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Abstract

We give a self-contained proof of the fact, discovered in [1] and proven in [2] with
the methods of [16], that, for any prime number p, there exists a power series

Ψ = Ψp(T ) ∈ T + T 2Z[[T ]]

which trivializes the addition law of the formal group of Witt covectors [16], [13, II.4], is
p-adically entire and assumes values in Zp all over Qp. We actually generalize, following
a suggestion of M. Candilera, the previous facts to any fixed unramified extension Qq
of Qp of degree f , where q = pf . We show that Ψ = Ψq provides a quasi-finite covering
of the Berkovich affine line A1

Qp by itself. We prove in section 3 new strong estimates
for the growth of Ψ, in view of the application [3] to p-adic Fourier expansions on Qp.
We refer to [3] for the proof of a technical corollary (Proposition 3.10) which we apply
here to locate the zeros of Ψ and to obtain its product expansion (Corollary 3.12).

We reconcile the present discussion (for q = p) with the formal group proof given in
[2] which takes place in the Fréchet algebra Qp{x} of the analytic additive group Ga,Qp
over Qp. We show that, for any λ ∈ Q×

p , the closure E ◦
λ of Zp[Ψ(pix/λ) | i = 0, 1, . . . ]

in Qp{x} is a Hopf algebra object in the category of Fréchet Zp-algebras.
The special fiber of E ◦

λ is the affine algebra of the p-divisible group Qp/pλZp over
Fp, while E ◦

λ [1/p] is dense in Qp{x}.
From Zp[Ψ(λx) |λ ∈ Q×

p ] we construct a p-adic analog APQp(Σρ) of the algebra
of Dirichlet series holomorphic in a strip (−ρ, ρ) × iR ⊂ C. We start developing this
analogy. It turns out that the Banach algebra of almost periodic functions on Qp
identifies with the topological ring of germs of holomorphic almost periodic functions
on strips around Qp.
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0 Introduction

0.1 Foreword

An unfortunate feature of p-adic numbers is that there exists no character

ψ : (Qp,+)→ (C×p , ·) , ψ 6= 1

which extends to an entire function Cp → Cp. In fact, let πp ∈ C◦◦p be such that the radius
of convergence of exp(πpx) equals 1, so that exp and log establish an isomorphism

(πp C◦◦p ,+)
∼−−→ (exp(πp C◦◦p ), ·) ( ⊂ (1 + C◦◦p , ·)) .

Now, assume a ψ as above exists, and let n be a positive integer such that ψ(pn) ∈
exp(πpC◦◦p ) so that ψ restricts to a character ψ : (pnZp,+) → (exp(πp C◦◦p ), ·). Let
a := log(ψ(pn)). Then, for any x ∈ Z, ψ(pnx) = ψ(pn)x = exp(ax). But x 7→ exp(ax)
has a finite radius of convergence.

We partially remedy to the previous inconvenience by showing the existence, for any
λ ∈ Q×p , of a representable formal group functor

(0.0.1) Eλ : ACLMu
Zp → Ab
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(see section 6.1 in Appendix A, for notation) whose generic (resp. special) fiber is the Qp-
analytic group Ga (resp. the constant p-divisible group Qp/λZp over Fp). The idea is the
following. Over the complex numbers the formulas

eiz = cos z + i sin z , e−iz = cos z − i sin z

show that the two (Hopf) algebras Z[i][eiz, e−iz] and Z[i][sin z, cos z] coincide. The sequence
of functions

(0.0.2) Ψ(x) = Ψp(x),Ψ(px),Ψ(p2x), . . .

plays here the role of the pair (cos z, sin z) in that the p-adically entire and integral addition
law (0.3.4) holds, and x is a logarithm for that formal group. So, while it is improper to
say that Ψ plays the role of an entire character of Qp, it is suggestive to consider a suitable
p-adic completion of the algebra Zp[Ψ(λx) |λ ∈ Q×p ] and to compare it with the classical
algebras of Bohr’s almost periodic functions APHR and APR. We review for convenience
the classical definitions of real and complex Fourier analysis in section 7.2 of Appendix B. A
closer p-adic analog of those classical constructions, and a generalization of Amice-Fourier
theory to p-adic functions on Qp, will appear in [3].

0.2 The function Ψ

In the paper [2] we introduced, for any prime number p, a power series

Ψ(T ) = Ψp(T ) = T +

∞∑
i=2

aiT
i ∈ Z[[T ]] ,

which represents an entire p-adic analytic function, i.e. is such that

(0.0.3) lim sup
i→∞

|ai|1/ip = 0 .

This function has the remarkable property that Ψp(Qp) ⊂ Zp and that, for any i ∈ Z and
x ∈ Qp, if we write x as in (1.12.2), with xi defined by (1.12.3), (1.12.4), then

(0.0.4) x−i = Ψp(p
ix) mod p ∈ Fp .

The power series Ψ(T ) is defined by the functional relation

(0.0.5)

∞∑
j=0

p−jΨ(pjT )p
j

= T .

Its inverse function β = βp ∈ T + T 2Z[[T ]] was shown to converge exactly in the region

(0.0.6) |T |p < p i.e. vp(T ) > −1 .

One property we had failed to notice in [2] is the following

Proposition 0.1. The restriction of the function Ψp to a map Qp → Zp is uniformly
continuous. More precisely, for any j = 0, 1, . . . and x ∈ Qp,

(0.1.1) Ψp(x+ pjC◦p) ⊂ Ψp(x) + pjC◦p .

This is proven in Corollary 3.4 below. See also the more general Theorem 3.11 whose
proof depends on Proposition 3.10, proven in [3].
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0.3 Our previous approach [2]

Proofs in [2] were based on Barsotti-Witt algorithms [16]. The most basic notion of topo-
logical algebra in [16] is the one of a simultaneously admissible family, indexed by α ∈ A,
of sequences i 7→ xα,−i for i = 0, 1, . . . in a Fréchet algebra R over Zp (in particular, over
Fp) [16, Ch.1, §1]. In case R is a Fréchet algebra over Qp the definition of simultaneous
admissibility is more restrictive, but the name used in loc.cit. is the same. For clarity, the
more restrictive notion will be called here (simultaneous) PD-admissibility, while the general
notion will maintain the name of (simultaneous) admissibility.

Using the previous refined terminology, our main technical tool in [2] was a criterion [2,
Lemma 1] of simultaneous PD-admissibility for a family indexed by α ∈ A, of sequences
i 7→ xα,−i for i = 0, 1, . . . in a Fréchet Qp-algebra. In Barsotti’s theory of p-divisible groups
one regards an admissible sequence i 7→ x−i as a Witt covector (. . . , x−2, x−1, x0) [16], [13]
with components x−i ∈ R.

We take here only a short detour on the group functor viewpoint and refer the reader
to [13] for precisions. As abelian group functors on a suitable category of topological Zp-
algebras the direct limit Wn → Wn+1 of the Witt vector groups of length n via the Ver-
schiebung map

V : (x−n, . . . , x−1, x0)→ (0, x−n, . . . , x−1, x0)

indeed exists. It is the group functor CW of Witt covectors. For a topological Zp-algebra R
on which CW(R) is defined, it is convenient to denote an element x ∈ CW(R) by an inverse
sequence

x = (. . . , x−2, x−1, x0)

of elements of R, that is a Witt covector with components in R. Two Witt covectors
x = (. . . , x−2, x−1, x0) and y = (. . . , y−2, y−1, y0) with components R can be summed by
taking limits of sums of finite Witt vectors. Namely, let

(0.1.2) ϕi(X0, . . . , Xi;Y0, . . . , Yi) ∈ Z[X0, . . . , Xi, Y0, . . . , Yi]

be the i-th (= the last!) entry of the Witt vector (X0, . . . , Xi) + (Y0, . . . , Yi). Then,

x+ y = z = (. . . , z−2, z−1, z0)

means that, for any i = 0,−1, . . . ,

(0.1.3) zi = lim
n→+∞

ϕn(xi−n, xi−n+1, . . . , xi; yi−n, yi−n+1, . . . , yi)

converges in R. The convergence properties on the Witt covectors x and y above for the
expressions (0.1.3) to converge, are dictated by the following

Lemma 0.2. ([16, Teorema 1.11]) Notation as above. For i = 0, 1, 2, . . . , let us attribute
the weight pi to the variables Xi, Yi. Then, for any i ≥ 0 the polynomial ϕi in (0.1.2) is
isobaric of weight pi. Moreover, for any i ≥ 1,

ϕi(X0, X1, . . . , Xi;Y0, Y1, . . . , Yi)− ϕi−1(X1, . . . , Xi;Y1, . . . , Yi) ∈

X0 Y0 Z[X0, X1, . . . , Xi, Y0, Y1, . . . , Yi] .

(0.2.1)

So, we equip the polynomial ring Z[X0, X−1, . . . , X−i, . . . ;Y0, Y−1, . . . , Y−i, . . . ] with the
linear topology defined by the powers of the ideals IN := (X−N , X−N−1, . . . ;Y−N , Y−N−1, . . . )
and set

P := lim←−
N,M→+∞

Z[X0, X−1, . . . , X−i, . . . ;Y0, Y−1, . . . , Y−i, . . . ]/I
M
N .
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Then, the sequence

(0.2.2) i 7−→ ϕi(X−i, . . . , X−1, X0;Y−i, . . . , Y−1, Y0)

converges to an element

(0.2.3) Φ(X0, X−1, . . . , X−i, . . . ;Y0, Y−1, . . . , Y−i, . . . ) ∈ P .

So, (0.1.3) is expressed more compactly as

(0.2.4) zi = Φ(xi, xi−1, . . . ; yi, yi−1, . . . )

Remark 0.3. The projective limit

Wn+1 →Wn , (x0, x1, . . . , xn+1) 7→ (x0, x1, . . . , xn) ,

produces instead the algebraic group W of Witt vectors.

The approach of Barsotti [16] is more flexible and easier to apply to analytic categories.
If R is complete, for two simultaneously admissible Witt covectors x = (. . . , x−2, x−1, x0)
and y = (. . . , y−2, y−1, y0) with components R the expressions (0.2.4) all converge in R and
define (. . . , z−2, z−1, z0) = z =: x + y, which is in turn simultaneously admissible with x
and y. In the Qp-algebra case a Witt covector x = (. . . , x−2, x−1, x0) has ghost components
(. . . , x(−2), x(−1), x(0)) defined by

(0.3.1) x(i) = xi + p−1xpi−1 + p−2xp
2

i−2 + . . . , i = 0,−1,−2, . . . .

Under very general assumptions [16, Teorema 1.11], a finite family of sequences (xα,−i)i=0,1,...,
for α ∈ A in a Qp-Fréchet algebra are simulaneously PD-admissible iff the same holds for the

family of sequences of ghost components (x
(−i)
α )i=0,1,..., for α ∈ A. Under these assumptions,

for simultaneously PD-admissible covectors x and y, x+ y = z is equivalent to

(0.3.2) z(i) = x(i) + y(i) , i = 0,−1,−2, . . . .

In the present case, which coincides with the case treated in [2], the sequences i 7→ x−i := pix
and i 7→ y−i := piy are simultaneously PD-admissible in the standard Cp-Fréchet algebra
Cp{x, y} of entire functions on C2

p [2, Lemma 1 and Lemma 3]. It follows from the relation

(0.0.5) that i 7→ x−i := pix, for i = 0, 1, 2, . . . is the sequence of ghost components of
x 7→ x(−i) := Ψ(pix). Therefore from [16, loc.cit. ] we conclude that the two sequences
i 7→ Ψ(pix) and i 7→ Ψ(piy) are simultaneously admissible in Cp{x, y}, as well. Moreover,
by [16, loc.cit. ] and the definition of the addition law of Witt covectors with coefficients in
Cp{x, y}, we have

(. . . ,Ψ(p2(x+ y)),Ψ(p(x+ y)),Ψ(x+ y)) =

(. . . ,Ψ(p2x),Ψ(px),Ψ(x)) + (. . . ,Ψ(p2y),Ψ(py),Ψ(y)) .
(0.3.3)

Equivalently, Ψ satisfies the addition law [2, (11)]

(0.3.4) Ψ(x+ y) = Φ(Ψ(x),Ψ(px), . . . ; Ψ(y),Ψ(py), . . . )

where

Φ(Ψ(x),Ψ(px), . . . ; Ψ(y),Ψ(py), . . . ) =

lim
i→∞

ϕi(Ψ(pix), . . . ,Ψ(px),Ψ(x); Ψ(piy), . . . ,Ψ(py),Ψ(y)) ,
(0.3.5)

for the polynomials ϕi of (0.1.2) and (0.2.2). Notice that (1.12.2) may be restated to say
that, for any x ∈ Qp,

x = (. . . , x−2, x−1;x0, x1, . . . ) ,

where xi ∈ Fp is given by (1.12.3), as a Witt bivector [16] with coefficients in Fp.
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0.4 Our present approach

We present here in section 2 direct elementary proofs of the main properties of Ψ, which
make no use of the Barsotti-Witt algorithms of [16]. Actually, following a suggestion of M.
Candilera, we consider rather than (0.0.5), the more general functional relation for Ψ = Ψq,
q = pf ,

(0.3.6)

∞∑
j=0

p−jΨ(pjT )q
j

= T .

The result, at no extra work, will then be that (0.3.6) admits a unique solution Ψq(T ) ∈
T+T 2Z[[T ]]. The series Ψq(T ) represents a p-adically entire function such that Ψq(Qq) ⊂ Zq.
In section 3 we describe in the same elementary style the Newton and valuation polygons
of the entire function Ψq, and obtain new estimates on the growth of |Ψq(x)| as |x| → ∞,
which will be crucial for the sequel [3]. From these estimates we also deduce, modulo the
self-contained technical Proposition 3.10 whose proof appears in [3], the location of the zeros
of Ψp (Theorem 3.12). Namely, any ball of radius 1, a+Zp ∈ Qp/Zp, contains precisely one
(simple) zero of Ψp.

We present in Appendix C below some numerical calculations due to M. Candilera, which
exhibit the first coefficients of Ψp, for small values of p. These calculations have been useful
to us and we believe they may be quite convincing for the reader.

The function Ψq : A1
Qp → A1

Qp is a quasi-finite covering of the Berkovich affine line over
Qp by itself. We do not know whether the previous covering is Galois.

0.5 Convergence of Fourier-type expansions

Section 1.1 describes some Hopf algebras whose existence follows from the addition prop-
erties of Ψp. The next section 1.2 suggests an interpretation of the functions Ψp(x/λ), for
λ ∈ Q×p , as p-adic analogs of exp( 2πi

λ z), for λ ∈ R×. We are naturally lead to the question
of which functions can be expressed as uniform limits on Qp of the previous functions. By
analogy to the classical case, we call these functions uniformly almost periodic on Qp and
denote by APQp the corresponding closed subalgebra of the Banach algebra C bd

unif(Qp,Qp)
of bounded uniformly continuous functions Qp → Qp. Although we do not have an intrinsic
characterization of these functions, we can show that they may be seen as germs of holomor-
phic functions on a neighborhood of Qp. We point out that colimits for topological algebras
are not in general supported by set-theoretic inductive limits (see Remark 5.8 below). There-
fore, our Uniform Approximation Theorem 1.25 does not state that any uniformly almost
periodic function on Qp necessarily extends to an analytic function on a p-adic strip around
Qp. On the other hand, APQp is dense in the Fréchet algebra C (Qp,Qp) of continuous
functions Qp → Qp, equipped with the topology of uniform convergence on compact open
subsets of Qp. The proofs of these facts are detailed in sections 4 and 5. We spend some
time in section 4 to explain in categorical terms (clearly stated in Appendix A) the natu-
ral limit/colimit/tensor product formulas which justify the linear topologies of the previous
function algebras. For example, C (Qp,Zp) (but not Cunif(Qp,Zp)) is a Hopf algebra related
to the constant p-divisible group Qp/Zp over Zp and to its “universal covering” Qp. A
more complete discussion of these topological algebras and of their duality relation with the
affine algebra of the universal covering of the p-divisible torus, interpreted as an algebra of
measures, will appear in [5].

In section 5 we prove the facts announced in section 1.2, namely Theorem 1.15, Theo-
rem 1.17, Proposition 1.18, Proposition 1.19, Proposition 1.21, Proposition 1.22, and Theo-
rem 1.25.
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1 Rings of p-adic analytic functions

1.1 Entire functions bounded on p-adic strips

(See Appendix A for notation of topological algebra and non-archimedean functional analy-
sis.) We describe here the Hopf algebra object Qp{x} in the category of Fréchet Qp-algebras
equipped with the completed projective = inductive tensor product ⊗̂π,Qp = ⊗̂ι,Qp , which
consists of the global sections of the Qp-analytic group Ga. We also consider boundedness
conditions for the functions in Qp{x} on suitable neighborhoods of Qp in the Berkovich
affine line A1

Qp over Qp.
Our notation for coproduct (resp. counit, resp. inversion) of a Hopf algebra object A

in a symmetric monoidal category with monoidal product ⊗ and unit object I is usually
P = PA : A→ A⊗A (resp. ε = εA : A→ I, resp. ρ = ρA : A→ A).

Definition 1.1. For any closed subfield K of Cp, we denote by K{x} = K{x1, . . . , xn} the
ring of entire functions on the K-analytic affine space (AnK ,OK). The standard Fréchet
topology on the K-algebra K{x} is induced by the family {wr}r∈Z of valuations

wr(f) := inf
x∈(p−rC◦

p)n
v(f(x)) ,

for any f ∈ K{x}.

Remark 1.2. More generally, for bounded functions f : X → (S, | |), where X is a set and
(S, | |) is a Banach ring in multiplicative notation, ||f ||X = supx∈X |f(x)| will denote the
supnorm on X.

Definition 1.3. For any ρ > 0 and any finite extension K/Qp, the p-adic n-strip of width

ρ around Kn is the analytic domain which is the union Σρ(K) = Σ
(n)
ρ (K) of all affinoid

n-polydiscs of radius ρ centered at K-rational points. We denote by

Resρ : Cp{x} −→ O(Σρ) , f 7−→ f|Σρ

the restriction map. Clearly, the map Resρ is an injection. We let Obd
K (Σρ(K)) (resp.

O◦K(Σρ(K))) denote the subring of OK(Σρ(K)), consisting of functions bounded (resp.
bounded by 1) on Σρ(K). We denote by || ||K,ρ the supnorm on Σρ(K). The Banach algebra
structure on Obd

K (Σρ(K)) (resp. O◦K(Σρ(K))) induced by the norm || ||K,ρ will be called
K-uniform. The Fréchet structure of OK(Σρ(K)) (resp. O◦K(Σρ(K))) induced by the family

of seminorms of Definition 1.1 will be called standard. We set in particular Σρ = Σ
(1)
ρ (Qp)

but will keep the notation || ||Qp,ρ. We also denote by H
(n),bd
K (ρ) (resp. H

(n),◦
K (ρ)) the

subring of K{x} of functions which are bounded (resp. bounded by 1) on Σρ(K). We set

H
(n),bd
K :=

⋂
ρ

H
(n),bd
K (ρ) .

7



For any ρ > 0 and any f ∈H
(n),bd
K (ρ) we introduce one further valuation

(1.3.1) wK,∞(f) := inf
x∈Kn

v(f(x)) .

For n = 1 and K = Qp, we shorten H
(n),bd
K (ρ) (resp. H

(n),◦
K (ρ), resp. H

(n),bd
K , resp.

wK,∞, resp. K-uniform) to H bd(ρ) (resp. H ◦(ρ), resp. H bd, resp. w∞, resp. uniform).

Remark 1.4. It is not a priori clear that H bd contains non-constant functions. We will
prove below (Theorem 3.11) that Ψ(x) ∈H bd.

Remark 1.5. For any n and any ρ > 0, H
(n),◦
K (ρ) is a closedK◦-subalgebra ofK{x1, . . . , xn};

the induced Fréchet K◦-algebra structure on H
(n),◦
K (ρ) will be called standard. It fol-

lows from formula 0.0.5 below that, by contrast, H
(n),bd
K (ρ) = H

(n),◦
K (ρ)[1/p] is dense in

K{x1, . . . , xn}.

Remark 1.6. The Fréchet structure on OK(Σρ) which we call “standard” is the one of
analytic geometry: it coincides with the topology of uniform convergence on rigid discs of
radius ρ. Similarly for O◦K(Σρ(K)). The standard Fréchet algebra K{x} identifies with

(1.6.1) K{x} = lim←−
ρ→+∞

(OK(Σρ), standard)

Definition 1.7. The strip topology on H
(n),bd
K is the projective limit topology of the uni-

form topologies of Definition 1.3. So,

(1.7.1) (H
(n),bd
K , strip) = lim←−

ρ→+∞
(Obd

K (Σρ(K)), || ||K,ρ) ,

is a K-Fréchet space.

Remark 1.8. We have a dense embedding H
(n),bd
K ⊂ K{x1, . . . , xn}. The strip topology

on H
(n),bd
K , for which this algebra is complete, is finer than its (non complete) standard

topology.

The next lemma shows that, for any non archimedean field K and Ga = Ga,K ,

O(Ga ×Ga) = O(Ga)⊗̂π,KO(Ga)

so that O(Ga) is a Hopf algebra object in the category of Fréchet K-algebras.

Lemma 1.9. There are natural identifications

(1.9.1) K{x1, . . . , xn}⊗̂π,KK{y1, . . . , ym} = K{x1, . . . , xn, y1, . . . , ym} .

sending xi ⊗ 1 7→ xi and 1⊗ yj 7→ yj, for i = 1, . . . , n, j = 1, . . . ,m.

Proof. For any s ∈ Z the map of the statement produces isomorphisms of K-Tate algebras
[9, §6.1.1, Cor. 8]
(1.9.2)
K〈p−sx1, . . . , p

−sxn〉⊗̂π,KK〈p−sy1, . . . , p
−sym〉 = K〈p−sx1, . . . , p

−sxn, p
−sy1, . . . , p

−sym〉 .

We now apply Proposition 6.6.

Corollary 1.10. Let K be a finite extension of Qp and ρ > 0. The identifications (1.9.1)
induce identifications

(1.10.1) (H
(n),◦
K (ρ), standard)⊗̂uK◦(H

(m),◦
K (ρ), standard)

∼−−→ (H
(m+n),◦
K (ρ), standard) .

Similarly for (O◦K(Σρ(K)), standard).

8



Corollary 1.11. The map P : xi 7→ xi⊗̂1 + 1⊗̂xi makes K{x1, . . . , xn} into a Hopf algebra

object in the category of Fréchet K-algebras. The restriction of P to H
(n),◦
K (ρ) induces a

map

P : (H
(n),◦
K (ρ), standard) −→ (H

(n),◦
K (ρ), standard)⊗̂uK◦(H

(n),◦
K (ρ), standard)

which makes (H
(n),◦
K (ρ), standard) a Hopf algebra object in the category of Fréchet K◦-

algebras. Similarly for (O◦K(Σρ(K)), standard).

1.2 p-adic almost periodic functions

We sketch here the the main ideas and results on p-adic almost periodic functions. Proofs
are given in section 5 below. We freely use in this introduction the (quite self-explanatory)
notation of section 4 for continuous, uniformly continuous, bounded rings of p-adic functions
Qp → Qp and their topologies.

The following elementary lemma shows that a naive p-adic analog of real Bohr’s uniformly
almost periodic functions (see Definition 7.2 in Appendix B), where “an interval of length
`ε in R” is taken to mean a coset a + phZp, for a ∈ Qp and p−h = `ε, does not lead to a
meaningful definition.

Lemma 1.12. A continuous function f : Qp → Qp which has the property that for any
ε > 0, there exists h ∈ Z such that any coset a + phZp in Qp/phZp contains an element ta
such that

(1.12.1) |f(x+ ta)− f(x)| < ε ∀ x ∈ Qp ,

is constant.

Proof. In fact, from condition (1.12.1), for any a ∈ Qp, it follows by iteration that ta may be
replaced by any t ∈ Zta. By continuity, we may replace ta by any t ∈ Zpta. For a /∈ phZp,
Zpta = Zpa. So, if we pick a = p−N , for N >> 0, (1.12.1) implies that the variation of f(x)
in p−NZp is less than ε. So, the variation of f(x) in Qp is less than ε for any ε > 0, hence
f is constant.

We resort to an ad hoc definition. For x ∈ Qp, let us consider the classical Witt vector
expression

(1.12.2) x =
∞∑

i>>−∞
[xi] p

i ∈W(Fp)[1/p] = Qp ,

where [t], for t ∈ Fp, is the Teichmüller representative of t in W(Fp) = Zp. Notice that, for
any i ∈ Z, the function

(1.12.3) xi : Qp −→ Fp , x 7−→ xi

factors through a function, still denoted by xi,

(1.12.4) xi : Qp/pi+1Zp −→ Fp , h 7−→ hi .

We regard the function in (1.12.4) as an Fp-valued periodic function of period pi+1 on Qp.
In the following, for any i ∈ Z and any λ ∈ Q×p , we denote by “[(λx)i]” the uniformly
continuous function Qp → Zp, x 7→ [(λx)i]. We observe that

[(λpjx)i] = [(λx)i−j ]

for any i, j ∈ Z and λ ∈ Q×p .
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Definition 1.13. We define the Qp-algebra APQp (resp. the Zp-algebra APZp) of (resp.
integral) uniformly almost periodic ( u.a.p. for short) functions Qp → Qp (resp. Qp → Zp)
as the closure of

Qp[[(λx)i] | i ∈ Z , λ ∈ Z×p ] (resp. of Zp[[(λx)i] | i ∈ Z , λ ∈ Z×p ] )

in the Qp-Banach algebra C bd
unif(Qp,Qp) (resp. in the Zp-Banach ring Cunif(Qp,Zp)), equipped

with the induced valuation w∞.

Remark 1.14. This remark is made to partially justify Definition 1.13. For any N ∈ Z we
denote by SN : Qp → pNZp the function N -th order fractional part, namely

(1.14.1) x =

∞∑
i>>−∞

[xi] p
i 7−→ SN (x) =

∞∑
i=N

[xi] p
i .

It is clear that, for any N and λ ∈ Q×p , x 7→ SN (λx) is a bounded uniformly continuous
function. The function S3, certainly not periodic, is a p-adic analog of the function

R→ [0, 1) , ....1234.56789.... 7→ 0.789...

which is genuinely periodic of period 0.01.

We will prove the following partial analog to Bohr’s “Approximation Theorem” (Theo-
rem 7.3 in Appendix B), where in fact the functions cos( 2π

λ x) and sin( 2π
λ x), for λ ∈ R× are

replaced by the functions Ψ(λx), for λ ∈ Q×p .

Theorem 1.15. (APQp , w∞) (resp. (APZp , w∞)) is the completion of the valued ring

(Qp[Ψ(λx) |λ ∈ Q×p ], w∞) (resp. (Zp[Ψ(λx) |λ ∈ Q×p ], w∞) ) .

Definition 1.16. For any λ ∈ Q×p , the Fréchet Zp-algebra E ◦λ (resp. T ◦λ ) is the closure of

(1.16.1) Zp[Ψ(λ−1pjx) | j = 0, 1, . . . ]

in Qp{x} (resp. in O(Σ|λ|)) with the standard topology. We then set E bd
λ := E ◦λ [1/p] (resp.

T bd
λ := T ◦λ [1/p]).

Finally, we define the Fréchet Zp-algebra E ◦ as the closure of Zp[Ψ(λ−1pjx) | j = 0, 1, . . . ]
in Qp{x}, and set E bd := E ◦[1/p].

Theorem 1.17. (Approximation Theorem on compacts) The completion of the mul-
tivalued ring

(E bd, {|| ||prZp}r∈Z) (resp. (E ◦, {|| ||prZp}r∈Z) )

is the Fréchet Qp-algebra (resp. Zp-algebra) C (Qp,Qp) (resp. C (Qp,Zp)).

The following proposition follows from the estimates of Proposition 0.1 (see Corollary 3.4
or Theorem 3.11 for the proof) together with the fact that the conditions listed below are
closed for the standard Fréchet structure. The proof of the latter fact is given in Lemma 5.6.

Proposition 1.18. For any f ∈ E ◦λ (resp. f ∈ T ◦λ ) we have

1. f is bounded by 1 on the p-adic strip Σ|λ|;

2. f(Qp) ⊂ Zp;

3. For any r ∈ Z, a, j ∈ Z≥0, the function g(x) := f(p−rx)p
a

satisfies

g(x+ pr+jλC◦p) ⊂ g(x) + pa+jC◦p , ∀ x ∈ Qp .

10



Proposition 1.19. For any λ ∈ Q×p , (E ◦λ , standard) (resp. (T ◦λ , standard)) is a Hopf

algebra object in the monoidal category (CLMu
Zp , ⊗̂

u
Zp) for the coproduct P and coidentity ε

given by

(1.19.1) P(Ψ(λ−1pjx)) 7→ Ψ(λ−1pjx⊗̂1 + 1⊗̂λ−1pjx) , ε(Ψ(λ−1pjx)) = 0 ,

for j = 0, 1, . . . . This structure only depends upon |λ|.

Definition 1.20. We define Eλ in (0.0.1) (resp. Tλ) as the abelian group functor on
ACLMu

Zp , represented by the Hopf algebras (E ◦λ , standard) (resp. by (T ◦λ , standard)).

A partial p-adic analog of Féjer’s Theorem, or, more precisely, of Theorem 7.1 in Ap-
pendix B, is then

Proposition 1.21. For any λ ∈ Q×p , the completion of the valued ring

(Zp[Ψ(λ−1pjx) | j = 0, 1, . . . ], w∞)

coincides with its closure in Cunif(Qp,Zp) = W(Cunif(Qp,Fp)) equipped with the p-adic topol-
ogy, and identifies with W(Fp[[(λ−1x)−j ] | j = 0, 1, . . . ]) also equipped with the p-adic topol-
ogy.

For the standard topology we have

Proposition 1.22. For any λ ∈ Q×p , the completion of the valued ring (E ◦λ , w∞) (resp.
(T ◦λ , w∞)) coincides with its closure in C (Qp,Zp) = W(C (Qp,Fp)) equipped with the prod-
uct topology of the prodiscrete topologies on the components (4.18.4), and identifies with
W(Fp(v(λ),∞)) (see Proposition 4.16 below for notation) also equipped with the product
topology of the prodiscrete topologies on the components.

The ring E ◦λ ⊗Zp Fp (resp. T ◦λ ⊗Zp Fp) equipped with the quotient topology coincides with
Fp(v(λ),∞) = C (Qp/λpZp,Fp).

We now introduce our p-adic analog of the sheaf APHC of almost periodic analytic
functions (see subsection 7.2 in Appendix B).

Definition 1.23.

1. For any ρ > 0, we define the algebra of (resp. integral) almost periodic p-adic an-
alytic functions on the strip Σρ as the closure APHQp(Σρ) (resp. APHZp(Σρ)) of
Qp[Ψ(λx) |λ ∈ Q×p ] (resp. Zp[Ψ(λx) |λ ∈ Q×p ]) in (Obd(Σρ),uniform), with the in-
duced Banach ring structure.

2. The algebra of germs at 0 of almost periodic p-adic analytic functions is the locally
convex inductive limit

(1.23.1) (APH0,Qp , strip) := lim−→
ρ→0

APHQp(Σρ) .

3. The algebra of germs at 0 of integral almost periodic p-adic analytic functions is

(1.23.2) (APH0,Zp , strip) := lim−→
u

ρ→0

APHZp(Σρ) .

4. The algebra of almost periodic p-adic entire functions is

(1.23.3) (APHQp , strip) := lim←−
ρ→+∞

APHQp(Σρ) .
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5. The algebra of integral almost periodic p-adic entire functions is the closure (APHZp , strip)
of Zp[Ψ(λx) |λ ∈ Q×p ] in (APHQp , strip) equipped with the induced Fréchet Zp-algebra
structure.

6. The Fréchet Zp-algebra E ◦ is a Hopf algebra object in the category CLMu
Zp for the

laws (1.19.1). The corresponding group functor

(1.23.4) E : ACLMu
Zp −→ Ab

will be called the universal covering of Eλ, for any λ ∈ Q×p .

Remark 1.24. The special fiber of E is the constant group

Qp = lim←−
|λ|→0

Qp/λZp

over Fp. On the other hand, equation 0.0.5 shows that E ◦[1/p] is dense in Qp{x}, so that
the generic fiber of E is Ga,Qp .

Our Definition 1.23 is designed as to make the analog of Theorem 7.5 in Appendix B a
true statement. In the p-adic case, we actually get the following more precise statement.

Theorem 1.25. (Uniform Approximation Theorem) The natural CLMu
Qp-morphism

(resp. CLMu
Zp-morphism)

(APH0,Qp , strip) −→ (APQp , w∞)

(resp.
(APH0,Zp , strip) −→ (APZp , w∞) ) ,

is an isomorphism.

The similarity with classical Fourier expansions will be made more stringent in [3], where
the classical Mahler binomial expansions of continuous functions Zp → Zp is generalized to
an expansion of any uniformly continuous functions Qp → Qp as a series with countably
many terms of entire functions of exponential type. Such a p-adic Fourier theory on Qp
presents the same power and limitations as the classical Fourier theory on R. Functions
in APQp play the role of Bohr’s uniformly almost periodic functions and a variation of the
Bochner-Fejér approximation theorem [7, I.9] holds. On the other hand, a Fourier series
F (f) (with countably many terms) does exist for a much more general class of functions
f : Qp → Qp and the classical question as to what extent the series F (f) approximates f
makes perfect sense, precisely as in classical Harmonic Analysis.

We ask whether the classical Bohr compactification of Qp has a p-adic analytic descrip-
tion, as it has one in terms of classical (i.e. complex-valued) harmonic theory on the locally
compact group (Qp,+).

We expect that a completely analogous theory should exist for any finite extension K/Qp.
To develop it properly it will be necessary to extend Barsotti covector’s construction to
ramified Witt vectors modeled on K and to relate this construction to Lubin-Tate groups
over K◦ [19].

2 Elementary proofs of the main properties of Ψ

We prove here the basic properties of the function Ψ. In contrast to [2], the proofs are here
completely self-contained.

Proposition 2.1. The equation (0.3.6) has a unique solution in Ψ = Ψq ∈ T + T 2Z[[T ]] .
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Proof. We endow Z[[T ]] of the T -adic topology. It is clear that, for any ϕ ∈ TZ[[T ]], the

series
∑∞
j=1 p

−jϕ(pjT )q
j

converges in TZ[[T ]]. Moreover, the map

(2.1.1) L : ϕ 7−→ T −
∞∑
j=1

p−jϕ(pjT )q
j

,

is a contraction of the complete metric space T +T 2Z[[T ]]. In fact, let ε(T ) ∈ T rZ[[T ]], with
r ≥ 3. For any ϕ ∈ T + T 2Z[[T ]] we see that

L (ϕ+ ε)−L (ϕ) ∈ T r(q−1)+qZ[[T ]] .

Since r(q − 1) + q > r this shows that L is a contraction. So, this map has a unique fixed
point which is Ψq(T ).

The following proposition, due to M. Candilera, provides an alternative proof of Propo-
sition 2.1 and finer information on Ψq(T ).

Proposition 2.2. (M. Candilera) The functional equation for the unknow function u

(2.2.1) 1 =

∞∑
j=0

pj(q
j−1)T

qj−1
q−1 u(pj(q−1)T )q

j

admits a unique solution u(T ) = uq(T ) ∈ 1 + TZ[[T ]]. We have

(2.2.2) Ψq(T ) = Tuq(T
q−1) .

Proof. In this case we consider the T -adic metric space 1 + TZ[[T ]] and the map

M : 1 + TZ[[T ]] −→ 1 + TZ[[T ]]

ϕ 7−→ 1−
∞∑
j=1

pj(q
j−1)T

qj−1
q−1 ϕ(pj(q−1)T )q

j

.
(2.2.3)

We endow Z[[T ]] of the T -adic topology. It is clear that, for any ϕ ∈ TZ[[T ]], the series∑∞
j=1 p

−jϕ(pjT )q
j

converges in TZ[[T ]]. If ε(T ) ∈ T rZ[[T ]], with r ≥ 2. For any ϕ ∈
1 + TZ[[T ]] we see that

M (ϕ+ ε)−M (ϕ) ∈ T r+1Z[[T ]] .

So, the map M is a contraction and its unique fixed point has the properties stated for the
series u in the statement.

Proposition 2.3. The series Ψ(T ) = Ψq(T ) is entire.

Proof. Since Ψ ∈ T + T 2Z[[T ]] ⊂ TZ[[T ]], we deduce that Ψ converges for vp(T ) > 0. Since
the coefficient of T in Ψ(T ) is 1, whenever vp(T ) > 0 we have vp(Ψ(T )) = vp(T ).

Suppose Ψ converges for vp(T ) > ρ, for ρ ≤ 0. Then, for j ≥ 1, Ψ(pjT )q
j

converges for
vp(T ) > ρ− 1. Moreover, if j > −ρ+ 1 and vp(T ) > ρ− 1, we have

(2.3.1) vp(p
−jΨ(pjT )q

j

) = −j + qj(vp(p
jT )) > −j + qj(j + ρ− 1) ,

and this last term → +∞, as j → +∞.
This shows that the series T −

∑∞
j=1 p

−jΨ(pjT )q
j

converges uniformly for vp(T ) > ρ−1,
so that its sum, which is Ψ, is analytic for vp(T ) > ρ− 1. It follows immediately from this
that Ψ is an entire function.
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Remark 2.4. We have proven that, for any j = 0, 1, . . . and for vp(T ) > −j,

(2.4.1) vp(p
−jΨ(pjT )q

j

) = −j + qj(j + vp(T )) .

In particular, for any a ∈ Zq, (Ψ(a) ∈ Zq and) Ψq(a) ≡ a, modulo pZq.

Proposition 2.5. For any a ∈ Qq, Ψq(a) ∈ Zq.

Proof. Let a ∈ Zq. We define by induction the sequence {ai}i=0,1,... :

(2.5.1) a0 = a , ai =

i−1∑
j=0

pj−i(aq
i−j−1

j − aq
i−j

j ) .

Since, for any a, b ∈ Zq, if a ≡ b mod p, then aq
n ≡ bq

n

mod pqn, hence modulo pn+1,
while a ≡ aq mod p, we see that ai ∈ Zq, for any i.

We then see by induction that, for any i,

(2.5.2) ai = p−i(a−
i−1∑
j=0

pjaq
i−j

j ) or, equivalently, a =

i∑
j=0

pjaq
i−j

j .

Explicitly, if we substitute in the formula which defines ai, namely

piai =

i−1∑
j=0

pjaq
i−j−1

j −
i−1∑
j=0

pjaq
i−j

j

the (i− 1)-st step of the induction, namely, a =

i−1∑
j=0

pjaq
i−j−1

j , we get

piai = a−
i−1∑
j=0

pjaq
i−j

j ,

which is precisely the i-th inductive step.
From the functional equation (0.3.6) and from Remark 2.4 we have, for a ∈ Zq and

i = 0, 1, 2, . . . ,

(2.5.3) Ψ(p−ia) ≡ p−ia−
i∑

`=1

p−`Ψ(p`p−ia)q
`

= p−i(a−
i−1∑
j=0

pjΨ(p−ja)q
i−j

) mod pZq .

Notice that Ψ(a) ∈ Zq and that, modulo pZq, Ψq(a) ≡ a = a0, defined as in (2.5.1). We
now show by induction on i that for a1, . . . , ai, . . . defined as in (2.5.1),

(2.5.4) Ψ(p−ia) ≡ ai mod pZq ,

which proves the statement. In fact, assume Ψ(p−ja) ≡ aj mod pZq, for j = 0, 1, . . . , i− 1,
and plug this information in (2.5.3). We get

(2.5.5) Ψ(p−ia) ≡ p−ia−
i∑

`=1

p−`aq
`

i−` = p−i(a−
i−1∑
j=0

pjaq
i−j

j ) = ai mod pZq ,

which is the i-th inductive step.
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Remark 2.6. Notice that from (2.5.3) it follows that, for any a ∈ p−nZq,

a ≡
n∑
`=0

p−`Ψq(p
`a)q

`

mod pZq .

The formula can be more precise using the functional equation (0.3.6) and Remark 2.4. We
get, for any a ∈ Qq,

(2.6.1) a ≡
−vp(a)+i∑
`=0

p−`Ψq(p
`a)q

`

mod pi+1Zq , ∀ i ∈ Z≥0 .

that is

(2.6.2) a ≡
i∑

`=0

p−`Ψq(p
`a)q

`

mod pi+vp(a)+1Zq , ∀ i ∈ Z≥−vp(a) .

We generalize (1.12.2) as

Corollary 2.7. For any a ∈ Qq, let

ai := Ψq(p
−ia) mod pZq ∈ Fq .

We have

(2.7.1) a =

∞∑
i>>−∞

[ai] p
i ∈W(Fq)[1/p] = Qq .

Proof. Assume first that a ∈ Zq. In this case (2.6.2) implies

(2.7.2) a ≡
i∑

`=0

p−`Ψq(p
`a)q

`

mod pi+1Zq , ∀ i ∈ Z≥0 .

So, the statement follows from the following

Lemma 2.8. Let i 7→ bi and i 7→ ci, for i = 0, 1, . . . , be two sequences in Zq such that

i∑
j=0

pjbq
i−j

j ≡
i∑

j=0

pjcq
i−j

j mod pi+1Zq , ∀ i ∈ Z≥0 .

Then
bi ≡ ci mod pZq , ∀ i ∈ Z≥0 .

Proof. Immediate by induction on i.

In the general case, assume a ∈ p−nZq. Then

(2.8.1) pna =

∞∑
i=0

[Ψq(p
n−ia) mod pZq] pi ∈W(Fq) .

hence

(2.8.2) a =

∞∑
i=0

[Ψq(p
n−ia) mod pZq] pi−n ∈ p−nW(Fq) .
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From the previous corollary, it follows that a ∈ Qq has the following expression as a Witt
bivector with coefficients in Fq

(2.8.3) a = (. . . , a
(q/p)i

−i , . . . , a
(q/p)2

−2 , a
q/p
−1 ; a0, a

p
1, a

p2

1 , . . . ) .

which obviously equals (. . . , a−i, . . . , a−2, a−1; a0, a1, a1, . . . ), if q = p.

Remark 2.9. We have tried to provide a simple addition formula for Ψq of the form (0.3.4),
in terms of the same power-series Φ. We could not get one, nor were we able to establish
the relation between Ψq and Ψp, for q = pf and f > 1. On the other hand it is clear that
Barsotti’s construction of Witt bivectors, based on classicals Witt vectors, extends to the
L-Witt vectors of [19, Chap. 1], where L/Qp denotes any fixed finite extension. In our case,
we would only need the construction of loc.cit. in the case of the field L = Qq. We believe
that the inductive limit of Zq-groups WQq,n →WQq,n+1 under Verschiebung

V : (x−n, . . . , x−1, x0)→ (0, x−n, . . . , x−1, x0)

is a Zq-formal groups whose addition law is expressed by a power-series Φq analog to Bar-
sotti’s Φ. We believe that equation (0.3.4) still holds true for Ψq if we replace Φ by Φq.
We also believe that a generalized Ψ exists for any finite extension L/Qp, with analogous
properties.

3 Valuation and Newton polygons of Ψq

This section is dedicated to establishing the growth behavior of |Ψq(x)| as |x| → ∞. These
results will be essential to get the delicate estimates of [3].

3.1 Valuation polygon of Ψq

We recall from [15] that the valuation polygon of a Laurent series f =
∑
i∈Z aiT

i with
coefficients ai ∈ Cp, converging in an annulus A := α ≤ vp(T ) ≤ β, is the graph Val(f)
of the function µ 7→ v(f, µ) := infi(vp(ai) + iµ), which is in fact finite along the segment
α ≤ µ ≤ β. The function µ 7→ v(f, µ) is continuous, piecewise affine, and concave on [α, β].
For any µ ∈ [α, β], we have v(f, µ) = inf{vp(Ψ(x)) | vp(x) = µ }. In the case of Ψ, A = Cp
and the segment [α, β] is the entire µ-line. For the convenience of the reader we have recalled
below the relation between the valuation polygon and the Newton polygon of f .

We prove

Theorem 3.1. The valuation polygon of Ψq goes through the origin, has slope 1 for µ > −1,
and slope qj, for −j − 1 < µ < −j, j = 1, 2, . . . (see Figure 1).

Proof. We recall that if both f and g converge in the annulus A := α ≤ vp(T ) ≤ β,
then, for any µ ∈ [α, β], v(f + g, µ) ≥ inf(v(f, µ), v(g, µ)), and that equality holds at µ if
v(f, µ) 6= v(g, µ). Moreover, for any n ∈ N, v(fn, µ) = n v(f, µ).

In the polygon in Figure 1, for j = 1, 2, . . . , the side of projection [−j, 1−j] on the µ-axis
is the graph of the function

(3.1.1) σj(µ) := qj−1(µ+ j − 1)− qj−2 − · · · − q − 1 .

Notice that

(3.1.2) σj+1(µ) = −1 + q σj(µ+ 1) ,
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Figure 1: The valuation polygon of Ψq.

and therefore

(3.1.3) σj+i(µ) = −1− q − · · · − qi−1 + qi σj(µ+ i) ,

for any i = 0, 1, 2, . . . .
Since Ψ ∈ TZ[[T ]] and since the coefficient of T is 1, we have v(Ψ, µ) = µ, for µ ≥ 0. For

0 > µ > −j, j ≥ 1, we have

v(p−jΨ(pjT )q
j

, µ) = −j + v(Ψ(pjT )q
j

, µ) = −j + qjv(Ψ(pjT ), µ) =

−j + qjv(Ψ(S), j + µ) = −j + (j + µ)qj > µ = v(T, µ) ,
(3.1.4)

where we have used the variable S = pjT .

Remark 3.2. For µ = −j we get equality in the previous formula.

Let us set, for j = 0, 1, 2, . . . ,

`j(µ) = −j + (j + µ)qj ,

so that (3.1.4) becomes

(3.2.1) v(p−jΨ(pjT )q
j

, µ) = `j(µ) > `0(µ) = µ = v(T, µ) ,

for 0 > µ > −j, j ≥ 1, with equality holding if µ = −j. Notice that

`0(µ) = µ = σ1(µ) .

Because of (3.2.1) and (0.0.5), and by continuity of µ 7→ v(Ψ, µ), we have

(3.2.2) v(Ψ, µ) = v(T, µ) = µ = σ1(µ) , for µ ≥ −1 .

We now reason by induction on n = 1, 2, . . . . We assume that, for any j = 1, 2, . . . , n the
side of projection [−j, 1 − j] on the µ-axis of the valuation polygon of Ψ is the graph of
σj(µ). This at least was proven for n = 1. We consider the various terms in the functional
equation
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Ψ = T − p−1Ψ(pT )q − p−2Ψ(p2T )q
2

−
∞∑
j=3

p−jΨ(pjT )q
j

.

We assume n > 1. For j = 1, 2, . . . , n, and −n− 1 < µ < −n, we have

v(p−jΨ(pjT )q
j

, µ) = −j + v(Ψ(pjT )q
j

, µ) = −j + qjv(Ψ(pjT ), µ) =

−j + qjv(Ψ(S), j + µ) = −j + qjσn−j+1(µ+ j) ,
(3.2.3)

since j − n− 1 < j + µ < j − n, and therefore the inductive assumption gives v(Ψ, j + µ) =
σn−j+1(µ + j) in that interval. For j > n, and −n − 1 < µ, we have instead, from (3.2.1),

v(p−jΨ(pjT )q
j

, µ) = `j(µ).
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Figure 2: The Newton polygon Nw(f) of f .

Lemma 3.3. Let n > 1.

1. For j = 1, 2, . . . , n and for any µ ∈ R,

(3.3.1) σn+1(µ) < −j + qjσn−j+1(µ+ j) .

2. For j > n and µ > −n− 1, we have

(3.3.2) σn+1(µ) < `j(µ) .

3. For −n− 1 < µ < −n,

(3.3.3) σn+1(µ) < µ .
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Proof. Assertion (3.3.1) is clear, since the two affine functions µ 7→ σn+1(µ) and µ 7→
−j + qjσn−j+1(µ + j), have the same slope qn, while their values at µ = −n are −qn−1 −
qn−2 − · · · − q − 1 and −j − qn−1 − qn−2 − · · · − qj+1 − qj , respectively. Notice that

−j−qn−1−qn−2−· · ·−qj+1−qj = (qj−j)−qn−1−qn−2−· · ·−p−1 > −qn−1−qn−2−· · ·−q−1 ,

so that the conclusion follows.
We examine assertion (3.3.2), namely that, for j > n and µ > −n− 1, we have

qn(µ+ n)− qn−1 − qn−2 − · · · − q − 1 < −j + (j + µ)qj .

The previous inequality translates into

qn(µ+ n)− qn−1 − qn−2 − · · · − q − 1 < −j + (j − n)qj + (n+ µ)qn+(j−n) ,

that is

qn−1 + qn−2 + · · ·+ q + 1− j + (j − n)qj + (n+ µ)qn(qj−n − 1) > 0 ,

for µ > −n − 1. Since the l.h.s. is an increasing function of µ, it suffices to show that the
inequality hold for µ = −n− 1, that is to prove that

(3.3.4) qn−1 + qn−2 + · · ·+ q + 1− j + (j − n)qj − qn(qj−n − 1) > 0 ,

for any j > n > 1. We rewrite the l.h.s. of (3.3.4) as

qn−1 + qn−2 + · · ·+ q + 1− n+ (n− j) + (j − n)qj − qj + qn =

(qn−1 + qn−2 + · · ·+ q + 1− n) + (qj − 1)(j − n) + (qn − qj) ,
(3.3.5)

where the four terms in round brackets on the r.h.s. are each, obviously, positive numbers.
The conclusion follows.

We finally show (3.3.3) , namely that for −n− 1 < µ < −n,

qn(µ+ n)− qn−1 − qn−2 − · · · − p− 1 < µ .
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Figure 3: The valuation polygon Val(f).
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It suffices to compare the values at µ = −n− 1 and at µ = −n. We get

−qn − qn−1 − qn−2 − · · · − q − 1 < −n− 1 ,

and
−qn−1 − qn−2 − · · · − q − 1 < −n ,

respectively, both obviously true.

The previous calculation shows that the side of projection [−n− 1,−n] on the µ-axis of
the valuation polygon of Ψ is the graph of σn+1(µ). We have then crossed the inductive
step Case n⇒ Case n+ 1, and Theorem 3.1 is proven.

Corollary 3.4. Proposition 0.1 holds true.

Proof. We have seen that vp(Ψp(x)) = vp(x) if vp(x) > 0. Then Proposition 0.1 follows from
(0.3.4) and Lemma 0.2.

Corollary 3.5. For any i = 1, 2, . . . , and vp(x) ≥ −i (resp. vp(x) > −i), we have

vp(Ψq(x)) ≥ − q
i−1
q−1 (resp. vp(Ψq(x)) > − q

i−1
q−1 ). If vp(x) > −1, we have vp(Ψq(x)) = vp(x).

Proof. The last part of the statement is a general fact for automorphisms of an open k-
analytic disk D with one k-rational fixed point a ∈ D(k) (the disk vp(x) > −1 and x(a) = 0,
in the present case) [6, Lemma 6.4.4].

3.2 Newton polygon of Ψq

We now recall that to a Laurent series f =
∑
i∈Z aiT

i with coefficients ai ∈ Cp, converging
in an annulus A := α ≤ vp(T ) ≤ β, one associates two, dually related, polygons. The
valuation polygon µ 7→ v(f, µ), was recalled before. The Newton polygon Nw(f) of f is
the convex closure in the standard affine plane R2 of the points (−i, v(ai)) and (0,+∞). If
ai = 0, then v(ai) is understood as = +∞. We define s 7→ Nw(f, s) to be the function whose
graph is the lower-boundary of Nw(f). The main property of Nw(f) is that the length of
the projection on the X-axis of the side of slope σ is the number of zeros of f of valuation
= σ. The formula

v(f, µ) = inf
i∈Z

i µ+ v(ai)

indicates (cf. [15]) that the relation between Nw(f) and Val(f) “almost” coincides with the
duality formally described in the following lemma.

Lemma 3.6. (Duality of polygons) In the projective plane P2, with affine coordinates
(X,Y ), we consider the polarity with respect to the parabola X2 = −2Y

P2 → (P2)∗ → P2 ,

point (σ, τ) 7−→ line (Y = −σX − τ) 7−→ point (σ, τ) .

Assume the graph Γ of a continuous convex piecewise affine function has consecutive vertices

. . . , (−i0, ϕ0) , (−i1, ϕ1) , (−i2, ϕ2) , (−i3, ϕ3) , . . .

joined by the lines

. . . , Y = σ1X + τ1 , Y = σ2X + τ2 , Y = σ3X + τ3 , . . . .

Then, the lines joining the points

. . . , (−σ1,−τ1) , (−σ2,−τ2) , (−σ3,−τ3) , . . .
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are
. . . , Y = i1X − ϕ1 , Y = i2X − ϕ2 , . . . ,

and the polarity transforms these back into

. . . , (−i1, ϕ1) , (−i2, ϕ2) , . . . .

We say that the graph Γ∗ joining the vertices (σi, τi), (σi+1, τi+1) by a straight segment is
the dual graph of Γ. It is clear that the relation is reciprocal, that is (Γ∗)∗ = Γ and that Γ∗

is a continuous concave piecewise affine function.

Proof. It is the magic of polarities.

The precise relation between Nw(f) and Val(f) is

Proposition 3.7.
Val(f) = (−Nw(f))∗

where −Nw(f) is the polygon obtained from Nw(f) by the transformation (X,Y ) 7→ (X,−Y ).

Proof. The most convincing proof follows from comparing Lemma 3.6 with Figures 2 and
3.

We now apply the previous considerations to the two polygons associated to the function
Ψq.

Corollary 3.8. The Newton polygon Nw(Ψq) has vertices at the points

Vi := (−qi, i qi − qi − 1

q − 1
) = (−qi, i qi − qi−1 − · · · − q − 1) .

The equation of the side joining the vertices Vi and Vi−1 is

Y = −iX − qi − 1

q − 1
;

its projection on the X-axis is the segment [−qi,−qi−1]. So, Nw(Ψ) has the form described
in Figure 4.

Corollary 3.9. For any i = 0, 1, . . . , the map Ψ = Ψq induces coverings of degree qi,

(3.9.1) Ψ : {x ∈ Cp | vp(x) > −i− 1 } −→ {x ∈ Cp | vp(x) > −q
i+1 − 1

q − 1
} ,

(in particular, an isomorphism

(3.9.2) Ψ : {x ∈ Cp | vp(x) > −1 } ∼−−→ {x ∈ Cp | vp(x) > −1 } ,

for i = 0), finite maps of degree qi

(3.9.3)

Ψ : {x ∈ Cp | − (i+ 1) < vp(x) < −i } −→ {x ∈ Cp | −
qi+1 − 1

q − 1
< vp(x) < −q

i − 1

q − 1
} ,

and finite maps of degree qi+1 − qi

(3.9.4) Ψ : {x ∈ Cp | vp(x) = −i− 1 } −→ {x ∈ Cp | −
qi+1 − 1

q − 1
≤ vp(x) } .
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Figure 4: The Newton polygon Nw(Ψq) of Ψq.

Proof. The shape of the Newton polygon of Ψ indicates that, for any a ∈ Cp, with vp(a) >
−1, the side of slope = vp(a) of the Newton polygon of Ψ− a has projection of length 1 on
the X-axis. So, Ψ : {x ∈ Cp | vp(x) > −1 } → {x ∈ Cp | vp(x) > −1 } is bijective, hence
biholomorphic. Now we recall from Corollary 3.5 that for any given i ≥ 1,

(3.9.5) Ψ({x ∈ Cp | vp(x) > −i− 1 }) ⊂ {x ∈ Cp | vp(x) > −q
i+1 − 1

q − 1
} .

So, let a be such that − q
i+1−1
q−1 < vp(a) ≤ − q

i−1
q−1 , say vp(a) = − q

i−1
q−1 − ε, with ε ∈ [0, qi).

Then, the Newton polygon of Ψ− a has a single side of slope > −i− 1, which has precisely
slope = −ε q−i− i and has projection of length qi on the X-axis. So, the equation Ψ(x) = a
has precisely qi solutions x in the annulus −i − 1 < vp(x) ≤ −i. If, for the same i,

− q
i−1
q−1 < vp(a) ≤ − q

i−1−1
q−1 , the Newton polygon of Ψ − a has a side of slope −i, whose

projection on the X-axis has length qi − qi−1, and a side of slope σ, 1− i ≥ σ > −i, whose
projection on the X-axis has length qi−1. So again Ψ−1(a) consists of qi distinct points. We

go on, for a in an annulus of the form − q
i−j−1
q−1 < vp(a) ≤ − q

i−j−1−1
q−1 , up to j = i− 2, i.e. to

− q
2−1
q−1 < vp(a) ≤ −1. In that case, the Newton polygon of Ψ − a has a side of slope −i of

projection qi − qi−1, a side of slope 1− i of projection qi−1 − qi−1,. . . , a side of slope j − i
of projection qi−j − qi−j−1 on the X-axis, . . . , up to a side of slope -1 of projection q − 1
on the X-axis. Finally, for vp(a) > −1, there is still exactly one solution of Ψ(x) = a, with
vp(x) > −1. This means that Ψ induces a (ramified) covering of degree qi in (3.9.1).

3.3 The addition law of Ψ

We now extend the estimates of Corollary 3.9 to translates Ψ(a + x) of Ψ, for a ∈ Qp.
Although we expect that the same discussion carries over to Ψq(a + x), where a ∈ Qq, we
assume for simplicity that q = p in the rest of this subsection.

Proposition 3.10. Let m ∈ Z>0 and let M(x−m . . . , x−1, x0) be a monomial in Zp[x−m . . . , x−1, x0]
divisible by x−m and of pure weight 1, where xi weighs pi, for any i. Set

M(x) := M(Ψ(pmx), . . . ,Ψ(x)) .

22



Then, for any r = 1, 2, . . . ,

wr(M(x)) ≥

m+ 1− (p− 1)r(m− r + 1) + (p− 1)

((
m+ 1

2

)
−
(
r

2

))
− pr+1 − 1

p− 1
>

m+ 1 + (p− 1)
(m− r)2 + (m− r)

2
− pr+1 − 1

p− 1
(> −p

r+1 − 1

p− 1
) ,

(3.10.1)

while, for r = 0,−1,−2, . . . , we get

(3.10.2) wr(M(x)) ≥ m− r − (p− 1)mr + (p− 1)

(
m+ 1

2

)
(≥ p (1− r) ) .

Proof. This follows from the estimates of Corollary 3.9 via a totally self-contained, but
lengthy, computation on isobaric polynomials of Witt-type. We refer to the upcoming paper
[3] for the proof of a more general statement.

We apply Proposition 3.10 to the study of the addition law of Ψ. From (0.3.4) and
(0.3.5), we deduce, taking into account Proposition 2.5, that, for any c ∈ Qp

Ψ(x+ c) =

lim
i→∞

ϕi(Ψ(pix), . . . ,Ψ(px),Ψ(x); Ψ(pic), . . . ,Ψ(pc),Ψ(c)) ,
(3.10.3)

where

ϕm(Ψ(pmx), . . . ,Ψ(px),Ψ(x); Ψ(pmc), . . . ,Ψ(pc),Ψ(c))−
ϕm−1(Ψ(pm−1x), . . . ,Ψ(px),Ψ(x); Ψ(pm−1c), . . . ,Ψ(pc),Ψ(c))

(3.10.4)

is a sum of monomials M(x) as in Proposition 3.10.

Theorem 3.11.

1. The function Ψ is bounded and uniformly continuous on any p-adic strip around Qp.
In particular,

Ψ(x) ∈H bd .

2. For any j = 0, 1, . . . and x ∈ Qp,

(3.11.1) Ψp(x+ pjC◦p) ⊂ Ψp(x) + pjC◦p .

Proof. For the first part of the statement, we observe that Proposition 3.10 shows that, for
any fixed r ≥ 0, the sequence

i 7−→ ϕi(Ψ(pix), . . . ,Ψ(px),Ψ(x); Ψ(pic), . . . ,Ψ(pc),Ψ(c))

converges in the wr-valuation. This means that for any ρ > 0, the previous sequence is a
sequence of entire functions bounded on the p-adic strip Σρ around Qp, which converges to
Ψ(x+ c) uniformly on Σρ.

The second part of the statement was already proved in Corollary 3.4. It also follows
from the estimates of Proposition 3.10 when r ≤ 0.
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3.4 The zeros of Ψ

The following theorem is formulated in a way to make sense for q = any power of p. We
expect that it is true in that generality. However, for the time being, we can only prove it
for q = p.

Theorem 3.12. In this statement, let q = p.

1. For any n = 1, 2, . . . , the map Ψq has qn := qn − qn−1 simple zeros of valuation
−n in Qq. More precisely, for any system of representatives a1, . . . , aqn ∈ Zq of
(Zq/pnZq)× = Wn−1(Fq)×, and any j = 1, . . . , qn, the open disc D(ajp

−n, p−) con-

tains a unique zero z
(n)
j ∈ Qq of Ψq. Then z

(n)
1 , . . . , z

(n)
qn are all the zeros of Ψq of

valuation −n.

2. For n = 1, 2, . . . let z
(n)
1 , . . . , z

(n)
qn be the zeros of Ψq of valuation −n. We set

ψn(x) =

qn∏
j=1

(1− x

z
(n)
j

) ∈ 1 + pnxZq[x] .

Then

(3.12.1) Ψq(x) = x

∞∏
n=1

ψn(x)

is the canonical convergent infinite Schnirelmann product expression [15, (4.13)] of
Ψq(x) in the ring Qp{x}.

3. The inverse function β(T ) = βq(T ) of Ψq(T ) ( i.e. the power series such that, in
TZ[[T ]], Ψq(βq(T )) = T = βq(Ψq(T ))) belongs to T +T 2Z[[T ]]. Its disc of convergence
is exactly vp(T ) > −1.

Proof. We now prove the first statement in Theorem 3.12. We recall that here q = p, so
that a1, . . . , apn ∈ Zp, with pn = pn − pn−1, are a system of representatives of (Zp/pnZp)×.

Lemma 3.13. For any m,n ∈ Z>0, with m ≤ n, and any j = 1, . . . , pn, the value of Ψ at
the maximal point ξajp−n,pm (of Berkovich type 2) of the rigid disc D(ajp

−n, (pm)+), that

is − log |Ψ(ξajp−n,pm)| = wm(Ψ(ajp
−n + x)), is −p

m−1
p−1 < 0.

Proof. The proof follows from the addition law (3.10.3) in which

Ψ(ajp
−n), . . . ,Ψ(ajp

i−n) ∈ Zp

so that, for any i = 0, 1, 2, . . . ,

ϕi(Ψ(pix), . . . ,Ψ(px),Ψ(x); Ψ(ajp
i−n), . . . ,Ψ(ajp

1−n),Ψ(ajp
−n))

is a sum of a dominant (at ξajp−n,pm) term

Ψ(x) + Ψ(ajp
−n)

and of terms M(x) described, for m = n− i, in Proposition 3.10.

From the harmonicity of the function |Ψ(x) at the point ξajp−n,pm , the estimate of
Lemma 3.13, and the fact that Ψ(ajp

−n) ∈ Zp, we deduce that each of the pnp
m−n open

discs of radius pm, centered at points of p−nZp \ p1−nZp contains at least one zero of Ψq in
Qq. For m = 1, this proves the first part of the statement.
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For the second part of the statement we refer to [15, §4]. The fact that every ψn(x) ∈
Qp[x] is −n-extremal follows from the fact that its zeros are all of exact valuation −n [15,
(2.7’)].

The fact that βp belongs to T+T 2Z[[T ]] is obvious. The convergence of βq for vp(T ) > −1
follows from (3.9.2). The fact that it cannot converge in a bigger disk is a consequence of
the fact that Ψq has q − 1 zeros of valuation −1.

Corollary 3.14. All zeros of Ψq are simple and are contained in Qq. Each ball a + Zq ∈
Qq/Zq contains a single zero of Ψq.

Remark 3.15. We believe that Theorem 3.12 holds, with essentially the same proof, for
any power q of p. See Remark 2.9.

4 Rings of continuous functions on Qp

The point of this section is that of establishing the categorical limit/colimit formulas for the
linear topologies of rings of p-adic functions on Qp. For topological algebra notions, we take
the viewpoint and use the definitions explained in Appendix A (see also [4]).

We consider here a linearly topologized separated and complete ring k, whose family of
open ideals we denote by P(k). In practice k = Zp or = Fp, or = Zp/prZp, for any r ∈ Z≥1.
More generally, A will be a complete and separated topological ring equipped with a Z-linear
topology, defined by a family of open additive subgroups of A. In particular we have in mind
A = a fixed finite extension K of Qp, whose topology is K◦-linear but not K-linear. Again,
a possible k would be K◦ or any K◦/(πK)r, for a parameter π = πK of K, and r as before.

We will express our statements for an abelian topological group G, which is separated
and complete in the Z-linear topology defined by a countable family of profinite subgroups
Gr, with Gr ⊃ Gr+1, for any r ∈ Z. So,

G = lim←−
r→+∞

G/Gr = lim−→
r→−∞

Gr ,

where G/Gr is discrete, Gr is compact, and limits and colimits are taken in the category
of topological abelian groups separated and complete in a Z-linear topology. We denote
by πr : G → G/Gr the canonical projection. Then, G is canonically a uniform space in
which a function f : G → A is uniformly continuous iff, for any open subgroup J ⊂ A,
the induced function G → A/J factors via a πr, for some r = r(J). A subset of G of the
form π−1

r ({h}) = g +Gr, for g ∈ G and h = πr(g) is sometimes called the ball of radius Gr
and center g. In particular, G is a locally compact, paracompact, 0-dimensional topological
space. A general discussion of the duality between k-valued functions and measures on such
a space, will appear in [5]. In practice here G = Qp or Qp/prZp or prZp, with the obvious
uniform and topological structure.

Definition 4.1. Let G and A be as before. We define C (G,A) (resp. C bd
unif(G,A)) as

the A-algebra of continuous (resp. bounded and uniformly continuous) functions f : G →
A. We equip C (G,A) (resp. C bd

unif(G,A)) with the topology of uniform convergence on
compact subsets of X (resp. on X). For any r ∈ Z and g ∈ G, we denote by χg+Gr is the
characteristic function of g + Gr ∈ G/Gr. If G is discrete and h ∈ G, by eh : G → k we
denote the function such that eh(h) = 1, while eh(x) = 0 for any x 6= h in G.

Remark 4.2. It is clear that if A = k is a linearly topologized ring any subset of k and
therefore any function f : G→ k, is bounded. So, we write Cunif(G, k) instead of C bd

unif(G, k)
in this case. If G is discrete, any function G→ k is (uniformly) continuous; still, the bijective
map Cunif(G, k) → C (G, k) is not an isomorphism in general, so we do keep the difference
in notation. If G is compact, any continuous function G → k is uniformly continuous, and
Cunif(G, k)→ C (G, k) is an isomorphism, so there is no need to make any distinction.
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Lemma 4.3. Notation as above, but assume G is discrete (so that the Gr’s are finite).
Then C (G, k) (resp. Cunif(G, k)) is the k-module of functions f : G → k endowed with the
topology of simple (resp. of uniform) convergence on G. So

C (G, k) = lim←−
r→−∞

C (Gr, k) =
∏
h

k eh , h ∈ G .

Similarly,

Cunif(G, k) = lim←−
I∈P(k)

∏
h∈G

�,u
(k/I) eh =

∏
h∈G

�,u
k eh ,

where
∏
h∈G

�,u
(k/I) eh carries the discrete topology.

Proof. Clear from the definitions.

The next lemma is a simplified abstract form, in the framework of linearly topologized
rings and modules, of the classical decomposition of a continuous function as a sum of
characteristic functions of balls (see for example Colmez [11, §1.3.1]).

Lemma 4.4. Notation as above but assume G is compact (so that the G/Gr’s are finite).
Then

C (G, k) = Cunif(G, k) = lim−→
u

r→+∞
C (G/Gr, k) = lim−→

u

r→+∞

⊕
g+Gr∈G/Gr

kχg+Gr .

For any r, the canonical morphism C (G/Gr, k)→ C (G, k) is injective.

Proof. This is also clear from the definitions.

Remark 4.5. We observe that the inductive limit appearing in the formula hides the
complication of formulas of the type

χg+Gr =
∑
i

χgi+Gr+1
if g +Gr =

⋃̇
i
gi +Gr+1

which we do not need to make explicit for the present use (see [5] for a detailed discussion).

Proposition 4.6. Notation as above, with G general. Then in the category CLMu
k we have :

1.
C (G, k) = lim←−

r→−∞
C (Gr, k) for the restrictions C (Gr, k)→ C (Gr+1, k) .

In particular, for any fixed r ∈ Z,

C (G, k) =
∏

g+Gr∈G/Gr

C (g +Gr, k) .

2.
Cunif(G, k) = lim−→

u

r→+∞
Cunif(G/Gr, k)

for the embeddings
Cunif(G/Gr, k) ↪→ Cunif(G/Gr+1, k)

3. The natural morphism
Cunif(G, k) −→ C (G, k)

is injective and has dense image.
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Proof. The first two parts follow from the universal properties of limits and colimits. The
morphism in part 3 comes from the injective morphisms, for r ∈ Z,

Cunif(G/Gr, k) −→ C (G, k)

and the universal property of colimits. The inductive limit of these morphisms in the
category CLMu

k is a completion of the inductive limit taken in the category Modk of k-
modules equipped with the k-linear inductive limit topology. Since the latter is separated
and since the axiom AB5 holds for the abelian categoryModk, we deduce that the morphism
in part 3 is injective. The morphism has dense image because, for any r ∈ Z and for any
s ∈ Z≥0, the composed morphism

Cunif(Gr/Gr+s, k) −→ Cunif(G/Gr+s, k) −→ C (G, k) −→ C (Gr, k)

is the canonical map of Lemma 4.4

Cunif(Gr/Gr+s, k) −→ C (Gr, k)

for the compact group Gr and its subgroup Gr+s. The fact that the set theoretic union⋃
s≥0 Cunif(Gr/Gr+s, k) is dense in C (Gr, k) is built-in in the definition of lim−→

u.

Proposition 4.7. Let (H, {Hr}r) be a locally compact group with the same properties as
(G, {Gr}r) above, so that (G×H, {Gr ×Hr}r) also has the same properties. Then we have
a natural identification in CLMu

k

(4.7.1) C (G, k)⊗̂ukC (H, k)
∼−−→ C (G×H, k)

and a continuous strictly closed embedding

(4.7.2) Cunif(G, k)⊗̂ukCunif(H, k) −→ Cunif(G×H, k) .

Proof. We prove (4.7.1) first. By the first part of point 1 in Proposition 4.6 and the fact
that ⊗̂uk commutes with projective limits, we are reduced to the case of G and H compact.
We are then in the situation of Lemma 4.4 for both G and H (in particular, the G/Gr’s and
the H/Hr’s are finite). We need to prove

lim−→
u

r→+∞

⊕
(g,h)+(Gr×Hr)

kχ(g,h)+Gr×Hr = lim−→
u

r→+∞

⊕
g+Gr

kχg+Gr ⊗̂
u

k lim−→
u

r→+∞

⊕
h+Hr

kχh+Hr .

Let M (resp. N) be the l.h.s. (resp. the r.h.s.) in the previous equation. Then

M = lim←−
I∈P(k)

M/IM , N = lim←−
I∈P(k)

N/IN .

We show that M/IM
∼−−→ N/IN , for any I ∈ P(k). Now,

M/IM = lim→
r

⊕
(g,h)+(Gr×Hr)

(k/I)χ(g,h)+Gr×Hr .

Let
P := lim−→

u

r

⊕
g+Gr

kχg+Gr , Q := lim−→
u

r

⊕
h+Hr

kχh+Hr .

Then

N/IN = P/IP ⊗k/I Q/IQ = lim→
r

⊕
g+Gr

(k/I)χg+Gr ⊗k/I lim→
r

⊕
h+Hr

(k/I)χh+Hr = M/IM .
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This concludes the proof of (4.7.1).
We now pass to (4.7.2). We use formula 2 of Proposition 4.6, to replace the map in the

statement by

lim−→
u

r

Cunif(G/Gr, k)⊗̂uk lim−→
u

r→+∞
Cunif(H/Hr, k) −→ lim−→

u

r

Cunif((G×H)/(Gr ×Hr), k) .

By Lemma 4.3 this reduces to considering

lim−→
u

r

lim←−
I∈P(k)

∏
g∈G

�,u
(k/I) eg+Gr ⊗̂

u
k lim−→

u

r→+∞
lim←−

I∈P(k)

∏
h∈H

�,u
(k/I) eh+Hr −→

lim−→
u

r

lim←−
I∈P(k)

∏
(g,h)

�,u
(k/I) e(g+Gr,h+Hr)

As before, let M (resp. N) be the l.h.s. (resp. the r.h.s.) in the previous equation. Then

M = lim←−
I∈P(k)

M/IM , N = lim←−
I∈P(k)

N/IN .

We show that M/IM ↪→ N/IN in an embedding with the relative topology, for any I ∈
P(k). Now,

M/IM = lim−→
u

r

∏
g

(k/I) eg+Gr ⊗̂
u

k/I lim−→
u

r

∏
h

(k/I) eh+Hr =

lim−→
u

r

(
∏
g

(k/I) eg+Gr ⊗̂
u

k/I

∏
h

(k/I) eh+Hr ) ,

and
N/IN = lim−→

u

r

∏
(g,h)

(k/I) e(g+Gr,h+Hr)

where lim−→
u and ⊗̂uk/I are taken in the category CLMu

k/I . So, our statement is reduced to

the fact that, for k, G, and H, discrete, if kG (resp. kH , resp. kG×H) indicates the k-algebra
of functions G → k (resp. H → k, resp. G ×H → k) with the discrete topology, we have
an inclusion

kG ⊗k kH ↪→ kG×H .

We are especially interested in

Corollary 4.8.

1. For any r ∈ Z,

(4.8.1) Cunif(Qp/pr+1Zp,Zp) = lim←−
s→+∞

C (Qp/pr+1Zp,Zp/psZp)

where C (Qp/pr+1Zp,Zp/psZp) is equipped with the discrete topology. It is the Zp-
algebra of all maps Qp/pr+1Zp → Zp equipped with the p-adic topology;

2. For any r ∈ Z,

(4.8.2) C (Qp/pr+1Zp,Zp) = lim←−
s,t→+∞

C (p−tZp/pr+1Zp,Zp/psZp)

where C (p−tZp/pr+1Zp,Zp/psZp) is equipped with the discrete topology. It is the Zp-
Hopf algebra of all maps Qp/pr+1Zp → Zp equipped with the topology of simple con-
vergence on Qp/pr+1Zp for the p-adic topology of Zp;
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3.

(4.8.3) Cunif(Qp,Zp) = lim−→
u

r→+∞
Cunif(Qp/pr+1Zp,Zp) ;

4.

(4.8.4) C (Qp,Zp) = lim←−
s→+∞

C (Qp,Zp/psZp) .

Remark 4.9. Formula 4.7.1 shows that C (Qp,Zp) is a Hopf algebra object in CLMu
Zp .

Remark 4.10. We point out a tautological, but useful, formula which holds in C (Qp/pr+1Zp,Fp).
For any h ∈ Qp/pr+1Zp, let eh denote as before the function Qp/pr+1Zp → Fp such that
eh(h) = 1 while eh(x) = 0, if x ∈ Qp/pr+1, x 6= h. For any i ≤ r, the function

xi : Qp/pr+1Zp −→ Fp ,

was introduced in (1.12.4). We then have

(4.10.1) xi =
∑

h∈Qp/pr+1Zp

hieh ,

where hi = xi(h).

Lemma 4.11. Let G and K be as above but assume G is discrete. Then in the category
CLCK

1.
C (G,K) =

∏
g∈G

Keg

is a Fréchet K-algebra.

2.
C bd

unif(G,K) = `∞(G,K)

is the Banach K-algebra of bounded sequences (ag)g∈G of elements of K, equipped with
the componentwise sum and product and with the supnorm.

Proof. Obvious from the definitions.

Lemma 4.12. Let G and K be as above, but assume G is compact. Then in the category
CLCK

C (G,K) = C bd
unif(G,K) = `0∞(G,K)

is the Banach K-algebra of sequences (ag)g∈G, with ag ∈ K, such that ag → 0 along the
filter of cofinite subsets of G, equipped with componentwise sum and product and with the
supnorm.

Proof. This is a straightforward generalization of the classical wavelet decomposition. See
[11, Prop. 1.16].

Proposition 4.13. Let G and K be as in all this section. Then in the category CLCK we
have :

1.
C (G,K) = lim←−

r→−∞
C (Gr,K) for the restrictions C (Gr,K)→ C (Gr+1,K) .

In particular, C (G,K) is a Fréchet K-algebra.
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2.
C bd

unif(G,K) = lim−→
r→+∞

C bd
unif(G/Gr,K)

for the embeddings
C bd

unif(G/Gr,K) ↪→ C bd
unif(G/Gr+1,K) ,

where the inductive limit of Banach K-algebras is strict. In particular, C bd
unif(G,K) is

a complete bornological K-algebra.

3. The natural morphism
C bd

unif(G,K) −→ C (G,K)

is injective and has dense image.

Proof. It is clear. For the notion of a bornological topological K-vector space we refer to
[18, §6]; the fact that the notion is stable by strict inductive limits is Example 3 on page 39
of loc.cit. . The statement on completeness is proved in [18, Lemma 7.9].

Proposition 4.14. Let G and H be locally compact groups as in Proposition 4.7. Then

(4.14.1) C (G,K)⊗̂π,KC (H,K)
∼−−→ C (G×H,K) ,

while the canonical map

(4.14.2) C bd
unif(G,K)⊗̂π,KC bd

unif(H,K) −→ C bd
unif(G×H,K)

is a strictly closed embedding of complete bornological algebras.

Proof. In the case of G and H compact this is detailed in the Example after Prop. 17.10
of [18]. In the general case (4.14.1) follows by taking projective limits. The statement for
C bd

unif(G,K) reduces instead to (4.7.2).

We point out that (CLCK , ⊗̂π,K) is a K-linear symmetric monoidal category. From

Remarks 4.7 and 4.14, we conclude

Proposition 4.15. Let G be as in Definition 4.1, and let A be either k or K, as before,
and C (G,A) be as in loc.cit. . We regard (CLMu

k , ⊗̂k) and (CLCK , ⊗̂π,K) as symmetric
monoidal categories. The coproduct, counit, and inversion

P(f)(x, y) = f(x+ y) , ε(f) = f(0G) , ρ(f)(x) = f(−x) ,

for any f ∈ C (G,A) and any x, y ∈ G, define a structure of topological A-Hopf algebra on
C (G,A), in the sense of the previous monoidal categories.

The following result describes the structure of the Hopf algebras of functions

Qp/pr+1Zp → Zp/pa+1Zp ,

for any r, a ∈ Z and a ≥ 0 in terms of the functions xi

xi : Qp/pi+1Zp −→ Fp

introduced in (1.12.4). See also Remark 4.10.
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Proposition 4.16. For any i ∈ Z, let xi be as in (1.12.4) and let Xi be indeterminates.
For r ∈ Z and i ∈ Z≥0, let Fp(r, i) denote the Fp-algebra

Fp[Xr, Xr−1, Xr−2, . . . , Xr−i]/(1−Xp−1
r , 1−Xp−1

r−1 , . . . , 1−X
p−1
r−i ) .

The dimension of Fp(r, i) as a Fp-vector space is (p−1)i+1. Let Xr,i := (Xr−i, Xr−i+1, . . . , Xr−1, Xr)
be viewed as a Witt vector of length i+ 1 with coefficients in Fp(r, i). We make Fp(r, i) into
an Fp-Hopf algebra by setting

PXr,i = Xr,i ⊗Fp 1 + 1⊗Fp Xr,i .

For any i = 0, 1, . . . , the map Fp-algebra map Fp(r, i+ 1)→ Fp(r, i) sending Xr−j to Xr−j
if 0 ≤ j ≤ i and Xr−i−1 to 0 is a homomorphism of Fp-Hopf algebras. Then, in the category
CLMu

Fp

1. The map

Fp(r, i) −→ C (pr−iZp/pr+1Zp,Fp)
Xj 7−→ xj , for r − i ≤ j ≤ r ,

(4.16.1)

is an isomorphism of Fp-Hopf algebras.

2. the Fp-Hopf algebra C (Qp/pr+1Zp,Fp) equals

Fp(r,∞) := lim←−
i→+∞

Fp(r, i)

with the prodiscrete topology;

3. the topological Fp-algebra Cunif(Qp/pr+1Zp,Fp) equals Fp(r,∞) equipped with the dis-
crete topology.

Proof. Parts 1 and 2 are [17, Teorema 3.31]. Part 3 follows by forgetting the topology.

Remark 4.17. Notice that the Fp-algebras Fp(r, i) are perfect.

Corollary 4.18. For r ∈ Z and i, a ∈ Z≥0

1. the topological Zp/pa+1Zp-algebra Cunif(Qp/pr+1Zp,Zp/pa+1Zp) equals

(4.18.1) Wa(Cunif(Qp/pr+1Zp,Fp)) = Wa(Fp(r,∞))

equipped with the discrete topology. Therefore,

(4.18.2) Cunif(Qp/pr+1Zp,Zp) = W(Cunif(Qp/pr+1Zp,Fp)) = W(Fp(r,∞))

equipped with the p-adic topology.

2. the Zp/pa+1Zp-Hopf algebra C (Qp/pr+1Zp,Zp/pa+1Zp) equals

(4.18.3) Wa(C (Qp/pr+1Zp,Fp)) = Wa(Fp(r,∞))

with the prodiscrete topology. Therefore,

(4.18.4) C (Qp/pr+1Zp,Zp) = W(C (Qp/pr+1Zp,Fp)) = W(Fp(r,∞))

equipped with the product topology of the prodiscrete topology of Fp(r,∞) on the com-
ponents.
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Definition 4.19. We set
C = C (Qp,Zp) .

For any r, a ∈ Z with a ≥ 0, we define a Fréchet Zp-subalgebra of C

Cr,a := {f ∈ C | f(x+ pr+1Zp) ⊂ f(x) + pa+1Zp , ∀x ∈ Qp } .

Let F be the set-theoretic map

F : C −→ C

f 7−→ fp
(4.19.1)

Then

(4.19.2) Cr,a+1 ⊂ Cr,a and Cr,a ⊂ Cr+1,a

(4.19.3) pa+1C ⊂ Cr,a

is an ideal of Cr,a, and F induces a map

(4.19.4) F : Cr,a −→ Cr,a+1 .

There exists a canonical map

Rr,a : Cr,a −→ C (Qp/pr+1Zp,Zp/pa+1Zp)
f 7−→ Rr,a(f)

(4.19.5)

such that
πa+1 ◦ f = Rr,a(f) ◦ πr+1

which sits in the exact sequence

(4.19.6) 0 −→ pa+1C −→ Cr,a
Rr,a−−−−→ C (Qp/pr+1Zp,Zp/pa+1Zp) = Wa(Fp(r,∞)) −→ 0

We conclude

Proposition 4.20. For any r ∈ Z and any a ∈ Z≥1, the map f 7→ π1 ◦ f induces an
isomorphism

(4.20.1) Cr,a/pCr,a−1
∼−−→ Cunif(Qp/pr+1Zp,Fp) .

For a = 0 we similarly have

(4.20.2) Cr,0/pC
∼−−→ Cunif(Qp/pr+1Zp,Fp) .

The inverse of the isomorphism of discrete Fp-algebras

(4.20.3) Cr,a/pCr,a−1
∼−−→ Cr,0/pC

is provided by the map

F a : Cr,0/pC
∼−−→ Cr,a/pCr,a−1

f 7−→ fp
a

.
(4.20.4)

Proof. The first formula follows from (4.19.3) and (4.19.6). In fact,

Cr,a/pCr,a−1 = (Cr,a/p
aC )/p(Cr,a−1/p

a−1C ) = Wa(Fp(r,∞))/pWa−1(Fp(r,∞)) = Fp(r,∞) .

Similarly for the other formulas.
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By iteration, we get

Corollary 4.21.

(4.21.1) Cr,a/p
a+1C

∼−−→ C (Qp/pr+1Zp,Zp/pa+1Zp) = Wa(Fp(r,∞)) .

For any f ∈ Cr,a there exist f0, f1, . . . , fa ∈ Cr,0, well determined modulo pC , such that

(4.21.2) f ≡ fp
a

0 + pfp
a−1

1 + p2fp
a−2

2 + · · ·+ pafa mod pa+1C .

5 p-adically entire functions bounded on Qp

We prove here the statements announced in the Introduction, namely Theorem 1.15, Theo-
rem 1.17, Proposition 1.18, Proposition 1.19, Proposition 1.21, Proposition 1.22, and Theo-
rem 1.25. We assume q = p from now on, so in particular Ψ stands for Ψp.

We start with the proof of Theorem 1.15.

Proof. (of Theorem 1.15) It suffices to prove the statement over Zp. Notice that

Zp[Ψ(λx) |λ ∈ Q×p ] = Zp[Ψ(λp−ix) | i ∈ Z , λ ∈ Z×p ] .

Both rings Zp[[(λx)i] | i ∈ Z , λ ∈ Z×p ] and Zp[Ψ(λp−ix) | i ∈ Z , λ ∈ Z×p ] are contained in
the Zp-Banach ring Cunif(Qp,Zp) which may be identified with W(Cunif(Qp,Fp)) equipped
with the p-adic topology. Then APZp consists of W(Fp[(λx)i | i ∈ Z , λ ∈ Z×p ]). Notice
that Fp[(λx)i | i ∈ Z , λ ∈ Z×p ] is a perfect subring of the perfect ring Cunif(Qp,Fp), since
(λx)pi = (λx)i, for any i, λ. It suffices to prove

Lemma 5.1. For any fixed λ ∈ Z×p , the closure of Zp[Ψ(λpix) | i = 0, 1, 2, . . . ] in W(Cunif(Qp,Fp))
coincides with of W(Fp[(λx)i | i = 0,−1,−2, . . . ]).

Proof. We may as well assume λ = 1 and prove

Sublemma 5.2. The closure of Zp[Ψ(pix) | i = 0, 1, 2, . . . ] in W(Cunif(Qp,Fp)) coincides
with of W(Fp[xi | i = 0,−1,−2, . . . ]).

Proof. Let C be the closure of Zp[Ψ(pix) | i = 0, 1, 2, . . . ] in W(Cunif(Qp,Fp)). The formula

[x−i] = lim
N→∞

Ψ(pix)N

shows that W(Cunif(Qp,Fp)) ⊂ C. It will suffice to show that, as functions Qp → Zp

Ψ(x) ∈W(Fp[xi | i = 0,−1,−2, . . . ]) .

We write the restriction of Ψ(x) to a function Qp → Zp as

Ψ(x) = (Ψ0(x),Ψ1(x),Ψ2(x), . . . )

with Ψi ∈ Cunif(Qp,Fp) and Ψ0(x) = x0. We have, from (0.0.5), the formula in Cunif(Qp,Qp)

(5.2.1) Ψ(x)+p−1Ψ(px)p+· · ·+p−iΨ(pix)p
i

+· · · = x = (. . . , x−i, . . . , x−2, x−1;x0, ∗, ∗, . . . )

From (5.2.1) we deduce that, as functions in Cunif(Qp, p−iZp)
(5.2.2)

Ψ(x) + p−1Ψ(px)p + p−2Ψ(p2x)p
2

+ · · ·+ p−iΨ(pix)p
i

= (x−i, . . . , x−2, x−1;x0, ∗, ∗, . . . )

This shows, inductively on i, that

Ψi ∈ Fp[xj | j = 0,−1,−2, . . . ,−i] .
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Definition 5.3. Let r ∈ Z and a ∈ Z≥1. We define E ◦r,a (resp. T ◦r,a) to be the Zp-subalgebra
of E ◦pr (resp. of T ◦pr) ( cf. Definition 1.16) consisting of those functions f such that

(5.3.1) f(x+ pr+jC◦p) ⊂ f(x) + pa+jC◦p , ∀ x ∈ Qp and ∀ j ∈ Z≥1 .

Remark 5.4. For the rest of this section the statements valid for the rings E ◦r,a ⊂ Qp{x}
hold equally well, and with the same proof, for the rings T ◦r,a ⊂ O(Σp−r )

◦. For short, we
deal with the former only.

Notice that

(5.4.1) E ◦r,a+1 ⊂ E ◦r,a ⊂ E ◦r+1,a+1 and pE ◦r,a ⊂ E ◦r,a+1

and that we have a map F as in Definition 4.19 such that

(5.4.2) F (E ◦r,a) ⊂ E ◦r,a+1 .

Remark 5.5. We have
E ◦pr := E ◦r,0 .

We already proved (Proposition 0.1 and Corollary 3.4) that Ψ(x) ∈ E ◦0,0. Therefore, for any

i ∈ Z≥0 and ` = 0, 1, . . . , p− 1, the function Ψ(pi−rx)`p
a

belongs to E ◦r−i,a ⊂ E ◦r,a.

Lemma 5.6. If a sequence of functions n 7→ fn ∈ E ◦r,a (resp. ∈ T ◦r,a) converges to f ∈ Cp{x}
(resp. to f ∈ O(Σp−r )

◦) uniformly on bounded subsets of Cp (resp. of Σp−r) then f ∈ E ◦r,a
(resp. ∈ T ◦r,a). Therefore E ◦r,a (resp. T ◦r,a) is a closed Zp-subalgebra of Cp{x} (resp. of
(O(Σp−r )

◦, standard)). The induced Fréchet algebra structure on E ◦r,a (resp. on T ◦r,a) will
be called standard.

Proof. We deal, to fix ideas, with the case of E ◦r,a. We show that for any c ∈ Qp and
j = 0, 1, . . . ,

f(c+ pr+j+1C◦p) ⊂ f(c) + pa+j+1C◦p .

By assumption, for any s, t ∈ N, there exists N = Ns,t such that if n ≥ N , then

(fn − f)(p−sC◦p) ⊂ ptC◦p .

So, for c and j as before, let s be such c + pr+j+1C◦p ⊂ p−sC◦p, and let t be ≥ j + a + 1.
Then, for any n ≥ Ns,t,

(fn − f)(c+ pr+j+1C◦p) ⊂ (fn − f)(p−sC◦p) ⊂ ptC◦p ⊂ pj+a+1C◦p .

Therefore f ∈ E ◦r,a.

Notice that Proposition 1.18 follows from Lemma 5.6, by taking a = 0.
Let r, a be as in Definition 5.3. Any function f ∈ E ◦r,a induces a continuous function

f|Qp : Qp → Zp. The Zp-linear map

(5.6.1) Res◦ : (E ◦r,a, standard) −→ Cr,a ⊂ C (Qp,Zp) , f 7−→ f|Qp ,

is continuous and injective. By composition, we obtain, for any r ∈ Z and any a, h = 0, 1, . . . ,
a morphism

(5.6.2) Rr,a ◦Res◦ : (E ◦r,a, standard) −→ C (pr−hZp/pr+1Zp,Zp/pa+1Zp) = Wa(Fp(r, h)) ,
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where the r.h.s. is equipped with the topology of (4.18.3). The kernel of that map is the
set of g ∈ E ◦r,a such that − log ||g||ph−r ≥ a + 1. From (5.6.1) we also get maps of Fréchet
Zp-algebras

(5.6.3) Res◦ : (E ◦λ , {|| ||prZp}r∈Z)∧ −→ C (Qp,Zp) , f 7−→ f|Qp ,

(5.6.4) Res◦ : (T ◦λ , {|| ||prZp}r∈Z)∧ −→ C (Qp,Zp) , f 7−→ f|Qp .

Lemma 5.7. Let r ∈ Z and a ∈ Z≥0 be as before.

1. Any series of functions of the form

(5.7.1)

p−1∑
`=0

∞∑
i=0

c`,a,iΨ(pi−rx)`p
a

, c`,a,i ∈ Zp ,

converges in the standard Fréchet topology of Qp{x} to an element of E ◦r,a along the
filter of cofinite subsets of {0, 1, . . . , p− 1} × Z≥0.

2. For any element f ∈ Cr,a and for any s = 0, 1, 2, . . . there exist uniquely determined
elements c`,b,i = cp`,b,i ∈ Zp, such that for

fr,a :=

a∑
b=0

p−1∑
`=0

∞∑
i=0

c`,b,ip
bΨ(pi−rx)`p

a−b
∈ E ◦r,a ,

where the infinite sum converges in the standard Fréchet topology of E ◦r,a, we have

(5.7.2) − log ||(f − fr,a)||p−rZp ≥ a+ 1 .

Same statement for E ◦r,a replaced by T ◦r,a.

3. For any element f ∈ Cr,a and any h = 0, 1, . . . , there exist uniquely determined ele-
ments c`,b,i = cp`,b,i ∈ Zp, such that for

fr,a,h :=

a∑
b=0

p−1∑
`=0

h∑
i=0

c`,b,ip
bΨ(pi−rx)`p

a−b
,

(5.7.3) − log ||(f − fr,a,h)||ph−rZp ≥ a+ 1 .

4. The map (5.6.2) is surjective.

5. The maps (5.6.3) and (5.6.4) are the isomorphisms of Theorem 1.17.

Proof. The first part is clear. As for the second, we observe that, for any b = 0, 1, . . . , a, the

map Rr,a ◦ Res◦ transforms the function pbΨ(pi−rx)`p
a−b

, for ` = 0, 1, . . . , p − 1, into the
Witt vector

(0, . . . , 0, wb = x`r−i, 0, . . . , 0) ∈Wa(Fp(r,∞)) ,

where x`r−i is placed at the b-th level. Since any y ∈ Fp(r,∞) admits a unique expression
as a sum, convergent in the prodiscrete topology of Fp(r,∞),

y =

p−1∑
`=0

∞∑
i=0

γ`,ix
`
r−i , γ`,i ∈ Fp ,
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is clear that any w = (w0, w1, . . . , wa) ∈Wa(Fp(r,∞)) admits a unique expression as a sum

a∑
b=0

p−1∑
`=0

∞∑
i=0

[γ`,b,i](0, . . . , 0, wb = x`r−i, 0, . . . , 0)

which in turn converges in the prodiscrete topology of Wa(Fp(r,∞)). More precisely, for
any a, h = 0, 1, . . . , we can determine coefficients c`,b,i ∈ Zp such that

w −
a∑
b=0

p−1∑
`=0

h∑
i=0

c`,b,ix
`
r−i

has zero image in Wa(Fp(r, h)). So, the function

fr,a,h :=

a∑
b=0

p−1∑
`=0

h∑
i=0

c`,b,ip
bΨ(pi−rx)`p

a−b
,

is such that
min{vp(fr,a,h(x)− f(x)) |x ∈ pr−hZp + prC◦p} ≥ a+ 1 .

Finally, we already observed that the kernel of the map (5.6.2) consists of the elements
g ∈ E ◦r,a such that − log ||g||ph−rZp ≥ a+ 1. This proves 2, 3 and 4.

As for the last part of the statement, we pick any f ∈ Cunif(Qp,Zp) and a natural
number N = 0, 1, . . . . Then there exists an M = 0, 1, . . . and fM ∈ C (Qp/pMZp,Zp) such
that w∞(f − fM ) ≥ N . It will suffice to determine an element g ∈ Zp[Ψ(λx) |λ ∈ Q×p ] such
that w∞(g− fM ) ≥ N . We then pick r ∈ Z and a ∈ Z≥0 so that r+ 1 ≥M and a+ 1 ≥ N .
The statement follows from the surjectivity of (5.6.2). This concludes the proof.

As a corollary, we obtain the proof of Propositions 1.21 and 1.22. We now give the proof
of Proposition 1.19.

Proof. (of Proposition 1.19) We discuss (E ◦λ , standard) in order to fix ideas. The case of
(T ◦λ , standard) is analogous. The coproduct of E ◦λ originates from (0.3.4)

x 7→ Ψ(x⊗̂Zp1 + 1⊗̂Zpx) = Φ(Ψ(x⊗̂Zp1),Ψ(px⊗̂Zp1), . . . ; Ψ(1⊗̂Zpx),Ψ(1⊗̂Zppx), . . . ) =

Φ(Ψ(x)⊗̂Zp1,Ψ(px)⊗̂Zp1, . . . ; 1⊗̂ZpΨ(x), ⊗̂ZpΨ(1px), . . . )

(5.7.4)

and the identification (1.9.1). The fact that E ◦λ only depends upon |λ| follows from the fact
that, for any f ∈ C{x}, the map Qp → C{x}, a 7→ f(ax) is continuous. For any n ∈ Z,
the map nι : Ψ(λ−1pjx) 7→ Ψ(λ−1pjnx), for any j = 0, 1, . . . , is an endomorphism of E ◦λ .
By continuity, we obtain a map aι : E ◦λ → E ◦λ , for any a ∈ Zp. If m,n ∈ Z are such that
mn = 1 + apN , for a ∈ Z and N ∈ Z, N >> 0, Ψ(λ−1pjmnx) is close to Ψ(λ−1pjx). Again
by continuity we find that if a ∈ Z×p , aι is an automorphism of E ◦λ .

We finally prove our Uniform Approximation Theorem 1.25.

Proof. We discuss the integral case only; the bounded case follows directly. We first observe
that a CLMu

Zp -morphism

(APH0,Zp , strip) = lim−→
u

ρ→0

(APHZp(Σρ), strip) −→ (APZp , w∞)

exists because so does, for any ρ > 0, the morphism (APHZp(Σρ), strip) → (APZp , w∞).
Moreover, that morphism is injective. An element of APH0,Zp is represented by a sequence
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Pρn ∈ Zp[Ψ(x/λ) |λ ∈ Q×p ] with ρn decreasing to 0, such that for any ε > 0, there exists Nε
such that for any m ≥ n ≥ Nε,

||Pρn − Pρm ||Qp,ρm < ε .

Let f ∈ APZp and let N ∈ Z>0. By definition of u.a.p. functions, there exists a
polynomial

PN :=
∑
λ∈Q×

p

aλΨ(x/λ)

where aλ ∈ Zp = 0 for almost all λ, such that

w∞(f − PN ) > N .

By (3.11.1) of Theorem 3.11, for any N > 0 there exists ρN > 0 such that vp(PN (a+ x)−
PN (a)) > N , for any a ∈ Qp and x ∈ Cp, |x| ≤ ρN . We may assume that the sequence
N → ρN decreases to 0. We deduce that for M ≥ N

− log ||PN − PM ||Qp,ρM > N .

So, the sequence N 7→ PN represents a germ P ∈ APH0,Zp whose restriction to Qp is f .

Remark 5.8. We are not asserting here that there should be a p-adic strip Σρ around
Qp on which f extends analytically. In fact, an inductive limit in the category CLMu

Zp is
not necessarily supported by a set-theoretic inductive limit (see section 6.1 of Appendix A
below) and similarly for a locally convex inductive limit of Banach spaces.

6 Appendix A. Non archimedean topological algebra

A prime number p is fixed throughout this paper and q = pf is a power of p. So, Qq will
denote the unramified extension of Qp of degree f , and Zq will be its ring of integers. Unless
otherwise specified, a ring is meant to be commutative with 1.

6.1 Linear topologies

Let k be a separated and complete linearly topologized ring; we will denote by P(k) the
family of open ideals of k. We will consider the category CLMu

k of separated and complete
linearly topologized k-modules M such that the map multiplication by scalars

k ×M −→M , (r,m) 7−→ rm

is uniformly continuous for the product uniformity of k ×M . Morphisms of CLMu
k are

continuous k-linear maps. This is the classical category of [10, Chap. III, §2]. See [4] for
more detail.

Remark 6.1. All over this paper we will assume that in a topological ring R (resp. topo-
logical R-module M), the product (resp. the scalar product) map R × R → R (resp.
R ×M → M) is at least continuous for the product topology of R × R (resp. of R ×M);
morphisms will be continuous morphisms of rings (resp. of R-modules).

By a non-archimedean (n.a.) ring R (resp. R-module M) we mean a topological ring
R (resp. R-module M) equipped with a topology for which a basis of neighborhoods of
0 consists of additive subgroups and additive translations are homeomorphisms. So, any
valued non-archimedean field K is a n.a. ring in the previous sense and, if K is non-trivially
valued, the category LCK of locally convex K-vector spaces [18] is a full subcategory of the
category of n.a. K-modules. But, such a field K is never a linearly topologized ring. The
ring of integers K◦ is indeed linearly topologized, but no non-zero object of LCK is an object
of CLMu

K◦ .

37



Definition 6.2. Let R be a topological ring and M be a topological R-module. A closed
topological R-submodule N of M is said to be strictly closed if it is endowed with the subspace
topology of M .

For any object M of CLMu
k , P(M) will denote the family of open k-submodules of

M . The category CLMu
k admits all limits and colimits. The former are calculated in the

category of k-modules but not the latter. So, a limit will be denoted by lim←− while a colimit

will carry an apex (−)u as in lim−→
u. In particular, for any family Mα, α ∈ A, of objects of

CLMu
k , the direct sum and direct product will be denoted by⊕u

α∈A
Mα ,

∏
α∈A

Mα ,

respectively. We explicitly notice that
⊕u

α∈A
Mα is the completion of the algebraic direct sum⊕

α∈AMα of the algebraic k-modules Mα’s, equipped with the k-linear topology for which
a fundamental system of open k-modules consists of the k-submodules⊕

α∈A
(Uα + IMα) such that Uα ∈ P(Mα) ∀α , and I ∈ P(k) is independent ofα .

Then the k-module underlying
⊕u

α∈A
Mα in general properly contains the algebraic direct sum⊕

α∈AMα. It will also be useful to introduce the uniform box product of the same family

(6.2.1)
∏
α∈A

�,u
Mα

which, set-theoretically, coincides with
∏
α∈AMα but whose family of open submodules

consists of all U :=
∏
α∈A Uα, with Uα ∈ P(Mα), such that there exists IU ∈ P(k) such that

IUMα ⊂ Uα, for any α ∈ A. The category CLMu
k , equipped with the tensor product ⊗̂uk of

[14, 0.7.7] (see also [10, Chap. III, §2, Exer. 28]) is a symmetric monoidal category. The
category of monoids of CLMu

k is denoted by ACLMu
k .

For two objects M and N of CLMu
k , we have

(6.2.2) M⊗̂ukN = lim←−
P∈P(M),Q∈P(N)

M/P ⊗k N/Q

so that ⊗̂uk commutes with filtered projective limits in CLMu
k .

6.2 Semivaluations

We describe here full subcategories of CLMu
k , and special base rings k, of most common use.

We denote by Z(p) = Q ∩ Zp, the localization of Z at (p). Then Cp will be the completion

of a fixed algebraic closure of Qp. On Cp we use the absolute value |x| = |x|p = p−vp(x), for
the p-adic valuation v = vp, with vp(p) = 1, and x ∈ Cp.

Definition 6.3. A semivaluation on a ring R is a map w : R → R ∪ {+∞} such that
w(0) = +∞, w(x+ y) ≥ min(w(x), w(y)) and w(xy) ≥ w(x) + w(y), for any x, y ∈ R. We
will say that a semivaluation is positive if it takes its values in R≥0 ∪ {+∞}.

Remark 6.4. 1. If w1, w2, . . . , wn are a finite set of semivaluations on the ring R, so is
their infimum

w := inf
i=1,...,n

wi .
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2. The trivial valuation v0 : R→ {0,+∞}, which exists on any ring R, is (in our sense!)
a positive semivaluation.

3. We will indifferently use the multiplicative notation |x|w = exp(−w(x)).

For any semivaluation w of a ring R, the family of

(6.4.1) Rw,c := {x ∈ R |w(x) ≥ c }

for c ∈ R is a fundamental set of open subgroups for a group topology of R. Moreover,
Rw,0 is a subring of R and all Rw,c are Rw,0-submodules of R. A (multi -) semivalued ring
(R, {wα}α∈A) is a ring R equipped with a family {wα}α∈A of semivaluations. A semival-
ued ring is endowed with the topology in which any x ∈ R has a fundamental system of
neighborhoods consisting of the subsets

x+
⋂
α∈F

Rα,cα

where F varies among finite subsets of A and, for any α ∈ F , cα ∈ R. A Fréchet ring (resp.
Banach ring) is a ring R which is separated and complete in the topology induced by a
countable family of semivaluations (resp. by a single semivaluation). If the semivaluations
wα are all positive, the Fréchet (resp. Banach) ring (R, {wα}α∈A) is linearly topologized.
We will call it a linearly topologized Fréchet (resp. Banach) ring. When R is an algebra
over a Banach ring (S, v), and the semivaluations wα satisfy

wα(xy) = v(x) + wα(y) ∀ x ∈ S , y ∈ R ,

we also say that R = (R, {wα}α∈A) is a Fréchet (resp. Banach) S-algebra. In the particular
case when (S, v) is a complete non-trivially valued real-valued field (K, v) a Fréchet or Banach
S-algebra is a Fréchet or Banach algebra over K in the classical sense. Notice however that
we allow v to be the trivial valuation of S or K. We denote by CLCK the category of locally
convex topological K-vector spaces of [18], where morphisms are continuous K-linear maps,
which are moreover separated and complete.

We have the easy

Lemma 6.5. Let (S, v) be a Banach ring and (R, {wn}n=1,2,...) be a Fréchet S-algebra.
Let (Rn, wn) be the separated completion of R in the locally convex topology induced by the
semivaluation wn. Assume wn(r) ≥ wm(r) for any r ∈ R if n ≤ m. Then, the identity of R
extends to a morphism Rm → Rn of Banach S-algebras and R is the limit, in the category
of n.a. S-algebras, of the filtered projective system (Rn)n.

In particular, a S-subalgebra T of R is dense in R if and only if it is dense in Rn, for
any n.

6.3 Tensor products

Let (S, v) be a complete real-valued ring and let R = (R, {wα}α∈A) and R′ = (R′, {w′β}β∈B)

be two Fréchet S-algebras. Then we define a Fréchet S-algebra R⊗̂π,SR′ as the completion
of the S-algebra R⊗S R′ in the topology induced by the following semivaluations [9, 2.1.7],
for any (α, β) ∈ A×B,

wα,β(g) = sup

(
min

1≤i≤n
wα(xi) + w′β(yi)

)
,

where the supremum runs over all possible representations

g =

n∑
i=1

xi ⊗ yi , xi ∈ R , yi ∈ R′ .

The following proposition follows immediately from Lemma 6.5.
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Proposition 6.6. Let (S, v) be a Banach ring and (R, {wn}n=1,2,...), (R′, {w′n}n=1,2,...)
be two Fréchet S-algebra satisfying the assumption of Lemma 6.5. Then, with the same
notation, R⊗̂π,SR′ is the limit, in the category of n.a. S-algebras, of the filtered projective
system of Banach S-algebras (Rn⊗̂π,SR′n)n.

Notice that

1. if R and R′ are Fréchet algebras over a complete real-valued field (K, v), with non-
trivial valuation v, R⊗̂π,KR′ coincides with both the completed projective and the
inductive tensor product of [18] (cf. Lemma 17.2 and Lemma 17.6 of loc.cit. );

2. if R and R′ are linearly topologized Fréchet algebras over a linearly topologized Banach
ring (S, v), R⊗̂π,SR′ coincides with R⊗̂uSR′.

7 Appendix B. Classical theory of almost periodic func-
tions

The main character of this paper, our function Ψ, shows many analogies with the classical
holomorphic almost periodic functions of Bohr, Bochner, and Besicovitch [7]. In fact many
of the subtle function theoretic difficulties which appear in the p-adic setting are also en-
countered in classical Harmonic Analysis. We feel that a short presentation of the basics of
the classical theory might be useful. See also the survey article [12].

7.1 Fejér’s Theorem

Let (C bd
unif(R,R), || ||R) be the Banach algebra of bounded uniformly continuous functions

R → R, equipped with the supnorm on R. For λ ∈ R>0 let PR,λ ⊂ C bd
unif(R,R) be the

strictly closed Banach subalgebra of continuous functions periodic of period λ.
Let us recall the classical Fejér’s Theorem [20, §13.31]. Let f ∈ PR,λ. The Fourier

expansion of f is the formal trigonometric series

a0

2
+

∞∑
n=1

an cos(
2πn

λ
z) + bn sin(

2πn

λ
z) ,

with

an =
2

λ

∫ λ

0

f(t) cos(
2πn

λ
z)dt , bn =

2

λ

∫ λ

0

f(t) sin(
2πn

λ
z)dt .

The sequence of the partial sums

SN (f) =
a0

2
+

N∑
n=1

an cos(
2πn

λ
z) + bn sin(

2πn

λ
z) ,

does not necessarily converge to f uniformly on R. However, the Cesaro means

σn =
S0 + · · ·+ Sn−1

n

converge to f uniformly on R. In particular,

Theorem 7.1. R[cos( 2π
λ x), sin( 2π

λ x)] is dense in the R-Banach algebra (PR,λ, || ||R).

We will show below that a suitably reformulated p-adic analog of Theorem 7.1 holds true
p-adically.
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Definition 7.2. (Bohr’s definition of u.a.p. functions) A continuous function f : R → R
is uniformly almost periodic ( u.a.p. for short) if, for any ε > 0, there exists `ε > 0 such
that for any interval I ⊂ R of length `ε there exists τ ∈ I such that

|f(x+ τ)− f(x)| < ε , ∀x ∈ R .

It is easy to check that the set of uniformly almost periodic functions R → R is a
closed subalgebra APR of (C bd

unif(R,R), || ||R) [7, Chap. I, §1, Thms 4◦,5◦]. We define
APC ⊂ (C bd

unif(R,C), || ||R) similarly.
The following result is Bohr’s “Approximation Theorem”. We refer to [7, I.5] for its

proof and for a detailed description of the contributions of S. Bochner and H. Weyl.

Theorem 7.3. (APR, || ||R) identifies with the completion of the normed ring

(R[cos(
2π

λ
x), sin(

2π

λ
x) |λ ∈ R×], || ||R) .

Similarly for (APC, || ||R).

We propose p-adic analogs of those Banach algebras and of the latter theorem.

7.2 Dirichlet series

Let C{x} be the Fréchet C-algebra of entire functions C→ C, equipped with the topology of
uniform convergence on compact subsets of C. The rotation z 7→ iz transforms trigonometric
series into series of exponentials and Bohr’s definition naturally propagates into the following

Definition 7.4. [7, III.2,1◦]. For any interval (a, b) ⊂ R, an analytic function f on the
strip (a, b)× iR ⊂ C is almost periodic holomorphic on (a, b) if, for any ε > 0, there exists
`ε > 0 such that for any interval I ⊂ R of length `ε there exists τ ∈ I such that

|f(x+ iτ)− f(x)| < ε , ∀x ∈ (a, b)× iR .

We let APHC((a, b)) denote the C-algebra of almost periodic holomorphic functions on (a, b).

Notice that APHC((a, b)) is a closed subalgebra of the Fréchet algebra O((a, b) × iR);
the induced Fréchet algebra structure is called standard. We may equip APHC((a, b)) with
the finer Fréchet algebra structure of uniform convergence on substrips (a′, b′) × iR, for
a < a′ < b′ < b. We informally call this topology the strip topology.

The following Polynomial Approximation Theorem [7, III.3,3◦] holds.

Theorem 7.5. APHC((a, b)) is the Fréchet completion of the C-polynomial algebra gen-
erated by the restrictions to (a, b) × iR of all continuous characters of R, namely by the
maps

(7.5.1) eλ : (a, b)× iR −→ C , z 7−→ eλz

for λ ∈ R×, equipped with the strip topology.

The assignment (a, b) 7→ APHC((a, b)) uniquely extends to a sheaf of Fréchet C-algebras
on R.

Definition 7.6.

1. We denote by APH0,C the stalk of the sheaf APHC at 0 equipped with the locally
convex inductive limit topology of the system of Fréchet algebras APHC((−ε, ε)) as
ε→ 0+.
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2. We denote by APHC ⊂ C{x} the Fréchet algebra of global sections of APHC equipped
with the strip topology.

Notice that we have a natural injective morphism, induced by restriction of functions
and the properties of the inductive limit

(7.6.1) APHC −→ APH0,C .

It follows from the combined theorems of approximation Theorem 7.3 and Theorem 7.5 that

Corollary 7.7. (APC, || ||R) identifies with the completion of the normed ring (APH0,C, || ||R).

Remark 7.8. Sections of the sheafAPHC on open subsets of R may be viewed as generalized
Dirichlet series [7, III.3]. A p-adic analog on Qp of the sheaf APHC of Dirichlet series on R,
might be useful in the theory of p-adic L-functions.

8 Appendix C: Numerical Calculations by M. Candilera

The following calculations were performed with Mathematica c©. We computed the first
coefficients of the series Ψp(T ) =

∑∞
n=1 bnT

n, for p = 2, up to the term of degree 25, and
for p = 3, up to degree 34. We also evaluated the a few coefficients of Ψ5(T ) and Ψ7(T ).
We give here tables of the p-adic orders of the coefficients bn for p = 2, 3. For those values
of p, we also draw the graph of the function n 7→ vp(bn) and compare it with the Newton
polygon of Ψp (flipped around the y-axis). We confirm experimentally the calculation of the
corresponding valuation polygons.

8.1 Very first coefficients

1. p = 2

Ψ2(T ) = T − 2 · T 2 + 24 · T 3 − 11 · 25 · T 4 + 7 · 211 · T 5 − 7 · 37 · 212 · T 6+

3 · 751 · 216 · T 7 − 301627 · 217 · T 8 + 308621 · 226 · T 9 + 227 · T 10 · u(T ) ,

for a unit u(T ) ∈ Z(2)[[T ]]×.

2. p = 3

Ψ3(T ) = T − 32 · T 3 + 37 · T 5 − 22 · 7 · 311 · T 7+

2 · 7 · 13 · 113 · 314 · T 9−5 · 89 · 1249 · 322 · T 11 + 5 · 117 · 217667 · 328 · T 13 + . . . .

3. p = 5

Ψ5(T ) = T − 54 · T 5 + 513 · T 9 − 53 · 59 · 521 · T 13+

3 · 11 · 97 · 1123 · 1699 · 529 · T 17 + 537 · T 21 · u(T ) ,

for a unit u(T ) ∈ Z(5)[[T ]]×.

4. p = 7

Ψ7(T ) = T − 76 · T 7 + 719 · T 13 − 2 · 31 · 37 · 359 · 731 · T 19 + 743 · T 25 · u(T ) ,

for a unit u(T ) ∈ Z(7)[[T ]]×.
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Figure 5: Newton and valuation polygons of Ψ2.

8.2 First 24 coefficients of Ψ2(t) and 2-adic order of the 32 first

Ψ2(t) =
∑
n≥1 bnt

n

b1 0 b9 26 b17 61 b25 101
b2 1 b10 27 b18 62 b26 102
b3 4 b11 33 b19 70 b27 110
b4 5 b12 34 b20 71 b28 111
b5 11 b13 42 b21 81 b29 121
b6 12 b14 43 b22 82 b30 122
b7 16 b15 48 b23 89 b31 128
b8 17 b16 49 b24 90 b32 129

2-adic valuation of the coefficients of Ψ2
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b1 = 1, b2 = −2, b3 = 16 = 2
4
, b4 = −352 = −2

5 · 11

b5 = 14336 = 2
11 · 7, b6 = −1060864 = −2

12 · 7 · 37

b7 = 147652608 = 2
16 · 3 · 751

b8 = −39534854144 = −2
17 · 301627

b9 = 20711204716544 = 2
26 · 308621

b10 = −21454855889485824 = −2
27 · 32 · 13 · 701 · 1949

b11 = 44195700516541431808 = 2
33 · 5145056699

b12 = −181554407879323198423040 = −2
34 · 5 · 41 · 2273 · 22679509

b13 = 1489469015852141109009448960 = 2
42 · 5 · 67733208918623

b14 = −24421319844213105128638664146944 = −2
43 · 32 · 8179 · 37716952983613

b15 = 800530746908074643997623203521363968 = 2
48 · 31 · 71 · 1619 · 826201 · 966018887

b16 = −52473187457503996327647036404796036743168 = −2
49 · 31 · 397 · 13687 · 2882489 · 191972726039

b17 = 6878395240848057051122842718175351390427152384 = 2
61 · 3 · 47 · 59 · 919 · 24709 · 15791216459521333

b18 = −1803212578568825704559863338710346864852507172012032

= 2
62 · 32 · 19 · 97 · 173 · 1665967 · 581220517 · 140723269997

b19 = 945424354393817092018179744741353462710753588534117924864

= 2
70 · 72 · 23 · 15973 · 44485316159805664956515547941

b20 = −991360632780906301560343330625129510790528483073480047449866240

= 2
71 · 5 · 167 · 14503 · 15445577653440901 · 2244675152281633901

b21 = 2079045830009718214618472297232655379089817022368004517660824096997376

= 2
81 · 109 · 23549 · 167442376921 · 2000645152343730624200879183

b22 = −8720175189463740580963423057535032711261236371520206719551905031269050744832

= 2
82 · 47 · 1867 · 105323 · 2119591 · 80618233393589 · 1141865166972250409671

b23 = 73150235997673008411264495083486904164758556563477195586370441676376428384144588800

= 2
89 · 33 · 52 · 175082340917111384848376265817809832605816887352831773

b24 = −1227258187586069935509530355473988020883482157853428276444146736521211077001846045664083968

= 2
90 · 54617 · 76121647308197 · 238451637287968840726339672350427699951944293

8.3 3-adic values of the first 81 coefficients of Ψ3(T )

b3 2 b23 58 b43 135 b63 213
b5 7 b25 64 b45 141 b65 223
b7 11 b27 68 b47 151 b67 231
b9 14 b29 79 b49 159 b69 238
b11 22 b31 87 b51 166 b71 247
b13 28 b33 94 b53 175 b73 255
b15 33 b35 103 b55 183 b75 262
b17 40 b37 111 b57 190 b77 271
b19 46 b39 118 b59 199 b79 279
b21 51 b41 127 b61 207 b81 284

3-adic valuation of the coefficients of Ψ3
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