional memory requirement is O (k 2logk). When

k = n /logn, the time is O (logn) and the additional memory is O (n2/logn). Since O (n2)

memory is needed for the n×n graph the overall memory requirement

remains O (n2).

-- --

16

k
r
o
w
t
e
N

n
o
i
t
c
e
n
n
o
c
r
e
t
n
I

Memory
Program

Processing
Element

Memory

..

..

.

Element

Memory

Processing

I/O
Control
Unit

Figure 5 : SIMD hypercube

3 HYPERCUBE PRELIMINARIES

3.1 SIMD Hypercube Model

A block diagram of an SIMD hypercube multicomputer is given in

Figure 5 . The important features of an SIMD hypercube and the program-

ming notation we use are:

1. There are P = 2p processing elements connected together via a

-- --

17

hypercube

interconnection network (to be described later). Each PE has the unique

index in the range [0, 2p − 1]. We shall use brackets([]) to index an array

and parentheses(’()’) to index PEs. Thus A[i] refers to the i’th element

of array A and A(i) refers to the A register of PE i. Also, A[j](i) refers

to the j’th element of array A in PE i. The local memory in each PE

holds data only (i.e., no executable instructions). Hence PEs need to be

able to perform only the basic arithmetic operations (i.e., no instruction

fetch or decode is needed).

2. There is a separate program memory and control unit. The control unit

performs instruction sequencing, fetching, and decoding. In addition,

instructions and masks are broadcast by the control unit to the PEs for

execution. An instruction mask is a boolean function used to select certain

PEs to execute an instruction. For example, in the instruction

 A (i) := A (i) + 1, (i 0 = 1)

(i0 = 1) is a mask that selects only those PEs whose index has bit 0 equal

to 1. I.e., odd indexed PEs increment their A registers by 1. Sometimes,

we shall omit the PE indexing of registers. So, the above statement is

equivalent to the statement:

 A := A + 1, (i0 = 1)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-- --

18

Figure 6 : A 4 dimensional hypercube (16 PEs)

3. The topology of a 16 node hypercube interconnection network is shown

in Figure 6. A p dimensional hypercube network connects 2p PEs. Let

ip −1ip −2i0 be the binary representation of the PE index i. Let ik

__
be the

complement of bit ik. A hypercube network directly connects pairs of

processors whose indices differ in exactly one bit. I.e., processor

ip −1ip −2 ...i0 is connected to processors ip −1
 . . . ik

__
....i0, 0≤k ≤p −1. We use the nota-

tion i (b) to represent the number that differs from i in exactly bit b.

4. Interprocessor assignments are denoted using the symbol ← , while

intraprocessor assignments are denoted using the symbol :=. Thus the

assignment statement:

 B (i (2)) ← B (i), (i2 = 0)

is executed only by the processors with bit 2 equal to 0. These proces-

sors transmit their B register data to the corresponding processors with

bit 2 equal to 1.

5. In a unit route, data may be transmitted from one processor to another if it

is directly connected. We assume that the links in the interconnection

network are unidirectional. Hence at any given time, data can be

transferred either from PE i (ib = 0) to PE i (b) or from PE i (ib = 1) to PE i (b).

Hence the instruction.

 B (i (2)) ← B (i), (i2 = 0)

takes one unit route, while the instruction:

 B (i (2)) ← B (i)

takes two unit routes.

6. Since the asymptotic complexity of all our algorithms is determined by

the number of unit routes, our complexity analysis will count only

-- --

19

these.

3.2 Hypercube Embedding of a Grid

�
�
�
�
�
�
�
�
�
�
�

__

001100100000 0001 �
�
�
�
�
�
�
�
�
�
�

0110

__

�
�
�
�
�
�
�
�
�
�
�

0111

0101

0100

1001 1010

�
�
�
�
�
�
�
�
�
�
�

1011

�
�
�
�
�
�
�
�
�
�
�

111111101101

�
�
�
�
�
�
�
�
�
�
�

1000

1100

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 7: Embedding of a 4 × 4 mesh in a hypercube of dimension 4

Figure 7 gives a two dimensional grid interpretation of a 4 dimensional

hypercube. The index of the PE at position (i, j) of the grid is obtained using

the standard row major mapping of a two dimensional array onto a one

dimensional array [HORO85]. I.e, for an N×N grid, the PE at position (i, j)

has index iN + j. Using this mapping, a two dimensional image grid

I (0..N − 1, 0..N − 1) is easily mapped onto an N2 hypercube (provided N is a

power of 2) with one element of I per PE. Notice that in this mapping, image

elements that are neighbors in I (i.e., to the north, south, east, or west of one

another) may not be neighbors (i.e., may not be directly connected) in the

hypercube. This does not lead to any difficulties in the SIMD algorithms we

develop.

-- --

20

3.3 Basic Data Manipulation Operations

3.3.1 SHIFT

SHIFT (A,i,W) shifts the A register data circularly counter-clockwise by i in

windows of size W. I.e, A (qW +j) is replaced by A (qW + (j −i) mod W), 0≤ q <(P /W).

SHIFT (A, i, W) on an SIMD computer can be performed in 2logW unit routes

[PRAS87]. A minor modification of the algorithm given in [PRAS87] per-

forms i = 2m shifts in 2 log(W /i) unit routes [RANK87]. The wraparound feature

of this shift operation is easily replaced by an end off zero fill feature. In this

case, A (qw + j) is replaced by A (qW + j − i), so long as 0 ≤ j − i < W and by 0 other-

wise. This change does not increase the number of unit routes.

3.3.2 Column and Row Shift

ColumnShift (A, i, W) shifts the data in the columns of a hypercube down by i.

For this purpose, the columns are divided into windows of size W. There is

no wraparound and the fill is done using ∞’s. RowShift is analogous to ColumnShift

except that it works on rows of a hypercube and does a leftward shift of i.

Both of these procedures are simple adaptations of SHIFT and run in the same

time.

3.3.3 Prefix Sum

PrefixSum (A, B, W) works on rows of the hypercube. Within each row it

considers windows of size W. It computes A (i) =
j =0
Σ

i

B (j) , 0 ≤ i < W for each such

row window. The complexity of this procedure is O (logW) [DEKE83].

-- --

21

3.3.4 Data Broadcast

Data in one processor of a subhypercube can be broadcast to all proces-

sors in that subhypercube in O (logS) time, where S is the number of processors

in the subhypercube. We shall use the operator ’<==’ to signify a data broad-

cast.

4 HYPERCUBE MAPPING

u
v

w

Figure 8: A n2p hypercube viewed as an n×n×p array

4.1 n2p, 1 ≤ p ≤ n Processors

First, consider a hypercube with n2p, 1 ≤p ≤ n processors. Such a hyper-

cube can be viewed as an n×n×p array (Figure 8). Let PE (u, v, w) denote the

processor in position (u, v, w), 0 ≤ u < n, 0 ≤v < n, 0 ≤ w ≤ p of this array.

-- --

22

k

k

p

Figure 9: Decomposition into k×k×p subhypercubes

The n×n lattice graph is initially mapped onto the face (u, v, 0) of the

hypercube. This face is called face 0. PE (u, v, 0) contains the weight of the (at

most) three edges coming into vertex (u, v) of the lattice graph, 0 ≤ u, v < n.

Three registers: left, diagonal, and up are used for this purpose.

left(u, v, 0) =

�� �
weight ((<u, v − 1>, <u, v>) v > 0
0 v = 0

diagonal (u, v, 0) =

�
� �
weight ((<u − 1, v − 1>, <u, v>) u > 0 and v > 0
0 u = 0 or v = 0

up(u, v, 0) =

�
� �
weight ((<u − 1, v >, <u, v>) u > 0
0 u = 0

We shall say that processor (u, v, 0) represents vertex (u, v) of the lattice

graph.

-- --

23

4.1.1 Computing Boundary Distances

Since the computation of the boundary distances for all k×k subgraphs is

done in parallel, we need consider only one of these subgraphs. Under the

assumption that k is a power of 2, the processors

{(u, v, w) � (u, v, 0) represents a vertex (u, v) in the k×k subgraph, 0 ≤ w < p }

form a k×k×p subhypercube (Figure 9).

(b)(a)

L2B3

L2R3

T1B3

T1R3

L0R3

L0R3

T0B3

T0R3

L2B2

L2R1

T1B2

T1R1

L1B2

L0R1

T0B2

T0R1

T0 T1

R1

R3

B3B2

L2

L0

32

10

L3B3

L3R3

T3B3

T3R3

L1B1

L1R1

T1B1

T1R1

L2B2

L2R2

T2B2

T2R2

L0B0

L0R0

T0B0

T0R0

2a

a

a

a

(a) Initial Configuration

(b) Final Configuration

Figure 10: Initial/Final Coniguration for 2a×2a subgraphs

The computation of the boundary distances for each k×k subgraph will be

done by the corresponding k×k×p subhypercube. To compute the boundary

distances for any a×a subgraph of a k×k subgraph, the corresponding a×a×p

subhypercube will be used. Following this computation, the processors on

face 0 of these a×a×p subhypercubes will contain the boundary distances in

-- --

24

register TR, TB, LR, and LB. Specifically, XY (i, j, 0) will be the shortest distance

from the i’th vertex on boundary X to the j’th vertex on boundary Y where

X∈{T, L},Y∈{R, B}, and i and j are relative to the respective a×a×p subhypercube

(i.e., the top left corner vertex in each such hypercube has i = j = 0). When

computing for a 2a×2a subgraph, the initial configuration for face 0 of a 2a×2a

subhypercube is shown in Figure 10(a). I.e., the TR, TB, LR, and LB registers of

face 0 of each a×a×p subhypercube contain the corresponding boundary dis-

tances. Following the computation for the 2a×2a subgraph the boundary dis-

tances are to be distributed as in Figure 10. This will result in the correct

initial condition for the computation of boundary distances for 4a×4a sub-

graphs.

We explicitly consider only the computation of the new TR values. The

computation of the new TB, LR, and LB values is similar. The computation of

the TR values is done in three stages. In the first stage the processors on face 0

of the top left a×a×p subhypercube compute T0R2; on the top right subhyper-

cube T0B1; and on the bottom right subhypercube T1R3 (Figure 11(a)).

T0R0

(c) Stage 3(b) Stage 2(a) Stage 1

32

T1R1

T0R3´´

T0R3

T0R3´´

L3R3

T0B1

T0R3´
T0R2T0R1

L1R1

T1R3

T1B1

T0B1

T2R2

T0R2

10

Figure 11: Stages of boundary distance calculation of TR values

-- --

25

The distances computed in the remaining two stages are shown in Figures

11(b) and (c).

Stage 1 Computation

Equations (3) and (5) will be used to compute T0R2 and T0B1 respectively,

The equation for T1R3 is:

(8) T1R3(i, j) = min{
0 ≤ s < a

min {T1B1(i, s) + B1T3(s, s) + T3R3(s, j)},

0 ≤ s < a − 1
min {T1B1(i, s) + B1T3(s, s + 1) + T3R3(s + 1, j)} }

Equations (3), (5), and (8) may be rewritten into the form:

result (i, j) = min{E (i, j), F (i, j)}

where E (i, j) is the result of the
0 ≤ s < a
min part and F (i, j) that of the

0 ≤ s < a −1
min

part. The computation of E (i, j) and F (i, j) is very similar to the computation

of the product, C, of two a×a matrices A and B. C (i, j) is given by:

C (i, j) =
0 ≤ s < a

Σ A (i, s)∗B (s, j)

Replacing + by min and ∗ by +, we get

(9) D (i, j) =
0 ≤ s < a
min {A (i, s) + B (s, i)}

If in (8), we set A (i, s) = T1B1(i, s) and B(s, j) = B1T3(s, s) + T3R3(s, j) or

A (i, s) = T1B1(i, s) + B1T3(s, s) and B (s, j) = T3R3(s, j), then

D (i, j) = E (i, j).

Let MinSum (A, B, D, a) be a hypercube procedure to compute D as in (9) in

subhypercubes of size a×a×p. Such a procedure is easily obtained from a

matrix multiplication procedure by using the above transformation. We

assume that MinSum begins with A (i, j) and B (i, j) in processor (i, j) and leaves

D (i, j) in this processor when done.

The algorithm for the stage 1 computation is given in Figure 12. In

Step 1, we set up the A and B registers of the processors in squares 0, 1, and 3 (cf

Figure 11(a)) so that a MinSum(A, B, E, a) will result in E (i, j) as above. For this,

-- --

26

we need:

{square 0}A (i, j, 0) = T0B0(i, j) + B0T2(j, j)

B (i, j, 0) = T2R2(i, j)

{square 1}A (i, j, 0) = T0R0(i, j)

B (i, j, 0) = R0L1(i, i) + L1B1(i, j)

{square 3}A (i, j, 0) = T1B1(i, j) + B1T3(j, j)

B (i, j, 0) = T3R3(i, j)

Step1: [Inititalize to compute E (i, j) in register E (i, j, 0)]
{square 0}
C0(0, j, 0) ← up2(0, j, 0), 0 ≤ j < a
C0(i, j, 0) fP(sm C0(0, j, 0), 0 ≤ i, j < a
A0(i, j, 0) := TB0(i, j, 0) + C0(i, j, 0), 0 ≤ i, j < a
B0(i, j, 0) ← TR2(i, j, 0), 0 ≤ i, j < a
{square 1}
A1(i, j, 0) ← TR0(i, j, 0), 0 ≤ i, j < a
C1(i, 0, 0) := left1(i, 0, 0), 0 ≤ i < a
C1(i, j, 0) fP(sm C1(i, 0, 0), 0 ≤ i, j < a
B1(i, j, 0) := C1(i, j, 0) + LB1(i, j, 0), 0 ≤ i, j < a
{square 3}
A3(i, j, 0) ← TB1(i, j, 0), 0 ≤ i, j < a
C3(0, j, 0) := up3(0, j, 0), 0 ≤ j < a
C3(i, j, 0) fP(sm C3(0, j, 0), 0 ≤ i, j < a
A3(i, j, 0) := A3(i, j, 0) + C3(i, j, 0), 0 ≤ i, j < a
B3(i, j, 0) := TR3(i, j, 0), 0 ≤ i, j < a

Step2: [Compute E]
MinSum (A, B, E, a)

Step3: [Initialize for F]
{square 0}
C0(0, j, 0) ← diagonal 2(0, j, 0)
RowShift (C0 , 1, a) {use ∞ fill}
C0(i, j, 0) := C0(0, j, 0), 0 ≤ i, j < a
A0(i, j, 0) := TB0(i, j, 0) + C0(i, j, 0), 0 ≤ i, j < a
ColumnShift (B0 , −1, a) {use ∞ fill}
{square 1}
C1(i, 0, 0) ← diagonal 1(i, 0, 0), 0 ≤ i < a
C1(i, j, 0) fP(sm C1(i, 0, 0), 0 ≤ i, j < a
B1(i, j, 0) := C1(i, j, 0) + LB1(i, j, 0), 0 ≤ i, j < a
ColumnShift (B0 , −1, a) {use ∞ fill}
{square 3}
A3(i, j, 0) := A3(i, j, 0)−C3(i, j, 0), 0 ≤ i, j, < a
C3(0, j, 0) ← diagonal 3(0, j, 0), 0 ≤ j < a
RowShift (C3 , −1, a) {use ∞ fill}
A3(i, j, 0) := A3(i, j, 0)+C3(i, j, 0), 0 ≤ i, j, < a
ColumnShift (B0 , −1, a) {use ∞ fill}

-- --

27

Step4: [Compute F]
MinSum (A, B, F, a)

Step5: [Stage 1 Result]
S 1(i, j, 0) := min{E (i, j, 0), F (i, j, 0)}, 0 ≤ i, j < a

Figure 12 : Stage 1 Computation

The notation

Xq(i, j, 0)

refers to register X of the processor in position (i, j, 0) of square q, 0 ≤ q ≤ 3.

So,

C0(0, j, 0) ← up2(0, j, 0)

denotes a data transfer from the up register of the processor in position

(0, j, 0) of square 2 to the C register of the processor in position (0, j, 0) of

square 0.

In Step2, the E values are computed using MinSum. Step3 sets up the A

and B registers for the computation of F. This results in:

{square 0}

A(i, j, 0) = T0B0(i, j) + B0T2(j, j + 1)

B(i, j, 0) = T2R2(i + 1, j)

{square 1}

A(i, j, 0) = T0R0(i, j)

B(i, j, 0) = R0L1(i, i + 1) + L1B1(i + 1, j)

{square 3}

A(i, j, 0) = T1B1(i, j) + B1T3(j, j + 1)

B(i, j, 0) = T3R3(i + 1, j)

Note that the RowShifts of C0 and C3 can be done in parallel and the

ColumnShifts of B0 , B1 , and B3 can also be done in parallel. Steps 4 and 5

complete the Stage 1 computation.

-- --

28

Complexity of stage 1

Steps 1 and 3 each take O (loga) time. This is due to the <==operations

and the shifts. The time for Steps 2 and 4 is O (
za

a___ + logza), za = min{a,p}

[DEKE81]. So, the total Stage 1 time is (
za

a___ + loga), za = min{a, p}.

Stage 2 Computation

This is very similar to the stage 1 computation and can be com-

pleted in O (
za

a___ + loga) time.

Stage 3 Computation

T1R1 can be moved from square 1 to square 2 using two unit routes

by following the path shown in Figure 11(c). The data movements for

the computation of T0R3 take O (loga) time.

Overall Complexity

The overall time needed to complete boundary distances for a×a

subgraphs is O (
za

a___ + loga), za = min{a,p}. The time to compute the boundary

distances for all k×k subgraphs is therefore

O (
a = 2, 4, .., k

Σ (
za

a___ + loga)) = O (
p
k__ + log2k).

4.1.2 Computing cost (n − 1, n − 1)

The computations of Section 2.1.2 can be performed in O (
k
n__logk)

time using only those processors that are on face 0 of the hypercube.

First, the k×k subhypercubes of face 0 compute the LL and TT values.

The processor in position (l, j, 0) of a k×k hypercube computes LL (l, j) and

TT (l, j). We describe the computation for TT only. The computation of LL

is similar.

-- --

29

Step1 [Broadcast left (0, r, 0) over columns]
T1 := left (0, r, 0), 0 ≤ r < k
T1 fP(sm T1 , 0 ≤ s < k

Step2 [Zero out values not needed]
T1 := 0, 0 ≤ l ≤ r < k

Step3 [Compute TT (l, j, 0)]
PrefixSum (TT, T 1, k) {Prefix sum on rows}

Step4 [Clean up]
TT (l, j, 0) := ∞, 0 ≤ j < l < k

Figure 13 : Computing TT (l, j, 0)

Computing TT

>From Section 2.1.2 and the definition of left (i, j, 0), we see that

TT (l, j, 0) =
r =l
Σ
j −1

left(0, r + 1, 0) =
r =l +1
Σ

j

left(0, r, 0). Hence, the TT values may be

computed in face 0 using the strategy of Figure 13. The computation of

TT is viewed as several prefix sum computations; one for each value of l.

Steps 1 and 2 set up each row of the k×k subhypercube so that a prefix

sum of the T1 values on that row will result in the correct TT value.

Steps 1 and 3 take O (logk) time and Step 2 takes O (1) time.

Once the TT and LL values have been computed, we proceed to com-

pute the L, T, B, and R values defined in Section 2.1.2. While all the face

0 processors of a k×k×p subhypercube are involved in the computation of

the L, T, B, and R values for that subhypercube, the final values are stored

only in certain processors, The assignment is

B(k − 1, j, 0) = Bi(j)
R(j, k − 1, 0) = Ri(j)
T(0, j, 0) = Ti(j)
L(j, 0, 0) = Li(j)

� �
� 0 ≤ j < k

Step1 [Bring in Ra values]
Shift in the R values in the 1×k column of processors to the left
of this k×k subhypercube right by 1. Put the values in the R
registers of these processors.

-- --

30

Step2 [Add with left() and row broadcast]
R (s, 0, 0) := R (s, 0, 0) + left(s, 0, 0), 0 ≤ s < k
R (s, j, 0) fP(sm R (s, 0, 0) , 0 ≤ s, j < k

Step3 [Compute L´b(j) in processor (0, j, 0)]
LX (0, j, 0) fP(sm

0 ≤ s < k
min {R (s, j, 0) + LL (s, j, 0)}

Step4 [Route to correct processors]
LX (j, 0, 0) fP(sm LX (0, j, 0), 0 ≤ j < k

Figure 14 : Computing LX

where i is the label of the corresponding k×k subgraph (Figure 4). Since

the ideas used in the computation of L, T, R, and B are quite similar, we

describe only the computation of one part of Lb(j). Specifically, we con-

sider computing:

L´b(j) =
0 ≤ s ≤ j
min {Ra(s) + RaLb(s, s) + LbLb(s, j)}

The value L´b(j) will be left in register LX (j, 0, 0) of the k×k subhyper-

cube that represents subgraph b. The strategy to compute L´b is given in

Figure 14. Following Step 1, we have R(s, 0, 0) = Ra(s), 0 ≤ s < k. Following

Step 2, R (s, j, 0) = Ra(s) + RaLb(s, s). Note that R(s, j, 0) + LL (s, j, 0) is a term in

the min for L´b(j). To compute L´b(j) we need simply find the minimum of

all the R (s, j, 0) + LL (s, j, 0) values in column j. This is true as LL (s, j) = ∞ for

s > j. Step 3 computes this minimum in LX (0, j, 0). Step 4 routes the LX

values to the proper processors.

Step 1 is a shift of 1 in a window of size 2k. This takes O (logk) time.

Steps 2 and 3 are easily seen to take O (logk) time. Step 4 is a BPC per-

mutation [NASS82] of LX values and can also be done in O (logk) time.

Since the L, B, T, R values of all k×k subgraphs are computed in O (n /k) steps

with each step computing these values for some of the k×k subgraphs,

the total time taken to compute the L, B, T, R values for all k×k subgraphs

is O (
k
n__ logk).

-- --

31

Combining this with the time required to compute the boundary

distances, we get O (
p
k__ + log2k +

k
n__logk) as the time taken to compute

cost (n − 1, n − 1) beginning with the initial input data. This is minimum

when k is approximately √�����������nplogn . Substituting this for k, we get

O (√
�����

p
nlogn______ + log2n) as the complexity of our algorithm to compute

cost (n − 1, n − 1), The number of processors used is n2p, 1 ≤ p ≤ n.

4.1.3 Traceback

When p ≥ logk = log (√�����������nplogn), O (1) memory per processor is enough to

remember the O (n2logk) decisions made during the computation of the

boundary distances and the further O (n2 /k) decisions made to compute

cost (n − 1, n − 1) from the boundary distances. The entry/exit points for all

the subgraphs can be computed in O (
k
n__logk) time using the latter infor-

mation. The paths within each k×k subgraph can be constructed in

O (log 2k) time. So, the traceback takes O (
k
n__logk + log2k) = O (√

�����

p
nlogn______ + log2n)

when k = √�����������nplogn .

When p < logk, we do not have enough memory to save the decisions

made during the computation of the boundary distance. However, we

do have enough memory to save the later O (n2/k) decisions. Hence, the

entry and exit vertices of the k×k subgraphs can still be determined in

O (
k
n__logk) time. The shortest path from an entry vertex to an exit vertex

of a k×k subgraph may be found by first modifying the edge costs of each

k×k subgraph so that the shortest (0, 0) to (k − 1, k − 1) path will contain the

shortest entry to exit path. Figure 15 shows one of the possible cases for

the entry and exit vertices. Edges on the path from (0, 0) to the entry ver-

tex are given a cost of 0. Also those on the path from the exit vertex to

-- --

32

(k − 1, k − 1) are given a cost of 0. Remaining edges not contained in the

rectangle defined by the entry and exit vertices are given a cost of ∞.

B

A∞∞∞∞∞

∞∞∞∞∞∞∞∞

∞

∞

∞∞∞∞∞∞∞
∞

∞

∞

∞

∞

∞

∞∞

∞

∞

0

0

0

000

A = entry vertex

B = exit vertex

Figure 15 : Modifying a k×k subgraph

As a result of this transformation, finding a shortest entry to exit path is

equivalent to finding a shortest (0, 0) to (k − 1, k − 1) path. This can be done

by recursive application of the algorithm on the k×k subgraphs. So, we

-- --

33

compute new boundary distances, new cost (k − 1, k − 1) values, etc.

The run time T (n, p) of the trace back when p < logk = log(√
�����������
nplogn) is

T (n, p) = O (√
�����

p
nlogn______ + log2n) + T (√

�����������
nplogn , p)

= O
��

i
Σ
��

p
nlogn______ 	
 2i

1____ 	
 = O
��
√
�����

p
nlogn______ 	

So, regardless of whether p ≤ logk or p ≥ logk, the traceback can be

completed in O
��
√
�����

p
nlogn______ + log2n 	
 time using n2p, 1 ≤ p ≤ n processors and

O (1) memory per processor.

4.2 p2 , nlogn ≤ p2 < n2 Processors

Step 1: Each processor computes the boundary distances for its
p
n__×

p
n__

subgraph.

Step 2: for a := 1, 2, 4, ..., k /2 doEach 2a×2a subhypercube computes the boundary
distances for its vertices from those for its constituent a×a
subhypercubes.

Step 3: Combine the boundary distances of k×k subhypercubes.

Figure 16 : Algorithm for p2 , nlogn ≤ p2 ≤ n2 processors

The algorithm for this case may be obtained from that for the case

of n2p, 1 ≤ p ≤ n processors by first setting p to 1 to get the algorithm for the

case of n2 processors. This simply requires eliminating the third dimen-

sion in the earlier algorithm and replacing the MinSum procedure with an

equivalent procedure for n2 processors [DEKE81]. Next, we use the

ideas of [DEKE81] to go from an n2 processor algorithm to a p2 proces-

sor algorithm (1 ≤ p ≤ n). This requires us to map each
p
n__×

p
n__ subgraph of

the n×n lattice graph onto a single processor. Hence, each processor of

-- --

34

the p ×p hypercube contains the information corresponding to an
p
n__×

p
n__

subgraph.

The algorithm to compute cost (n − 1, n − 1) takes the form given in

Figure 16.

Step1 is done using the serial dynamic programming algorithm for

string editing in each processor. The dynamic programming algorithm

is used 2n /p − 1 times; once for each of the 2n /p − 1 vertices in the top and

left boundaries of the n /p×n /p subgraph. So, in each application the shor-

test distances from one of these 2n /p − 1 vertices to all 2n /p − 1 vertices in

the right and bottom boundaries are found. Since each application of

the dynamic programming algorithm takes O (n2/p2) time, the total time

for Step1 is O (n3 /p3).

Step2 is done using a modified version of the n2 processor algo-

rithm. This modification is similar to that described in [DEKE81] for

matrix multiplication. The time taken is O �����
p
n__ �� 3

Σa �� = O �� k ��
p
n__ �� 3 �� .

-- --

35

p/k

p/k

k

k

(1, 1)

(0, 0)

(1, 0)

(0, 1)

group

n2/p2

(c, d)

Figure 17 : p2 processors, p /k = 8, n2/p2 = 4

Following the discussion of Sections 2.1.2 and 4.1.2, the combining

of the boundary distances of the k×k subgraphs is done in O (p/k) itera-

tions. A direct extension of the discussion of Section 4.1.2 will require

O
��

k
p__
��

p2

n2____ +
p
n__logk ����� time be spent on Step 3. However, we note that the

k×k subhypercubes form a p /k×p /k array (Figure 17). In each iteration of

the O (p /k) iterations needed to compute cost (n − 1, n − 1) at most one k×k

-- --

36

subhypercube of each column of Figure 17 is active. When p2 < n2, we

can put the remaining processors in each column to use. If
p2

n2____ ≤
k
p__, then

we may group the processors in each column such that each group con-

tains
p2

n2____ k×k subhypercubes from the same column. In Figure 17, n2/p2 = 4

and p /k = 8. The n2/p2 k×k subhypercubes in each group may themselves be

viewed as an n /p×n /p array (2×2 array in Figure 17) which is drawn as a

one dimensional array of size n2/p2. The pairs (i, j) outside Figure 17 give

such an interpretation for the top left group. Hence, we may refer to a

processor using the tuple

[a, b, c, d, e, f]

where (a, b) indexes the processor group, 0 ≤ a < p3 /n2 , 0 ≤ b < p /k; (c, d)

indexes a k×k subhypercube within a group, 0 ≤ c, d < n/p; and (e, f) indexes

a processor within a k×k subhypercube, 0 ≤ e, f < k. For processors in the

top left k×k subhypercube of Figure 17, a = b = c = d = 0. For those in the k×k

subhypercube below this one, a = b = c = 0, d = 1. For the bottom left k×k

subhypercube of Figure 17, a = 1, b = 0, c = d = 1. Each processor in a k×k

subhypercube represents
p2

n2____ (or an n /p×n /p subgraph) vertices of the ori-

ginal n×n lattice graph. Let (g, h), 0 ≤ g, h < n /p index these vertices. We

may use the tuple

[a, b, c, d, e, f , g, h]

to refer to vertex (g, h) of the (e, f) processor in the k×k subhypercube (c, d)

of group (a, b). In the algorithms of Section 1.1 each vertex was

represented by a face 0 processor. Now, each processor contains dis-

tances for n2/p2 of these face 0 processors. Let dist [a, b, c, d, e, f , g, h]

denote these distances for processor (g, h) of the (e, f) processor in the k×k

subhypercube (c, d) of group (a, b) of face 0. Following step 2 of Figure

-- --

37

16, dist [a, b, c, d, e, f , g, h] is in processor [a, b, c, d, e, f]. Using the BPC

routing algorithm of [NASS82] we can, in O
��

p2

n2____log
p2

n2k 2_____ �� time rearrange

dist such that dist´[a, b, g, h, e, f , c, d] = dist [a, b, c, d, e, f , g, h]

Now, the n2/p2 dist values formerly in a single processor have been

distributed to the
p2

n2____ corresponding processors in the same group. As a

result of this distribution, we can essentailly use the algorithm of Sec-

tion 4.1.2 to combine boundary distances in O (logn) time per iteration.

So the toatal Step 3 time becomes

O
��

p2

n2____log
p2

n2k 2_____ +
k
p__ logn �� = O

��
p2

n2____ logn +
k
p__logn �� (note that n2k 2/p2 < p2 < n2) . The

overall time for Figure 16 is therefore O
��
k
��

p
n__ �� 3

 +
p2

n2____logn +
k
p__ logn) . If we

set k = (p2 √�������logn)/n3/2, then since √���������nlogn ≤ p, n2/p2 ≤ p /k. Further, with this k the

run time becomes O
��

p
n3/2_____ √�������logn �� .

The traceback needed to obtain the shortest (0, 0) to (n − 1, n − 1) path

can be done in the above time by either using O
��

p2

n2____log
n

p2____ �� memory per

processor to store the decisions made during steps 1, 2, and 3 of Figure

16 or by using O
��

p2

n2____ �� memory per processor to save only the decisions

made in Steps 1 and 3 and recomputing those for Step 2 as done in Sec-

tion 4.1.3.

5 CONCLUSIONS

We have developed efficient SIMD hypercube algorithms for the

string edit problem. Our algorithm for n2p, 1 ≤ p ≤ n processors is asymp-

totically superior to that of [IBAR88] for 1 ≤ p < n/log2n and has the same

-- --

38

complexity as theirs for n/log2n ≤ p ≤ n. In fact, our algorithms achieves an

O (log 2n) time complexity with n3/log3n processors. The algorithm in

[IBAR88] needs n2 /log2n processors to achieve this time complexity.

Further, we have developed the first O (n2) processor algorithm to solve

the string edit problem in less than Ω(n) time. With n2 processors, we can

solve this problem in O (√���������nlogn) time. The complexities of our algorithms

for n2p, 1 ≤ p ≤ n and p2 , nlogn ≤ p2 < n2 processors may be restated as

O
��
n√

�����
l

logn_____ + log2n 	
 for nl, logn ≤ l ≤ n2 processors.

6 REFERENCES

[CHAM87] D. M. Champion and J. Rothstein, "Immediate parallel

solution to the Longest Common Subsequence problem",

Proceedings of 1987 International Conference on Parallel

Processing, Aug 1987, pp. 70-77.

[CHEN87] H. D. Cheng and K.S. Fu, " VLSI Architectures for String

Matching and Pattern Matching", Pattern Recognition,

Vol. 20, No. 1, 1987, pp. 125-141.

[DEKE81] E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix and

graph algorithms", SIAM Journal on computing, 1981, pp.

657-675.

[DEKE83] E. Dekel and S. Sahni, "Binary trees and parallel schedul-

ing algorithms", IEEE Transactions on Computers, Vol.

C-31, No. 3, March 1983, pp. 307-315.

[HORO85] E. Horowitz and S. Sahni, "Fundamentals of Data Struc-

tures in Pascal", Computer Science Press, 1985.

[NASS81] D. Nassimi and S. Sahni, "Data Broadcasting in SIMD

-- --

39

computers", IEEE Transactions on Computers, No. 2, Vol.

C-30, Feb 1981, pp. 101-107.

[NASS82] D. Nassimi and S. Sahni, "Optimal BPC permutations on a

cube connected computer", IEEE Transactions on Com-

puters, No. 4, Vol. C-31, April 1982, pp. 338-341.

[IBAR88] O. H. Ibarra, T. C. Pong and S. Sohn, "Hypercube algo-

rithms for some string comparision problems", University

of Minnesota Technical Report, Jan 1988.

[LIU85] H. Liu and K. S. Fu, "VLSI Arrays for Minimum-Distance

Classifiactions", VLSI for Pattern Recognition and Image

Processing, 1985

[WAGN74] R. A. Wagner and M. J. Fischer, "The String-to-string

correction problem", JACM, Vol. 21, No. 1, Jan 74, pp.

168-173.

-- --

