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Abstract

The bound state solutions of Dirac equations for cotangent function potential with the Coulomb-type tensor potential
under spin and pseudospin symmetric limits are obtained using finite Romanovski polynomials. The approximate
relativistic energy spectra are obtained for spin and pseudospin symmetries exactly. The radial wave functions are
obtained in terms of Romanovski polynomials in the limit of spin and pseudospin symmetric conditions. The Coulomb
type tensor potential removes the doublet degeneracies for pseudospin and spin symmetric cases. The relativistic energy
spectrum for the exact spin symmetric case reduces to the non-relativistic energy spectrum in the non-relativistic limit.

Abstrak

Solusi Persamaan Dirac untuk Potensial Kotangen dengan Tensor Interaksi Tipe-Coulomb untuk Simetri Spin
dan Pseudospin Menggunakan Polinomial Romanovski. Solusi keadaan terikat dari persamaan Dirac untuk potensial
fungsi kotangen dengan potensial tensor tipe-Coulomb untuk simetri spin dan pseudospin diperoleh menggunakan
polinomial Romanovski terbatas. Aproksimasi spektrum energi relativistik diperoleh secara eksak untuk simetri spin
dan pseudospin. Fungsi gelombang radial diperoleh dalam bentuk polinomial Romanovski untuk keadaan simetri spin
dan pseudospin. Potensial tensor tipe-Coulomb menghilangkan degenerasi doublet untuk kedua kasus simetri spin dan
pseudospin. Pada batas non-relativistik, spektrum energi relativistik untuk kasus simetri spin eksak tereduksi menjadi
spektrum energi non-relativistik.
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1. Introduction
The bound state solutions of Dirac equations with a
mixture of an attractive scalar potential Spr) and a
repulsive vector potential V prq together with tensor
interaction potential have been investigated intensively.
Dirac equations for central and non-central potentials
with Yukawa-type and Coulomb-type tensor potentials
have been applied in quantum chemistry and high-energy
physics. They are used to describe the motion of particles
governed by a strong force when the relativistic effects are
taken into account.

The special conditions of Dirac equations when the vector
potential is (nearly) the same as the scalar potential
have been investigated recently, such as the non-spherical

harmonic oscillator potential [1-3], Makarov potential
[4-5], ring-shaped oscillator potential [6], ring-shaped
non-spherical harmonic oscillator potentials [7-8], new
ring-shaped Coulomb potentials [8], Coulomb potential
plus new ring-shaped potential [9], and Hartmann
potential plus new ring-shaped potential [10-11]. These
potentials are widely used in studying quantum chemistry
such as the relativistic effect of the distorted nucleus,
the interaction between ring-shaped molecules, and
the complex vibration-rotation energy structure of the
multi-electron atom.

Dirac equations for central and non-central potentials
together with and without tensor potentials have been
solved mostly with the Nikiforov-Uvarov method [12-16],
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the factorization method and the supersymmetry quantum
mechanics method [17], the hypergeometric and confluent
hypergeometric methods [18-19], and the asymptotic
iteration method [20]. However, only a few potentials are
solved exactly such as Coulomb and harmonics oscillator
potentials with the Coulomb-type tensor potential; other
potentials are solvable only for the s-wave. For the l-wave,
the Dirac equations for central and non-central potentials
are solved only approximately due to the contribution of
the centrifugal term. An approximation scheme for the
centrifugal term was proposed by Greene and Aldrich
[21], and this approximation works well for trigonometric,
hyperbolic, and exponential potentials.

In addition, Dirac equations for some potentials have been
solved in the cases of spin symmetry and pseudospin
symmetry [16, 19, 22-29]. Spin symmetry occurs when
the difference between the repulsive vector potential
with the attractive scalar potential is equal to constant,
while the pseudospin symmetry arises when the sum
of the scalar potential and the vector potential is equal
to constant. Spin symmetric and pseudospin symmetric
concepts have been used to study the aspect of deformed
and superdeformation nuclei in nuclear physics. Spin
symmetry has been applied to the meson and antinucleon
spectrum [30], and the pseudospin symmetric concept is
used to explain the quasi-degeneracy of nucleon doublets
[31], exotic nuclei [32], and superdeformation in nuclei
[33], and to establish an affective nuclear shell-model
scheme [34].

In this paper, the relativistic energy spectra and wave
functions of the trigonometric cotangent potential with the
Coulomb-type tensor potential are analyzed using finite
Romanovski polynomials. The trigonometric cotangent
potential is part of the Rosen-Morse potential, a
potential model used to explain nucleon excitation. The
Rosen-Morse potential has also been used as a model to
describe a fundamental massless gauge theory in addition
to the Coulomb potential. The nucleon excitation levels
that carry the same degeneracies as the levels of the
electron with spin in the hydrogen atom are surprisingly
well explained by the model. Compared to the hydrogen
atom, the baryon level splitting contain in addition to
the Balmer term its inverse but of opposite sign. The
surprise explanation is reasonable since the Rosen-Morse
potential can be viewed as a combination of the Coulomb
potential and the square well potential. The Coulomb-like
tensor potential, which is screened Coulomb potential,
was originally used to model strong nucleon-nucleon
interactions caused by the exchange in nuclear physics
[32, 35-40].

Finite Romanovski polynomials are a traditional method
that consists of reducing the Schrödinger equation by
an appropriate variable substitution to the form of a
generalized hypergeometric equation [41]. Romanovski
polynomials were discovered by Sir E. J. Routh [42] and

rediscovered 45 years later by V. I. Romanovski [43].
The notion "finite" refers to the observation that, for any
given set of parameters (i.e., in any potential), only the
finite polynomials appear orthogonal [38]. We apply the
finite Romanovski polynomials method since this method
is simpler than the Nikiforov-Uvarov method in obtaining
the energy spectrum and the wave function although there
is a limitation in determining the normalization of the
wave function. Until recently, only a few researchers used
finite Romanovski polynomials to solve the Schrödinger
equation for certain potentials [38-39, 45-47].

This paper is organized as follows. The basic theory
of Dirac equations is presented briefly in section 2.
Finite Romanovski polynomials as an analytical method
is presented in section 3. In section 4, the results and
discussion are presented. Finally, a brief conclusion is
presented in section 5.

Basic Dirac spinor equation. The motion of a nucleon
with mass M in a repulsive vector potential V prq and an
attractive scalar potential Sprq and coupled by a tensor
potential Uprq is described by the Dirac equation given
as [12, 16, 19, 25, 26]

ᾱ.áp�β pM�Sprqq� iβᾱ.r_Uprq
(
ψpárq

� E�V prq
(
ψpárq ,

(1)

where E is the relativistic energy and áp is the
three-dimensional momentum operator, �i∇,

ᾱ �

�
0 σ

σ 0



, and β �

�
I 0
0 �I



(2)

where σ is the three-dimensional Pauli matrices, and I
is the 2x2 identity matrix. Here, we consider the matrix
potential in equation (1) as a spherically symmetric
potential, they depend not only on the radial coordinate,
r � |ár| and we have taken h̄ � 1, c � 1. The Dirac
equation expressed in equation (1) is invariant under
spatial inversion, and therefore, its eigenstates have
definite parity. By writing the spinor as

Ψpárq �
�

ζ párq
φpárq



�

� Fnκ prq
r Y l

jmpθ ,ϕq

i Gnκ prq
r Y

á
l
jmpθ ,ϕq

�
, (3)

where ζ párq is the Dirac spinor of the upper (large)
component and φpárq is the Dirac spinor of the lower
(small) component, Y l

jmpθ ,ϕq is the spin spherical

harmonics, Y l̄
jmpθ ,ϕq is the pseudospin spherical

harmonics, l is orbital quantum number, l̄ is the
pseudo-the orbital quantum number, and m is the
projection of the angular momentum on the z-axis. The
Dirac Hamiltonian in a spherical field commutes with the
total angular momentum operator

�Ñ
J and the spin-orbit

coupling operator K̄, where κ � �β pσ̄ .áL� 1q with áL is
the orbital angular momentum. The eigenvalues of the
spin-orbit coupling operator are κ � pJ�1{2q ¡ 0 for the
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unaligned spin (p1{2,d3{2, ...) and κ � �pJ � 1{2q   0
for the aligned spin (s1{2, p3{2, ...). Therefore, the
conservative quantities consist of the set of H, κ̄,áJ,Jz.

Inserting equations (3) and (2) into equation (1), we have�
0 σ

σ 0



p
�

ζ prq
φprq



�

�
I 0
0 �I



pM�Sprqq

�
ζ prq
φprq



� iβα.r_Uprq

�
ζ prq
φprq



�
�

E�V prq
	�

ζ prq
φprq


 (4)

From equation (4), we obtain two coupled first-order
differential equations given as$''% d

dr
�

κ

r
�Uprq

,//-Fnκprq �
�

M�Enκ �V prq

�Sprq
	

Gnκprq
(5)

and$''% d
dr
�

κ

r
�Uprq

,//-Gnκprq �
�

M�Enκ �V prq

�Sprq
	

Fnκprq
(6)

From equations (5) and (6), we get the upper and lower
radial part of the Dirac equations,"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
Uprq�U2prq�

dU
dr

*
Fnκprq

�

"
d∆

dr

$''% d
dr
�

κ

r
�Uprq

,//-{�M�Enκ �∆prq
	*

Fnκprq

�
�

M�Enκ �∆prq
	�

Enκ �M�Σprq
	

Fnκprq � 0

(7)"
d2

dr2 �
κpκ�1q

r2 �
2κ

r
Uprq�U2prq�

dU
dr

*
Gnκprq

�

"
dΣ

dr

$''% d
dr
�

κ

r
�Uprq

,//-{�M�Enκ �Σprq
	*

GnKprq

�
�

M�Enκ �∆prq
	�

Enκ �M�Σprq
	

Gnκprq � 0

(8)

where the spin-orbit quantum number κ is related to the
usual orbital angular momentum with κpκ � 1q � lpl �
1q for the upper spinor component and is related to the
pseudo-orbital angular momentum with κpκ �1q � l̄pl̄�
1q for the lower spinor component, Σprq � V prq�Sprq is
the sum of the scalar and vector potentials, and ∆prq �
V prq�Sprq is the difference between the vector potential
and the scalar potential. By choosing the vector and scalar
potential as the cotangent function potential and the tensor
interaction potential, the Coulomb-type tensor potential is
given as

V prq � �pV0 cotarq (9)

Uprq � �
V1 (10)

Then the relativistic energy of the system and the Dirac
spinor wave function are found. In equation (9), V0
describes the depth of the potential and is positive, a is a
positive parameter that controls the width or the range of
the potential, and in equation (10), V1 is the strength of the
nucleon force, V1 � κz1z2 , z1 is the projectile charge, z2
is the charge of the particle, κ is the electrostatic constant,
and 0  r  8.

Pseudospin symmetry occurs when Σprq �V prq�Sprq �
Cps with Cps is constant; therefore, dΣ

dr � 0 , and the
difference between the vector and scalar potentials ∆prq
is

∆prq �V prq�Sprq � �V0 cotar (11)

The Dirac equation for the lower component of the Dirac
spinor in equation (8) reduces to"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
Uprq�U2prq�

dU
dr

*
Gnκprq

�
�

M�Enκ �∆prq
	�

Enκ �M�Cps

	
Gnκprq � 0

(12)

with κpκ � 1q � l̄pl̄ � 1q that leads to κ � �l̄ � �p j�
1{2q, when κ   0 for the aligned spin, and κ � pl̄ �
1q � j � 1{2 , when κ ¡ 0 for the unaligned spin. In
general, the pseudo-orbital quantum number is written as
l̄� l�κ{|κ|. These conditions imply that the total angular
momentum j� l̄� 1

2 causes the state to be degenerated for
l̄ , 0.

Moreover, the exact pseudospin symmetry arises when
Σprq � V prq� Sprq �Cps � 0, and ∆prq � V prq� Sprq is
the cotangent function potential expressed in equation (9);
therefore, equation (12) becomes"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
Uprq�U2prq�

dU
dr

*
Gnκprq

�
�

EnK
2�M2

	
Gnκprq�∆prq

�
Enκ �M

	
Gnκprq � 0

(13)

However, spin symmetry occurs when the difference
between the vector and scalar potentials is constant,
∆prq � V prq� Sprq � Cs, and the sum of the vector and
scalar potentials

Σprq �V prq�Sprq � �V0 cotar (14)

The upper component of the Dirac spinor obtained from
equation (7) is"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
Uprq�U2prq�

dU
dr

*
Fnκprq

�
�

M�Enκ �Cs

	�
Enκ �M�Σprq

	
Fnκprq � 0

(15)
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with κpκ�1q � lpl�1q that leads to κ � l and j � l� 1
2

when κ ¡ 0 for unaligned spin κ ��pl�1q and j� l� 1
2

when κ   0 for the aligned spin. Both Dirac equations for
the pseudospin and spin symmetries in equations (12) and
(15) are solved using Romanovski polynomials.

2. Methods
The method used to solve the Dirac equation in the
limit of spin symmetric and pseudospin symmetric
cases is finite Romanovski polynomials since the
Dirac equations for the limited condition, when the
spin and pseudospin symmetries arise, reduce to
one-dimensional Schrödinger-like equations. The
one-dimensional second-order differential equation
satisfied by Romanovski polynomials is developed
based on the hypergeometric differential equation.
The one-dimensional Schrödinger equation of the
potential of interest reduces to the differential equation
of Romanovski polynomials by the appropriate variable
and wave function substitutions. The one-dimensional
Schrödinger equation is given as

�
h̄2

2M
B2Ψpxq
Bx2 �V pxqΨpxq � EΨpxq (16)

where V pxq is an effective potential, which is mostly the
shape invariant potential. By suitable variable substitution
of x � f psq, equation (16) changes into the generalized
hypergeometric-type equation expressed as

B2Ψpsq
Bs2 �

rτpsq
σpsq

BΨpsq
Bs

�
rσpsq

σ2psq
Ψpsq � 0 (17)

with σpsq and rσpsq are mostly polynomials of order two,rτpsq is a polynomial of order one, s, σpsq, rσpsq, rτpsq and
can have any real or complex values [48]. Equation (17)
is solved with the variable separation method. By setting

Ψnprq � gnpsq � p1� s2q
β

2 e
�α

2 tan�1sDpβ ,αq
n psq (18)

we obtain a hypergeometric-type differential equation,
which can be solved using finite Romanovski polynomials
[35, 44], expressed as

σpsqy2psq� τpsqy1psq�λypsq � 0 (19)

with

σpsq � as2�bs� c;τ � f s�h�tnpn�1q
�2np1� pqu � λ � λn

(20)

and

yn � Dpβ ,αq
n psq (21)

For Romanovski polynomials, the parameter values in
equation (20) are

(22)

Therefore, equation (19) is rewritten as

p1� s2q
B2Rpp,q1q

n

Bs2 � 2sp�p�1q�q1
(BRpp,q1q

n psq
Bs

� npn�1q�2np1� pq
(

Rpp,q1q
n psq � 0

(23)

ypsq � Rpp,q1q
n psq (24)

By applying the specific values for Romanovski
polynomials expressed in equation (22) to equation (19),
then equation (19) reduces to equation (23), which
is the second-order differential equation satisfied by
Romanovski polynomials. Equation (19) is described in
Nikiforov-Uvarov’s textbook [44, 48], where the equation
is cast into self-adjoint form and its weight function, wpsq,
satisfies the Pearson differential equation

d
�
σpsqwpsq

�
ds

� τpsqwpsq (25)

The weight function, wpsq, is obtained by solving the
Pearson differential equation expressed in equation (25)
and by applying the condition in equations (20) and (22),
given as

W pp,q1qpsq � p1� s2q�peq1 tan�1psq (26)

The corresponding polynomials are classified according
to the weight function, and are built up from the Rodrigues
representation, which is presented as

yn �
Bn

wpsq
dn

dsn

"�
as2�bs� c

�nwpsq
*

(27)

with Bn is a normalization constant. For σpsq ¡ 0 and
wpsq ¡ 0, ynpsqs are normalized polynomials and are
orthogonal regarding the weight function wpsq within a
given interval (s1, s2), which is expressed as

s2»
s1

wpsqynpsqyn1psqds� δnn1 (28)

This weight function in equation (26) was first reported
by Routh [42] and then by Romanovski [43]. The
polynomials associated with equation (23) are named
after Romanovski and will be denoted by Rpp,qq

n psq. Due
to the decrease in the weight function by s�2p, an integral
of the type

8»
�8

wpp,q1qRpp,q1q
n psqRpp,q1q

n psqds (29)

will be convergent only if

n1�n  2p�1 (30)

a � 1,b � 0,c � 1, f � 2p1 � pq 
and h  q1  with p ¡ 0 

The heart of the Romanovski polynomials method 
is in obtaining equations (17) and (23) from 
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the one-dimensional Schrödinger equation. The
Schrödinger equation of the potential of interest
will reduce to a second-order differential equation
that is similar to equation (17), which is called the
generalized hypergeometric equation by an appropriate
transformation of the variable, for example, r � f psq.
Then, by substituting a new wave function in equation
(18) into equation (17), we get a new equation in the
form of equation (23) but with β and α parameters. By
comparing equation (23) and the new equation, we get
the relation between β and p, and between α and q1. The
Romanovski polynomials obtained from the Rodrigues
formula expressed in equation (27) corresponding to the
weight function in equation (26) are expressed as

Rpp,q1q
n psq � Dpβ ,αq

n psq �
1

p1� s2q�peq1 tan�1psq

�
dn

dsn

"
p1� s2qnp1� s2q�peq1 tan�1psq

* (31)

If the wave function of the nth level in equation (18) is
rewritten as

Ψnprq �
1b
d f psq

ds

p1� s2q
�p

2 e
q1
2 tan�1psqRpp,q1q

n psq (32)

then the orthogonality integral of the wave function
expressed in equation (32) gives rise to the orthogonality
integral of the finite Romanovski polynomials, which is
given as
8»
0

ΨnprqΨnprqdr �

8»
�8

wpp,q1qRpp,q1q
n psqRpp,q1q

n psqds (33)

In this case, the p and q1 values are not n-dependent where
n is the degree of the polynomials. However, if either
equation (28) or (30) is not fulfilled, then the Romanovski
polynomials is infinity [38].

3. Results and Discussion
Pseudospin symmetric case. The Dirac equation for the
pseudospin symmetric case presented in equation (12)
with the potential and the tensor potential expressed in
equations (9) and (10) is given as"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
V1prq

r
�

V 2
1 prq
r2 �

V1

r2

*
Gnκprq�p�V0 cotarqpM�Enκ �CpsqGnκprq

� pM�EnκqpM�Enκ �CpsqGnκprq

(34)

Equation (32) cannot be solved exactly except when we
use approximation to the 1

r2 and 1
r terms. For small a

where ra   1, then the approximation of 1
r2 has the form

of [21].

1
r2 �

a2

psin2 arq
(35)

Equation (35) is substituted into equation (34). Then we
get"

d2

dr2 �

�
κpκ�1q�2κV1�V 2

1 �V1
�
a2

sin2 ar

*
Gnκprq

�V0 cotarpM�Enκ �CpsqGnκprq

� pM�EnκqpM�Enκ �CpsqGnκprq

(36)

By setting

Aps � pκ�V1�1qpκ�V1q (37)

Bps �
V0

a2 pM�Enκ �Cpsq (38)

Eps
1 ��

pM�EnκqpM�Enκ �Cpsq

a2 (39)

in equation (36), equation (36) then reduces to a
one-dimensional Schrödinger-type equation"

d2

dr2 �
a2Aps

psinarq2
�a2Bps cotar

*
Gnκprq

� �a2Eps
1Gnκprq

(40)

By substituting the spatial variable, cotar � x in equation
(40) where �8  x 8, we get

p1� x2q
d2Gnκ

dx2 �2x
dGnκ

dx
�

$''%Aps�
Bpsx

1� x2

�
E 1

1� x2

,//-Gnκ � 0
(41)

To solve equation (41), we use equation (18) as a new
wave function,

Gnκpxq � gnpxq � p1� x2q
β

2 e
�α

2 tan�1 xDpβ ,αq
n pxq (42)

After manipulating equations (41) and (42), we obtain

p1� x2q
B2Dpβ ,αq

n

Bx2 �
!

2xpβ �1q�α

)BDpβ ,αq
n

Bx
�"

βαx� α2

4 �β 2�Bpsx�E 1

1� x2 �Aps�β
2�β

*
Dpβ ,αq

n � 0

(43)

Equation (43) reduces to the differential equation that was
satisfied by the Romanovski polynomials as in equation
(23) if the coefficient of 1

1�x2 term is set to be zero, which
are

�
α2

4
�β

2�E 1 and βα�βps � 0 (44)

and then equation (43) becomes

p1� x2q
B2D
Bx2 �

"
2xpβ �1q�α

*
BD
Bx

�

"
Aps�

β
2�β

*
D� 0

(45)
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By comparing the parameters between equations (23) and
(45), we obtain the relations

Aps�β
2�β � npn�1q�2np1� pq ;

2pβ �1q � 2p�p�1q and α ��q1
(46)

From equation (46), we have p � �β ; since p ¡ 0,
then the value of β obtained from equation (46) that has
physical meaning is

β � βn �

c
Aps�

1
4
�n�

1
2
� κ�V1�n�1 (47)

By using equations (44) and (47), we obtain

α � αn �
Bps

�
b

Aps�
1
4 �n� 1

2

�

V0
a2 pM�Enκ�Cpsq

�pκ�V1q�n�1

(48)

By manipulating equations (37)-(39), (44), (47), and (48),
we get the relativistic energy as follows. By inserting
equations (47) and (48) into equation (44), we have

�
B2

ps

4p�
a

Aps�1{4�n�1{2q2
��

�
b

Aps�1{4�n�1{2
	2

��
pM�EnκqpM�Enκ�Cpsq

a2

(49)

and by setting

P�
�
�

b
Aps�1{4�n�1{2

	2

�
�
�pκ�V1q�n�1

�2
(50)

in equation (49) we have

�
B2

ps

4
�P2 ��P

pM�EnκqpM�Enκ �Cpsq

a2 (51)

which gives the energy spectra of the system as

Enκ �
p2M�Cpsq

V 2
0

4a4 �Cps

$% V 2
0

4a4 �
p�κ�V1�n�1q2

a2

,-
2
$% V 2

0
4a4 �

p�κ�V1�n�1q2

a2

,- �

2p�κ�V1�n�1q2
c$% V 2

0
4a4 �

p�κ�V1�n�1q2

a2 �
pCps�2Mq2

4a4

,-
2
$% V 2

0
4a4 �

p�κ�V1�n�1q2

a2

,-
(52)

The relativistic energy spectra of the cotangent potential
combined with the Coulomb-type tensor potential
obtained using Romanovski polynomials for pseudospin
symmetry is given in equation (52). The energy
eigenvalues in equation (52) provide two different energy
spectra for each set of quantum numbers pn,κq, but the

energy eigenvalues that satisfied the condition have to
be negative values, which are shown in Table 1. Without
the presence of the Coulomb-type tensor potential, when
V1 � 0, the energy eigenvalues degenerate. In the case of
the cotangent function potential, the degeneracy condition
is shown by the P term in equation (50) of the energy
spectra in equation (52). For different sets of pn,κq such as
(1, -2) and (0, 5), (1, -1) and (0, 4), etc., produce the same
values of P such that the energy spectra values result.
However, the presence of the Coulomb-type tensor, when
V1 � 0.6 f m�1, causes the removal of the degeneracy of
the pseudospin doublet as shown in Table 1. Table 1 shows
that the degeneracies occur for a pair of quantum numbers
(n, l) and (n�1, l�4).

To determine the lower component wave function of the
Dirac spinor Gnκ , equations (47) and (48) are inserted
into equations (10) and (15) so that we obtain the weight
function wpxq and the Romanovski polynomials Rpp,q1q

n �

Rp�β ,�αq
n pxq as

wp�β ,�αq � p1� x2qβne�αn tan�1 x

� p1� cot2 arqβne�αn tan�1pcotarq
(53)

and

Rpp,q1q
n pxq � Rp�β ,�αq

n px� cotarq

�
1

p1� x2qβne�αn tan�1pxq

dn

dxn

!
p1� x2qβn�n

e�αn tan�1pxq
) (54)

Thus, the lower component of the Dirac spinor wave
function obtained from equations (53) and (54) is

Gnκ

�
f pxq

�
� p1� x2q

βn
2 e

�αn
2 tan�1 xRp�β ,�αq

n pxq

� p1� cot2 arq
βn
2 e

�αn
2 tan�1pcotarqRp�β ,�αq

n pcotarq
(55)

For the pseudospin symmetry case, the upper component
of the Dirac spinor is found from equations (6) and (55)
given as

Fnκprq �

v d
dr �

κ

r �Uprq
w

pM�Enκ �Cpsq
Gnκprq (56)

The existence of the upper component of the Dirac spinor
depends on the values of the energy eigenvalues Enκ . If
the value of Cps is zero, then M , Enκ ; therefore, the
existence of Fnκ requires the energy eigenvalues Enκ to be
negative. The values of the energy eigenvalues that satisfy
this condition are shown in Table 1 where the energy
of the nucleon under the pseudospin symmetric case is
negative.

Since βn and αn parameters, expressed in equations (47) 
and (48), are n-dependent, the orthogonality of the wave 
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Tabel 1: The Bound State Relativistic Energy (in fm-1) for Pseudospin Symmetry with and without Tensor Potential, with

M � 5 f m�1, a� 0.05 f m, V0 � 4 f m�1, and Cps � 5 f m�1

l n κ State EnκV1 � 0 EnκV1 � 0.6 f m l n κ State EnκV1 � 0 EnκV1 � 0.6 f m
0 1 -1 1s1{2 -0.031911539 -0.020460061 4 0 4 0g9{2 -0.031911539 -0.04585220
1 1 -2 1p3{2 -0.056512901 -0.040930649 5 0 5 0h11{2 -0.056512901 -0.074526663
2 1 -3 1d5{2 -0.087866279 -0.068254378 6 0 6 0i13{2 -0.087866279 -0.109837332
3 1 -4 1f7{2 -0.125770864 -0.102254506 7 0 7 0j15{2 -0.125770864 -0.15156059
4 1 -5 1g9{2 -0.169988595 -0.142714872 8 0 8 0k17{2 -0.169988595 -0.19943794

functions may not produce the orthogonality integral of
the polynomials [29], as shown in equation (41),

8»
0

χnprqχn1prqdr � δnn1 ,

8»
1

wp�β ,�αqRp�β ,�αq
n pxq

Rp�β ,�αq
n dx

(57)

By carrying out the differentiations of equation (54),
we find the lowest four un-normalized Romanovski
polynomials given as

Rp�β0,�α0q
0 pxq � 1 (58)

Rp�β1,�α1q
1 pxq � pβ1�1q2x�α1 (59)

Rp�β2,�α2q
2 pxq � 2pβ2�2qp2β2�3qx2�2α2p2β2�3qx

�α
2
2 �2β2�4

(60)

Rp�β3,�α3q
3 pxq � 4x3pβ3�3qp2β3�5qpβ3�2q�

6α3x2p2β3�5q�pβ3�2q�2xp6β
2

3�3α
2
3 β3�28β3

�6α
2
3 �34q�2α3p2β3�5q�αpα2�2β �6q

(61)

The first lowest four of the un-normalized radial wave
functions for arbitrary values of l are calculated by using
equations (55) and (58)-(61). The first lowest two of the
un-normalized wave functions for any values obtained
from equations (55) and (58)-(59) are

G0κ � p1� cot2 arq
κ�V1�1

2 � exp
$''%�

V0

a2

pM�Enκ �Cpsq

2p�κ�V1�1q

,//- tan�1pcotarq
(62)

G1κ � p1� cot2 arq
κ�V1�2

2 � exp
"$''%�

V0

a2

pM�Enκ �Cpsq

2p�κ�V1�1q

,//- tan�1pcotarq
*
�

"
pκ�V1�1q

2cotar�
V0 pM�Enκ �Cpsq

p�κ�V1�2q

* (63)

The lowest upper component wave function of the spinor
is obtained from equation (62), and the first excited state
of spinor is from equation (63).

Spin symmetric case. The Dirac equation of the
cotangent function potential with the Coulomb-type
tensor potential for the spin symmetric case that arises
from the condition when ∆prq � V prq � Sprq � Cs that
gives d∆prq

dr � 0,Σprq is the cotangent function potential,
and Uprq is the Coulomb-type tensor potential, obtained
from equations (9), (10), and (15) given as"

d2

dr2 �
κpκ�1q

r2 �
2κ

r
V1

r
�

V1
2

r2 �
V1

r2

*
Fnκprq�

p�V0 cotarqpM�Enκ �CsqFnκprq�pM�Enκ

�CsqpM�EnκqFnκprq � 0

(64)

The solution method of equation (64) is similar to the
method used to solve equation (34) for the pseudospin
symmetric case. Therefore, by repeating the steps in
equations (35)-(52), we have the Dirac equation for
the cotangent potential with the Coulomb-type tensor
potential for the spin symmetric case as"

d2

dr2 �

�
κpκ�1q�2κV1�V1

2�V1
�
a2

sin2 ar

*
Fnκprq

�V0 cotarqpM�Enκ �CsqFnκprq � pM�Enκq

pM�Enκ �CsqFnκprq

(65)

By setting

As � pκ�V1�1qpκ�V1q (66)

Bs ��
V0

a2 pM�Enκ �Csq (67)

Es
1 ��

pM�EnκqpM�Enκ �Csq

a2 (68)

in equation (65), equation (65) then reduces to a
one-dimensional Schrödinger-type equation given as"

d2

dr2 �
a2As

psinarq2
�a2Bs cotar

*
Fnκprq

� �a2Es
1Fnκprq

(69)

By substitution of the spatial variable, cotar � x, in
equation (69), as in the pseudospin symmetric case,a2 
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equation (69) becomes

p1� x2q
d2Fnκ

dx2 �2x
dFnκ

dx
�

$''%As�
Bsx

1� x2 �
Es

1

1� x2

,//-Fnκ

� 0
(70)

To solve equation (70), we use equation (18) as a new
wave function,

Fnκpxq � gnpxq � p1� x2q
β

2 e
�α

2 tan�1 xDpβ ,αq
n pxq (71)

and after inserting equation (71) into equation (70), we
have

p1� x2q
B2Dpβ ,αq

n

Bx2 �t2xpβ �1q�αu
BDpβ ,αq

n

Bx
�"

βαx� α2

4 �β 2�Bsx�Es
1

1� x2 �As�β
2�β

*
Dpβ ,αq

n � 0

(72)

Equation (72) reduces to a differential equation that is
satisfied by Romanovski polynomials as in equation (23)
if the coefficient of 1

1�x2 term is set to be zero, which are

�
α2

4
�β

2�E 1 � 0 and βα�Bs � 0 (73)

Then equation (72) becomes

p1� x2q
B2Dpβ ,αq

n

Bx2 � 2xpβ �1q�α
(BDpβ ,αq

n

Bx
� As�β

2�β
(

Dpβ ,αq�0
n

(74)

By comparing the parameters between equations (23) and
(74), we obtain the relation

As�β
2�β � npn�1q�2np1� pq ;

2pβ �1q � 2p�p�1q and α ��q1
(75)

From equation (75), we have p � �β . Since p ¡ 0, the
value of β obtained from equation (75) that has physical
meaning is

β � βn �

c
As�

1
4
�n�

1
2
� κ�V1�n (76)

By using equations (73) and (76), we obtain

αn ��
Bs

β
�
�V0

a2 pM�Enκ �Csq

�κ�V1�n
(77)

By inserting equations (76) and (77) into equation (73),

�
B2

s

4
$%�

b
As�

1
4 �n� 1

2

,-2 �

$''%�

c
As�

1
4
�n�

1
2

,//-
��

pM�EnκqpM�Enκ �Csq

a2

(78)

If in equation (78) Cs is set as Cs � 0, then pM�Enκq �
�EnR, which is the non-relativistic energy of the system;
M�Enκ � 2µ with µ is the non-relativistic of mass. If
h̄� 1, V1 � 0, and if we set

V0 Ñ
V0

2µ
;pκ�V1�1qpκ�V1q Ñ lpl�1q, (79)

then we get

Bs ��
V0

a2p2µq
p2µq ; Es

1 �
EnR2µ

a2 (80)

By inserting equations (79) and (80) into equation (78),
we obtain

EnR ��
V0

2

2µa2p�l�nq2
�

a2

2µ
p�l�nq2 (81)

The non-relativistic energy spectra in equation (81) is
in agreement with the energy spectra of the cotangent
potential with the centrifugal term obtained using the
SUSY QM method. By setting

P�
$''%�

c
Aps�

1
4
�n�

1
2

,//-2

�
�
�pκ�V1q�n

�2 (82)

in equation (78), we obtain the relativistic energy given as

Enκ �

�p2M�Csq
V0

2

4a4 �Cs

$''%V0
2

4a4 �

�
�pκ�V1q�n

�2

a2

,//-
2
$''%V0

2

4a4 �

�
�pκ�V1q�n

�2

a2

,//-

�

�
�pκ�V1q�n

�2

d$''%V0
2

4a4 �

�
�pκ�V1q�n

�2

a2 �
p�Cs�2Mq2

4a4

,//-
$''%V0

2

4a4 �

�
�pκ�V1q�n

�2

a2

,//-
(83)

The energy eigenvalues in equation (83) provide two
different energy spectra for each set of quantum numbers
(n,κ); however, the energy spectra for the spin symmetric
case have to be positive. Therefore, we put only the list of
the positive energy in Table 2. For certain values of M, Cs,
V0, and a, the values of the energy expressed in equation
(83) depend only on the values of n, κ , and V1; therefore,
it is expected that the energy of the nucleon is degenerate,
as shown in Table 2. In Table 2, for the absence of the
tensor potential Uprq, the spin doublet occurs for a set of
quantum numbers (1, -2) and (0, 3); (1, -3) and (0, 4), etc.,
but these spin doublets are removed by the presence of the
Coulomb-like tensor interaction potential.

As shown in Table 2, for V1 � 0.6 f m�1, the energy for the
positive and negative values of κ is different; therefore,
the tensor potential removes the energy degeneracy for the
case (n, l, j) with (n�1, l�2, j) as shown in Table 2.
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Tabel 2: The Energy Spectra for Spin Symmetric Case with M � 5 f m�1, Cs � 5 f m�1,V0 � 4 f m�1, a� 0.05 f m

l n κ State EnκV1 � 0 EnκV1 � 0.6 f m l n κ State EnκV1 � 0 EnκV1 � 0.6 f m
0 1 -1 1s1{2 0.014222253 0.006976804 2 0 2 0d3{2 0.014222253 0.023998851
1 1 -2 1p3{2 0.031911539 0.020460061 3 0 3 0f5{2 0.031911539 0.045852204
2 1 -3 1d5{2 0.056512901 0.040930649 4 0 4 0g7{2 0.056512901 0.074526663
3 1 -4 1f7{2 0.087866279 0.068254378 5 0 5 0h9{2 0.087866279 0.109837332
4 1 -5 1g9{2 0.125770864 0.102254506 6 0 6 0i11{2 0.125770864 0.151560593
5 1 -6 1h11{2 0.169988595 0.142714872 7 0 7 0j13{2 0.169988595 0.199437944

To determine the upper component of Dirac spinor Fnκ ,
equations (76) and (77) are inserted into equations (10)
and (15) so that we obtain the weight function wpxq and
the Romanovski polynomials Rpp,q1q

n � Rp�β ,�αq
n pxq as

wp�β ,�αq � p1� x2qβn exp
�
�αn tan�1pxq

�
� p1� cot2 arqβn exp

�
�αn tan�1pcotarq

� (84)

and

Rpp,q1q
n pxq � Rp�β ,�αq

n px� cotarq

�
1

p1� x2qβn exp
�
�αn tan�1pxq

� � dn

dxn!�
1� x2�βn�n exp

�
�αn tan�1pxq

�) (85)

By using equations (85), we get the upper component of
the Dirac spinor expressed as

Fnκ

�
f pxq

�
� p1� cot2 arq

βn
2

� exp
$%�αn tan�1pcotarq

2

,-Rp�β ,�αq
n pcotarq

(86)

For spin symmetry, the lower component of the Dirac
spinor wave function is obtained by using equations (5)
and (86) as

Gnκprq �

$% d
dr �

κ

r �Uprq
,-

pM�Enκ �Csq
Fnκprq (87)

If the value of Cs � 0, the lower component of the Dirac
spinor exists only if M , �Enκ , which means the values
of Enκ for the spin symmetric case are always positive.

Since the βn and αn parameters, expressed in equations
(76) and (77), are n-dependent, the orthogonality of
the wave functions may not produce the orthogonality
integral of the polynomials [29],

8»
0

χnprqχn1prqdr � δnn1 ,

8»
1

wp�β ,�αq

Rp�β ,�αq
n pxqRp�β ,�αq

n dx

(88)

By carrying out the differentiations of equation (52),
we find the lowest four un-normalized Romanovski
polynomials given as

Rp�β0,�α0q
0 pxq � 1 (89)

Rp�β1,�α1q
1 pxq � pβ1�1q2x�α1 (90)

Rp�β2,�α2q
2 pxq � 2pβ2�2qp2β2�3qx2

�2α2p2β2�3qx�α2
2�2β2�4

(91)

Rp�β3,�α3q
3 pxq � 4x3pβ3�3qp2β3�5qpβ3�2q�

6α3x2p2β3�5qpβ3�2q�2xp6β
2

3�3α
2
3 β3�28β3

�6α
2
3 �34q�2α3p2β3�5q�αpα2�2β �6q

(92)

The first four lowest of the un-normalized radial wave
functions for arbitrary values of l are calculated by
using equations (86) and (89)-(92). The Romanovski
polynomials are a complex function for odd-degree
polynomials, but they are real functions for even-degree
polynomials.

The first two lowest of the un-normalized wave functions
for any κ values obtained from equations (86) and
(89)-(90) are

F0κprq � p1� cot2 arq
κ�V1

2

� exp
"
�

V0

a2
pM�Enκ �Csq

2pκ�V1q

*
tan�1pcotarq

(93)

F1κprq � p1� cot2 arq
κ�V1�1

2

� exp
!
�

V0

a2
pM�E1κ �Csq

p2κ�2V1�2q

)
tan�1pcotarq

�

"
pκ�V1q2cotar�

V0

a2
pM�Eκ �Csq

p�κ�V1�1q

* (94)

The ground state and first excited state wave functions of
the upper component of the Dirac spinors that correspond
to the energy eigenvalues presented in Table 2 are
expressed in equations (93) and (94).

4. Conclusions
The relativistic energy spectra and the corresponding
wave functions of the lower and upper components of
the Dirac spinors for the trigonometric cotangent potential
with a Coulomb-like tensor potential under pseudospin
and spin symmetric limits are obtained using Romanovski
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polynomials. By using the approximation scheme for the
centrifugal term, the energy eigenvalues under pseudospin
and spin symmetric limits are analytically obtained.
The pseudospin and spin doublets formed by a pair of
orbital numbers with positive and negative κ values are
removed by the presence of the Coulomb-type tensor
potential. The Dirac spinors, both the upper and lower
components, are expressed in Romanovski polynomials.
In the non-relativistic limit, the Dirac equation for the
exact spin symmetric case reduces to the Schrödinger
equation.
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