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DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN
ELLIPTICAL WISHART MATRIX AND ITS SIMULATION

Aya Shinozaki∗, Hiroki Hashiguchi† and Toshiya Iwashita‡

ABSTRACT

This paper provides an alternative proof of the derivation of the distribution of
the largest eigenvalue of an elliptical Wishart matrix in contrast to the result of Caro-
Lopera et al. (2016). We show the relation between multivariate and matrix-variate
t distributions. From this relation, we can generate random numbers drawn from the
matrix-variate t distribution. A Monte Carlo simulation is conducted to evaluate the
accuracy for the truncated distribution function of the largest eigenvalue of the elliptical
Wishart matrix. Exact computation of the distribution of the smallest eigenvalue is
also presented.

1. Introduction

The study of the eigenvalue distribution under normal population is a fundamentally
important component of multivariate analysis. This study originated from Wishart (1928),
James (1960, 1964), and Constantine (1963). It is summarized in standard textbook such
as Muirhead (1982). Furthermore, it is developed as a matrix-variate distribution, which
is described in Gupta and Nagar (1999). Recently, discussion of the exact distribution
theory under the elliptical model is specifically examined, for example, Caro-Lopera et al.
(2010) and Caro-Lopera et al. (2014a, 2016). Caro-Lopera et al. (2010) introduced a fam-
ily of matrix-variate elliptically contoured distributions including a matrix-variate normal
distribution, Pearson type VII configuration distribution, Kotz type configuration distribu-
tion, Bessel configuration distribution, and Jensen-logistic configuration distribution. As
mentioned by Sutradhar and Ali (1989), the elliptical models are generalization of the mul-
tivariate normal distribution, accordingly the models have robust statistical characteristics.
Caro-Lopera et al. (2014a) presented the generalized Wishart distribution and discussed
some properties of covariance matrices. They first derived a class of generalized Wishart
distributions under the elliptical model, which includes the classical Wishart distribution
as a special case. As an application of this result, they obtained the distribution of the
eigenvalues of an elliptical Wishart matrix; then they deduced the corresponding known
results for the ordinal Wishart case. Caro-Lopera et al. (2014b) also deduced the sphericity
test on a trace-type matrix-variate elliptical distribution, and derived an exact distribution
of the statistics. Caro-Lopera et al. (2016) provided the density of an elliptical Wishart
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distribution, the joint density of the eigenvalues, and the largest and smallest eigenvalues of
an elliptical Wishart matrix. However, numerical computation of exact distributions under
an elliptical model is not carried out because it should calculate an infinite series with zonal
polynomials. This is another reason why a random generation procedure is not established
in order to evaluate accuracy by Monte Carlo simulation.

This paper provides an alternative proof of the derivation of the largest-eigenvalue dis-
tribution of an elliptical Wishart matrix in contrast to the result of Caro-Lopera et al. (2016).
Our derivation is based on the method of Sugiyama (1967). On the other hand, their result
followed the method of Constantine (1963) and Theorem 9.7.1 of Muirhead (1982). We also
discuss the largest-eigenvalue distribution under a matrix-variate t distribution, which is a
special case of the elliptical case. Section 2 presents a summary of the theory of eigenvalues
of an elliptical Wishart matrix as given by Caro-Lopera et al. (2014a, 2016). In Section 3,
we establish a relation between the matrix-variate and multivariate t distributions. This re-
lation can be used to generate random numbers drawn from the matrix-variate t distribution
because the random generation for the multivariate t distribution is known. In Section 4,
under the matrix-variate t distribution, we compare the empirical and the approximate dis-
tributions of the largest eigenvalues. The empirical distribution is generated by the relation
of the multivariate t distribution described in Section 3 and the approximate distribution
is a truncated distribution with a finite series of zonal polynomials. Calculation of zonal
polynomials is based on the algorithm of Hashiguchi et al. (2000). Finally, conclusion and
future work are described in Section 5.

2. The distribution of the largest eigenvalue of an elliptical Wishart matrix

We introduce the vec operator vec(X) for an m× n matrix X = (x1, . . . ,xn) and the
Kronecker product A⊗B for p× q matrix A = (aij) and r× s matrix B. They are defined
respectively as

vec(X) =



x1

...
xn


 and A⊗B =




a11B · · · a1qB
...

. . .
...

ap1B · · · apqB


 .

An n × m random matrix X is said to have a matrix-variate elliptically contoured
distribution, denoted by En×m(M ,Ω⊗Σ, h), if its density function is given as

gX(X) =
1

|Σ|n/2|Ω|m/2
h
(
trΩ−1(X −M)Σ−1(X −M)⊤

)
, (1)

where Σ : m × m, Ω : n × n, Σ > 0, Ω > 0, and the generator function h : R → [0,∞),
satisfies h(u) ∈ C∞. The elliptical Wishart matrix A is defined as A = X⊤X if X is
distributed as En×m(O, In ⊗ Σ, h). That is, M = O, Ω = In and n ≥ m. The elliptical
Wishart distribution is written as EWm(n,Σ, h). Its density function of A is given as

πmn/2

Γm

(
1
2n

)
|Σ|n/2

|A|(n−m−1)/2 h(trΣ−1A), (2)

where Γm(a) = πm(m−1)/4
∏m

i=1 Γ(a − (i − 1)/2), with ℜ(a) > (m − 1)/2 and Γ(a) is the
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ordinary gamma function. The distribution function of A is given as

Pr(A < Ω) =
πmn/2Γm((m+ 1)/2)

Γm((n+m+ 1)/2)
|Σ−1Ω|n/2

×
∞∑
k=0

h(k)(0)

k!

∑
κ

(n/2)κ
((n+m+ 1)/2)κ

Cκ(Σ−1Ω), (3)

where A < Ω represents that Ω − A is positive definite, h(k)(a) = dkh(u)/duk|u=a. In
(3), Cκ(X) is the zonal polynomial with a symmetric matrix X indexed by a partition
of k into not more than m parts, κ = (κ1, . . . , κm) where κ1 ≥ · · · ≥ κm ≥ 0 and∑m

i=1 κi = k. The sum
∑

κ in (3) runs over all partitions of k. The Pochhammer sym-
bol for a partition κ = (κ1, . . . , κm) is defined as (α)κ =

∏m
i=1(α − (i − 1)/2)κi , where

(α)t = α(α + 1) · · · (α + t − 1) and (α)0 = 1. James (1964) presented the definition and
properties of the zonal polynomial. The equations (2) and (3) were given by Caro-Lopera
et al. (2014) and Caro-Lopera et al. (2016), respectively. We note that the distribution
En×m(M ,Ω ⊗ Σ, h) includes the matrix-variate normal distribution Nn×m(M ,Ω ⊗ Σ),
where n ≥ m, if h(y) = exp(−y/2)/(2π)mn/2. Thereby, if X ∼ Nn×m(O, In ⊗Σ), namely,
row vectors of X are mutually independent and identically distributed as Nm(0,Σ), then
A = X⊤X is the classical Wishart matrix.

Let A ∼ EWm(n,Σ, h). We consider the distribution of the eigenvalues of A denoted
by ℓ1, . . . , ℓm where ℓ1 > · · · > ℓm > 0. Their joint density function is given by Caro-Lopera
et al. (2016) as

πm(n+m)/2

Γm(n/2)|Σ|n/2Γm(m/2)
|L|(n−m−1)/2

m∏
i<j

(ℓi − ℓj)
∞∑
k=0

h(k)(0)

k!

∑
κ

Cκ(Σ−1)Cκ(L)

Cκ(Im)
, (4)

where L = diag(ℓ1, . . . , ℓm). They also derived the distributions of the largest and smallest
eigenvalues using (4).

We also give the distribution function of ℓ1 of A by the procedures of Sugiyama (1967)
and Khatri (1967). The key procedure of Khatri (1967) is the following multiple integral:

∫

1>ℓ1>ℓ2>···>ℓm>0

|L|t−(m+1)/2|Im −L|u−(m+1)/2Cκ(L)
∏
i<j

(ℓi − ℓj)
m∏
i=1

dℓi

=
Γm(m/2)Γm(t, κ)Γm(u)Cκ(Im)

πm2/2Γm(t+ u, κ)
, (5)

where ℜ(t)>(m−1)/2, ℜ(u)>(m−1)/2, Γm(α, κ)=(α)κΓm(α). LetX1=diag(1, x2, . . . , xm),
X2 = diag(x2, . . . , xm), where x2 > · · · > xm > 0. Using (5), the other procedure of
Sugiyama (1967) is given as

∫

1>x2>···>xm>0

|X2|t−(m+1)/2Cκ(X1)
m∏
i=2

(1− xi)
∏
i<j

(xi − xj)
m∏
i=2

dxi

=(mt+ k)(Γm(m/2)/πm2/2)
Γm(t, κ)Γm((m+ 1)/2)

Γm(t+ (m+ 1)/2, κ)
Cκ(Im), (6)

which yields the following theorem.

— 3 —



SHINOZAKI, HASHIGUCHI and IWASHITA

Theorem 1 Let A ∼ EWm(n,Σ, h). Then the distribution function of the largest eigenvalue
ℓ1 of A is given as

Pr(ℓ1<x)=
πmn/2Γm((m+1)/2)|xΣ−1|n/2

Γm((n+m+1)/2)

∞∑
k=0

h(k)(0)

k!

∑
κ

(n/2)κ
((n+m+1)/2)κ

Cκ(xΣ−1). (7)

Proof. The translation of xi = ℓi/ℓ1 for i = 2, . . . ,m and the integration of x2, . . . , xm in
(4) give the density function of ℓ1 as

f(ℓ1) =
πm(n+m)/2

Γm(n/2)|Σ|n/2Γm(m/2)
ℓ
mn/2+k−1
1

∫

1>x2>···>xm>0

|X2|(n−m−1)/2

×
m∏
i=2

(1− xi)
m∏

2≤i<j

(xi − xj)Cκ(X2)
∞∑
k=0

h(k)(0)

k!

∑
κ

Cκ(Σ−1)

Cκ(Im)

m∏
i=2

dxi

=
πm(n+m)/2

Γm(n/2)|Σ|n/2Γm(m/2)
ℓ
mn/2+k−1
1

(mn/2 + k)Γm(m/2)

πm2/2

×Γm(n/2)(n/2)κΓm((m+ 1)/2)Cκ(Im)

Γm((n+m+ 1)/2)((n+m+ 1)/2)κ

∞∑
k=0

h(k)(0)

k!

∑
κ

Cκ(Σ−1)

Cκ(Im)

=
πmn/2Γm(m+1

2 )

Γm(n+m+1
2 )

|Σ−1|n/2

×
∞∑
k=0

(mn/2 + k)ℓ
mn/2+k−1
1

h(k)(0)

k!

∑
κ

(n/2)κ
((n+m+ 1)/2)κ

Cκ(Σ−1).

Moreover, integrating it with respect to ℓ1, we have the distribution function of ℓ1 as

Pr(ℓ1 < x) =

∫ x

0

f(ℓ1)dℓ1

=
πmn/2Γm(m+1

2 )

Γm(n+m+1
2 )

|xΣ−1|n/2
∞∑
k=0

h(k)(0)

k!

∑
κ

(n/2)κ
((n+m+ 1)/2)κ

Cκ(xΣ−1).

In fact, the probability of ℓ1 < x is equivalent to the one of A < xIm. Therefore, the
result (7) in Theorem 1 follows by putting Ω = xIm in (3), as provided in Caro-Lopera et
al. (2016).

The hypergeometric generalized function 1P1 of a matrix argument X is defined as

1P1

(
h(k)(0) : a; c;X

)
=

∞∑
k=0

h(k)(0)

k!

∑
κ

(a)κ
(c)κ

Cκ(X), (8)

where the function h(k)(0) is independent of κ. This function 1P1 was defined by Dı́az-Garćıa
and Caro-Lopera (2008). We have 1P1(1 : a; c;X) = 1F1(a; c;X) where 1F1(a; c;X) is the
confluent hypergeometric function of a matrix argument defined by

1F1(a; c;X) =

∞∑
k=0

∑
κ

(a)κ
(c)κ

Cκ(X)

k!
.
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Analogous to the Kummer relation to 1F1 of Theorem 7.4.3 presented by Muirhead (1982),
the generalized Kummer relation is given by Dı́az-Garćıa and Caro-Lopera (2008) as

1P1

(
h(k)(0) : a; c;X

)
= 1P1

(
h(k)(trX) : c− a; c;−X

)
. (9)

Corollary 1 Using (8), the equation (7) can be written as

Pr(ℓ1 < x) =
π

mn
2 Γm((m+ 1)/2)|xΣ−1|n/2

Γm((n+m+ 1)/2)
1P1

(
h(k)(0) :

n

2
;
n+m+ 1

2
;xΣ−1

)
(10)

and, for h(y) = exp(−y/2)/(2π)mn/2 and h(k)(0) = (−1/2)k/(2π)mn/2, as

Pr(ℓ1 < x) =
Γm((m+ 1)/2)|xΣ−1/2|n/2

Γm((n+m+ 1)/2)
1F1

(
n

2
;
n+m+ 1

2
;−x

2
Σ−1

)
. (11)

Applying the generalized Kummer relation (9) to (10), (7) is also written as

Pr(ℓ1 < x) =
π

mn
2 Γm((m+ 1)/2)|xΣ−1|n/2

Γm((n+m+ 1)/2)
1P1

(
h(k)(trxΣ−1) :

m+ 1

2
;
n+m+ 1

2
;−xΣ−1

)

as well as, for h(y) = exp(−y/2)/(2π)mn/2 and h(k)(0) = (−1/2)k/(2π)mn/2,

Pr(ℓ1 < x) =
Γm((m+ 1)/2)|xΣ−1/2|n/2

Γm((n+m+ 1)/2)
etr(−xΣ−1/2)1F1

(
m+ 1

2
;
n+m+ 1

2
;
x

2
Σ−1

)
.

3. Relation between multivariate and matrix-variate t distributions

This section presents consideration of the matrix-variate t distribution with covariance
matrix Σ and ρ degrees of freedom, as denoted by Tn×m(ρ,Σ). Its generator function and
k-th derivative are given as

h(y) =
Γ
(
mn+ρ

2

)

(πρ)mn/2Γ
(
ρ
2

)
(
1 +

y

ρ

)−(mn+ρ)/2

, (12)

h(k)(y) =
Γ((mn+ ρ)/2)(−1)k((mn+ ρ)/2)k

(πρ)mn/2Γ(ρ/2)ρk
(1 + y/ρ)−((mn+ρ)/2+k), (13)

respectively. In fact, the matrix-variate t distribution has definitions of two kinds. The
ordinary definition has a density function given as

Γm(ρ+n+m−1
2 )

πmn/2Γm(ρ+m−1
2 )|Σ|n/2|Θ|m/2

|Im +Σ−1(Y −M)⊤Θ−1(Y −M)|−(m+n+ρ−1)/2,

where Y : n×m, M : n×m, Θ(n× n) > 0, Σ(m×m) > 0 and ρ > 0. This distribution is
similar to a matrix-variate beta distribution. Chapter 4 of Gupta and Nagar (1999) presents
related details. The other definition is given, using (12), as

gX(X) =
Γ((mn+ ρ)/2)

(πρ)mn/2Γ(ρ/2)|Σ|n/2
(
1 + tr(XΣ−1X⊤)/ρ

)−(mn+ρ)/2

. (14)

The common point of the two kinds of matrix-variate t distributions shares a multivariate
t distribution when n = 1. In this case of n = 1, a random vector x = X⊤ where X ∼
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T1×m(ρ,Σ) is said to be distributed as a multivariate t distribution. Its density function is
given as

g(x) =
Γ((m+ ρ)/2)

(πρ)m/2Γ(ρ/2)|Σ|1/2

(
1 +

1

ρ
x⊤Σ−1x

)−(m+ρ)/2

.

Then the relation between multivariate and matrix-variate t distributions is satisfied in the
following theorem.

Theorem 2 The statement X ∼ Tn×m(ρ,Σ) is equivalent to vec(X⊤) ∼ T1×nm(ρ, In⊗Σ).

Proof. From Lemma 2.2.3 of Muirhead (1982), we have

tr(XΣ−1X⊤) = (vec(X⊤))⊤(Im ⊗Σ)−1(vec(X)) = x⊤(Im ⊗Σ)−1x

for x = vec(X⊤) and |Σ|n/2 = |In ⊗Σ|1/2. Therefore, the density function of x is given as

Γ((mn+ ρ)/2)

(πρ)mn/2Γ(ρ/2)|In ⊗Σ|1/2

(
1 +

1

ρ
x⊤ (In ⊗Σ)

−1
x

)−(mn+ρ)/2

(15)

which yields that x = vec(X⊤) ∼ T1×nm(ρ, In ⊗ Σ). The converse condition is clearly
obtained from the proof above.

Theorem 3 Assume that Z ∼ Nn×m(O, In ⊗ Im) and R ∼ χ2
ρ where Z and R are inde-

pendent. Then the random matrix

X =
ρ1/2ZΣ1/2

R1/2
(16)

is distributed as X ∼ Tn×m(ρ,Σ).

Proof. We put z = vec(Z⊤) and

x = vec(X⊤) = ρ1/2(In ⊗Σ1/2)vec(Z⊤)/R1/2 =
( ρ

R

)1/2

(In ⊗Σ1/2)z.

The joint density function of z = vec(Z⊤) and R is given as

f(z, R) =
1

(2π)mn/2
exp

(
−1

2
z⊤z

)
1

Γ
(
ρ
2

)
2ρ/2

Rρ/2−1e−R/2. (17)

Substituting z = (R/ρ)1/2(In ⊗Σ1/2)−1x and dz = (R/ρ)mn/2|Σ|−n/2dx for (17), we have

f(x)dx =

∫

R>0

f((R/ρ)1/2(In ⊗Σ1/2)−1x, R)(R/ρ)mn/2|Σ|−n/2dxdR

=
ρ−mn/2|Σ|−n/2

(2π)mn/2Γ
(
ρ
2

)
2ρ/2

∫ ∞

0

R(mn+ρ)/2−1 exp

{
−R

2

(
1 +

1

ρ
x⊤(I ⊗Σ)−1x

)}
dR dx

=
Γ((mn+ ρ)/2)

(πρ)mn/2Γ(ρ/2)|Σ|n/2

(
1 +

1

ρ
x⊤(I ⊗Σ)−1x

)−(mn+ρ)/2

dx,

where dx = dx1 · · · dxmn for x = (x1, . . . , xmn)
⊤. Therefore, it is readily apparent that

x ∼ T1×mn(ρ,Σ). From Theorem 2, we have X ∼ Tn×m(ρ,Σ).
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From Theorem 3 we are able to generate random numbers of X ∼ Tn×m(ρ,Σ) and
study numerical simulations in Section 4. We note that a similar result of Theorem 3 can
be found in the Problem 4.6. of Gupta and Nagar (1999).

4. Numerical experiments

In this section, we describe calculation of the distributions of the largest and smallest
eigenvalues of the elliptical Wishart matrix under the matrix-variable t distribution. A
Monte Carlo simulation study under a matrix-variate t distribution can be carried out from
Theorem 3. Throughout this section, the empirical distribution based on 106 times Monte
Carlo simulation is represented by Fsim.

The distribution function of ℓ1 of A = X⊤X where X ∼ Tn×m(ρ,Σ) is given as

Pr(ℓ1 < x)

=
Γm(m+1

2 ) Γ(mn+ρ
2 )

Γm(n+m+1
2 ) Γ(ρ2 )

|xΣ−1|n/2
∞∑
k=0

(−1)k(nm+ρ
2 )k

ρmn/2+k

∑
κ

(n2 )κ

(n+m+1
2 )κ

Cκ(xΣ−1)

k!
(18)

for substitution of (8) and (13) for (10). This distribution function is an alternating series.
Its translation with positive terms can be obtained as

Pr(ℓ1 < x) =
Γm(m+1

2 ) Γ(mn+ρ
2 )

Γm(n+m+1
2 ) Γ(ρ2 )

|xΣ−1|n/2

×
∞∑
k=0

(nm+ρ
2 )kρ

ρ
2

(ρ+ xtrΣ−1)
mn
2 +k+ ρ

2

∑
κ

(m+1
2 )κ

(n+m+1
2 )κ

Cκ(xΣ−1)

k!
(19)

by using the Kummer relation (9). The truncated distribution up to the Kth degree of (19)
is denoted by

FK(x) =
Γm(m+1

2 ) Γ(mn+ρ
2 )

Γm(n+m+1
2 ) Γ(ρ2 )

|xΣ−1|n/2

×
K∑

k=0

(nm+ρ
2 )k ρ

ρ
2

(ρ+ xtrΣ−1)
mn
2 +k+ ρ

2

∑
κ

(m+1
2 )κ

(n+m+1
2 )κ

Cκ(xΣ−1)

k!
. (20)

For example, the function F10(x) is calculated as

F10(x) =
7x4

1250
(
3x
20 + 1

)9
(
1 +

81x

14
(
3x
2 + 10

) +
85x2

4
(
3x
2 + 10

)2 +
3525x3

56
(
3x
2 + 10

)3

+
238725x4

1456
(
3x
2 + 10

)4 +
12537x5

32
(
3x
2 + 10

)5 +
957299x6

1088
(
3x
2 + 10

)6 +
77968575x7

41344
(
3x
2 + 10

)7

+
1127986815x8

289408
(
3x
2 + 10

)8 +
875329785x9

111872
(
3x
2 + 10

)9
17160151239x10

1118720
(
3x
2 + 10

)10
)

when m = 2, n = 4, ρ = 10,Σ = diag(1, 2) and the graph of F10(x) are as presented on the
left-hand-side of Fig. 1. We also present graphs for F50, F100 and F150, which show that
F150 might give high accuracy by comparison with Fsim. On the right-hand-side of Fig. 1 we
take ρ = 50 greater than ρ = 10, which shows that the truncated distributions in the right

— 7 —



SHINOZAKI, HASHIGUCHI and IWASHITA

(a) ρ = 10 (b) ρ = 50

Fig. 1: m = 2, n = 4, Σ = diag(1, 2).

panel converge more rapidly to 1 than the ones in the left panel. Several percentage points
are presented in Table 1 and have three-decimal-place precision for ρ = 10, 20, 30, and 50.
Table 2 shows the vaules of u and FK(u) such that F ′

K(u) = 0. For ρ = 10, m = 2 and
Σ = diag(1, 2), Table 3 shows that F150s have poor accuracy, especially for 95% and 99%.
When n = 50, the 90%, 95%, and 99% points fail to achieve the desired accuracy. As shown
in Table 3, when n is large, more terms are required because F150 does not reach to 0.90,
0.95, or 0.99. Numerical calculations of F150 for m = 3 are much more cumbersome than

Table 1: Percentile points of truncated function (m = 2, n = 4).

ρ % point 5% 10% 50% 90% 95% 99%
10 Fsim 2.65 3.54 9.34 24.0 31.5 52.8

F150 2.65 3.54 9.35 24.0 31.5 53.1
20 Fsim 2.81 3.69 9.00 20.4 25.5 38.3

F150 2.81 3.69 9.01 20.4 25.4 38.3
30 Fsim 2.87 3.75 8.88 19.3 23.7 34.5

F150 2.87 3.75 8.89 19.3 23.7 34.5
50 Fsim 2.91 3.80 8.80 18.4 22.4 31.7

F150 2.92 3.80 8.80 18.5 22.4 31.8

Table 2: Values of (u, FK(u)) such that F ′
K(u) = 0 for m = 2, n = 4, Σ = diag(1, 2).

ρ u FK(u)
10 F10 12.7 0.501

F50 32.6 0.935
F100 52.5 0.985
F150 69.6 0.995

50 F10 13.2 0.641
F50 37.3 0.994
F100 62.1 1.00
F150 84.3 1.00
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those for m = 2. It took less than 4 seconds to calculate F150 for m = 2, but more than 6
hours for m = 3. Calculation times were measured using Mathematica 10 on a computer
(MacBookAir OS X Yosemite, ver. 10.10.5; Apple Computer, Inc. with a 1.6GHz Intel Core
i5 processor; Intel Corp.) with 4 GB memory. Table 4 shows the behavior similarly to the
case for m = 2, where the cases for larger values of ρ have a rapid convergence property. In
Tables 3 and 4, the symbol “-” signifies that F150 does not reach to the probability.

Table 3: Percentile points of truncated function (ρ = 10, m = 2).

n % point 5% 10% 50% 90% 95% 99%
3 Fsim 1.72 2.40 7.06 19.3 25.7 44.0

F150 1.71 2.39 7.06 19.3 25.7 44.0
5 Fsim 3.63 4.72 11.6 28.5 37.0 61.7

F150 3.62 4.71 11.6 28.5 37.1 62.4
10 Fsim 8.62 10.6 22.5 50.2 63.9 103

F150 8.61 10.6 22.5 50.2 64.1 -
20 Fsim 18.9 22.5 43.9 92.0 115 182

F150 18.9 22.6 43.9 95.2 - -
30 Fsim 29.4 34.7 65.2 133 167 261

F150 29.4 34.8 65.2 - - -
50 Fsim 50.8 59.4 108 216 269 421

F150 50.8 59.4 109 - - -

Table 4: Percentile points of truncated function (m = 3, n = 4).

ρ % point 5% 10% 50% 90% 95% 99%
10 Fsim 5.60 7.18 17.1 41.3 53.4 88.6

F150 5.59 7.17 17.1 41.3 53.8 -
20 Fsim 5.98 7.54 16.5 34.7 42.7 63.1

F150 5.99 7.54 16.5 34.7 42.7 63.2
30 Fsim 6.16 7.70 16.2 32.7 39.7 56.3

F150 6.15 7.69 16.3 32.7 39.6 56.3
50 Fsim 6.30 7.83 16.1 31.2 37.3 51.6

F150 6.30 7.83 16.1 31.2 37.3 51.5

Finally, we present a discussion of numerical computation of the distribution of the
smallest eigenvalue under X ∼ Tn×m(ρ,Σ) and n ≥ m. In the general case of A ∼
EW(n,Σ, h), the upper-tail probability of the smallest eigenvalue was given by Caro-Lopera
et al. (2016) as well as the case of Tn×m(ρ,Σ). If r = (n−m−1)/2 is a positive integer, then
the upper-tail probability of the smallest eigenvalue ℓm of A = X⊤X under Tn×m(ρ,Σ) is
given as

Pr(ℓm > x) =

mr∑
k=0

(ρ/2)k xk

k! ρk

(
1 +

x

ρ
trΣ−1

)−ρ/2−k ∑
κ∗

Cκ∗(Σ−1), (21)
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where the summation runs over partitions κ∗ = (κ1, . . . , κm) of κ with restriction of κ1 ≤ r.
It is easier to calculate (21) numerically than (19) because (21) is a finite series up to mr.
We check the limit of ρ. If ρ → ∞, then the matrix-variate t distribution with a trace type
converges in law to a matrix-variate normal distribution Nn×m(0, In ⊗Σ) because of

lim
ρ→∞

h(y) = lim
ρ→∞

Γ((mn+ ρ)/2)

(2π)mn/2(ρ/2)mn/2Γ(ρ/2)

(
1 +

y

ρ

)−mn/2 {(
1 +

y

ρ

)ρ}−1/2

=
1

(2π)mn/2
exp(−y/2).

Therefore, if ρ → ∞, then the upper-tail probability of ℓm is given as

Pr(lm > x) = etr

(
−1

2
xΣ−1

) mr∑
k=0

1

k!

∑
κ∗

Cκ∗

(
1

2
xΣ−1

)

which coincides with the result of Khatri (1972). Fig. 2 presents graphs of (21) when
ρ = 5, 40 and ρ → ∞ under n = 10 and Σ = diag(1, 2, 4). Their percentages are shown in
Table 5.

Fig. 2: m = 3, n = 10, Σ = diag(1, 2, 4).

Table 5: Percentile points of the smallest eigenvalue (n = 10, Σ = diag(1, 2, 4)).

ρ 5% 10% 50% 90% 95% 99%
5 1.82 2.45 6.90 21.6 31.0 66.0
10 2.01 2.64 6.44 15.3 19.7 32.1
20 2.14 2.77 6.23 12.8 15.6 22.4
40 2.22 2.84 6.13 11.7 13.8 18.7
∞ 2.31 2.93 6.03 10.6 12.2 15.5
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5. Conclusion

As described herein, we provide an alternative proof of the derivation of the largest-
eigenvalue distribution under an elliptically contoured distribution. We also discuss numer-
ical computation of the largest and smallest eigenvalues’ distributions under the matrix-
variate t distribution. The relation between the multivariate and matrix-variate t distribu-
tions is useful in conducting Monte Carlo simulations. Numerical computation is limited
to cases in which the dimension m is small. Therefore, we must investigate the asymptotic
properties for m or n, which remains as task for future work. Other future work includes
numerical computation and simulation for other elliptically contoured distributions.
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