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A KRYLOV SUBSPACE TYPE METHOD FOR ELECTRICAL IMPEDANCE
TOMOGRAPHY

Mirjeta Pasha1, Shyla Kupis2, Sanwar Ahmad3 and Taufiquar Khan4,*

Abstract. Electrical Impedance Tomography (EIT) is a well-known imaging technique for detecting
the electrical properties of an object in order to detect anomalies, such as conductive or resistive
targets. More specifically, EIT has many applications in medical imaging for the detection and location
of bodily tumors since it is an affordable and non-invasive method, which aims to recover the internal
conductivity of a body using voltage measurements resulting from applying low frequency current
at electrodes placed at its surface. Mathematically, the reconstruction of the internal conductivity is
a severely ill-posed inverse problem and yields a poor quality image reconstruction. To remedy this
difficulty, at least in part, we regularize and solve the nonlinear minimization problem by the aid of
a Krylov subspace-type method for the linear sub problem during each iteration. In EIT, a tumor
or general anomaly can be modeled as a piecewise constant perturbation of a smooth background,
hence, we solve the regularized problem on a subspace of relatively small dimension by the Flexible
Golub-Kahan process that provides solutions that have sparse representation. For comparison, we use a
well-known modified Gauss–Newton algorithm as a benchmark. Using simulations, we demonstrate the
effectiveness of the proposed method. The obtained reconstructions indicate that the Krylov subspace
method is better adapted to solve the ill-posed EIT problem and results in higher resolution images
and faster convergence compared to reconstructions using the modified Gauss–Newton algorithm.
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1. Introduction

Electrical impedance tomography (EIT) is a well-known imaging technique for detecting anomalies within an
object, such as conductive or resistive targets. Its popularity stems from the fact that it is a non-invasive, safe
and relatively affordable experimental method for producing tomographic images from surface measurements.
There is a broad range of applications of EIT to many settings, including the detection of bodily tumors,
damaged industrial materials, and oil reservoirs to mention a few. More specifically, EIT has been applied in
some of the following applications: noninvasive medical imaging [7, 62], nondestructive testing [25], monitoring
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of oil and gas mixtures in oil pipelines [46], and monitoring the water infiltration in soil [13, 23–25]. However,
along with its ease of use comes the difficulty in recovering resolvable and reliable tomographic images. The
major downside to EIT is that the inverse problem suffers from a high-degree of nonlinearity and is severely
ill-posed from solving the higher dimensional problem using lower dimensional boundary data [47, 49]. Since
the voltage or potential data is usually corrupted with unknown levels of noise, the recovered solutions are also
highly sensitive to perturbations in the data, making this inverse problem even more challenging to solve.

To address the poorly posed EIT inverse problem, a significant amount of research in literature has been
dedicated to developing both deterministic and statistical reconstruction methods to improve the recovered
tomographic images. The deterministic approaches include variational-type methods that minimize a certain
discrepancy functional, such as least-squares fitting of the linearized or fully nonlinear model, either of the
Tikhonov type or iterative type regularization methods [47,49]. Other analytical approaches include the factor-
ization method [52] and the d-bar method [45]. These methods can be effective for specific types of conductivity
distributions, including examples with mixed conductive and resistive targets.

An alternative to the deterministic approach is statistical inversion methods [50], which have shed interesting
insights into EIT reconstructions. In [51], an approach is proposed to optimize the current patterns based on
criteria that are functions of the posterior covariance matrix. There also has been some research studying the
errors due to model reduction and concerning partially unknown geometry using the Bayesian approach [57,58].
In [5] some results on the uncertainty quantification of MCMC-based image reconstruction has been investigated.
Statistically, the sparsity regularization amounts to enforcing the ℓ𝑝 prior on the expansion coefficients in a
certain basis similar to the deterministic approach for EIT [47–49].

Both deterministic and statistical methods enforce regularization to provide reasonable image reconstruc-
tions; however, in many applications, tomographic images of reasonable quality do not suffice. Oftentimes, high
resolution tomographic images are required for accurate diagnostic analyses or the detection of anomalies. In
this paper, we propose a Krylov subspace type method to solve the regularized EIT inverse problem that is
better conditioned in theory and practice. In particular, we use a flexible Krylov subspace method that we
describe below that provides solutions that are sparse. We compare the proposed Krylov subspace method to a
well-known modified Gauss–Newton method as our benchmark algorithm. Using simulations, we then investigate
the efficacy of our proposed algorithm for different types of electrical conductivity models.

In Section 3, we discuss the problem setup and background including the finite element method to discretize
the infinite dimensional problem and the formulation of the EIT inverse problem to be solved. In Section
4 we describe the method that we propose, the Krylov-type subspace method for nonlinear problems. The
modified iteratively and reweighted Gauss-Newton method (MIRGN), that is used for comparison purposes,
is introduced in Appendix A. Finally, in Sections 5 and 6, we present our findings and discuss our concluding
remarks, respectively.

2. Main contributions

The main contribution of this work is focused on regularizing the EIT problem with the aid of Krylov
subspace methods that manifest regularization properties when a good solution subspace is available. The other
type of regularization comes from considering a general ℓ𝑝, 0 < 𝑝 ≤ 2 regularization term, where the focus
is on 0 < 𝑝 < 1 to provide solutions with sparsity promoting properties. In particular, we adopt a flexible
Krylov subspace method that solves the problem by approximating the ℓ2− ℓ𝑝 problem by a sequence of ℓ2− ℓ2
problems on a Krylov subspace. The later allows to solve the EIT problem efficiently by as well as defining the
regularization parameter at a low cost on a Krylov subspace of relatively small dimension. The approach that
we propose here solves a sequence of linear problems with the flexible Golub-Kahan method where each linear
problem is obtained by a linear approximation of the nonlinear EIT problem.
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3. Problem setup and background

In this section we formulate the problem to be solved and set some background that will be used throughout
the paper.

3.1. Complete electrode model

The EIT forward problem can be modeled using different electrode models, like the point electrode model
(PEM), the gap model, the shunt model, or the complete electrode model. In this section, we discuss the complete
electrode model (CEM), which is considered to be one of the most experimentally accurate models since the
measured potentials can be predicted at the precision of the measurement system [71]. The experimental process
involves attaching electrodes on the smooth surface 𝜕Ω given a body Ω ⊆ Rdim,dim = 2, 3, for some known
electrical conductivity 𝜎. In our paper, we focus on synthetic examples in Ω ⊆ R2.

The CEM was formulated with the following modified Neumann and Dirichlet boundary conditions,
respectively:

− div (𝜎∇𝑢) = 0 in Ω, (3.1)∫︁
𝐸ℓ

𝜎
𝜕𝑢

𝜕𝑛
d𝑆 = 𝐼𝑐

ℓ on 𝐸ℓ, ℓ = 1, . . . , 𝐿,

𝑢+ 𝑐ℓ𝜎
𝜕𝑢

𝜕𝑛
= 𝑈ℓ, on 𝐸ℓ, ℓ = 1, . . . , 𝐿,

𝜎
𝜕𝑢

𝜕𝑛
= 0, on 𝜕Ω ∖ ∪𝐿

ℓ=1𝐸ℓ, ℓ = 1, . . . , 𝐿,

where the conductivity 𝜎 ∈ 𝐿∞(Ω) with 0 < 𝜎1 ≤ 𝜎 ≤ 𝜎2 <∞ has no current sources inside Ω, 𝐸ℓ is the surface
area of the ℓ-th electrode; 𝐼𝑐

ℓ is the electrical current injected at the ℓ-th electrode; 𝑈ℓ is the measured electric
potential and 𝑐ℓ is the effective contact impedance for the ℓ-th current pattern. Additionally, the Conservation
of Charge,

∑︀𝐿
ℓ=1 𝐼

𝑐
ℓ = 0, is required for the existence of a solution to (3.1), and the choice of a ground,∑︀𝐿

ℓ=1 𝑈ℓ = 0, is required for the uniqueness of a solution. From (3.1), we see that the CEM simultaneously
takes into account the effects of the electrodes and their positive contact impedances produced at the interface
with the object’s surface; see [20, 71, 77]. In an EIT experiment, electrical current 𝐼𝑐 is injected into the body
through a set of electrodes so that no current is applied directly into Ω. The data measurements known as
the potential differences or resulting voltages 𝑉𝜕Ω are then measured at the remaining electrodes. In practice,
a number of experiments using different input currents are made, and the inverse problem for EIT becomes
that of determining an approximation to 𝜎 from a partial knowledge of the Neumann-to-Dirichlet (NtD) map
[12,19,39].

We proceed to apply the variational form for the CEM in (3.1) to formulate the variational equation; see [77].
Then,

ℬ((𝑢, 𝑈), (𝑣, 𝑉 )) =
𝐿∑︁

ℓ=1

𝐼𝑐
ℓ𝑉ℓ, ∀(𝑣, 𝑉 ) ∈ 𝐻̃1(Ω) = 𝐻1(Ω)⊕ R𝐿

0 , (3.2)

where R𝐿
0 =

{︁
(𝑥1, . . . , 𝑥𝐿) ∈ R𝐿 :

∑︀𝐿
𝑖=1 𝑥𝑖 = 0

}︁
, ℬ : 𝐻̃1(Ω)× 𝐻̃1(Ω) → R is a bilinear operator, such that

ℬ((𝑢, 𝑈), (𝑣, 𝑉 )) =
∫︁

Ω

𝜎∇𝑢 · ∇𝑣d𝑥+
𝐿∑︁

ℓ=1

1
𝑐ℓ

∫︁
𝐸ℓ

(𝑢− 𝑈ℓ)(𝑣 − 𝑉ℓ)d𝑆. (3.3)

3.2. Data acquisition

Suppose there are 𝑛𝑙 electrodes placed on the boundary, 𝜕Ω, and 𝑝𝑐 current patterns. Electrical current is
applied to a set of 𝑛𝑘 electrodes, and the resulting voltage 𝑉𝜕Ω is measured at the remaining (𝑛𝑙 − 𝑛𝑘) − 1
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electrodes. For example, for an adjacent current pattern, a pair of electrodes receive a positive and negative
current while the induced voltage or potential difference is measured between the remaining electrodes for a total
of 𝑛𝑙 − 3 voltage measurements. The process of injecting current and measuring the voltage in other electrodes
is repeated until a sufficiently good characterization of the body is obtained.

The corresponding voltage pattern is denoted by 𝑉𝜕Ω =
(︀
𝑉 1

𝜕Ω, 𝑉
2
𝜕Ω, . . . , 𝑉

𝑛𝑙−𝑛𝑘−1
𝜕Ω

)︀𝑇
, and the surface potentials

𝑈 = (𝑈1, 𝑈2, . . . , 𝑈𝑛𝑙
)𝑇 are calculated from 𝑉𝜕Ω, such that

𝑛𝑙∑︁
ℓ=1

𝑈ℓ = 0 (3.4)

satisfies the choice of ground potential condition.

3.3. Discretization process

In this section, we introduce the discretization process. The finite element method (FEM) can be used to turn
the infinite dimensional equation of EIT into a finite dimensional formulation. Let 𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛𝑇

} be the
triangulation of the body Ω with 𝑁 mesh points and 𝐻𝑁 be the finite dimensional subspace of 𝐻1(Ω). For 𝑝𝑐

current patterns, we have that the potentials on the boundary 𝑈 ∈ R𝑛𝑙
0 . The potential distribution 𝑢𝑁 ∈ 𝐻𝑁 is

represented by

𝑢𝑁 (𝑥) ≈
𝑁∑︁

𝑖=1

𝜃𝑢,𝑖𝜓𝑖(𝑥), (3.5)

where 𝜃𝑢,𝑖 ∈ R, and 𝜓𝑖(𝑥) are basis functions of 𝐻𝑁 satisfying 𝜓𝑖(𝑥𝑘) = 𝛿𝑖,𝑘, for 𝑖, 𝑘 = 1, 2, . . . , 𝑁 . We can
express the current potential on the electrodes as,

𝑈𝑁 =
𝑛𝑙−1∑︁
𝑘=1

𝜃𝑈,𝑘𝜑𝑘 = 𝐶𝜃𝑇
𝑈 , (3.6)

where

𝐶 =
[︀
𝜑1, 𝜑2, . . . , 𝜑𝐿

]︀
=

⎡⎢⎢⎢⎢⎣
1 1 . . . 1
−1 0 . . . 0
0 −1 . . . 0
...

... . . .
...

0 0 . . . −1

⎤⎥⎥⎥⎥⎦ ∈ R𝑛𝑙×(𝑛𝑙−1)

where 𝜑𝑘, 𝑘 = 1, 2, . . . , 𝑛𝑙 − 1, a basis for R𝐿
0 . The original forward problem is then written as a linear problem;

see [77] for more details:
𝐴𝜃 = 𝑓 (3.7)

where 𝐴 ∈ R(𝑁+𝑛𝑙−1)×(𝑁+𝑛𝑙−1) is the FEM stiffness matrix for the CEM and the right hand side vector
𝑓 =

(︁
0, 𝐼𝑐

)︁
with 𝐼𝑐 = (𝐼𝑐

1 − 𝐼𝑐
2 , 𝐼

𝑐
1 − 𝐼𝑐

3 , . . . , 𝐼
𝑐
1 − 𝐼𝑐

𝐿). The vector 𝜃 =
(︀
𝜃𝑢 𝜃𝑈

)︀𝑇 contains the coefficients for the

potential with 𝜃𝑢 ∈ R𝑁 and 𝜃𝑈 ∈ R𝑛𝑙−1.

3.4. The minimization problem

For a fixed current vector 𝐼𝑐 and positive contact impedance (𝑐ℓ)𝑛𝑙

ℓ=1, we define the forward operator

ℱ : 𝒜 → 𝐻̃𝑁 , (3.8)

where 𝐻̃𝑁 = 𝐻𝑁 ⊕ R𝑛𝑙
0 , and ℱ is the Fréchet differentiable operator that maps the conductivity to the finite

element solution of the forward problem. The forward problem uses a known conductivity distribution 𝜎 to
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find the boundary data associated with a given electrode. The goal of the inverse problem is to reconstruct the
conductivity distribution 𝜎 using the boundary data. Suppose,

𝑈𝛿 = 𝑈 + 𝜖 (3.9)

where 𝑈𝛿 represents data that are contaminated by a measurement error 𝜖, 𝑈 represents the unknown error-free
vector associated with the available data 𝑈𝛿 and 𝛿 is the noise-level satisfying,

‖𝑈𝛿 − 𝑈‖2 < 𝛿. (3.10)

The operator ℱ is nonlinear and, in general, severely ill-posed. Therefore, we seek to minimize the functional

min
𝜎∈𝒜

‖ℱ(𝜎)− 𝑈𝛿‖22. (3.11)

The solutions of these problems, if they exist, are very sensitive to perturbations in the available data and not
meaningful approximations of the desired solution. Therefore, instead of solving the ill-posed problem (3.11),
one considers a regularizaed problem by adding a regularization term that replaces the ill-posed problem by a
nearby well-posed problem, whose solution is less sensitive to the error in the data. The regularized problem
can be formulated as

𝒥 (𝜎) = min
𝜎∈𝒜

‖ℱ(𝜎)− 𝑈𝛿‖22 + 𝜆‖𝜎 − 𝜎*‖𝑝
𝑝, (3.12)

where 𝜎* is the known background. The first term in (3.12) is know as data fidelity term and the second term
is known as the regularization term. The balance between the data fidelity and the regularization term is set
by the parameter 𝜆 that is known as the regularization parameter.

One could regularize further by choosing a non-singular regularization matrix 𝐿 ∈ R𝑛𝑇×𝑛𝑇 in the following
problem formulation

𝒥 (𝜎) = min
𝜎∈𝒜

‖ℱ(𝜎)− 𝑈𝛿‖22 + 𝜆‖𝐿(𝜎 − 𝜎*)‖𝑝
𝑝, (3.13)

where among different choices of 𝐿 are discretization of the first or the second derivative operator, framelet or
wavelet transforms [15, 17], or a weighting matrix aiming to reconstruct solutions with certain properties. For
instance, if is chosen to be a transformation operator to the framelet domain, then by minimizing (3.13) with
0 < 𝑝 ≤ 1 we seek to reconstruct solutions with sparse representation in the transformed framelet domain. We
comment more on the choice of the regularization term in the following paragraphs. In this work, we set 𝐿 to
the identity matrix 𝐼𝑛𝑇

in the modified Gauss–Newton algorithm for equal weighting of the vector 𝜎.
The Jacobian 𝐽 is computed using the variational equation,

ℬ((𝑤,𝑊 ), (𝑣, 𝑉 )) = −
∫︁

Ω

𝛿𝜎∇𝑢 · ∇𝑣d𝑥, (3.14)

for any (𝑣, 𝑉 ) ∈ 𝐻̃1, (𝑤,𝑊 ) = ℱ ′(𝜎)𝛿𝜎, and (𝑢, 𝑈) = ℱ(𝜎). We choose 𝛿𝜎 ∈ 𝐿∞(Ω), such that 𝜎 + 𝛿𝜎 ∈ 𝒜 and
𝛿𝜎|𝜕Ω = 0. For the formulation and the derivation of the Jacobian we refer the reader to [50,54].

Let 𝒞0 : (𝑢, 𝑈) ↦→ 𝑈 define the mapping of (𝑢, 𝑈) to the solution on the boundary. The linearized version of
the forward problem (3.9) is, therefore, given by

𝐽(𝜎𝑘)𝛿𝜎 := 𝒞0(ℱ ′(𝜎𝑘))𝛿𝜎 + ℱ(𝜎𝑘)) ≈ 𝑈𝛿. (3.15)

We seek to minimize the linearized, discrete and regularized functional,

𝒯𝑘(𝛿𝜎) = ‖𝐽(𝜎𝑘)[𝛿𝜎]− 𝑈𝛿‖22 + 𝜆‖𝐿 [𝛿𝜎]‖𝑝
𝑝, 0 < 𝑝 ≤ 2 (3.16)

at each linearization 𝑘, where 𝐽(𝜎𝑘) ∈ R(𝑝𝑐𝑛𝑙)×𝑛𝑇 . The inverse problem is to recover the conductivity distribution
𝜎 from a noisy set of surface measurements 𝑈𝛿. For large scale problems, methods that directly compute and
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use the Jacobian matrix are typically computationally expensive. Instead, we introduce in the following section
a Krylov subspace based method that the main computational cost comes from matrix-vector multiplications of
the Jacobian and not explicitly forming matrix-matrix multiplications and/or matrix inverse. We remark here
the usage of a regularization term in the general form with 0 < 𝑝 ≤ 2. For 0 < 𝑝 < 2 and 𝐿 = 𝐼 sparsity
is enforced in the desired solution. For a general regularization matrix 𝐿, for choices of 𝐿 being derivative
operators for instance, choosing 0 < 𝑝 < 2 enforces solutions with sparse derivatives. Sparse solutions have
small ℓ0 (quasi) norm, nevertheless, minimizing the ℓ0-norm in an NP hard problem, see [81] for instance.
Hence, we are interested in approximating the ℓ0-norm with the ℓ𝑝-norm, for 0 < 𝑝 < 2. For 0 < 𝑝 < 1, the
problem is non-convex, for 𝑝 = 1, the problem is convex, but not differentiable at the origin, that for 0 < 𝑝 ≤ 1
the solution of (3.16) may not be unique. When 1 < 𝑝 ≤ 2, the problem is strictly convex and differentiable.
In this work we consider 0 < 𝑝 ≤ 2 and we highlight that 𝑝 = 2 yields the Tikhnonov problem in the general
form. We are interested in solving (3.16) for general 0 < 𝑝 ≤ 2 efficiently. In the following we review a set of
methods that can be used for that purpose among a variety of optimization methods, see [8,34] or by iteratively
approximating the regularization term in (3.16), but they can become computationally demanding. More recent
developments on the iteratively reweighting methods are based on generalized Krylov subspace methods, see
[15,43,53] and on flexible Krylov subspace methods [21,31,32].

3.5. Krylov subspace methods

Krylov subspace methods are extensively used for the solution of linear systems of equations of the form (3.15)
and have been viewed as general purpose iterative methods. Computationally, Krylov methods have the property
of not requiring matrix storage, which makes them preferable to use for solving large scale problems. Moreover,
Krylov subspace methods can serve as regularization methods if the relevant subspace is generated. Nevertheless,
iterative methods may suffer from the lack of robustness compared to direct methods. Preconditioning and
iteratively reweighting are ways to improve robustness of the solvers. We start the discussion with a brief
introduction to the methods that generate the Krylov subspaces. Assume that 𝜎0 is an initial approximation
of the desired solution 𝜎. Let 𝑟0 = 𝑈𝛿 − 𝐽(𝜎0)𝛿𝜎 be the residual vector. The notation 𝐽(𝜎𝑘) at some iterate
𝑘 = 0, 1, 2, . . . can be abbreviated to 𝐽𝑘. We define

𝒦𝑑(𝐽0, 𝑟0) = span
{︀
𝑟0, 𝐽0𝑟0, 𝐽

2
0 𝑟0, . . . , 𝐽

𝑑−1
0 𝑟0

}︀
, (3.17)

to be the Krylov subspace of dimension 𝑑 defined by 𝐽0 and 𝑟0. For simplicity, we slightly abuse the notation
by using 𝐽𝑘 when we refer to the Jacobian matrix computed by the linearization of the ℱ(𝜎) around 𝜎𝑘. A nice
property of the Krylov subspaces is that 𝒦𝑑 ∈ 𝒦𝑑+1 is known as the nesting property [11]. Krylov subspace
methods are iterative methods such that the solution at the 𝑚-th step, 𝜎𝑚, can be computed in 𝜎0 + 𝒦𝑑 as
𝜎𝑚 = 𝜎0 + 𝑝𝑑−1(𝐽0)𝑟0. The polynomial 𝑝𝑑−1 is of degree at most 𝑑− 1. The approximate solution 𝜎𝑑 ∈ 𝜎0 +𝒦𝑑

is found by first minimizing the functional 𝒯𝑘(𝛿𝜎) in (3.16) and then updated using the previous approximation
of 𝜎 as summarized in line 29 of Algorithm 1. Let us consider the residual vector at step 𝑑, 𝑟𝑑 = 𝑈𝛿 − 𝐽(𝜎𝑘)𝛿𝜎.
Two most known and widely used minimizing conditions are Galerkin condition and minimal residual condition.
Galerkin condition requires the residual vector at iteration 𝑑 to be orthogonal to the subspace 𝒦𝑑, i.e.,

𝑟𝑑 ⊥ 𝒦𝑑. (3.18)

The minimum residual condition requires the norm of the residual vector at iteration 𝑑, 𝑟𝑑, to be the minimum
of some functional, i.e.,

‖𝑟𝑑‖ = min
𝜎𝑑∈𝜎0+𝒦𝑑

‖𝑈𝛿 − 𝐽(𝜎𝑘)𝛿𝜎‖. (3.19)

In exact arithmetic, it is expected that any method for which one of the minimizing conditions (3.19) or (3.18)
is satisfied, there will be convergence in at most 𝑛𝑇 steps. In practice, one hopes to obtain a reasonably good
approximate reconstruction with fewer iterations.
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We bring into attention of the reader that the convergence results of the Krylov subspace methods may differ
when exact arithmetic is used versus the floating point arithmetic. This convergence issue is well known even
for simple problems, and for a more detailed discussion, see [26, 29, 56, 61, 69]. In practice, one may want to
use the modified Gram–Schmidt orthogonalization method that represents the same operations performed in a
different order to assure a more stable method compared to the standard Gram–Schmidt orthogonalization; see
[35,38,76].

3.5.1. Golub-Kahan bidiagonalization

Here we briefly review Golub-Kahan bidiagonalization to solve the problem (3.15) by projecting it to a Krylov
subspace of relatively small dimension where the problem is better conditioned. Of course, one has to define the
dimension of the Krylov subspace to avoid over-fitting or under-fitting the available data. We seek to produce
a Krylov subspace

𝒦𝑡

(︀
𝐽𝑇

𝑘 𝐽𝑘, 𝐽
𝑇
𝑘 𝑈𝛿

)︀
= span

{︁
𝐽𝑇

𝑘 𝑈𝛿, 𝐽
𝑇
𝑘 𝐽𝑘𝐽

𝑇
𝑘 𝑈𝛿,

(︀
𝐽𝑇

𝑘 𝐽
)︀2
𝐽𝑇

𝑘 𝑈𝛿, . . . ,
(︀
𝐽𝑇

𝑘 𝐽𝑘

)︀𝑡−1
𝐽𝑇

𝑘 𝑈𝛿

}︁
(3.20)

of low dimension 𝑡 ≪ min{𝑝𝑐𝑛𝑙, 𝑛𝑇 }. An orthonormal basis for this subspace is constructed with the Golub–
Kahan bidiagonalization method applied to the matrix 𝐽𝑘 with initial vector 𝑈𝛿; see, e.g., [36]. Application of
𝑡 steps of Golub–Kahan bidiagonalization gives the decompositions

𝐽𝑘𝑉𝑡 = 𝑈̃𝑡+1𝐷𝑡+1,𝑡, 𝐽𝑇
𝑘 𝑈̃𝑡+1 = 𝑉𝑡𝐷

𝑇
𝑡,𝑡, (3.21)

where

– 𝑈̃𝑡+1 = [𝑢̃1, 𝑢̃2, . . . , 𝑢̃𝑡+1] ∈ R𝑝𝑐𝑛𝑙×(𝑡+1) has orthonormal columns starting with 𝑢̃1 = 𝑈𝛿/‖𝑈𝛿‖.
– 𝑉𝑡 = [𝑣1, 𝑣2, . . . , 𝑣𝑡] ∈ R𝑛𝑇×𝑡 has orthonormal columns.
– 𝐷𝑡+1,𝑡 ∈ R𝑡+1,𝑡 is a lower bidiagonal matrix, where the 𝐷𝑡,𝑡 is the leading 𝑡× 𝑡 principal submatrix of 𝐷𝑡+1,𝑡.

The columns of 𝑉𝑡, for 𝑡 = 𝑑, span the Krylov subspace (3.20); in particular, 𝑣1 = 𝐽𝑇
𝑘 𝑈𝛿/‖𝐽𝑇

𝑘 𝑈𝛿‖2. Here we
assume that 𝑑 is sufficiently small so that the decompositions (3.21) exist for 𝑡 = 𝑑. This is the generic situation.

4. A Krylov method

In this section, we introduce a Krylov subspace method for the solution of nonlinear problems. We highlight
here that the nonlinear problem is solved by approximating the nonlinear problem with a sequence of linear
problems which we solve with a flexible Krylov subspace method.

4.1. A variable preconditioned Golub-Kahan approach

An ingredient that makes Krylov subspace methods more efficient is the use of preconditioners, i.e., the use of
an operator or matrix 𝑃 to transform the original problems of the form (3.15) into another equivalent problem
𝑃−1𝐽𝜃 = 𝑃−1𝑈𝛿 known as left preconditioning, or into

𝐽𝑃−1𝑦 = 𝑈𝛿, (4.1)

with 𝑃𝜃 = 𝑦, which is referred to as right preconditioning; for more on preconditioning, see [6, 9, 14, 18, 33, 65].
A full preconditioning is referred to as a transformation of the initial problem (3.15) to the form

𝑃−1
1 𝐽𝑘𝑃

−1
2 𝑥 = 𝑃−1

1 𝑈𝛿 (4.2)

where 𝑥 = 𝑃2𝑈𝛿, and 𝑃1, 𝑃2 are two nonsingular matrices whose inverse should be computationally affordable to
compute with low memory requirements. In the recent years, the focus is toward implementing Krylov subspace
methods with variable preconditioning. When the solution of the preconditioned equation is solved by an
approximation technique by use of an inner iterative schema, one may want to change the preconditioner at each
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iteration, i.e., 𝑃 = 𝑃𝑖, to obtain a more accurate approximate solution to the coefficient matrix 𝐽 by improving
its spectral properties. Several variable preconditioned methods have been discussed. A critical question that
might arise is if the convergence rate of the outer process can be maintained even if the inner iterations are
not solved exactly. Golub and Ye [37] developed an inexact preconditioned conjugate gradient based method
in an inner-outer schema and analyzed it theoretically. Later on, in [60], a flexible conjugate gradient method
was discussed, where the preconditioner is chosen to be variable at each iteration. Saad [64] proposed a variant
of generalized minimal residual algorithm (GMRES) in [66], especially for highly non-symmetric matrices,
where switching to different preconditioners at each step improves robustness of the method. A method that
implements rank one updates of the preconditioner is discussed in [75] based on the preconditioning of the
residuals to make the method more robust compared to [64], which preconditions the search directions and
can potentially suffer from breakdowns. A sparse reconstruction algorithm is discussed in [31] by allowing the
use of the ℓ2 norm regularization term to approximate a more general ℓ𝑝 norm, where 𝑝 ≥ 1. The authors of
[72] presented a flexible quasi-minimal residual method with inexact preconditioning that allows the use of an
inexact solution of the preconditioners as well as the use of an inner iterative method. An analysis of a class
of flexible inner-outer iterative Krylov subspace methods where the preconditioner is itself a preconditioned
Krylov method is presented in [67]. The authors show that the truncated methods perform better compared
to the restarted versions using the same memory requirements. In [63], is described a method that defines a
sequence of appropriate regularization operators to transform the ℓ𝑝 regularization problem into a sequence of
ℓ2 norm problems by considering an iteratively re-weighting approach by defining 𝑃 (𝛿𝜎), such that

‖𝛿𝜎‖𝑝
𝑝 ≈ ‖𝑃 (𝛿𝜎)𝛿𝜎‖22. (4.3)

Here we choose 𝑃 (𝛿𝜎) to be a weighting matrix that can be defined as

𝑃 (𝛿𝜎) = diag
(︂(︁

([𝛿𝜎]𝑖)
(𝑝−2)/𝑝

)︁
𝑖=1,2,...,𝑛

)︂
, (4.4)

where all of the operators are element-wise. To remedy a potential issue of dividing by zero when 𝑝 < 2, we
consider a thresholding operator as follows:

𝑃 (𝛿𝜎) = diag
(︂(︁
𝒯 ℋ𝜇([𝛿𝜎]𝑖)

(𝑝−2)/𝑝
)︁

𝑖=1,2,...,𝑛

)︂
, (4.5)

where

𝒯 ℋ𝜇(𝛿𝜎) =
{︂

[|𝛿𝜎|]𝑖 if [|𝛿𝜎|]𝑖 ≥ 𝜇1,

𝜇2 if [|𝛿𝜎|]𝑖 < 𝜇1

(4.6)

where taking 𝜇2 ≤ 𝜇1 enforces some additional sparsity [21]. For simplicity, we choose 𝐿 = 𝐼𝑛𝑇
, but we note

that the case when 𝐿 ̸= 𝐼𝑛𝑇
can be computationally prohibitive since in the flexible Krylov methods, the

inverse or pseudoinverse of 𝐿 is necessary. Other approaches that uses the strategy to solving the ℓ2 − ℓ𝑞
minimization problem (3.16) for a general regularization matrix 𝐿 based on a majorization-minimization (MM)
approach are available. We direct the reader to [15,43,43] and references therein for more details and theoretical
justifications. Nevertheless, on this work we focus on flexible type methods and their numerical aspects when
used to solve the EIT nonlienar problem. We remark that we solve the nonlinear EIT problem by the Flexible
Golub-Kahan method for the linear subproblem during each iteration, hence the name nonlinear Flexible Golub-
Kahan of Algorithm 1. Instead of minimizing the ℓ𝑝 problem (3.16) we consider alternatively solving the following
minimization problem

min
𝛿𝜎

‖𝐽(𝜎𝑘)𝑃−1(𝛿𝜎)𝛿𝜎 − 𝑈𝛿‖22 + 𝜆‖𝛿𝜎‖22, (4.7)

where 𝛿𝜎 = 𝑃 (𝛿𝜎)𝛿𝜎.
In [21] a flexible Krylov method based is proposed where the inner-outer schema is replaced by efficient

projecting methods to obtain computationally efficient solution methods.
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We direct the reader to a large list of references that mostly summarize the work on preconditioning and
variable preconditioning [1, 27,30,44,72,78–80,82].

Algorithm 1. Nonlinear Flexible Golub-Kahan (NFGK).

1: Input: Matrix 𝐽1 ∈ R(𝑝𝑐𝑛𝑙)×𝑛𝑇 with (𝑝𝑐𝑛𝑙) ≤ 𝑛𝑇 . Noise-corrupted data vector 𝑈𝛿 ∈ R(𝑝𝑐𝑛𝑙). Bound 𝛿 for the
norm of the noise in 𝑈𝛿.
2: for 𝑘 = 2
3: Choose 𝜎𝑘−1 and linearize (3.9) to obtain (3.15)
4: Compute 𝛽 = ‖𝒯𝑘(𝜎𝑘)‖2
5: 𝑢̃1 = 𝒯𝑘(𝜎𝑘)
6: for 𝑖 = 1, 2, . . . , 𝑡
7: 𝑤̃ = 𝐽𝑇

𝑘 𝑢̃𝑖

8: for 𝑚 = 1, 2, . . . , 𝑖− 1
9: ℎ𝑚,𝑖 = (𝑤̃)𝑇 𝑣𝑚

10: 𝑤̃ = 𝑤̃ −
∑︀𝑖−1

𝑚=1 ℎ𝑚,𝑖𝑣𝑚

11: end for
12: ℎ𝑖,𝑖 = ‖𝑤̃‖
13: 𝑣𝑖 = 𝑤̃/ℎ𝑖,𝑖

14: 𝑧𝑖 = 𝑃−1
𝑖 𝑣𝑖

15: 𝑤̃ = 𝐽(𝜎𝑘)𝑧𝑖

16: for 𝑚 = 1, 2, . . . , 𝑖
17: 𝑏𝑚,𝑖 = (𝑤̃)𝑇 𝑢̃𝑚

18: 𝑤̃ = 𝑤̃ −
∑︀𝑖

𝑚=1 𝑏𝑚,𝑖𝑢̃𝑚

19: end for
20: 𝑏𝑖+1,𝑖 = ‖𝑤̃‖
21: 𝑢̃𝑖+1 = 𝑤̃/𝑏𝑖+1,𝑖

22: end for
23: Define the decomposition 𝐽𝑘𝑍𝑡 = 𝑈̃𝑡+1𝐵𝑡+1,𝑡 𝐽𝑇

𝑘 𝑈̃𝑡 = 𝑉𝑡+1𝐻𝑡

24: Define 𝜑(𝑦) = ‖𝐵𝑡+1,𝑡𝑦 − ‖𝑈𝛿‖𝑒1‖22 + 𝜆‖𝑈𝛿‖22
25: Solve min𝑦 ‖𝜑(𝑦)‖
26: 𝛿𝜎 = 𝑍𝑡𝑦
27: Backtracking process:
28: Choose 𝑠𝑘 such that ‖𝒯𝑘(𝜎𝑘 + 𝑠𝑘𝛿𝜎)‖2 is significantly smaller than ‖𝒯𝑘(𝜎𝑘)‖2
29: 𝜎𝑘+1 = 𝜎𝑘 + 𝑠𝑘𝛿𝜎
30: if ‖𝒯𝑘(𝜎𝑘+1)− 𝑈𝛿‖ ≤ (𝜂𝛿)
31: break;
32: end if
33: end for
34: Output: Approximate solution 𝜎𝑛

Now we turn our attention to the technique of incorporating some weights based on the approximate solution
at some iteration 𝑘. The Flexible Golub-Kahan (FKG) procedure in [21] is closely related to the inexact Lanczos
process in [68,74]. Given the Jacobian matrix 𝐽𝑘, available measured data 𝑈𝛿, and the the variable preconditioner
𝑃𝑖 as a function of 𝜃𝑖, this allows us to generate a decomposition of the form

𝐽𝑘𝑍𝑡 = 𝑈̃𝑡+1𝐵𝑡+1,𝑡, 𝐽𝑇
𝑘 𝑈̃𝑡 = 𝑉𝑡+1𝐻𝑡, (4.8)

where

– 𝑍𝑡 = [𝑧1, 𝑧2, . . . , 𝑧𝑡] =
[︀
𝑃−1

1 𝑣1, 𝑃
−1
2 𝑣2, . . . , 𝑃

−1
𝑡 𝑣𝑡

]︀
∈ R𝑛𝑇×𝑡,

– 𝑈̃𝑡+1 = [𝑢̃1, 𝑢̃2, . . . , 𝑢̃𝑡+1] ∈ R𝑝𝑐𝑛𝑙×(𝑡+1) has orthonormal columns and the first column vector is defined as
𝑢̃1 = 𝑈𝛿/‖𝑈𝛿‖,
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– 𝑉𝑡+1 ∈ R𝑛𝑇×(𝑡+1) has orthonormal columns,
– 𝐻𝑡+1 = [ℎ𝑖,𝑚]𝑖=1,2,...,𝑡+1;𝑚=1,2,...,𝑡 ∈ R(𝑡+1)×𝑡 is upper Hessenberg matrix, 𝐻𝑡 is the 𝑡 × 𝑡 leading block of
𝐻𝑡+1.

– 𝐵𝑡+1,𝑡+1 = [𝑏𝑖,𝑚]𝑖,𝑚=1,2,...,𝑡+1 is upper traingular matrix.

We recall here that we use 𝐽𝑘 or 𝐽(𝜎𝑘) to denote the Jacobian matrix obtained from 𝜎𝑘 throughout the
paper. The computation of decomposition (4.8) requires more effort and memory compared to (3.21) since one
needs to store an additional set of basis vectors, 𝑍𝑡. We remark that differently from the Golub-Kahan process,
the Flexible Golub-Kahan procedure yields a matrix that does not have bidiagonal structure. More specifically,
the latter process results in an upper triangular matrix 𝐵̃𝑡+1,𝑡+1 and an upper Hessenberg matrix 𝐻𝑡+1. In
addition, the column vectors of 𝑍𝑡 do not span a Krylov subspace as the column vectors of 𝑈̃ and 𝑉 ; although,
they do form a base for the solution subspace.

4.1.1. Solving the problem in the subspace generated by FGK

Consider the least squares problem to solve

‖𝐽(𝜎𝑘)𝛿𝜎 − 𝑈𝛿‖22, (4.9)

in the subspace generated by the column space of 𝑍𝑡. By plugging the factorization (4.8) into (4.9) and letting
𝛿𝜎 = 𝑍𝑡𝑦, the residual can be expressed as

‖𝐽𝑘𝑍𝑡𝑦 − 𝑈𝛿‖22 = ‖𝑈̃𝑡+1𝐵𝑡+1,𝑡𝑦 − 𝑈𝛿‖22 = ‖𝐵𝑡+1,𝑡𝑦 − 𝛽𝑒1‖22, (4.10)

where 𝛽 = (𝑈̃𝑡+1)𝑇𝑈𝛿. Our new problem to solve is now a small dimensional least squares problem given by

𝑦𝑡 = arg min
𝑦

‖𝐵𝑡+1,𝑡𝑦 − 𝛽𝑒1‖22. (4.11)

Now that we have the solution subspace obtained by the FGK algorithm, we can then solve the projected
problem in the subspace generated by the columns of 𝑍𝑡. In other words, we can solve the minimization problem
in (4.11). When iterative methods are combined with Krylov subspace methods, one hopes to obtain a good basis
for the projection method, but this is not always what is experienced in practice. We are unable to determine
if we have unimportant basis vectors in the Krylov subspace and the generated subspace can include both the
desired basis vectors and irrelevant basis vectors for the regularized solution due to the presence of errors in the
data. If an unimportant basis vector for the regularized solution enters the solution subspace, then it is typical to
experience a behavior called semiconvergence, where the relative reconstruction error norm RRE = ‖𝜎𝑡−𝜎true‖2

‖𝜎true‖2
decreases initially, but it increases after a certain number of iterations due to the accumulation of the noise.
We direct the reader to [40] for a detailed analysis on the semiconvergence behavior. The remedy to mitigate
the semiconvergence behavior is to combine the Krylov subspace method with a regularization method that is
applied to the relatively small projected dimension problem in (4.11). In other words, one seeks to solve

𝑦𝜆
𝑡 = arg min

𝑦
‖𝐵𝑡+1,𝑡𝑦 − 𝛽𝑒1‖22 + 𝜆‖𝑦‖22. (4.12)

We direct the reader to a recent advancement in flexible-type methods [32], where a theoretical justification is
provided that guarantees that the sequence of approximate solutions to each problem in the sequence converges
to the solution of the considered modified problem. We remark here that in (4.12) we solve the regularized
projected problem. For a more detailed discussion on first project and then regularize or regularize and then
project to smaller subspaces and a survey on hybrid-type methods, we direct the reader to the latest survey
paper [22]. In this work we are focused on the numerical aspects of using Krylov subspace methods and their
variations to solving EIT problems. The convergence analysis is out of the scope of this paper and we consider
it as future work. We can afford to solve the projected problem better than the original problem. Another key
observation here is that we can afford to use parameter choice methods to define a good regularization parameter
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since the projected problem is relatively small in dimension. In the method we propose in this paper, we run the
FGK algorithm and at each iteration we compute an approximate solution (𝜎𝑘)𝑘=1,2,..,𝑡 by solving (4.12). Of
course, it is not trivial to define the dimension 𝑡 of the subspace, and subsequently, it is not clear when to stop
the algorithm. Among potential criteria that can be used to stop the iterations such as the number of iteration
or tolerance based error measures, here we use the discrepancy principle to stop the iterations, i.e., we stop at
iteration 𝑚 if the following condition is satisfied:

‖𝐽(𝜎𝑚)𝛿𝜎 − 𝑈𝛿‖22 ≤ (𝜂𝛿)2, (4.13)

where 𝜂 > 1 is a user defined constant. It is a well known result, and it is illustrated in [55] that in the context
of Tikhonov regularization with the regularization parameter determined by the discrepancy principle that
the quality of the computed solution may be increased by carrying out a few more iterations of the Arnoldi
process. A similar observation was concluded in [17] as well that adding few more vectors in the subspace after
the discrepancy principle is satisfied enhances the quality of the computed solution. In this work, we stop the
iterations using the discrepancy principle. To improve the quality of the computed solution, we allow a couple
more iterations of the FGK algorithm to enlarge the solution subspace by having a few more vectors. It is crucial
to mention that since the technique we are discussing in Algorithm 1 is computationally cheap, it is feasible to
allow some more iterations aimed at a computed solution of higher quality. It is possible to continue improving
the quality of the reconstructed solution by repeating the inner schema while we get the reconstruction 𝜎1

by linearizing the nonlinear problem (3.13) around 𝜎1. In general, only a few outer iterations are needed. In
particular, in our numerical examples, we report the reconstruction of the first two to three linearizations, i.e.,
𝑘 = 1, 𝑘 = 2, or 𝑘 = 3. To define the regularization parameter, one can use a wide range of methods: 𝐿-𝑐𝑢𝑟𝑣𝑒,
generalized cross validation (GCV), discrepancy principle, or unbiased predictive risk estimator (UPRE). The
last two methods require estimates of the bound of the noise norm 𝛿. When it is known that the available data
are contaminated by Gaussian noise, then such an estimate for 𝛿 can be obtained as in [28, 73]. In [41], an
analysis is presented on how information from the Golub-Kahan bidiagonalization can help in estimating the
noise level and also constructing the effective stopping criteria. In this paper, we use the discrepancy principle
to find the regularization parameter of the projected, relatively small dimension problem. We will focus our
attention now at the discrepancy principle that finds the regularization parameter automatically and without
too much effort since the projected problem is of relatively small dimension. The Tikhonov solution is given by

𝑦𝜆
𝑡 =

(︀
𝐵𝑇

𝑡+1,𝑡𝐵𝑡+1,𝑡 + 𝜆𝐼𝑡
)︀−1(︀

𝐵𝑇
𝑡+1,𝑡𝛽𝑒1

)︀
, (4.14)

where 𝐼𝑡 denotes the identity 𝑡× 𝑡 matrix.

4.2. The discrepancy principle

The selection of the regularization parameter is important for the quality of the reconstructed solution; hence,
many methods are developed aiming to find the regularization parameter automatically and quickly. One of the
most popular methods used to define the regularization parameter is the discrepancy principle, which requires
that a regularization parameter 𝜆 is defined such that the associated approximate solution 𝑦𝜆

𝑡 satisfies

min
𝑦𝜆

𝑡

‖𝐵𝑡+1,𝑡𝑦
𝜆
𝑡 − 𝛽𝑒1‖2 = (𝜂𝛿)2. (4.15)

Let
𝐵𝑡+1,𝑡 = 𝑈̂ Σ̂𝑉 𝑇 (4.16)

be the Singular Value Decomposition (SVD) of 𝐵𝑡+1,𝑡. In terms of the SVD, the Tikhonov solution (4.14) can
be represented as

𝑦𝜆
𝑡 =

(︁
𝑉 Σ̂𝑇 Σ̂𝑉 𝑇 + 𝜆𝐼𝑡

)︁−1(︁
𝑉 Σ̂𝑇 𝑈̂𝑇𝛽𝑒1

)︁
=

(︁
𝑉 Σ̂𝑇 Σ̂ + 𝜆𝐼𝑡

)︁−1(︁
Σ̂𝑇 𝑈̂𝑇𝛽𝑒1

)︁
. (4.17)
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By plugging (4.16) and (4.17) into (4.15), we obtain

min
𝑦𝜆

𝑡

‖Σ̂
(︁

Σ̂𝑇 Σ̂𝑇 + 𝜆𝐼𝑡

)︁−1

Σ̂𝑇 𝑈̂𝑇𝛽𝑒1 − 𝑈̂𝑇𝛽𝑒1‖22 = (𝜂𝛿)2. (4.18)

Define the function

Φ(𝜆) = min
𝑦𝜆

𝑡

‖Σ̂
(︁

Σ̂𝑇 Σ̂𝑇 + 𝜆𝐼𝑡

)︁−1

Σ̂𝑇 𝑈̂𝑇𝛽𝑒1 − 𝑈̂𝑇𝛽𝑒1‖22 − (𝜂𝛿)2. (4.19)

By using zero-finder techniques, Newton’s method for instance, we can obtain an approximate solution of the
regularization parameter that satisfies (4.15). We refer the reader to [16] for other zero-finders and more details
on the discrepancy principle.

5. Results and discussion

In this section, we present the reconstructed electrical conductivity distribution in a circular geometry, Ω =
R2, of radius 0.05 m with a various number of targets at various locations. We compute the solution of the
forward problem for a known 𝜎 using the finite element method. For the simulated data, we discretize Ω into
𝑛𝑇 = 4128 triangular elements, and contaminate the simulated data with random Gaussian noise. The noisy
data is simulated pointwise by adding standard Gaussian errors into the data as

𝑈𝛿,𝑘 = ℱ(𝜎)(1 + 𝛿||ℱ(𝜎)||2𝜉), (5.1)

where 𝜉 is the randomly generated standard Gaussian errors and 𝛿 is the relative noise level, such as 0.1% up
to 10%. We use 𝑝𝑐 = 16 adjacent current patterns with 𝑛𝑙 = 16 electrodes that are equally spaced along the
boundary of the body. To avoid inverse crime, the conductivity distribution 𝜎 for all the examples are computed
on a coarser mesh with 𝑛𝑇 = 1032 triangular elements.

The backtracking strategy for 𝛼𝑘 has a maximum number of inner iterations of 16, and it stops once one of
the strong Wolfe conditions is satisfied in (A.7) and (A.8). Then, the regularization parameter 𝜆 is iteratively
updated using (A.3) with 𝑐 = 4, 𝑙 = 1.1, and the initial value of 𝜆0 varying depending on the inclusion example.
For all of the examples, the background conductivity is 0.007 S/m. We present four scenarios when there are
one to four inclusions of various sizes, and homogeneous and heterogeneous conductive targets. We run the
Nonlinear Flexible Golub-Kahan (NFGK) and modified iteratively regularized and reweighted Gauss–Newton
(MIRGN) methods with several noise levels starting from 0.1% to 5% and one example showing reconstructions
up to 10%.

The relative reconstruction errors (RRE) for the NFGK and MIRGN are analzyed using the ℓ1 and ℓ2 error
norms, which are provided below for some recovered 𝜎ℳ after convergence at the ℳ-th iterate:

RRE𝑖(𝜎ℳ − 𝜎true) =
||𝜎ℳ − 𝜎true||𝑖
||𝜎true||𝑖

, 𝑖 = 1, 2. (5.2)

The RRE and the Structural Similarity index (SSIM) obtained for NFGK method are compared to that of
MIRGN method. We also quantified the residual error (RE) in the reconstructed 𝜎ℳ, defined in (5.3), for both
the methods to compare them at convergence.

RE = ||𝑈𝛿 −ℱ(𝜎ℳ)||2. (5.3)

All of the NFGK computations were carried out in MATLABR2018a with about 15 significant decimal digits
running on a computer desktop with core CPU Intel(R) Core(TM)i7-4470 @3.40 GHz with 8.00 GB of RAM.
All of the MIRGN computations were carried out in MATLABR2018b with about 15 significant decimal dig-
its while running on Clemson University’s local high performance computing environment called the Palmetto
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1. Example 1(a) is the true conductivity and 1(b)–(e) are the NFGK and 1(f)–(i) are
the MIRGN recovered conductivity distributions at the noise levels of 0.1%, 0.5%, 1%, 5% from
left to right respectively.

Cluster. There were 21 computer processors designated with 20 GB of memory each to find the optimal reg-
ularization parameter 𝜆 for each inclusion example, so we ran through a total of 17 values of 𝜆. To reduce
computational efforts, we added the GNU-Parallel module to parallel compute the MIRGN algorithm at these
different regularization parameters. In the numerical examples illustrated in this paper, the NFGK needed an
average of 1-2 outer iterations to produce the reported results while MIRGN needed an average of 15 iterations.
Hence, this explains the large computational time required by the MIRGN to compute the desired solution.
For example, tuning the regularization parameter in the MIRGN is another time consuming task as it must
be done heuristically; alternatively, the NFGK can adaptively define the regularization parameter in the low
dimensional projected subspace at a low cost. From the computational experiments, we observed that NFGK is
a fast method since it only regularizes the problem twice by setting the dimension of the Krylov subspace first.
Then, it proceeds by adding extra regularization in the smaller problem to avoid semiconvergence and solve a
better conditioned problem. For large-scale, severely ill-conditioned inverse problems, NFGK is a potentially
powerful method for approximating the severely ill-conditioned problem with a better conditioned problem that
well approximates the desired solution. For small scale and mild conditioned problems, MIRGN can be used
instead.

5.1. Example 1

In this example, we reconstruct a circular conductive target of radius 0.01 m with a conductivity of 0.03 S/m
located at the upper right corner near the boundary. The reconstructions from the MIRGN method are shown in
Figures 1f–1i after 15 iterations using an initial regularization parameter of 𝜆 = 0.0001. The average CPU time
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Table 1. Reconstruction errors from Example 1.

Noise
NFGK MIRGN

RRE1 RRE2 SSIM RE RRE1 RRE2 SSIM RE

0.1% 0.2447 0.3038 0.9841 0.0168 0.1424 0.3841 0.9830 0.0128
0.5% 0.2445 0.3047 0.9813 0.0167 0.1428 0.3840 0.9830 0.0128
1% 0.2507 0.3075 0.9811 0.0166 0.1435 0.3839 0.9830 0.0129
5% 0.2737 0.33134 0.9801 0.0165 0.1513 0.3853 0.9829 0.0160

for one reconstruction was 16.62 min running on the Palmetto Cluster compared to an average of 10 s that took
NFGK method to compute the reported reconstructions. The reconstruction errors between both methods are
provided in Table 1. This is a relatively better posed reconstruction since the inclusion is closer to the boundary
than at the center. Therefore, MIRGN performs reasonably well but the resolution is not very good whereas
the NFGK performs better in terms of resolution however the background is blurry compared to MIRGN.

5.2. Example 2

In this example, we reconstruct a circular inclusion of radius 0.01 m with a conductivity of 0.03 S/m centered
within the object. This setup is a challenging imaging problem because we lose information as we move further
away from the boundary and are more susceptible to the noise in our data.

The reconstructions from the MIRGN method are shown in Figures 2f–2i after 15 iterations using an initial
regularization parameter of 𝜆 = 0.0002. The average CPU time for one reconstruction was 10.90 min running
on the Palmetto Cluster compared to 5 s required from NFGK method to reconstruct the reported approximate
solution. The reconstruction errors between both methods are provided in Table 2. In order to demonstrate
the robustness of NFGK method, Figure 3 represents the reconstruction from data with 10% noise using both
methods. For this particular example, we see that the NFGK performs better than the MIRGN method in
recovering localized solutions.

5.3. Example 3

In this example, we reconstruct four circular conductive targets of radius 0.01 m with a conductivity of
0.03 S/m. The reconstructions from the MIRGN method are shown in Figures 4f–4i after 15 iterations using
an initial regularization parameter of 𝜆 = 0.0002. The average CPU time for one reconstruction was 14.04 min
running on the Palmetto Cluster compared to an average of 30 s that was needed to run the NFGK method. The
reconstruction errors for both methods are provided in Table 3. Overall, NFGK performs better than MIRGN
for this particular example.

5.4. Example 4

We have two smaller circular inclusions that are close to the center. The purpose of Example 4 is to show
how the nonlinear method performs when there are heterogeneous conductive targets of different magnitudes
far away from the boundary and close to each other. The conductive targets have a radius of 0.008 m with
a lower conductivity of 0.03 S/m and a higher conductivity of 0.1 S/m. The reconstructions from the MIRGN
method are shown in Figures 5f–5i after 35 iterations using an initial regularization parameter of 𝜆 = 1× 10−5

for noise levels 0.1%, 0.5%, 1% and a higher regularization of 𝜆 = 5 × 10−5 when the noise level is highest at
5%. The average CPU time for one reconstruction was 88.40 min running on the Palmetto Cluster compared to
an average of 6 s required from NFGK method. The reconstruction errors between both methods are provided
in Table 4.
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Figure 2. Example 2(a) is the true solution and 2(b)–(e) are the NFGK and 2(f)–(i) are the
MIRGN recovered solutions at noise levels increasing from 0.1%, 0.5%, 1%, 5% from left to
right, respectively.

Table 2. Reconstruction errors from Example 2.

Noise
NFGK MIRGN

RRE1 RRE2 SSIM RE RRE1 RRE2 SSIM RE

0.1% 0.2579 0.2878 0.9827 0.0056 0.2757 0.4992 0.9600 0.0210
0.5% 0.2581 0.2946 0.9822 0.0068 0.2756 0.4993 0.9600 0.0210
1% 0.2435 0.2933 0.9831 0.0469 0.2790 0.5019 0.9596 0.0212
5% 0.2977 0.3772 0.9745 0.0055 0.2804 0.5082 0.9585 0.0240
10% 0.3367 0.4290 0.9674 0.0135 0.4090 0.6037 0.9601 0.0261

6. Conclusions

We present a novel method to solve the nonlinear EIT problem by the aid of regularization. Our method
employs a Krylov subspace regularization method called the nonlinear Flexible Golub-Kahan method where
the original problem is approximated by a better conditioned formulation whose solution yields a meaningful
approximation of the desired solution. We solve the better conditioned problem by imposing a special for of
regularization to obtain sharp images. In addition, the regularization parameter that plays an important role in
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Figure 3. Recovered conductivity distributions for (a) the NFGK and (b) MIRGN methods
at the 10% noise level.

Figure 4. Example 3(a) is the true conductivity and 3(b)–(e) are the NFGK and 3(f)–(i) are
the MIRGN recovered conductivity distributions at noise levels increasing 0.1%, 0.5%, 1%, 5%
from left to right, respectively.
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Table 3. Reconstruction errors from Example 3.

Noise
NFGK MIRGN

RRE1 RRE2 SSIM RE RRE1 RRE2 SSIM RE

0.1% 0.2860 0.3304 0.9670 0.0105 0.4016 0.5392 0.9312 0.0184
0.5% 0.2881 0.3311 0.9664 0.0106 0.4015 0.5392 0.9312 0.0184
1% 0.2883 0.3312 0.9663 0.0105 0.4014 0.5392 0.9312 0.0184
5% 0.3086 0.3573 0.9627 0.0101 0.4006 0.5374 0.9315 0.0191

Figure 5. Example 4(a) is the true solution, panels 4(b)–4(e) represent the reconstructions
with NFGK, and panels 4(f)–4(i) represent the reconstructed solution by MIRGN at noise levels
increasing from 0.1%, 0.5%, 1%, 5% from left to right, respectively.

the solution of ill-posed problems is solved by using the discrepancy principle in the projected problem, which can
be computed for a relatively small computational time and memory usage. To illustrate the performances of the
proposed method in terms of the quality of the reconstructed solutions we perform several numerical examples
with simulated data. In addition we compare our the results obtained by NFGK process with MIRGN. We found
that our proposed method produces images with higher quality reconstructions obtained at a relatively small
computational time compared to MIRGN. Furthermore, as demonstrated in the numerical examples, MIRGN
is more robust with respect to the noise level in the available data.
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Table 4. Reconstruction errors from Example 4.

Noise
NFGK MIRGN

RRE1 RRE2 SSIM RE RRE1 RRE2 SSIM RE

0.1% 0.4621 0.6287 0.9103 0.0106 0.3870 0.8072 0.8708 0.0121
0.5% 0.4640 0.6293 0.9101 0.0103 0.3870 0.8072 0.8708 0.0120
1% 0.4674 0.6307 0.9096 0.0100 0.3829 0.8169 0.8675 0.0211
5% 0.4963 0.7858 0.8709 0.0138 0.3858 0.8183 0.8669 0.0230

Appendix A. Modified iteratively regularized Gauss–Newton (MIRGN)
method

The modified iteratively regularized Gauss–Newton (MIRGN) method is a modified Gauss–Newton method
for nonlinear ill-posed problems; see [2, 3, 10, 42, 70]. We apply the MIRGN method to solve exponentially ill-
posed inverse problems that require a stabilizing Tikhonov penalty functional, i.e., a priori knowledge about
the solution space. Contrary to the Gauss–Newton algorithm, MIRGN uses an adaptive step length parameter
to compute the updated solution at every iteration in reference to the backtracking strategy described in [70].
At each iteration, the step length must satisfy the strong Wolfe’s conditions. The MIRGN method is presented
in this paper because it will be compared to the nonlinear Krylov subspace method as a benchmark algorithm.
Our purpose is to determine if a better conditioned formulation, such as the Nonlinear Flexible Golub Kahan,
will noticeably improve recovered EIT solutions compared to the MIRGN.

This method is a minimization problem of the functional 𝒥 (𝜎) in (3.13) for the generalized Tikhonov regular-
ization method with 𝑝 = 𝑞 = 2 for the least squares penalizing model term. The parameter 𝜎* incorporate prior
knowledge about the solution and is set equal to the initial guess 𝜎0, which is typically set to the background
electric conductivity.

𝒥 (𝜎) =
1
2

min
𝜎∈R𝑛𝑇

‖ℱ(𝜎)− 𝑈𝛿‖22 +
𝜆

2
‖𝐿(𝜎 − 𝜎*)‖22. (A.1)

The unique solution 𝜎𝛿 to (A.1) can be recovered from this minimization problem as

𝜎𝛿 = 𝜎ℳ −
(︁
ℱ ′(𝜎ℳ)𝑇ℱ ′(𝜎ℳ) + 𝜆ℳ𝐿𝑇𝐿

)︁−1(︁
ℱ ′(𝜎ℳ)𝑇 (ℱ(𝜎ℳ)− 𝑈𝛿) + 𝜆ℳ𝐿𝑇𝐿(𝜎ℳ − 𝜎*)

)︁
(A.2)

once convergence has been reached after iterate ℳ. The inverse of
(︁
ℱ ′(𝜎ℳ)𝑇ℱ ′(𝜎ℳ) + 𝜆ℳ𝐿𝑇𝐿

)︁−1

is directly
computed at each iteration, which contributes to the costly expense of running a single update of the MIRGN.
However, the MIRGN does converge within a few iterations. During each iteration of the MIRGN algorithm,
the Jacobian of the forward operator ℱ ′(·) and the nonnegative penalizing model parameter, also known as
the model regularization parameter, 𝜆 > 0 are computed. The model regularization parameter {𝜆𝑘}𝒩𝑘=1 is a
monotonically decreasing sequence that is iteratively updated while adhering to the following conditions:

sup
𝑘∈𝒩∪{0}

𝜆𝑘

𝜆𝑘+1
= 𝑙 <∞, (A.3)

where 𝑙 ≥ 1 and lim𝑘→∞ 𝜆𝑘 = 0. It is important to note that the initial regularization parameter 𝜆 must be
selected by the user. Then, in subsequent iterations, it is iteratively updated in (A.3). The recovered solutions
are highly sensitive to the initial regularization parameter used. Following [4] for nonlinear ill-posed problems,
we used the proposed generalized discrepancy principle as our stopping criteria for some iterate ℳ = ℳ(𝛿)
satisfying ‖ℱ(𝜎ℳ)− 𝑈𝛿‖2 ≤

√
𝜌𝛿 < ‖ℱ(𝜎𝑘)− 𝑈𝛿‖2 for 𝜌 > 1 and 𝑘 = 1, 2, . . . ,ℳ− 1. We further modified the

IRGN algorithm in (A.2) using the line search procedure in [70]

𝜎𝛿 = 𝜎ℳ − 𝛼ℳ

(︁
ℱ ′(𝜎ℳ)𝑇ℱ ′(𝜎ℳ) + 𝜆ℳ𝐿𝑇𝐿

)︁−1(︀
ℱ ′(𝜎ℳ)𝑇 (ℱ(𝜎ℳ)− 𝑈𝛿) + 𝜆ℳ𝐿𝑇𝐿(𝜎ℳ − 𝜎*)

)︀
, (A.4)
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where 0 < 𝛼 ≤ 𝛼𝑘 ≤ 1 for 𝑘 = 1, 2, . . . is the variable step size. The following objective function

Φ𝑠(𝛼) = 𝒥 (𝜎𝑘 + 𝛼𝑠𝑘) (A.5)

is minimized to find the step size 𝛼. The 𝑘-th search direction 𝑠𝑘 is the solution to(︁
ℱ(𝜎𝑘)𝑇ℱ(𝜎𝑘) + 𝜆𝑘𝐿

𝑇𝐿
)︁
𝑠𝑘 = −ℱ ′(𝜎𝑘)𝑇 (ℱ(𝜎𝑘)− 𝑈𝛿) + 𝜆𝑘𝐿

𝑇𝐿(𝜎𝑘 − 𝜎*). (A.6)

The solution to 𝑠𝑘 must satisfy one of the strong Wolfe conditions in the backtracking strategy while 𝑘 ≤𝑀

𝒥 (𝜎𝑘 + 𝛼𝑠𝑘) ≤ 𝒥 (𝜎𝑘) + 𝑐1𝛼∇𝒥 (𝜎𝑘)𝑇
𝑠𝑘 (A.7)

|∇𝒥
(︀
𝜎𝛿

𝑘 + 𝛼𝑠𝑘

)︀𝑇
𝑠𝑘| ≤ |𝑐2𝒥

(︀
𝜎𝛿

𝑘

)︀𝑇
𝑠𝑘|, (A.8)

where 𝑐1 = 0.0001, 𝑐2 = 0.9 and 𝑀 is the maximum number of inner iterations within the backtracking strategy
[59].
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