A p-adically entire function with integral values on \mathbb{Q}_p and entire liftings of the *p*-divisible group $\mathbb{Q}_p/\mathbb{Z}_p$

Francesco Baldassarri [∗]

with an Appendix by Maurizio Candilera [∗]

May 14, 2019

Abstract

We give a self-contained proof of the fact, discovered in [\[1\]](#page-43-0) and proven in [\[2\]](#page-44-0) with the methods of $[16]$, that, for any prime number p, there exists a power series

 $\Psi = \Psi_p(T) \in T + T^2 \mathbb{Z}[[T]]$

which trivializes the addition law of the formal group of Witt covectors [\[16\]](#page-45-0), [\[13,](#page-45-1) II.4], is p-adically entire and assumes values in \mathbb{Z}_p all over \mathbb{Q}_p . We actually generalize, following a suggestion of M. Candilera, the previous facts to any fixed unramified extension \mathbb{Q}_q of \mathbb{Q}_p of degree f, where $q = p^f$. We show that $\Psi = \Psi_q$ provides a quasi-finite covering of the Berkovich affine line $\mathbb{A}^1_{\mathbb{Q}_p}$ by itself. We prove in section [3](#page-15-0) new strong estimates for the growth of Ψ , in view of the application [\[3\]](#page-44-1) to p-adic Fourier expansions on \mathbb{Q}_p . We refer to [\[3\]](#page-44-1) for the proof of a technical corollary (Proposition [3.10\)](#page-21-0) which we apply here to locate the zeros of Ψ and to obtain its product expansion (Corollary [3.12\)](#page-23-0).

We reconcile the present discussion (for $q = p$) with the formal group proof given in [\[2\]](#page-44-0) which takes place in the Fréchet algebra $\mathbb{Q}_p\{x\}$ of the analytic additive group $\mathbb{G}_{a,\mathbb{Q}_p}$ over \mathbb{Q}_p . We show that, for any $\lambda \in \mathbb{Q}_p^{\times}$, the closure $\mathscr{E}_\lambda^{\circ}$ of $\mathbb{Z}_p[\Psi(p^ix/\lambda) \mid i = 0, 1, \ldots]$ in $\mathbb{Q}_p\{x\}$ is a Hopf algebra object in the category of Fréchet \mathbb{Z}_p -algebras.

The special fiber of $\mathscr{E}_{\lambda}^{\circ}$ is the affine algebra of the *p*-divisible group $\mathbb{Q}_p/p\lambda\mathbb{Z}_p$ over \mathbb{F}_p , while $\mathscr{E}_{\lambda}^{\circ}[1/p]$ is dense in $\mathbb{Q}_p\{x\}$.

From $\mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$ we construct a *p*-adic analog $\mathcal{AP}_{\mathbb{Q}_p}(\Sigma_\rho)$ of the algebra of Dirichlet series holomorphic in a strip $(-\rho, \rho) \times i\mathbb{R} \subset \mathbb{C}$. We start developing this analogy. It turns out that the Banach algebra of almost periodic functions on \mathbb{Q}_p identifies with the topological ring of germs of holomorphic almost periodic functions on strips around \mathbb{Q}_p .

Contents

[∗]Universit`a di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy.

0 Introduction

0.1 Foreword

An unfortunate feature of p -adic numbers is that there exists no character

$$
\psi : (\mathbb{Q}_p, +) \to (\mathbb{C}_p^{\times}, \cdot) , \psi \neq 1
$$

which extends to an entire function $\mathbb{C}_p \to \mathbb{C}_p$. In fact, let $\pi_p \in \mathbb{C}_p^{\infty}$ be such that the radius of convergence of $\exp(\pi_p x)$ equals 1, so that exp and log establish an isomorphism

$$
(\pi_p \mathbb{C}_p^{\infty}, +) \longrightarrow (\exp(\pi_p \mathbb{C}_p^{\infty}), \cdot) \ (\subset (1 + \mathbb{C}_p^{\infty}, \cdot)) \ .
$$

Now, assume a ψ as above exists, and let n be a positive integer such that $\psi(p^n) \in$ $\exp(\pi_p \mathbb{C}_p^{\infty})$ so that ψ restricts to a character $\psi : (p^n \mathbb{Z}_p, +) \to (\exp(\pi_p \mathbb{C}_p^{\infty}), \cdot)$. Let $a := \log(\psi(p^n))$. Then, for any $x \in \mathbb{Z}$, $\psi(p^n x) = \psi(p^n)^x = \exp(ax)$. But $x \mapsto \exp(ax)$ has a finite radius of convergence.

We partially remedy to the previous inconvenience by showing the existence, for any $\lambda \in \mathbb{Q}_p^{\times}$, of a representable formal group functor

$$
(0.0.1) \t\t\t\t\t\mathbb{E}_{\lambda}: \mathcal{ALM}_{\mathbb{Z}_p}^u \to \mathcal{Ab}
$$

(see section [6.1](#page-36-1) in Appendix A, for notation) whose generic (resp. special) fiber is the \mathbb{Q}_p analytic group \mathbb{G}_a (resp. the constant p-divisible group $\mathbb{Q}_p/\lambda \mathbb{Z}_p$ over \mathbb{F}_p). The idea is the following. Over the complex numbers the formulas

$$
e^{iz} = \cos z + i \sin z , e^{-iz} = \cos z - i \sin z
$$

show that the two (Hopf) algebras $\mathbb{Z}[i][e^{iz}, e^{-iz}]$ and $\mathbb{Z}[i][\sin z, \cos z]$ coincide. The sequence of functions

$$
\Psi(x) = \Psi_p(x), \Psi(px), \Psi(p^2x), \dots
$$

plays here the role of the pair $(\cos z, \sin z)$ in that the *p*-adically entire and integral addition law $(0.3.4)$ holds, and x is a logarithm for that formal group. So, while it is improper to say that Ψ plays the role of an entire character of \mathbb{Q}_p , it is suggestive to consider a suitable p-adic completion of the algebra $\mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$ and to compare it with the classical algebras of Bohr's almost periodic functions $APH_{\mathbb{R}}$ and $AP_{\mathbb{R}}$. We review for convenience the classical definitions of real and complex Fourier analysis in section [7.2](#page-40-0) of Appendix B. A closer p-adic analog of those classical constructions, and a generalization of Amice-Fourier theory to p-adic functions on \mathbb{Q}_p , will appear in [\[3\]](#page-44-1).

0.2 The function Ψ

In the paper $[2]$ we introduced, for any prime number p, a power series

$$
\Psi(T) = \Psi_p(T) = T + \sum_{i=2}^{\infty} a_i T^i \in \mathbb{Z}[[T]]
$$

which represents an entire *p*-adic analytic function, *i.e.* is such that

(0.0.3)
$$
\limsup_{i \to \infty} |a_i|_p^{1/i} = 0.
$$

This function has the remarkable property that $\Psi_p(\mathbb{Q}_p) \subset \mathbb{Z}_p$ and that, for any $i \in \mathbb{Z}$ and $x \in \mathbb{Q}_p$, if we write x as in [\(1.12.2\)](#page-8-1), with x_i defined by [\(1.12.3\)](#page-8-2), [\(1.12.4\)](#page-8-3), then

$$
(0.0.4) \t x_{-i} = \Psi_p(p^i x) \text{ mod } p \in \mathbb{F}_p .
$$

The power series $\Psi(T)$ is defined by the functional relation

(0.0.5)
$$
\sum_{j=0}^{\infty} p^{-j} \Psi(p^j T)^{p^j} = T.
$$

Its inverse function $\beta = \beta_p \in T + T^2 \mathbb{Z}[[T]]$ was shown to converge exactly in the region

$$
(0.0.6) \t\t\t |T|_p < p \t i.e. \t v_p(T) > -1.
$$

One property we had failed to notice in [\[2\]](#page-44-0) is the following

Proposition 0.1. The restriction of the function Ψ_p to a map $\mathbb{Q}_p \to \mathbb{Z}_p$ is uniformly continuous. More precisely, for any $j = 0, 1, \ldots$ and $x \in \mathbb{Q}_p$,

(0.1.1)
$$
\Psi_p(x + p^j \mathbb{C}_p^{\circ}) \subset \Psi_p(x) + p^j \mathbb{C}_p^{\circ}.
$$

This is proven in Corollary [3.4](#page-19-1) below. See also the more general Theorem [3.11](#page-22-0) whose proof depends on Proposition [3.10,](#page-21-0) proven in [\[3\]](#page-44-1).

0.3 Our previous approach [\[2\]](#page-44-0)

Proofs in [\[2\]](#page-44-0) were based on Barsotti-Witt algorithms [\[16\]](#page-45-0). The most basic notion of topo-logical algebra in [\[16\]](#page-45-0) is the one of a *simultaneously admissible* family, indexed by $\alpha \in A$, of sequences $i \mapsto x_{\alpha,-i}$ for $i = 0, 1, \ldots$ in a Fréchet algebra R over \mathbb{Z}_p (in particular, over \mathbb{F}_p) [\[16,](#page-45-0) Ch.1, §1]. In case R is a Fréchet algebra over \mathbb{Q}_p the definition of simultaneous admissibility is more restrictive, but the name used in $loc. cit.$ is the same. For clarity, the more restrictive notion will be called here (simultaneous) PD-admissibility, while the general notion will maintain the name of (simultaneous) *admissibility*.

Using the previous refined terminology, our main technical tool in [\[2\]](#page-44-0) was a criterion [\[2,](#page-44-0) Lemma 1] of simultaneous PD-admissibility for a family indexed by $\alpha \in A$, of sequences $i \mapsto x_{\alpha,-i}$ for $i = 0,1,...$ in a Fréchet \mathbb{Q}_p -algebra. In Barsotti's theory of p-divisible groups one regards an admissible sequence $i \mapsto x_{-i}$ as a Witt covector $(\ldots, x_{-2}, x_{-1}, x_0)$ [\[16\]](#page-45-0), [\[13\]](#page-45-1) with components $x_{-i} \in R$.

We take here only a short detour on the group functor viewpoint and refer the reader to [\[13\]](#page-45-1) for precisions. As abelian group functors on a suitable category of topological \mathbb{Z}_p algebras the direct limit $W_n \to W_{n+1}$ of the Witt vector groups of length n via the Verschiebung map

$$
V: (x_{-n}, \ldots, x_{-1}, x_0) \to (0, x_{-n}, \ldots, x_{-1}, x_0)
$$

indeed exists. It is the group functor CW of Witt covectors. For a topological \mathbb{Z}_p -algebra R on which CW(R) is defined, it is convenient to denote an element $x \in CW(R)$ by an inverse sequence

$$
x = (\ldots, x_{-2}, x_{-1}, x_0)
$$

of elements of R , that is a Witt covector with components in R . Two Witt covectors $x = (..., x_{-2}, x_{-1}, x_0)$ and $y = (..., y_{-2}, y_{-1}, y_0)$ with components R can be summed by taking limits of sums of finite Witt vectors. Namely, let

(0.1.2)
$$
\varphi_i(X_0, ..., X_i; Y_0, ..., Y_i) \in \mathbb{Z}[X_0, ..., X_i, Y_0, ..., Y_i]
$$

be the *i*-th (= the last!) entry of the Witt vector $(X_0, \ldots, X_i) + (Y_0, \ldots, Y_i)$. Then,

$$
x + y = z = (\ldots, z_{-2}, z_{-1}, z_0)
$$

means that, for any $i = 0, -1, \ldots$,

(0.1.3)
$$
z_i = \lim_{n \to +\infty} \varphi_n(x_{i-n}, x_{i-n+1}, \dots, x_i; y_{i-n}, y_{i-n+1}, \dots, y_i)
$$

converges in R . The convergence properties on the Witt covectors x and y above for the expressions [\(0.1.3\)](#page-3-1) to converge, are dictated by the following

Lemma 0.2. ([\[16,](#page-45-0) Teorema 1.11]) Notation as above. For $i = 0, 1, 2, \ldots$, let us attribute the weight p^i to the variables X_i, Y_i . Then, for any $i \geq 0$ the polynomial φ_i in [\(0.1.2\)](#page-3-2) is isobaric of weight p^i . Moreover, for any $i \geq 1$,

$$
\varphi_i(X_0, X_1, \dots, X_i; Y_0, Y_1, \dots, Y_i) - \varphi_{i-1}(X_1, \dots, X_i; Y_1, \dots, Y_i) \in (0.2.1)
$$

 $X_0 Y_0 \mathbb{Z}[X_0, X_1, \ldots, X_i, Y_0, Y_1, \ldots, Y_i]$.

So, we equip the polynomial ring $\mathbb{Z}[X_0, X_{-1}, \ldots, X_{-i}, \ldots; Y_0, Y_{-1}, \ldots, Y_{-i}, \ldots]$ with the linear topology defined by the powers of the ideals $I_N := (X_{-N}, X_{-N-1}, \ldots; Y_{-N}, Y_{-N-1}, \ldots)$ and set

$$
\mathcal{P} := \varprojlim_{N,M \to +\infty} \mathbb{Z}[X_0, X_{-1}, \ldots, X_{-i}, \ldots; Y_0, Y_{-1}, \ldots, Y_{-i}, \ldots]/I_N^M.
$$

Then, the sequence

$$
(0.2.2) \qquad \qquad i \longmapsto \varphi_i(X_{-i}, \dots, X_{-1}, X_0; Y_{-i}, \dots, Y_{-1}, Y_0)
$$

converges to an element

$$
(0.2.3) \t\t \Phi(X_0, X_{-1}, \ldots, X_{-i}, \ldots; Y_0, Y_{-1}, \ldots, Y_{-i}, \ldots) \in \mathcal{P}.
$$

So, [\(0.1.3\)](#page-3-1) is expressed more compactly as

$$
(0.2.4) \t z_i = \Phi(x_i, x_{i-1}, \dots; y_i, y_{i-1}, \dots)
$$

Remark 0.3. The projective limit

$$
W_{n+1} \to W_n \quad , \quad (x_0, x_1, \ldots, x_{n+1}) \mapsto (x_0, x_1, \ldots, x_n) \; ,
$$

produces instead the algebraic group W of Witt vectors.

The approach of Barsotti [\[16\]](#page-45-0) is more flexible and easier to apply to analytic categories. If R is complete, for two simultaneously admissible Witt covectors $x = (..., x_{-2}, x_{-1}, x_0)$ and $y = (..., y_{-2}, y_{-1}, y_0)$ with components R the expressions [\(0.2.4\)](#page-4-1) all converge in R and define $(\ldots, z_{-2}, z_{-1}, z_0) = z =: x + y$, which is in turn simultaneously admissible with x and y. In the \mathbb{Q}_p -algebra case a Witt covector $x = (\ldots, x_{-2}, x_{-1}, x_0)$ has ghost components $(\ldots, x^{(-2)}, x^{(-1)}, x^{(0)})$ defined by

(0.3.1)
$$
x^{(i)} = x_i + p^{-1}x_{i-1}^p + p^{-2}x_{i-2}^p + \dots, \quad i = 0, -1, -2, \dots
$$

Under very general assumptions [\[16,](#page-45-0) Teorema 1.11], a finite family of sequences $(x_{\alpha,-i})_{i=0,1,\dots}$ for $\alpha \in A$ in a \mathbb{Q}_p -Fréchet algebra are simulaneously PD-admissible iff the same holds for the family of sequences of ghost components $(x_\alpha^{(-i)})_{i=0,1,\dots}$, for $\alpha \in A$. Under these assumptions, for simultaneously PD-admissible covectors x and y, $x + y = z$ is equivalent to

(0.3.2)
$$
z^{(i)} = x^{(i)} + y^{(i)}, \quad i = 0, -1, -2, \dots
$$

In the present case, which coincides with the case treated in [\[2\]](#page-44-0), the sequences $i \mapsto x_{-i} := p^i x$ and $i \mapsto y_{-i} := p^i y$ are simultaneously PD-admissible in the standard \mathbb{C}_p -Fréchet algebra $\mathbb{C}_p\{x,y\}$ of entire functions on \mathbb{C}_p^2 [\[2,](#page-44-0) Lemma 1 and Lemma 3]. It follows from the relation $(0.0.5)$ that $i \mapsto x_{-i} := p^i x$, for $i = 0, 1, 2, \ldots$ is the sequence of ghost components of $x \mapsto x^{(-i)} := \Psi(p^i x)$. Therefore from [\[16,](#page-45-0) *loc.cit.*] we conclude that the two sequences $i \mapsto \Psi(p^i x)$ and $i \mapsto \Psi(p^i y)$ are simultaneously admissible in $\mathbb{C}_p\{x, y\}$, as well. Moreover, by [\[16,](#page-45-0) *loc.cit.*] and the definition of the addition law of Witt covectors with coefficients in $\mathbb{C}_p\{x,y\}$, we have

(0.3.3)
$$
(\ldots, \Psi(p^2(x+y)), \Psi(p(x+y)), \Psi(x+y)) =
$$

$$
(\ldots, \Psi(p^2x), \Psi(px), \Psi(x)) + (\ldots, \Psi(p^2y), \Psi(py), \Psi(y)).
$$

Equivalently, Ψ satisfies the addition law [\[2,](#page-44-0) (11)]

(0.3.4)
$$
\Psi(x+y) = \Phi(\Psi(x), \Psi(px), \dots; \Psi(y), \Psi(py), \dots)
$$

where

$$
\Phi(\Psi(x), \Psi(px), \dots; \Psi(y), \Psi(py), \dots) =
$$

(0.3.5)
$$
\lim_{i \to \infty} \varphi_i(\Psi(p^i x), \dots, \Psi(px), \Psi(x); \Psi(p^i y), \dots, \Psi(py), \Psi(y))
$$

for the polynomials φ_i of [\(0.1.2\)](#page-3-2) and [\(0.2.2\)](#page-4-2). Notice that [\(1.12.2\)](#page-8-1) may be restated to say that, for any $x \in \mathbb{Q}_p$,

$$
x=(\ldots,x_{-2},x_{-1};x_0,x_1,\ldots),
$$

where $x_i \in \mathbb{F}_p$ is given by [\(1.12.3\)](#page-8-2), as a *Witt bivector* [\[16\]](#page-45-0) with coefficients in \mathbb{F}_p .

0.4 Our present approach

We present here in section [2](#page-11-0) direct elementary proofs of the main properties of Ψ , which make no use of the Barsotti-Witt algorithms of [\[16\]](#page-45-0). Actually, following a suggestion of M. Candilera, we consider rather than [\(0.0.5\)](#page-2-1), the more general functional relation for $\Psi = \Psi_q$, $q=p^f,$

(0.3.6)
$$
\sum_{j=0}^{\infty} p^{-j} \Psi(p^j T)^{q^j} = T.
$$

The result, at no extra work, will then be that [\(0.3.6\)](#page-5-2) admits a unique solution $\Psi_q(T) \in$ $T+T^2\mathbb{Z}[[T]]$. The series $\Psi_q(T)$ represents a p-adically entire function such that $\Psi_q(\mathbb{Q}_q) \subset \mathbb{Z}_q$. In section [3](#page-15-0) we describe in the same elementary style the Newton and valuation polygons of the entire function Ψ_q , and obtain new estimates on the growth of $|\Psi_q(x)|$ as $|x| \to \infty$, which will be crucial for the sequel [\[3\]](#page-44-1). From these estimates we also deduce, modulo the self-contained technical Proposition [3.10](#page-21-0) whose proof appears in [\[3\]](#page-44-1), the location of the zeros of Ψ_p (Theorem [3.12\)](#page-23-0). Namely, any ball of radius 1, $a + \mathbb{Z}_p \in \mathbb{Q}_p/\mathbb{Z}_p$, contains precisely one (simple) zero of Ψ_n .

We present in Appendix C below some numerical calculations due to M. Candilera, which exhibit the first coefficients of Ψ_p , for small values of p. These calculations have been useful to us and we believe they may be quite convincing for the reader.

The function $\Psi_q: \mathbb{A}^1_{\mathbb{Q}_p} \to \mathbb{A}^1_{\mathbb{Q}_p}$ is a quasi-finite covering of the Berkovich affine line over \mathbb{Q}_p by itself. We do not know whether the previous covering is Galois.

0.5 Convergence of Fourier-type expansions

Section [1.1](#page-6-2) describes some Hopf algebras whose existence follows from the addition properties of Ψ_p . The next section [1.2](#page-8-0) suggests an interpretation of the functions $\Psi_p(x/\lambda)$, for $\lambda \in \mathbb{Q}_p^{\times}$, as p-adic analogs of $\exp(\frac{2\pi i}{\lambda}z)$, for $\lambda \in \mathbb{R}^{\times}$. We are naturally lead to the question of which functions can be expressed as uniform limits on \mathbb{Q}_p of the previous functions. By analogy to the classical case, we call these functions uniformly almost periodic on \mathbb{Q}_p and denote by $AP_{\mathbb{Q}_p}$ the corresponding closed subalgebra of the Banach algebra $\mathscr{C}^{\rm bd}_{\rm unif}(\mathbb{Q}_p, \mathbb{Q}_p)$ of bounded uniformly continuous functions $\mathbb{Q}_p \to \mathbb{Q}_p$. Although we do not have an intrinsic characterization of these functions, we can show that they may be seen as germs of holomorphic functions on a neighborhood of \mathbb{Q}_p . We point out that colimits for topological algebras are not in general supported by set-theoretic inductive limits (see Remark [5.8](#page-36-2) below). Therefore, our Uniform Approximation Theorem [1.25](#page-11-1) does not state that any uniformly almost periodic function on \mathbb{Q}_p necessarily extends to an analytic function on a *p*-adic strip around \mathbb{Q}_p . On the other hand, $AP_{\mathbb{Q}_p}$ is dense in the Fréchet algebra $\mathscr{C}(\mathbb{Q}_p, \mathbb{Q}_p)$ of continuous functions $\mathbb{Q}_p \to \mathbb{Q}_p$, equipped with the topology of uniform convergence on compact open subsets of \mathbb{Q}_p . The proofs of these facts are detailed in sections [4](#page-24-0) and [5.](#page-32-0) We spend some time in section [4](#page-24-0) to explain in categorical terms (clearly stated in Appendix A) the natural limit/colimit/tensor product formulas which justify the linear topologies of the previous function algebras. For example, $\mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p)$ (but not $\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{Z}_p)$) is a Hopf algebra related to the constant p-divisible group $\mathbb{Q}_p/\mathbb{Z}_p$ over \mathbb{Z}_p and to its "universal covering" \mathbb{Q}_p . A more complete discussion of these topological algebras and of their duality relation with the affine algebra of the universal covering of the p-divisible torus, interpreted as an algebra of measures, will appear in [\[5\]](#page-44-2).

In section [5](#page-32-0) we prove the facts announced in section [1.2,](#page-8-0) namely Theorem [1.15,](#page-9-0) Theorem [1.17,](#page-9-1) Proposition [1.18,](#page-9-2) Proposition [1.19,](#page-10-0) Proposition [1.21,](#page-10-1) Proposition [1.22,](#page-10-2) and Theorem [1.25.](#page-11-1)

0.6 Aknowledgments

It is a pleasure to acknowledge that the proofs in sections [2](#page-11-0) and [3](#page-15-0) of this text are based on a discussion with Philippe Robba which took place in April 1980. I am strongly indebted to him for this and for his friendship.

I thank my colleague Giuseppe De Marco for his patient explanations on classical Fourier theory.

I thank the MPIM of Bonn for hospitality during March 2018, when this article was completed.

1 Rings of p-adic analytic functions

1.1 Entire functions bounded on p -adic strips

(See Appendix A for notation of topological algebra and non-archimedean functional analysis.) We describe here the Hopf algebra object $\mathbb{Q}_p\{x\}$ in the category of Fréchet \mathbb{Q}_p -algebras equipped with the completed projective = inductive tensor product $\hat{\otimes}_{\pi,\mathbb{Q}_p} = \hat{\otimes}_{\iota,\mathbb{Q}_p}$, which consists of the global sections of the \mathbb{Q}_p -analytic group \mathbb{G}_a . We also consider boundedness conditions for the functions in $\mathbb{Q}_p\{x\}$ on suitable neighborhoods of \mathbb{Q}_p in the Berkovich affine line $\mathbb{A}_{\mathbb{Q}_p}^1$ over \mathbb{Q}_p .

Our notation for coproduct (resp. counit, resp. inversion) of a Hopf algebra object A in a symmetric monoidal category with monoidal product \otimes and unit object I is usually $\mathbb{P} = \mathbb{P}_A : A \to A \otimes A$ (resp. $\varepsilon = \varepsilon_A : A \to I$, resp. $\rho = \rho_A : A \to A$).

Definition 1.1. For any closed subfield K of \mathbb{C}_p , we denote by $K\{x\} = K\{x_1, \ldots, x_n\}$ the ring of entire functions on the K-analytic affine space $(\mathbb{A}_{K}^{n}, \mathcal{O}_{K})$. The standard Fréchet topology on the K-algebra K $\{x\}$ is induced by the family $\{w_r\}_{r\in\mathbb{Z}}$ of valuations

$$
w_r(f) := \inf_{x \in (p^{-r} \mathbb{C}_p^\circ)^n} v(f(x)),
$$

for any $f \in K\{x\}$.

Remark 1.2. More generally, for bounded functions $f: X \to (S, ||)$, where X is a set and $(S, |)$ is a Banach ring in multiplicative notation, $||f||_X = \sup_{x \in X} |f(x)|$ will denote the supnorm on X .

Definition 1.3. For any $\rho > 0$ and any finite extension K/\mathbb{Q}_p , the p-adic n-strip of width ρ around K^n is the analytic domain which is the union $\Sigma_\rho(K) = \Sigma_\rho^{(n)}(K)$ of all affinoid n-polydiscs of radius ρ centered at K-rational points. We denote by

$$
Res_{\rho}: \mathbb{C}_p\{x\} \longrightarrow \mathcal{O}(\Sigma_{\rho}), \ f \longmapsto f_{|\Sigma_{\rho}}
$$

the restriction map. Clearly, the map Res_{ρ} is an injection. We let $\mathcal{O}_K^{\text{bd}}(\Sigma_{\rho}(K))$ (resp. $\mathcal{O}_{K}^{\circ}(\Sigma_{\rho}(K))$) denote the subring of $\mathcal{O}_{K}(\Sigma_{\rho}(K))$, consisting of functions bounded (resp. bounded by 1) on $\Sigma_{\rho}(K)$. We denote by $|| \ ||_{K,\rho}$ the supnorm on $\Sigma_{\rho}(K)$. The Banach algebra structure on $\mathcal{O}_K^{\rm bd}(\Sigma_\rho(K))$ (resp. $\mathcal{O}_K^{\circ}(\Sigma_\rho(K))$) induced by the norm $|| \ ||_{K,\rho}$ will be called K-uniform. The Fréchet structure of $\mathcal{O}_K(\Sigma_\rho(K))$ (resp. $\mathcal{O}_K^{\circ}(\Sigma_\rho(K))$) induced by the family of seminorms of Definition [1.1](#page-6-3) will be called standard. We set in particular $\Sigma_{\rho} = \Sigma_{\rho}^{(1)}(\mathbb{Q}_p)$ but will keep the notation $|| \ ||_{\mathbb{Q}_p,\rho}$. We also denote by $\mathscr{H}_{K}^{(n),\mathrm{bd}}(\rho)$ (resp. $\mathscr{H}_{K}^{(n),\circ}(\rho)$) the subring of $K\{x\}$ of functions which are bounded (resp. bounded by 1) on $\Sigma_o(K)$. We set

$$
\mathscr{H}_K^{(n),\mathrm{bd}}:=\bigcap_{\rho}\mathscr{H}_K^{(n),\mathrm{bd}}(\rho)\ .
$$

For any $\rho > 0$ and any $f \in \mathscr{H}_K^{(n), bd}(\rho)$ we introduce one further valuation

(1.3.1)
$$
w_{K,\infty}(f) := \inf_{x \in K^n} v(f(x)) .
$$

For $n = 1$ and $K = \mathbb{Q}_p$, we shorten $\mathscr{H}_K^{(n),\text{bd}}(\rho)$ (resp. $\mathscr{H}_K^{(n),\circ}(\rho)$, resp. $\mathscr{H}_K^{(n),\text{bd}}$, resp. $w_{K,\infty}$, resp. K-uniform) to $\mathscr{H}^{bd}(\rho)$ (resp. $\mathscr{H}^{\circ}(\rho)$, resp. \mathscr{H}^{bd} , resp. w_{∞} , resp. uniform).

Remark 1.4. It is not a priori clear that \mathcal{H}^{bd} contains non-constant functions. We will prove below (Theorem [3.11\)](#page-22-0) that $\Psi(x) \in \mathcal{H}^{\text{bd}}$.

Remark 1.5. For any n and any $\rho > 0$, $\mathscr{H}_{K}^{(n),\circ}(\rho)$ is a closed K° -subalgebra of $K\{x_{1},\ldots,x_{n}\};$ the induced Fréchet K[°]-algebra structure on $\mathscr{H}_{K}^{(n),\circ}(\rho)$ will be called *standard*. It fol-lows from formula [0.0.5](#page-2-1) below that, by contrast, $\mathscr{H}_K^{(n),\text{bd}}(\rho) = \mathscr{H}_K^{(n),\circ}(\rho)[1/p]$ is dense in $K\{x_1, \ldots, x_n\}.$

Remark 1.6. The Fréchet structure on $\mathcal{O}_K(\Sigma_o)$ which we call "standard" is the one of analytic geometry: it coincides with the topology of uniform convergence on rigid discs of radius ρ . Similarly for $\mathcal{O}_K^{\circ}(\Sigma_{\rho}(K))$. The standard Fréchet algebra $K\{x\}$ identifies with

(1.6.1)
$$
K\{x\} = \varprojlim_{\rho \to +\infty} (\mathcal{O}_K(\Sigma_\rho), \text{standard})
$$

Definition 1.7. The strip topology on $\mathscr{H}_K^{(n),\text{bd}}$ is the projective limit topology of the uniform topologies of Definition [1.3.](#page-6-4) So,

(1.7.1)
$$
(\mathcal{H}_K^{(n),\mathrm{bd}}, \mathrm{strip}) = \varprojlim_{\rho \to +\infty} (\mathcal{O}_K^{\mathrm{bd}}(\Sigma_\rho(K)), || \ ||_{K,\rho}),
$$

is a K -Fréchet space.

Remark 1.8. We have a dense embedding $\mathscr{H}_K^{(n), bd} \subset K\{x_1, \ldots, x_n\}$. The strip topology on $\mathscr{H}_K^{(n),\mathrm{bd}}$, for which this algebra is complete, is finer than its (non complete) standard topology.

The next lemma shows that, for any non archimedean field K and $\mathbb{G}_a = \mathbb{G}_{a,K}$,

$$
\mathcal{O}(\mathbb{G}_a \times \mathbb{G}_a) = \mathcal{O}(\mathbb{G}_a) \widehat{\otimes}_{\pi, K} \mathcal{O}(\mathbb{G}_a)
$$

so that $\mathcal{O}(\mathbb{G}_a)$ is a Hopf algebra object in the category of Fréchet K-algebras.

Lemma 1.9. There are natural identifications

$$
(1.9.1) \t K\{x_1,\ldots,x_n\}\hat{\otimes}_{\pi,K}K\{y_1,\ldots,y_m\}=K\{x_1,\ldots,x_n,y_1,\ldots,y_m\}.
$$

sending $x_i \otimes 1 \mapsto x_i$ and $1 \otimes y_j \mapsto y_j$, for $i = 1, \ldots, n, j = 1, \ldots, m$.

Proof. For any $s \in \mathbb{Z}$ the map of the statement produces isomorphisms of K-Tate algebras [\[9,](#page-44-3) §6.1.1, Cor. 8] (1.9.2)

$$
K\langle p^{-s}x_1,\ldots,p^{-s}x_n\rangle\widehat{\otimes}_{\pi,K}K\langle p^{-s}y_1,\ldots,p^{-s}y_m\rangle = K\langle p^{-s}x_1,\ldots,p^{-s}x_n,p^{-s}y_1,\ldots,p^{-s}y_m\rangle.
$$

We now apply Proposition 6.6.

We now apply Proposition [6.6.](#page-39-2)

Corollary 1.10. Let K be a finite extension of \mathbb{Q}_p and $\rho > 0$. The identifications [\(1.9.1\)](#page-7-0) induce identifications

 $(1.10.1) \quad (\mathcal{H}_K^{(n),\circ}(\rho), \text{standard}) \widehat{\otimes}^u_{K^\circ}(\mathcal{H}_K^{(m),\circ}(\rho), \text{standard}) \longrightarrow (\mathcal{H}_K^{(m+n),\circ}(\rho), \text{standard})$. Similarly for $(\mathcal{O}_K^{\circ}(\Sigma_{\rho}(K)))$, standard).

Corollary 1.11. The map $\mathbb{P}: x_i \mapsto x_i \widehat{\otimes} 1 + 1 \widehat{\otimes} x_i$ makes $K\{x_1, \ldots, x_n\}$ into a Hopf algebra object in the category of Fréchet K-algebras. The restriction of $\mathbb P$ to $\mathscr{H}_{K}^{(n),\circ}(\rho)$ induces a map

 $\mathbb{P}: (\mathcal{H}_K^{(n),\circ}(\rho), \text{standard}) \longrightarrow (\mathcal{H}_K^{(n),\circ}(\rho), \text{standard}) \widehat{\otimes}_{K^{\circ}}^u (\mathcal{H}_K^{(n),\circ}(\rho), \text{standard})$

which makes $(\mathscr{H}_K^{(n),\circ}(\rho),$ standard) a Hopf algebra object in the category of Fréchet K[∘] algebras. Similarly for $(\mathcal{O}_K^{\circ}(\Sigma_{\rho}(K)))$, standard).

1.2 *p*-adic almost periodic functions

We sketch here the the main ideas and results on p-adic almost periodic functions. Proofs are given in section [5](#page-32-0) below. We freely use in this introduction the (quite self-explanatory) notation of section [4](#page-24-0) for continuous, uniformly continuous, bounded rings of p -adic functions $\mathbb{Q}_p \to \mathbb{Q}_p$ and their topologies.

The following elementary lemma shows that a naive p-adic analog of real Bohr's uniformly almost periodic functions (see Definition [7.2](#page-40-1) in Appendix B), where "an interval of length ℓ_{ε} in \mathbb{R}^n is taken to mean a coset $a + p^h \mathbb{Z}_p$, for $a \in \mathbb{Q}_p$ and $p^{-h} = \ell_{\varepsilon}$, does not lead to a meaningful definition.

Lemma 1.12. A continuous function $f : \mathbb{Q}_p \to \mathbb{Q}_p$ which has the property that for any $\varepsilon > 0$, there exists $h \in \mathbb{Z}$ such that any coset $a + p^h \mathbb{Z}_p$ in $\mathbb{Q}_p/p^h \mathbb{Z}_p$ contains an element t_a such that

$$
(1.12.1) \t\t |f(x+t_a)-f(x)| < \varepsilon \ \forall \ x \in \mathbb{Q}_p,
$$

is constant.

Proof. In fact, from condition [\(1.12.1\)](#page-8-4), for any $a \in \mathbb{Q}_p$, it follows by iteration that t_a may be replaced by any $t \in \mathbb{Z}$ t_a. By continuity, we may replace t_a by any $t \in \mathbb{Z}_p$ t_a. For $a \notin p^h \mathbb{Z}_p$, $\mathbb{Z}_p t_a = \mathbb{Z}_p a$. So, if we pick $a = p^{-N}$, for $N >> 0$, [\(1.12.1\)](#page-8-4) implies that the variation of $f(x)$ in $p^{-N}\mathbb{Z}_p$ is less than ε . So, the variation of $f(x)$ in \mathbb{Q}_p is less than ε for any $\varepsilon > 0$, hence f is constant. \Box

We resort to an ad hoc definition. For $x \in \mathbb{Q}_p$, let us consider the classical Witt vector expression

(1.12.2)
$$
x = \sum_{i>>-\infty}^{\infty} [x_i] p^i \in W(\mathbb{F}_p)[1/p] = \mathbb{Q}_p,
$$

where $[t]$, for $t \in \mathbb{F}_p$, is the Teichmüller representative of t in $W(\mathbb{F}_p) = \mathbb{Z}_p$. Notice that, for any $i \in \mathbb{Z}$, the function

$$
(1.12.3) \t\t x_i : \mathbb{Q}_p \longrightarrow \mathbb{F}_p , \t x \longmapsto x_i
$$

factors through a function, still denoted by x_i ,

(1.12.4)
$$
x_i : \mathbb{Q}_p/p^{i+1}\mathbb{Z}_p \longrightarrow \mathbb{F}_p , h \longmapsto h_i .
$$

We regard the function in [\(1.12.4\)](#page-8-3) as an \mathbb{F}_p -valued *periodic function of period* p^{i+1} on \mathbb{Q}_p . In the following, for any $i \in \mathbb{Z}$ and any $\lambda \in \mathbb{Q}_p^{\times}$, we denote by " $[(\lambda x)_i]$ " the uniformly continuous function $\mathbb{Q}_p \to \mathbb{Z}_p$, $x \mapsto [(\lambda x)_i]$. We observe that

$$
[(\lambda p^j x)_i] = [(\lambda x)_{i-j}]
$$

for any $i, j \in \mathbb{Z}$ and $\lambda \in \mathbb{Q}_p^{\times}$.

Definition 1.13. We define the \mathbb{Q}_p -algebra $AP_{\mathbb{Q}_p}$ (resp. the \mathbb{Z}_p -algebra $AP_{\mathbb{Z}_p}$) of (resp. integral) uniformly almost periodic (u.a.p. for short) functions $\mathbb{Q}_p \to \mathbb{Q}_p$ (resp. $\mathbb{Q}_p \to \mathbb{Z}_p$) as the closure of

$$
\mathbb{Q}_p[[(\lambda x)_i] \, | \, i \in \mathbb{Z}, \, \lambda \in \mathbb{Z}_p^{\times}] \, \text{ (resp. of } \mathbb{Z}_p[[(\lambda x)_i] \, | \, i \in \mathbb{Z}, \, \lambda \in \mathbb{Z}_p^{\times}] \text{)}
$$

in the \mathbb{Q}_p -Banach algebra $\mathscr{C}_{\rm unif}^{\rm bd}(\mathbb{Q}_p,\mathbb{Q}_p)$ (resp. in the \mathbb{Z}_p -Banach ring $\mathscr{C}_{\rm unif}(\mathbb{Q}_p,\mathbb{Z}_p)$), equipped with the induced valuation w_{∞} .

Remark 1.14. This remark is made to partially justify Definition [1.13.](#page-9-3) For any $N \in \mathbb{Z}$ we denote by $S_N : \mathbb{Q}_p \to p^N \mathbb{Z}_p$ the function N-th order fractional part, namely

(1.14.1)
$$
x = \sum_{i>>-\infty}^{\infty} [x_i] p^i \longrightarrow S_N(x) = \sum_{i=N}^{\infty} [x_i] p^i.
$$

It is clear that, for any N and $\lambda \in \mathbb{Q}_p^{\times}$, $x \mapsto S_N(\lambda x)$ is a bounded uniformly continuous function. The function S_3 , certainly not periodic, is a p -adic analog of the function

 $\mathbb{R} \to [0, 1)$,1234.56789.... $\mapsto 0.789...$

which is genuinely periodic of period 0.01 .

We will prove the following partial analog to Bohr's "Approximation Theorem" (Theo-rem [7.3](#page-40-2) in Appendix B), where in fact the functions $\cos(\frac{2\pi}{\lambda}x)$ and $\sin(\frac{2\pi}{\lambda}x)$, for $\lambda \in \mathbb{R}^{\times}$ are replaced by the functions $\Psi(\lambda x)$, for $\lambda \in \mathbb{Q}_p^{\times}$.

Theorem 1.15. $(AP_{\mathbb{Q}_p}, w_{\infty})$ (resp. $(AP_{\mathbb{Z}_p}, w_{\infty})$) is the completion of the valued ring

$$
(\mathbb{Q}_p[\Psi(\lambda x) \,|\, \lambda \in \mathbb{Q}_p^{\times}], w_{\infty}) \quad (resp. \ (\mathbb{Z}_p[\Psi(\lambda x) \,|\, \lambda \in \mathbb{Q}_p^{\times}], w_{\infty}) \) .
$$

Definition 1.16. For any $\lambda \in \mathbb{Q}_p^{\times}$, the Fréchet \mathbb{Z}_p -algebra $\mathscr{E}_\lambda^{\circ}$ (resp. $\mathscr{T}_\lambda^{\circ}$) is the closure of

(1.16.1)
$$
\mathbb{Z}_p[\Psi(\lambda^{-1}p^jx) | j = 0, 1, \dots]
$$

in $\mathbb{Q}_p\{x\}$ (resp. in $\mathcal{O}(\Sigma_{|\lambda|})$) with the standard topology. We then set $\mathscr{E}_{\lambda}^{\text{bd}} := \mathscr{E}_{\lambda}^{\circ}[1/p]$ (resp. $\mathscr{T}_{\lambda}^{\mathrm{bd}} := \mathscr{T}_{\lambda}^{\circ}[1/p]).$

Finally, we define the Fréchet \mathbb{Z}_p -algebra \mathscr{E}° as the closure of $\mathbb{Z}_p[\Psi(\lambda^{-1}p^jx) \mid j = 0, 1, \dots]$ in $\mathbb{Q}_p\{x\}$, and set $\mathscr{E}^{\text{bd}} := \mathscr{E}^{\circ}[1/p].$

Theorem 1.17. (Approximation Theorem on compacts) The completion of the multivalued ring

 $(\mathscr{E}^{\text{bd}},\{||\ ||_{p^r\mathbb{Z}_p}\}_{r\in\mathbb{Z}})$ $(resp.~(\mathscr{E}^{\circ},\{||\ ||_{p^r\mathbb{Z}_p}\}_{r\in\mathbb{Z}})$)

is the Fréchet \mathbb{Q}_p -algebra (resp. \mathbb{Z}_p -algebra) $\mathscr{C}(\mathbb{Q}_p, \mathbb{Q}_p)$ (resp. $\mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p)$).

The following proposition follows from the estimates of Proposition [0.1](#page-2-2) (see Corollary [3.4](#page-19-1) or Theorem [3.11](#page-22-0) for the proof) together with the fact that the conditions listed below are closed for the standard Fréchet structure. The proof of the latter fact is given in Lemma [5.6.](#page-33-0)

Proposition 1.18. For any $f \in \mathcal{E}_{\lambda}^{\circ}$ (resp. $f \in \mathcal{T}_{\lambda}^{\circ}$) we have

- 1. f is bounded by 1 on the p-adic strip $\Sigma_{|\lambda|}$;
- 2. $f(\mathbb{Q}_p) \subset \mathbb{Z}_p$;
- 3. For any $r \in \mathbb{Z}$, $a, j \in \mathbb{Z}_{\geq 0}$, the function $g(x) := f(p^{-r}x)^{p^a}$ satisfies

$$
g(x + p^{r+j}\lambda \mathbb{C}_p^{\circ}) \subset g(x) + p^{a+j}\mathbb{C}_p^{\circ} , \quad \forall x \in \mathbb{Q}_p .
$$

Proposition 1.19. For any $\lambda \in \mathbb{Q}_p^{\times}$, $(\mathscr{E}_\lambda^{\circ}$, standard) (resp. $(\mathscr{T}_\lambda^{\circ}$, standard)) is a Hopp algebra object in the monoidal category $(\mathcal{CM}^u_{\mathbb{Z}_p}, \widehat{\otimes}^u_{\mathbb{Z}_p})$ for the coproduct $\mathbb P$ and coidentity ε given by

(1.19.1)
$$
\mathbb{P}(\Psi(\lambda^{-1}p^jx)) \mapsto \Psi(\lambda^{-1}p^jx\widehat{\otimes}1 + 1\widehat{\otimes}\lambda^{-1}p^jx) , \varepsilon(\Psi(\lambda^{-1}p^jx)) = 0 ,
$$

for $j = 0, 1, \ldots$ This structure only depends upon $|\lambda|$.

Definition 1.20. We define \mathbb{E}_{λ} in [\(0.0.1\)](#page-1-2) (resp. \mathbb{T}_{λ}) as the abelian group functor on $\mathcal{ALLM}_{\mathbb{Z}_p}^u$, represented by the Hopf algebras $(\mathscr{E}_{\lambda}^{\circ}, \text{standard})$ (resp. by $(\mathscr{T}_{\lambda}^{\circ}, \text{standard})$).

A partial p -adic analog of Féjer's Theorem, or, more precisely, of Theorem [7.1](#page-39-3) in Appendix B, is then

Proposition 1.21. For any $\lambda \in \mathbb{Q}_p^{\times}$, the completion of the valued ring

$$
(\mathbb{Z}_p[\Psi(\lambda^{-1}p^jx) \mid j=0,1,\ldots], w_\infty)
$$

coincides with its closure in $\mathscr{C}_{\text{unif}}(\mathbb{Q}_p, \mathbb{Z}_p) = \text{W}(\mathscr{C}_{\text{unif}}(\mathbb{Q}_p, \mathbb{F}_p))$ equipped with the p-adic topology, and identifies with $W(\mathbb{F}_p[[(\lambda^{-1}x)_{-j}]] | j = 0,1,...]$ also equipped with the p-adic topology.

For the standard topology we have

Proposition 1.22. For any $\lambda \in \mathbb{Q}_p^{\times}$, the completion of the valued ring $(\mathscr{E}_{\lambda}^{\circ}, w_{\infty})$ (resp. $(\mathscr{T}_{\lambda}^{\circ}, w_{\infty})$ coincides with its closure in $\mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p) = \mathcal{W}(\mathscr{C}(\mathbb{Q}_p, \mathbb{F}_p))$ equipped with the product topology of the prodiscrete topologies on the components [\(4.18.4\)](#page-30-0), and identifies with $W(\mathbb{F}_p(v(\lambda),\infty))$ (see Proposition [4.16](#page-30-1) below for notation) also equipped with the product topology of the prodiscrete topologies on the components.

The ring $\mathscr{E}_{\lambda}^{\circ} \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ (resp. $\mathscr{T}_{\lambda}^{\circ} \otimes_{\mathbb{Z}_p} \mathbb{F}_p$) equipped with the quotient topology coincides with $\mathbb{F}_p(v(\lambda), \infty) = \mathscr{C}(\mathbb{Q}_p/\lambda p \mathbb{Z}_p, \mathbb{F}_p).$

We now introduce our p-adic analog of the sheaf $\mathcal{APH}_{\mathbb{C}}$ of almost periodic analytic functions (see subsection [7.2](#page-40-0) in Appendix B).

Definition 1.23.

- 1. For any $\rho > 0$, we define the algebra of (resp. integral) almost periodic p-adic analytic functions on the strip Σ_ρ as the closure $\mathcal{APH}_{\mathbb{Q}_p}(\Sigma_\rho)$ (resp. $\mathcal{APH}_{\mathbb{Z}_p}(\Sigma_\rho)$) of $\mathbb{Q}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$ (resp. $\mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$) in $(\mathcal{O}^{\text{bd}}(\Sigma_\rho),$ uniform), with the induced Banach ring structure.
- 2. The algebra of germs at 0 of almost periodic p-adic analytic functions is the locally convex inductive limit

(1.23.1)
$$
(\mathcal{APH}_{0,\mathbb{Q}_p}, \text{strip}) := \varinjlim_{\rho \to 0} \mathcal{APH}_{\mathbb{Q}_p}(\Sigma_\rho).
$$

3. The algebra of germs at 0 of integral almost periodic p-adic analytic functions is

(1.23.2)
$$
(\mathcal{APH}_{0,\mathbb{Z}_p}, \text{strip}) := \varinjlim_{\rho \to 0} u \mathcal{APH}_{\mathbb{Z}_p}(\Sigma_\rho).
$$

4. The algebra of almost periodic p-adic entire functions is

(1.23.3)
$$
(APH_{\mathbb{Q}_p}, \text{strip}) := \varprojlim_{\rho \to +\infty} \mathcal{APH}_{\mathbb{Q}_p}(\Sigma_\rho).
$$

- 5. The algebra of integral almost periodic p-adic entire functions is the closure $(APH_{\mathbb{Z}_p}, \text{strip})$ of $\mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$ in $(APH_{\mathbb{Q}_p}, \text{strip})$ equipped with the induced Fréchet \mathbb{Z}_p -algebra structure.
- 6. The Fréchet \mathbb{Z}_p -algebra \mathscr{E}° is a Hopf algebra object in the category $\mathcal{CLM}_{\mathbb{Z}_p}^u$ for the laws [\(1.19.1\)](#page-10-3). The corresponding group functor

(1.23.4) E : ACLM^u ^Z^p −→ Ab

will be called the universal covering of \mathbb{E}_{λ} , for any $\lambda \in \mathbb{Q}_p^{\times}$.

Remark 1.24. The special fiber of E is the constant group

$$
\mathbb{Q}_p = \varprojlim_{|\lambda| \to 0} \mathbb{Q}_p / \lambda \mathbb{Z}_p
$$

over \mathbb{F}_p . On the other hand, equation [0.0.5](#page-2-1) shows that $\mathcal{E}^{\circ}[1/p]$ is dense in $\mathbb{Q}_p\{x\}$, so that the generic fiber of $\mathbb E$ is $\mathbb G_{a,\mathbb Q_p}$.

Our Definition [1.23](#page-10-4) is designed as to make the analog of Theorem [7.5](#page-40-3) in Appendix B a true statement. In the p -adic case, we actually get the following more precise statement.

Theorem 1.25. (Uniform Approximation Theorem) The natural $\mathcal{CLM}_{\mathbb{Q}_p}^u$ -morphism (resp. $\mathcal{CLM}_{\mathbb{Z}_p}^u$ -morphism)

$$
(\mathcal{APH}_{0,\mathbb{Q}_p},\text{strip}) \longrightarrow (AP_{\mathbb{Q}_p},w_{\infty})
$$

(resp.

$$
(\mathcal{APH}_{0,\mathbb{Z}_p},\text{strip}) \longrightarrow (AP_{\mathbb{Z}_p},w_{\infty}) ,
$$

is an isomorphism.

The similarity with classical Fourier expansions will be made more stringent in [\[3\]](#page-44-1), where the classical Mahler binomial expansions of continuous functions $\mathbb{Z}_p \to \mathbb{Z}_p$ is generalized to an expansion of any uniformly continuous functions $\mathbb{Q}_p \to \mathbb{Q}_p$ as a series with countably many terms of entire functions of exponential type. Such a p-adic Fourier theory on \mathbb{Q}_p presents the same power and limitations as the classical Fourier theory on R. Functions in $AP_{\mathbb{Q}_p}$ play the role of Bohr's uniformly almost periodic functions and a variation of the Bochner-Fejér approximation theorem [\[7,](#page-44-4) I.9] holds. On the other hand, a Fourier series $\mathscr{F}(f)$ (with countably many terms) does exist for a much more general class of functions $f: \mathbb{Q}_p \to \mathbb{Q}_p$ and the classical question as to what extent the series $\mathscr{F}(f)$ approximates f makes perfect sense, precisely as in classical Harmonic Analysis.

We ask whether the classical Bohr compactification of \mathbb{Q}_p has a p-adic analytic description, as it has one in terms of classical $(i.e.$ complex-valued) harmonic theory on the locally compact group $(\mathbb{Q}_p, +)$.

We expect that a completely analogous theory should exist for any finite extension K/\mathbb{Q}_p . To develop it properly it will be necessary to extend Barsotti covector's construction to ramified Witt vectors modeled on K and to relate this construction to Lubin-Tate groups over K° [\[19\]](#page-45-2).

2 Elementary proofs of the main properties of Ψ

We prove here the basic properties of the function Ψ . In contrast to [\[2\]](#page-44-0), the proofs are here completely self-contained.

Proposition 2.1. The equation [\(0.3.6\)](#page-5-2) has a unique solution in $\Psi = \Psi_q \in T + T^2 \mathbb{Z}[[T]]$.

Proof. We endow $\mathbb{Z}[[T]]$ of the T-adic topology. It is clear that, for any $\varphi \in T\mathbb{Z}[[T]]$, the series $\sum_{j=1}^{\infty} p^{-j} \varphi(p^j T)^{q^j}$ converges in $T \mathbb{Z}[[T]]$. Moreover, the map

(2.1.1)
$$
\mathscr{L} : \varphi \longmapsto T - \sum_{j=1}^{\infty} p^{-j} \varphi(p^j T)^{q^j},
$$

is a contraction of the complete metric space $T + T^2\mathbb{Z}[[T]]$. In fact, let $\varepsilon(T) \in T^r\mathbb{Z}[[T]]$, with $r \geq 3$. For any $\varphi \in T + T^2 \mathbb{Z}[[T]]$ we see that

$$
\mathscr{L}(\varphi + \varepsilon) - \mathscr{L}(\varphi) \in T^{r(q-1)+q}\mathbb{Z}[[T]] .
$$

Since $r(q-1) + q > r$ this shows that $\mathscr L$ is a contraction. So, this map has a unique fixed point which is $\Psi_q(T)$. Г

The following proposition, due to M. Candilera, provides an alternative proof of Propo-sition [2.1](#page-11-2) and finer information on $\Psi_q(T)$.

Proposition 2.2. (M. Candilera) The functional equation for the unknow function u

(2.2.1)
$$
1 = \sum_{j=0}^{\infty} p^{j(q^{j}-1)} T^{\frac{q^{j}-1}{q-1}} u(p^{j(q-1)}T)^{q^{j}}
$$

admits a unique solution $u(T) = u_q(T) \in 1 + T\mathbb{Z}[[T]]$. We have

(2.2.2)
$$
\Psi_q(T) = Tu_q(T^{q-1}).
$$

Proof. In this case we consider the T-adic metric space $1 + T\mathbb{Z}[[T]]$ and the map

$$
\mathcal{M}: 1 + T\mathbb{Z}[[T]] \longrightarrow 1 + T\mathbb{Z}[[T]]
$$

(2.2.3)

$$
\varphi \longmapsto 1 - \sum_{j=1}^{\infty} p^{j(q^j-1)} T^{\frac{q^j-1}{q-1}} \varphi(p^{j(q-1)}T)^{q^j}.
$$

We endow $\mathbb{Z}[[T]]$ of the T-adic topology. It is clear that, for any $\varphi \in T\mathbb{Z}[[T]]$, the series $\sum_{j=1}^{\infty} p^{-j} \varphi(p^j T)^{q^j}$ converges in $T \mathbb{Z}[[T]]$. If $\varepsilon(T) \in T^r \mathbb{Z}[[T]]$, with $r \geq 2$. For any $\varphi \in$ $1 + T\mathbb{Z}[[T]]$ we see that

$$
\mathscr{M}(\varphi+\varepsilon)-\mathscr{M}(\varphi)\in T^{r+1}\mathbb{Z}[[T]]\ .
$$

So, the map $\mathscr M$ is a contraction and its unique fixed point has the properties stated for the series u in the statement. \Box

Proposition 2.3. The series $\Psi(T) = \Psi_q(T)$ is entire.

Proof. Since $\Psi \in T + T^2 \mathbb{Z}[[T]] \subset T\mathbb{Z}[[T]]$, we deduce that Ψ converges for $v_p(T) > 0$. Since the coefficient of T in $\Psi(T)$ is 1, whenever $v_p(T) > 0$ we have $v_p(\Psi(T)) = v_p(T)$.

Suppose Ψ converges for $v_p(T) > \rho$, for $\rho \leq 0$. Then, for $j \geq 1$, $\Psi(p^jT)^{q^j}$ converges for $v_p(T) > \rho - 1$. Moreover, if $j > -\rho + 1$ and $v_p(T) > \rho - 1$, we have

(2.3.1)
$$
v_p(p^{-j}\Psi(p^jT)^{q^j}) = -j + q^j(v_p(p^jT)) > -j + q^j(j+\rho-1) ,
$$

and this last term $\rightarrow +\infty$, as $j \rightarrow +\infty$.

This shows that the series $T - \sum_{j=1}^{\infty} p^{-j} \Psi(p^j T)^{q^j}$ converges uniformly for $v_p(T) > \rho - 1$, so that its sum, which is Ψ , is analytic for $v_p(T) > \rho - 1$. It follows immediately from this that Ψ is an entire function. \Box **Remark 2.4.** We have proven that, for any $j = 0, 1, \ldots$ and for $v_p(T) > -j$,

(2.4.1)
$$
v_p(p^{-j}\Psi(p^jT)^{q^j}) = -j + q^j(j + v_p(T)).
$$

In particular, for any $a \in \mathbb{Z}_q$, $(\Psi(a) \in \mathbb{Z}_q$ and) $\Psi_q(a) \equiv a$, modulo $p\mathbb{Z}_q$.

Proposition 2.5. For any $a \in \mathbb{Q}_q$, $\Psi_q(a) \in \mathbb{Z}_q$.

Proof. Let $a \in \mathbb{Z}_q$. We define by induction the sequence $\{a_i\}_{i=0,1,...}$:

(2.5.1)
$$
a_0 = a , a_i = \sum_{j=0}^{i-1} p^{j-i} (a_j^{q^{i-j-1}} - a_j^{q^{i-j}}) .
$$

Since, for any $a, b \in \mathbb{Z}_q$, if $a \equiv b \mod p$, then $a^{q^n} \equiv b^{q^n} \mod pq^n$, hence modulo p^{n+1} , while $a \equiv a^q \mod p$, we see that $a_i \in \mathbb{Z}_q$, for any i.

We then see by induction that, for any i ,

(2.5.2)
$$
a_i = p^{-i} (a - \sum_{j=0}^{i-1} p^j a_j^{q^{i-j}}) \text{ or, equivalently, } a = \sum_{j=0}^{i} p^j a_j^{q^{i-j}}.
$$

Explicitly, if we substitute in the formula which defines a_i , namely

$$
p^{i} a_{i} = \sum_{j=0}^{i-1} p^{j} a_{j}^{q^{i-j-1}} - \sum_{j=0}^{i-1} p^{j} a_{j}^{q^{i-j}}
$$

the $(i-1)$ -st step of the induction, namely, $a = \sum_{i=1}^{i-1}$ $j=0$ $p^ja_i^{q^{i-j-1}}$ \int_j^q , we get

$$
p^i a_i = a - \sum_{j=0}^{i-1} p^j a_j^{q^{i-j}},
$$

which is precisely the i -th inductive step.

From the functional equation [\(0.3.6\)](#page-5-2) and from Remark [2.4](#page-13-0) we have, for $a \in \mathbb{Z}_q$ and $i = 0, 1, 2, \ldots,$

$$
(2.5.3) \quad \Psi(p^{-i}a) \equiv p^{-i}a - \sum_{\ell=1}^i p^{-\ell} \Psi(p^{\ell} p^{-i} a)^{q^{\ell}} = p^{-i} (a - \sum_{j=0}^{i-1} p^j \Psi(p^{-j} a)^{q^{i-j}}) \mod p\mathbb{Z}_q.
$$

Notice that $\Psi(a) \in \mathbb{Z}_q$ and that, modulo $p\mathbb{Z}_q$, $\Psi_q(a) \equiv a = a_0$, defined as in [\(2.5.1\)](#page-13-1). We now show by induction on i that for a_1, \ldots, a_i, \ldots defined as in $(2.5.1)$,

(2.5.4)
$$
\Psi(p^{-i}a) \equiv a_i \mod p\mathbb{Z}_q ,
$$

which proves the statement. In fact, assume $\Psi(p^{-j}a) \equiv a_j \mod p\mathbb{Z}_q$, for $j = 0, 1, \ldots, i - 1$, and plug this information in [\(2.5.3\)](#page-13-2). We get

(2.5.5)
$$
\Psi(p^{-i}a) \equiv p^{-i}a - \sum_{\ell=1}^i p^{-\ell} a_{i-\ell}^{q^{\ell}} = p^{-i} (a - \sum_{j=0}^{i-1} p^j a_j^{q^{i-j}}) = a_i \mod p\mathbb{Z}_q,
$$

which is the i -th inductive step.

 \Box

Remark 2.6. Notice that from [\(2.5.3\)](#page-13-2) it follows that, for any $a \in p^{-n} \mathbb{Z}_q$,

$$
a \equiv \sum_{\ell=0}^n p^{-\ell} \Psi_q(p^{\ell}a)^{q^{\ell}} \mod p\mathbb{Z}_q .
$$

The formula can be more precise using the functional equation [\(0.3.6\)](#page-5-2) and Remark [2.4.](#page-13-0) We get, for any $a \in \mathbb{Q}_q$,

(2.6.1)
$$
a \equiv \sum_{\ell=0}^{-v_p(a)+i} p^{-\ell} \Psi_q(p^{\ell} a)^{q^{\ell}} \mod p^{i+1} \mathbb{Z}_q, \ \forall \ i \in \mathbb{Z}_{\geq 0} .
$$

that is

(2.6.2)
$$
a \equiv \sum_{\ell=0}^{i} p^{-\ell} \Psi_q(p^{\ell} a)^{q^{\ell}} \mod p^{i+v_p(a)+1} \mathbb{Z}_q, \ \forall \ i \in \mathbb{Z}_{\geq -v_p(a)}.
$$

We generalize [\(1.12.2\)](#page-8-1) as

Corollary 2.7. For any $a \in \mathbb{Q}_q$, let

$$
a_i := \Psi_q(p^{-i}a) \mod p\mathbb{Z}_q \in \mathbb{F}_q.
$$

We have

(2.7.1)
$$
a = \sum_{i > -\infty}^{\infty} [a_i] p^i \in W(\mathbb{F}_q)[1/p] = \mathbb{Q}_q.
$$

Proof. Assume first that $a \in \mathbb{Z}_q$. In this case [\(2.6.2\)](#page-14-0) implies

(2.7.2)
$$
a \equiv \sum_{\ell=0}^{i} p^{-\ell} \Psi_q(p^{\ell} a)^{q^{\ell}} \mod p^{i+1} \mathbb{Z}_q, \ \forall \ i \in \mathbb{Z}_{\geq 0} .
$$

So, the statement follows from the following

Lemma 2.8. Let $i \mapsto b_i$ and $i \mapsto c_i$, for $i = 0, 1, \ldots$, be two sequences in \mathbb{Z}_q such that

$$
\sum_{j=0}^i p^j b_j^{q^{i-j}} \equiv \sum_{j=0}^i p^j c_j^{q^{i-j}} \mod p^{i+1} \mathbb{Z}_q \text{ , } \forall \text{ } i \in \mathbb{Z}_{\geq 0} \text{ .}
$$

Then

 $b_i \equiv c_i \mod p\mathbb{Z}_q$, $\forall i \in \mathbb{Z}_{\geq 0}$.

Proof. Immediate by induction on i.

In the general case, assume $a \in p^{-n} \mathbb{Z}_q$. Then

(2.8.1)
$$
p^{n} a = \sum_{i=0}^{\infty} [\Psi_{q}(p^{n-i} a) \bmod p\mathbb{Z}_{q}] p^{i} \in W(\mathbb{F}_{q}) .
$$

hence

(2.8.2)
$$
a = \sum_{i=0}^{\infty} [\Psi_q(p^{n-i}a) \bmod p\mathbb{Z}_q] p^{i-n} \in p^{-n} W(\mathbb{F}_q) .
$$

 \Box

 \Box

From the previous corollary, it follows that $a \in \mathbb{Q}_q$ has the following expression as a Witt bivector with coefficients in \mathbb{F}_q

(2.8.3)
$$
a = (\ldots, a_{-i}^{(q/p)^i}, \ldots, a_{-2}^{(q/p)^2}, a_{-1}^{q/p}; a_0, a_1^p, a_1^{p^2}, \ldots).
$$

which obviously equals $(\ldots, a_{-i}, \ldots, a_{-2}, a_{-1}; a_0, a_1, a_1, \ldots)$, if $q = p$.

Remark 2.9. We have tried to provide a simple addition formula for Ψ_a of the form [\(0.3.4\)](#page-4-0), in terms of the same power-series Φ. We could not get one, nor were we able to establish the relation between Ψ_q and Ψ_p , for $q = p^f$ and $f > 1$. On the other hand it is clear that Barsotti's construction of Witt bivectors, based on classicals Witt vectors, extends to the L-Witt vectors of [\[19,](#page-45-2) Chap. 1], where L/\mathbb{Q}_p denotes any fixed finite extension. In our case, we would only need the construction of loc.cit. in the case of the field $L = \mathbb{Q}_q$. We believe that the inductive limit of \mathbb{Z}_q -groups $W_{\mathbb{Q}_q,n} \to W_{\mathbb{Q}_q,n+1}$ under Verschiebung

$$
V: (x_{-n}, \ldots, x_{-1}, x_0) \to (0, x_{-n}, \ldots, x_{-1}, x_0)
$$

is a \mathbb{Z}_q -formal groups whose addition law is expressed by a power-series Φ_q analog to Barsotti's Φ . We believe that equation [\(0.3.4\)](#page-4-0) still holds true for Ψ_{q} if we replace Φ by Φ_{q} . We also believe that a generalized Ψ exists for any finite extension L/\mathbb{Q}_p , with analogous properties.

3 Valuation and Newton polygons of Ψ_a

This section is dedicated to establishing the growth behavior of $|\Psi_a(x)|$ as $|x| \to \infty$. These results will be essential to get the delicate estimates of [\[3\]](#page-44-1).

3.1 Valuation polygon of Ψ_q

We recall from [\[15\]](#page-45-3) that the valuation polygon of a Laurent series $f = \sum_{i \in \mathbb{Z}} a_i T^i$ with coefficients $a_i \in \mathbb{C}_p$, converging in an annulus $A := \alpha \leq v_p(T) \leq \beta$, is the graph Val(f) of the function $\mu \mapsto v(f, \mu) := \inf_i(v_p(a_i) + i\mu)$, which is in fact finite along the segment $\alpha \leq \mu \leq \beta$. The function $\mu \mapsto v(f, \mu)$ is continuous, piecewise affine, and concave on $[\alpha, \beta]$. For any $\mu \in [\alpha, \beta]$, we have $v(f, \mu) = \inf \{v_p(\Psi(x)) | v_p(x) = \mu \}$. In the case of Ψ , $A = \mathbb{C}_p$ and the segment $[\alpha, \beta]$ is the entire μ -line. For the convenience of the reader we have recalled below the relation between the valuation polygon and the Newton polygon of f.

We prove

Theorem 3.1. The valuation polygon of Ψ_q goes through the origin, has slope 1 for $\mu > -1$, and slope q^j , for $-j-1 < \mu < -j$, $j = 1, 2, \ldots$ (see Figure 1).

Proof. We recall that if both f and g converge in the annulus $A := \alpha \leq v_p(T) \leq \beta$, then, for any $\mu \in [\alpha, \beta], v(f + g, \mu) \ge \inf(v(f, \mu), v(g, \mu))$, and that equality holds at μ if $v(f, \mu) \neq v(g, \mu)$. Moreover, for any $n \in \mathbb{N}$, $v(f^n, \mu) = nv(f, \mu)$.

In the polygon in Figure 1, for $j = 1, 2, \ldots$, the side of projection $[-j, 1-j]$ on the μ -axis is the graph of the function

(3.1.1)
$$
\sigma_j(\mu) := q^{j-1}(\mu + j - 1) - q^{j-2} - \cdots - q - 1.
$$

Notice that

(3.1.2)
$$
\sigma_{j+1}(\mu) = -1 + q \sigma_j(\mu+1) ,
$$

$$
-3 -2 -1
$$
\nvertex V_1 at $(-1, -1)$
\nvertex V_2 at $(-2, -q - 1)$
\nslope q
\nslope q^2
\nslope q^2
\nslope q^2
\nwhere V_3 at $(-3, -q^2 - q - 1)$

Figure 1: The valuation polygon of Ψ_q .

and therefore

(3.1.3)
$$
\sigma_{j+i}(\mu) = -1 - q - \dots - q^{i-1} + q^i \sigma_j(\mu + i) ,
$$

for any $i = 0, 1, 2, \ldots$.

Since $\Psi \in T\mathbb{Z}[[T]]$ and since the coefficient of T is 1, we have $v(\Psi,\mu) = \mu$, for $\mu \geq 0$. For $0>\mu >-j,\,j\geq 1,$ we have

(3.1.4)
$$
v(p^{-j}\Psi(p^{j}T)^{q^{j}}, \mu) = -j + v(\Psi(p^{j}T)^{q^{j}}, \mu) = -j + q^{j}v(\Psi(p^{j}T), \mu) =
$$

$$
-j + q^{j}v(\Psi(S), j + \mu) = -j + (j + \mu)q^{j} > \mu = v(T, \mu) ,
$$

where we have used the variable $S = p^{j}T$.

Remark 3.2. For $\mu = -j$ we get equality in the previous formula.

Let us set, for $j = 0, 1, 2, \ldots$,

$$
\ell_j(\mu) = -j + (j+\mu)q^j,
$$

so that [\(3.1.4\)](#page-16-0) becomes

(3.2.1)
$$
v(p^{-j}\Psi(p^jT)^{q^j}, \mu) = \ell_j(\mu) > \ell_0(\mu) = \mu = v(T, \mu) ,
$$

for $0 > \mu > -j$, $j \ge 1$, with equality holding if $\mu = -j$. Notice that

$$
\ell_0(\mu)=\mu=\sigma_1(\mu)\ .
$$

Because of [\(3.2.1\)](#page-16-1) and [\(0.0.5\)](#page-2-1), and by continuity of $\mu \mapsto v(\Psi, \mu)$, we have

(3.2.2)
$$
v(\Psi, \mu) = v(T, \mu) = \mu = \sigma_1(\mu) , \text{ for } \mu \ge -1.
$$

We now reason by induction on $n = 1, 2, \ldots$. We assume that, for any $j = 1, 2, \ldots, n$ the side of projection $[-j, 1-j]$ on the μ -axis of the valuation polygon of Ψ is the graph of $\sigma_i(\mu)$. This at least was proven for $n = 1$. We consider the various terms in the functional equation

$$
\Psi = T - p^{-1} \Psi(pT)^q - p^{-2} \Psi(p^2T)^{q^2} - \sum_{j=3}^{\infty} p^{-j} \Psi(p^jT)^{q^j} .
$$

We assume $n > 1$. For $j = 1, 2, \ldots, n$, and $-n-1 < \mu < -n$, we have

(3.2.3)
$$
v(p^{-j}\Psi(p^{j}T)^{q^{j}}, \mu) = -j + v(\Psi(p^{j}T)^{q^{j}}, \mu) = -j + q^{j}v(\Psi(p^{j}T), \mu) =
$$

$$
-j + q^{j}v(\Psi(S), j + \mu) = -j + q^{j}\sigma_{n-j+1}(\mu + j),
$$

since $j - n - 1 < j + \mu < j - n$, and therefore the inductive assumption gives $v(\Psi, j + \mu)$ $\sigma_{n-j+1}(\mu + j)$ in that interval. For $j > n$, and $-n-1 < \mu$, we have instead, from [\(3.2.1\)](#page-16-1), $v(p^{-j}\Psi(p^jT)^{q^j},\mu) = \ell_j(\mu).$

Figure 2: The Newton polygon $\text{Nw}(f)$ of f.

Lemma 3.3. Let $n > 1$.

1. For $j = 1, 2, \ldots, n$ and for any $\mu \in \mathbb{R}$,

(3.3.1)
$$
\sigma_{n+1}(\mu) < -j + q^j \sigma_{n-j+1}(\mu + j).
$$

2. For $j > n$ and $\mu > -n-1$, we have

(3.3.2)
$$
\sigma_{n+1}(\mu) < \ell_j(\mu) \; .
$$

3. For $-n-1 < \mu < -n$, (3.3.3) $\sigma_{n+1}(\mu) < \mu$. *Proof.* Assertion [\(3.3.1\)](#page-17-0) is clear, since the two affine functions $\mu \mapsto \sigma_{n+1}(\mu)$ and $\mu \mapsto$ $-j + q^j \sigma_{n-j+1}(\mu + j)$, have the same slope q^n , while their values at $\mu = -n$ are $-q^{n-1}$ $q^{n-2} - \cdots - q - 1$ and $-j - q^{n-1} - q^{n-2} - \cdots - q^{j+1} - q^j$, respectively. Notice that

$$
-j - q^{n-1} - q^{n-2} - \dots - q^{j+1} - q^j = (q^j - j) - q^{n-1} - q^{n-2} - \dots - p - 1 > -q^{n-1} - q^{n-2} - \dots - q - 1,
$$

so that the conclusion follows.

We examine assertion [\(3.3.2\)](#page-17-1), namely that, for $j > n$ and $\mu > -n-1$, we have

$$
q^{n}(\mu+n) - q^{n-1} - q^{n-2} - \cdots - q - 1 < -j + (j+\mu)q^{j}.
$$

The previous inequality translates into

$$
q^{n}(\mu+n)-q^{n-1}-q^{n-2}-\cdots-q-1<-j+(j-n)q^{j}+(n+\mu)q^{n+(j-n)},
$$

that is

$$
q^{n-1} + q^{n-2} + \dots + q + 1 - j + (j - n)q^{j} + (n + \mu)q^{n}(q^{j-n} - 1) > 0,
$$

for $\mu > -n-1$. Since the l.h.s. is an increasing function of μ , it suffices to show that the inequality hold for $\mu = -n - 1$, that is to prove that

(3.3.4)
$$
q^{n-1} + q^{n-2} + \cdots + q + 1 - j + (j - n)q^{j} - q^{n}(q^{j-n} - 1) > 0,
$$

for any $j > n > 1$. We rewrite the l.h.s. of $(3.3.4)$ as

(3.3.5)
$$
q^{n-1} + q^{n-2} + \dots + q + 1 - n + (n - j) + (j - n)q^{j} - q^{j} + q^{n} =
$$

$$
(q^{n-1} + q^{n-2} + \dots + q + 1 - n) + (q^{j} - 1)(j - n) + (q^{n} - q^{j}),
$$

where the four terms in round brackets on the r.h.s. are each, obviously, positive numbers. The conclusion follows.

We finally show [\(3.3.3\)](#page-17-2), namely that for $-n-1 < \mu < -n$,

Figure 3: The valuation polygon $Val(f)$.

It suffices to compare the values at $\mu = -n-1$ and at $\mu = -n$. We get

$$
-q^{n} - q^{n-1} - q^{n-2} - \cdots - q - 1 < -n - 1,
$$

and

$$
-q^{n-1} - q^{n-2} - \cdots - q - 1 < -n,
$$

respectively, both obviously true.

The previous calculation shows that the side of projection $[-n-1, -n]$ on the μ -axis of the valuation polygon of Ψ is the graph of $\sigma_{n+1}(\mu)$. We have then crossed the inductive step Case $n \Rightarrow$ Case $n + 1$, and Theorem [3.1](#page-15-2) is proven. \Box

Corollary 3.4. Proposition [0.1](#page-2-2) holds true.

Proof. We have seen that $v_p(\Psi_p(x)) = v_p(x)$ if $v_p(x) > 0$. Then Proposition [0.1](#page-2-2) follows from [\(0.3.4\)](#page-4-0) and Lemma [0.2.](#page-3-3) \Box

Corollary 3.5. For any $i = 1, 2, \ldots,$ and $v_p(x) \geq -i$ (resp. $v_p(x) > -i$), we have $v_p(\Psi_q(x)) \ge -\frac{q^i-1}{q-1}$ (resp. $v_p(\Psi_q(x)) > -\frac{q^i-1}{q-1}$). If $v_p(x) > -1$, we have $v_p(\Psi_q(x)) = v_p(x)$.

Proof. The last part of the statement is a general fact for automorphisms of an open k analytic disk D with one k-rational fixed point $a \in D(k)$ (the disk $v_p(x) > -1$ and $x(a) = 0$, in the present case) [\[6,](#page-44-5) Lemma 6.4.4]. \Box

3.2 Newton polygon of Ψ_q

We now recall that to a Laurent series $f = \sum_{i \in \mathbb{Z}} a_i T^i$ with coefficients $a_i \in \mathbb{C}_p$, converging in an annulus $A := \alpha \leq v_p(T) \leq \beta$, one associates two, dually related, polygons. The valuation polygon $\mu \mapsto v(f, \mu)$, was recalled before. The *Newton polygon* Nw(f) of f is the convex closure in the standard affine plane \mathbb{R}^2 of the points $(-i, v(a_i))$ and $(0, +\infty)$. If $a_i = 0$, then $v(a_i)$ is understood as $= +\infty$. We define $s \mapsto \text{Nw}(f, s)$ to be the function whose graph is the lower-boundary of $\text{Nw}(f)$. The main property of $\text{Nw}(f)$ is that the length of the projection on the X-axis of the side of slope σ is the number of zeros of f of valuation $=\sigma$. The formula

$$
v(f, \mu) = \inf_{i \in \mathbb{Z}} i \mu + v(a_i)
$$

indicates (cf. [\[15\]](#page-45-3)) that the relation between $\text{Nw}(f)$ and $\text{Val}(f)$ "almost" coincides with the duality formally described in the following lemma.

Lemma 3.6. (Duality of polygons) In the projective plane \mathbb{P}^2 , with affine coordinates (X, Y) , we consider the polarity with respect to the parabola $X^2 = -2Y$

$$
\mathbb{P}^2 \to (\mathbb{P}^2)^* \to \mathbb{P}^2 ,
$$

point
$$
(\sigma, \tau) \mapsto
$$
 line $(Y = -\sigma X - \tau) \mapsto$ point (σ, τ) .

Assume the graph Γ of a continuous convex piecewise affine function has consecutive vertices

$$
\ldots, (-i_0, \varphi_0), (-i_1, \varphi_1), (-i_2, \varphi_2), (-i_3, \varphi_3), \ldots
$$

joined by the lines

$$
\ldots, Y = \sigma_1 X + \tau_1, Y = \sigma_2 X + \tau_2, Y = \sigma_3 X + \tau_3, \ldots
$$

Then, the lines joining the points

$$
\ldots, (-\sigma_1, -\tau_1), (-\sigma_2, -\tau_2), (-\sigma_3, -\tau_3), \ldots
$$

 \Box

$$
are
$$

$$
\ldots, Y = i_1 X - \varphi_1, Y = i_2 X - \varphi_2, \ldots,
$$

and the polarity transforms these back into

$$
\ldots ,\,(-i_1,\varphi_1)\,,\,(-i_2,\varphi_2)\,,\,\ldots\,.
$$

We say that the graph Γ^* joining the vertices (σ_i, τ_i) , $(\sigma_{i+1}, \tau_{i+1})$ by a straight segment is the dual graph of Γ . It is clear that the relation is reciprocal, that is $(\Gamma^*)^* = \Gamma$ and that Γ^* is a continuous concave piecewise affine function.

Proof. It is the magic of polarities.

$$
\Box
$$

The precise relation between $\text{Nw}(f)$ and $\text{Val}(f)$ is

Proposition 3.7.

$$
\text{Val}(f) = (-\text{Nw}(f))^*
$$

where $-Nw(f)$ is the polygon obtained from $Nw(f)$ by the transformation $(X, Y) \mapsto (X, -Y)$.

Proof. The most convincing proof follows from comparing Lemma [3.6](#page-19-2) with Figures 2 and 3. \Box

We now apply the previous considerations to the two polygons associated to the function Ψ_q .

Corollary 3.8. The Newton polygon $\text{Nw}(\Psi_q)$ has vertices at the points

$$
V_i := (-q^i, i\,q^i - \frac{q^i - 1}{q - 1}) = (-q^i, i\,q^i - q^{i-1} - \cdots - q - 1) .
$$

The equation of the side joining the vertices V_i and V_{i-1} is

$$
Y=-iX-\frac{q^i-1}{q-1} ;
$$

its projection on the X-axis is the segment $[-q^i, -q^{i-1}]$. So, Nw(Ψ) has the form described in Figure 4.

Corollary 3.9. For any $i = 0, 1, \ldots$, the map $\Psi = \Psi_q$ induces coverings of degree q^i ,

(3.9.1)
$$
\Psi: \{x \in \mathbb{C}_p | v_p(x) > -i - 1\} \longrightarrow \{x \in \mathbb{C}_p | v_p(x) > -\frac{q^{i+1}-1}{q-1}\},
$$

(in particular, an isomorphism

(3.9.2)
$$
\Psi: \left\{ x \in \mathbb{C}_p \, | \, v_p(x) > -1 \right\} \xrightarrow{\sim} \left\{ x \in \mathbb{C}_p \, | \, v_p(x) > -1 \right\},
$$

for $i = 0$), finite maps of degree $qⁱ$ (3.9.3)

$$
\Psi: \{x \in \mathbb{C}_p \mid -(i+1) < v_p(x) < -i\} \longrightarrow \{x \in \mathbb{C}_p \mid -\frac{q^{i+1}-1}{q-1} < v_p(x) < -\frac{q^i-1}{q-1}\},
$$

and finite maps of degree $q^{i+1} - q^i$

(3.9.4)
$$
\Psi: \{x \in \mathbb{C}_p | v_p(x) = -i - 1\} \longrightarrow \{x \in \mathbb{C}_p | -\frac{q^{i+1}-1}{q-1} \le v_p(x)\}.
$$

Figure 4: The Newton polygon $\text{Nw}(\Psi_a)$ of Ψ_a .

Proof. The shape of the Newton polygon of Ψ indicates that, for any $a \in \mathbb{C}_p$, with $v_p(a)$ -1 , the side of slope = $v_p(a)$ of the Newton polygon of $\Psi - a$ has projection of length 1 on the X-axis. So, $\Psi: \{x \in \mathbb{C}_p | v_p(x) > -1\} \to \{x \in \mathbb{C}_p | v_p(x) > -1\}$ is bijective, hence biholomorphic. Now we recall from Corollary [3.5](#page-19-3) that for any given $i \geq 1$,

(3.9.5)
$$
\Psi(\lbrace x \in \mathbb{C}_p | v_p(x) > -i-1 \rbrace) \subset \lbrace x \in \mathbb{C}_p | v_p(x) > -\frac{q^{i+1}-1}{q-1} \rbrace.
$$

So, let a be such that $-\frac{q^{i+1}-1}{q-1} < v_p(a) \le -\frac{q^{i}-1}{q-1}$, say $v_p(a) = -\frac{q^{i}-1}{q-1} - \varepsilon$, with $\varepsilon \in [0, q^i)$. Then, the Newton polygon of $\Psi - a$ has a single side of slope $> -i - 1$, which has precisely slope = $-\varepsilon q^{-i} - i$ and has projection of length q^i on the X-axis. So, the equation $\Psi(x) = a$ has precisely q^i solutions x in the annulus $-i-1 < v_p(x) \leq -i$. If, for the same i, $-\frac{q^i-1}{q-1} < v_p(a) \le -\frac{q^{i-1}-1}{q-1}$, the Newton polygon of $\Psi - a$ has a side of slope $-i$, whose projection on the X-axis has length $q^{i} - q^{i-1}$, and a side of slope σ , $1 - i \ge \sigma > -i$, whose projection on the X-axis has length q^{i-1} . So again $\Psi^{-1}(a)$ consists of q^i distinct points. We go on, for a in an annulus of the form $-\frac{q^{i-j}-1}{q-1} < v_p(a) \le -\frac{q^{i-j}-1}{q-1}$, up to $j = i-2$, *i.e.* to $-\frac{q^2-1}{q-1} < v_p(a) \leq -1$. In that case, the Newton polygon of $\Psi - a$ has a side of slope $-i$ of projection $q^{i} - q^{i-1}$, a side of slope $1 - i$ of projection $q^{i-1} - q^{i-1}$,..., a side of slope $j - i$ of projection $q^{i-j} - q^{i-j-1}$ on the X-axis, ..., up to a side of slope -1 of projection $q-1$ on the X-axis. Finally, for $v_p(a) > -1$, there is still exactly one solution of $\Psi(x) = a$, with $v_p(x) > -1$. This means that Ψ induces a (ramified) covering of degree q^i in [\(3.9.1\)](#page-20-0).

3.3 The addition law of Ψ

We now extend the estimates of Corollary [3.9](#page-20-1) to translates $\Psi(a+x)$ of Ψ , for $a \in \mathbb{Q}_p$. Although we expect that the same discussion carries over to $\Psi_q(a+x)$, where $a \in \mathbb{Q}_q$, we assume for simplicity that $q = p$ in the rest of this subsection.

Proposition 3.10. Let $m \in \mathbb{Z}_{\geq 0}$ and let $M(x_{-m}, \ldots, x_{-1}, x_0)$ be a monomial in $\mathbb{Z}_p[x_{-m}, \ldots, x_{-1}, x_0]$ divisible by x_{-m} and of pure weight 1, where x_i weighs p^i , for any i. Set

$$
M(x) := M(\Psi(p^m x), \dots, \Psi(x)) \ .
$$

Then, for any $r = 1, 2, \ldots$,

$$
w_r(M(x)) \ge
$$

(3.10.1)
$$
m + 1 - (p - 1)r(m - r + 1) + (p - 1)\left(\binom{m + 1}{2} - \binom{r}{2}\right) - \frac{p^{r+1} - 1}{p - 1} >
$$

$$
m + 1 + (p - 1)\frac{(m - r)^2 + (m - r)}{2} - \frac{p^{r+1} - 1}{p - 1} \left(> -\frac{p^{r+1} - 1}{p - 1}\right),
$$

while, for $r = 0, -1, -2, \ldots$, we get

$$
(3.10.2) \t wr(M(x)) \ge m - r - (p - 1)mr + (p - 1)\binom{m + 1}{2} \left(\ge p(1 - r)\right).
$$

Proof. This follows from the estimates of Corollary [3.9](#page-20-1) via a totally self-contained, but lengthy, computation on isobaric polynomials of Witt-type. We refer to the upcoming paper [\[3\]](#page-44-1) for the proof of a more general statement. \Box

We apply Proposition [3.10](#page-21-0) to the study of the addition law of Ψ . From [\(0.3.4\)](#page-4-0) and [\(0.3.5\)](#page-4-3), we deduce, taking into account Proposition [2.5,](#page-13-3) that, for any $c \in {\mathbb Q}_p$

(3.10.3)
$$
\Psi(x+c) =
$$

$$
\lim_{i \to \infty} \varphi_i(\Psi(p^i x), \dots, \Psi(px), \Psi(x); \Psi(p^i c), \dots, \Psi(pc), \Psi(c)),
$$

where

(3.10.4)
$$
\varphi_m(\Psi(p^m x), \dots, \Psi(px), \Psi(x); \Psi(p^m c), \dots, \Psi(pc), \Psi(c)) -
$$

$$
\varphi_{m-1}(\Psi(p^{m-1} x), \dots, \Psi(px), \Psi(x); \Psi(p^{m-1} c), \dots, \Psi(pc), \Psi(c))
$$

is a sum of monomials $M(x)$ as in Proposition [3.10.](#page-21-0)

Theorem 3.11.

1. The function Ψ is bounded and uniformly continuous on any p-adic strip around \mathbb{Q}_p . In particular,

$$
\Psi(x) \in \mathscr{H}^{\mathrm{bd}}.
$$

2. For any $j = 0, 1, \ldots$ and $x \in \mathbb{Q}_p$,

(3.11.1)
$$
\Psi_p(x + p^j \mathbb{C}_p^{\circ}) \subset \Psi_p(x) + p^j \mathbb{C}_p^{\circ}.
$$

Proof. For the first part of the statement, we observe that Proposition [3.10](#page-21-0) shows that, for any fixed $r \geq 0$, the sequence

$$
i \longmapsto \varphi_i(\Psi(p^i x), \dots, \Psi(px), \Psi(x); \Psi(p^i c), \dots, \Psi(pc), \Psi(c))
$$

converges in the w_r -valuation. This means that for any $\rho > 0$, the previous sequence is a sequence of entire functions bounded on the p-adic strip Σ_{ρ} around \mathbb{Q}_p , which converges to $\Psi(x+c)$ uniformly on Σ_{ρ} .

The second part of the statement was already proved in Corollary [3.4.](#page-19-1) It also follows from the estimates of Proposition [3.10](#page-21-0) when $r \leq 0$. \Box

3.4 The zeros of Ψ

The following theorem is formulated in a way to make sense for $q = \text{any power of } p$. We expect that it is true in that generality. However, for the time being, we can only prove it for $q = p$.

Theorem 3.12. In this statement, let $q = p$.

- 1. For any $n = 1, 2, \ldots$, the map Ψ_q has $q_n := q^n q^{n-1}$ simple zeros of valuation $-n$ in \mathbb{Q}_q . More precisely, for any system of representatives $a_1, \ldots, a_{q_n} \in \mathbb{Z}_q$ of $(\mathbb{Z}_q/p^n\mathbb{Z}_q)^{\times} = W_{n-1}(\mathbb{F}_q)^{\times}$, and any $j = 1, \ldots, q_n$, the open disc $D(a_jp^{-n}, p^{-})$ contains a unique zero $z_j^{(n)} \in \mathbb{Q}_q$ of Ψ_q . Then $z_1^{(n)}, \ldots, z_{q_n}^{(n)}$ are all the zeros of Ψ_q of valuation −n.
- 2. For $n = 1, 2, \ldots$ let $z_1^{(n)}, \ldots, z_{q_n}^{(n)}$ be the zeros of Ψ_q of valuation $-n$. We set

$$
\psi_n(x) = \prod_{j=1}^{q_n} (1 - \frac{x}{z_j^{(n)}}) \in 1 + p^n x \mathbb{Z}_q[x].
$$

Then

$$
\Psi_q(x) = x \prod_{n=1}^{\infty} \psi_n(x)
$$

is the canonical convergent infinite Schnirelmann product expression $[15, (4.13)]$ $[15, (4.13)]$ of $\Psi_q(x)$ in the ring $\mathbb{Q}_p\{x\}.$

3. The inverse function $\beta(T) = \beta_q(T)$ of $\Psi_q(T)$ (i.e. the power series such that, in $T\mathbb{Z}[[T]], \Psi_q(\beta_q(T)) = T = \beta_q(\Psi_q(T)))$ belongs to $T + T^2\mathbb{Z}[[T]].$ Its disc of convergence is exactly $v_n(T) > -1$.

Proof. We now prove the first statement in Theorem [3.12.](#page-23-0) We recall that here $q = p$, so that $a_1, \ldots, a_{p_n} \in \mathbb{Z}_p$, with $p_n = p^n - p^{n-1}$, are a system of representatives of $(\mathbb{Z}_p/p^n\mathbb{Z}_p)^{\times}$.

Lemma 3.13. For any $m, n \in \mathbb{Z}_{>0}$, with $m \leq n$, and any $j = 1, \ldots, p_n$, the value of Ψ at the maximal point $\xi_{a_j p^{-n}, p^m}$ (of Berkovich type 2) of the rigid disc $D(a_j p^{-n}, (p^m)^+)$, that $is - \log |\Psi(\xi_{a_j p^{-n}, p^m})| = w_m(\Psi(a_j p^{-n} + x)), \text{ is } -\frac{p^m - 1}{p - 1} < 0.$

Proof. The proof follows from the addition law [\(3.10.3\)](#page-22-1) in which

$$
\Psi(a_jp^{-n}),\ldots,\Psi(a_jp^{i-n})\in\mathbb{Z}_p
$$

so that, for any $i = 0, 1, 2, \ldots$,

$$
\varphi_i(\Psi(p^ix),\ldots,\Psi(px),\Psi(x);\Psi(a_jp^{i-n}),\ldots,\Psi(a_jp^{1-n}),\Psi(a_jp^{-n}))
$$

is a sum of a dominant (at $\xi_{a_i p^{-n},p^m}$) term

$$
\Psi(x) + \Psi(a_j p^{-n})
$$

and of terms $M(x)$ described, for $m = n - i$, in Proposition [3.10.](#page-21-0)

From the harmonicity of the function $|\Psi(x)|$ at the point $\xi_{a_i p-n_i p^m}$, the estimate of Lemma [3.13,](#page-23-2) and the fact that $\Psi(a_jp^{-n}) \in \mathbb{Z}_p$, we deduce that each of the p_np^{m-n} open discs of radius p^m , centered at points of $p^{-n}\mathbb{Z}_p \setminus p^{1-n}\mathbb{Z}_p$ contains at least one zero of Ψ_q in \mathbb{Q}_q . For $m = 1$, this proves the first part of the statement.

 \Box

For the second part of the statement we refer to [\[15,](#page-45-3) §4]. The fact that every $\psi_n(x) \in$ $\mathbb{Q}_p[x]$ is $-n$ -extremal follows from the fact that its zeros are all of exact valuation $-n$ [\[15,](#page-45-3) $(2.7')$].

The fact that β_p belongs to $T+T^2\mathbb{Z}[[T]]$ is obvious. The convergence of β_q for $v_p(T) > -1$ follows from [\(3.9.2\)](#page-20-2). The fact that it cannot converge in a bigger disk is a consequence of the fact that Ψ_q has $q-1$ zeros of valuation -1 . \Box

Corollary 3.14. All zeros of Ψ_q are simple and are contained in \mathbb{Q}_q . Each ball $a + \mathbb{Z}_q \in$ $\mathbb{Q}_q/\mathbb{Z}_q$ contains a single zero of Ψ_q .

Remark 3.15. We believe that Theorem [3.12](#page-23-0) holds, with essentially the same proof, for any power q of p . See Remark [2.9.](#page-15-3)

4 Rings of continuous functions on \mathbb{Q}_p

The point of this section is that of establishing the categorical limit/colimit formulas for the linear topologies of rings of p-adic functions on \mathbb{Q}_n . For topological algebra notions, we take the viewpoint and use the definitions explained in Appendix A (see also [\[4\]](#page-44-6)).

We consider here a linearly topologized separated and complete ring k , whose family of open ideals we denote by $\mathcal{P}(k)$. In practice $k = \mathbb{Z}_p$ or $= \mathbb{F}_p$, or $= \mathbb{Z}_p/p^r\mathbb{Z}_p$, for any $r \in \mathbb{Z}_{\geq 1}$. More generally, A will be a complete and separated topological ring equipped with a Z -linear topology, defined by a family of open additive subgroups of A. In particular we have in mind $A =$ a fixed finite extension K of \mathbb{Q}_p , whose topology is K[°]-linear but not K-linear. Again, a possible k would be K° or any $K^{\circ}/(\pi_K)^r$, for a parameter $\pi = \pi_K$ of K, and r as before.

We will express our statements for an abelian topological group G , which is separated and complete in the Z-linear topology defined by a countable family of profinite subgroups G_r , with $G_r \supset G_{r+1}$, for any $r \in \mathbb{Z}$. So,

$$
G = \varprojlim_{r \to +\infty} G/G_r = \varinjlim_{r \to -\infty} G_r ,
$$

where G/G_r is discrete, G_r is compact, and limits and colimits are taken in the category of topological abelian groups separated and complete in a Z-linear topology. We denote by $\pi_r : G \to G/G_r$ the canonical projection. Then, G is canonically a uniform space in which a function $f: G \to A$ is uniformly continuous iff, for any open subgroup $J \subset A$, the induced function $G \to A/J$ factors via a π_r , for some $r = r(J)$. A subset of G of the form $\pi_r^{-1}(\{h\}) = g + G_r$, for $g \in G$ and $h = \pi_r(g)$ is sometimes called the *ball of radius* G_r and center g. In particular, G is a locally compact, paracompact, 0-dimensional topological space. A general discussion of the duality between k -valued functions and measures on such a space, will appear in [\[5\]](#page-44-2). In practice here $G = \mathbb{Q}_p$ or $\mathbb{Q}_p/p^r\mathbb{Z}_p$ or $p^r\mathbb{Z}_p$, with the obvious uniform and topological structure.

Definition 4.1. Let G and A be as before. We define $\mathscr{C}(G, A)$ (resp. $\mathscr{C}^{\text{bd}}_{\text{unif}}(G, A)$) as the A-algebra of continuous (resp. bounded and uniformly continuous) functions $f: G \rightarrow$ A. We equip $\mathscr{C}(G, A)$ (resp. $\mathscr{C}^{\rm bd}_{\rm unif}(G, A)$) with the topology of uniform convergence on compact subsets of X (resp. on X). For any $r \in \mathbb{Z}$ and $g \in G$, we denote by χ_{g+G_r} is the characteristic function of $g + G_r \in G/G_r$. If G is discrete and $h \in G$, by $e_h : G \to k$ we denote the function such that $e_h(h) = 1$, while $e_h(x) = 0$ for any $x \neq h$ in G.

Remark 4.2. It is clear that if $A = k$ is a linearly topologized ring any subset of k and therefore any function $f: G \to k$, is bounded. So, we write $\mathscr{C}_{unif}(G, k)$ instead of $\mathscr{C}_{unif}^{bd}(G, k)$ in this case. If G is discrete, any function $G \to k$ is (uniformly) continuous; still, the bijective map $\mathscr{C}_{unif}(G,k) \to \mathscr{C}(G,k)$ is not an isomorphism in general, so we do keep the difference in notation. If G is compact, any continuous function $G \to k$ is uniformly continuous, and $\mathscr{C}_{unif}(G, k) \to \mathscr{C}(G, k)$ is an isomorphism, so there is no need to make any distinction.

Lemma 4.3. Notation as above, but assume G is discrete (so that the G_r 's are finite). Then $\mathscr{C}(G, k)$ (resp. $\mathscr{C}_{\text{unif}}(G, k)$) is the k-module of functions $f : G \to k$ endowed with the topology of simple (resp. of uniform) convergence on G. So

$$
\mathscr{C}(G,k) = \varprojlim_{r \to -\infty} \mathscr{C}(G_r,k) = \prod_h k \, e_h \ , \ h \in G \ .
$$

Similarly,

$$
\mathscr{C}_{\rm unif}(G,k) = \varprojlim_{I \in \mathcal{P}(k)} \prod_{h \in G} \Box, u \ (k/I) \, e_h = \prod_{h \in G} \Box, u \ k \, e_h \ ,
$$

where \prod h∈G \Box, u (k/I) e_h carries the discrete topology.

Proof. Clear from the definitions.

The next lemma is a simplified abstract form, in the framework of linearly topologized rings and modules, of the classical decomposition of a continuous function as a sum of characteristic functions of balls (see for example Colmez [\[11,](#page-44-7) §1.3.1]).

Lemma 4.4. Notation as above but assume G is compact (so that the G/G_r 's are finite). Then

$$
\mathscr{C}(G,k) = \mathscr{C}_{\text{unif}}(G,k) = \varinjlim_{r \to +\infty} \mathscr{C}(G/G_r,k) = \varinjlim_{r \to +\infty} \bigoplus_{g+G_r \in G/G_r} k \chi_{g+G_r}.
$$

For any r, the canonical morphism $\mathcal{C}(G/G_r, k) \to \mathcal{C}(G, k)$ is injective.

Proof. This is also clear from the definitions.

Remark 4.5. We observe that the inductive limit appearing in the formula hides the complication of formulas of the type

$$
\chi_{g+G_r} = \sum_i \chi_{g_i+G_{r+1}}
$$
 if $g+G_r = \bigcup_i g_i + G_{r+1}$

which we do not need to make explicit for the present use (see [\[5\]](#page-44-2) for a detailed discussion).

Proposition 4.6. Notation as above, with G general. Then in the category \mathcal{CLM}_k^u we have :

1.

$$
\mathscr{C}(G,k) = \varprojlim_{r \to -\infty} \mathscr{C}(G_r,k) \text{ for the restrictions } \mathscr{C}(G_r,k) \to \mathscr{C}(G_{r+1},k).
$$

In particular, for any fixed $r \in \mathbb{Z}$,

$$
\mathscr{C}(G,k) = \prod_{g+G_r \in G/G_r} \mathscr{C}(g+G_r,k) .
$$

2.

$$
\mathscr{C}_{\rm unif}(G,k) = \varinjlim_{r \to +\infty} u \mathscr{C}_{\rm unif}(G/G_r, k)
$$

for the embeddings

$$
\mathcal{C}_{\text{unif}}(G/G_r, k) \hookrightarrow \mathcal{C}_{\text{unif}}(G/G_{r+1}, k)
$$

3. The natural morphism

$$
\mathscr{C}_{\text{unif}}(G,k)\longrightarrow \mathscr{C}(G,k)
$$

is injective and has dense image.

 \Box

 \Box

Proof. The first two parts follow from the universal properties of limits and colimits. The morphism in part 3 comes from the injective morphisms, for $r \in \mathbb{Z}$,

$$
\mathscr{C}_{\text{unif}}(G/G_r, k) \longrightarrow \mathscr{C}(G, k)
$$

and the universal property of colimits. The inductive limit of these morphisms in the category \mathcal{CLM}_k^u is a completion of the inductive limit taken in the category $\mathcal{M}od_k$ of kmodules equipped with the k-linear inductive limit topology. Since the latter is separated and since the axiom AB5 holds for the abelian category $\mathcal{M}od_k$, we deduce that the morphism in part 3 is injective. The morphism has dense image because, for any $r \in \mathbb{Z}$ and for any $s \in \mathbb{Z}_{\geq 0}$, the composed morphism

$$
\mathscr{C}_{\text{unif}}(G_r/G_{r+s}, k) \longrightarrow \mathscr{C}_{\text{unif}}(G/G_{r+s}, k) \longrightarrow \mathscr{C}(G, k) \longrightarrow \mathscr{C}(G_r, k)
$$

is the canonical map of Lemma [4.4](#page-25-0)

$$
\mathcal{C}_{\text{unif}}(G_r/G_{r+s}, k) \longrightarrow \mathcal{C}(G_r, k)
$$

for the compact group G_r and its subgroup G_{r+s} . The fact that the set theoretic union $\bigcup_{s\geq 0} \mathscr{C}_{\text{unif}}(G_r/G_{r+s}, k)$ is dense in $\mathscr{C}(G_r, k)$ is built-in in the definition of \varinjlim^u . \Box

Proposition 4.7. Let $(H, \{H_r\}_r)$ be a locally compact group with the same properties as $(G, {G_r}_r)$ above, so that $(G \times H, {G_r \times H_r}_r)$ also has the same properties. Then we have a natural identification in \mathcal{CLM}_k^u

(4.7.1)
$$
\mathscr{C}(G,k)\widehat{\otimes}_k^u\mathscr{C}(H,k)\xrightarrow{\sim}\mathscr{C}(G\times H,k)
$$

and a continuous strictly closed embedding

(4.7.2)
$$
\mathscr{C}_{\text{unif}}(G,k)\widehat{\otimes}_k^u\mathscr{C}_{\text{unif}}(H,k)\longrightarrow \mathscr{C}_{\text{unif}}(G\times H,k).
$$

Proof. We prove $(4.7.1)$ first. By the first part of point 1 in Proposition [4.6](#page-25-1) and the fact that $\hat{\otimes}_{k}^{u}$ κ commutes with projective limits, we are reduced to the case of G and H compact. We are then in the situation of Lemma [4.4](#page-25-0) for both G and H (in particular, the G/G_r 's and the H/H_r 's are finite). We need to prove

$$
\varinjlim_{r \to +\infty} \bigoplus_{(g,h)+(G_r \times H_r)} k \chi_{(g,h)+G_r \times H_r} = \varinjlim_{r \to +\infty} \bigoplus_{g+G_r} k \chi_{g+G_r} \hat{\otimes}_k^u \varinjlim_{r \to +\infty} \bigoplus_{h+H_r} k \chi_{h+H_r}.
$$

Let M (resp. N) be the l.h.s. (resp. the r.h.s.) in the previous equation. Then

$$
M = \underbrace{\lim}_{I \in \mathcal{P}(k)} M / \overline{IM} , N = \underbrace{\lim}_{I \in \mathcal{P}(k)} N / \overline{IN} .
$$

We show that $M/\overline{IM} \xrightarrow{\sim} N/\overline{IN}$, for any $I \in \mathcal{P}(k)$. Now,

$$
M/\overline{IM} = \lim_{r} \bigoplus_{(g,h)+(G_r \times H_r)} (k/I) \chi_{(g,h)+G_r \times H_r} .
$$

Let

$$
P := \varinjlim_{r} \bigoplus_{g+G_r} k \chi_{g+G_r} , Q := \varinjlim_{r} \bigoplus_{h+H_r} k \chi_{h+H_r} .
$$

Then

$$
N/\overline{IN} = P/\overline{IP} \otimes_{k/I} Q/\overline{IQ} = \lim_{r} \bigoplus_{g+G_r} (k/I) \chi_{g+G_r} \otimes_{k/I} \lim_{r} \bigoplus_{h+H_r} (k/I) \chi_{h+H_r} = M/\overline{IM}.
$$

This concludes the proof of [\(4.7.1\)](#page-26-0).

We now pass to [\(4.7.2\)](#page-26-1). We use formula 2 of Proposition [4.6,](#page-25-1) to replace the map in the statement by

$$
\varinjlim_{r} \mathscr{C}_{\text{unif}}(G/G_r, k)\widehat{\otimes}_k^u \varinjlim_{r \to +\infty} \mathscr{C}_{\text{unif}}(H/H_r, k) \longrightarrow \varinjlim_{r} \mathscr{C}_{\text{unif}}((G \times H)/(G_r \times H_r), k).
$$

By Lemma [4.3](#page-25-2) this reduces to considering

$$
\varinjlim_{r} \varprojlim_{I \in \mathcal{P}(k)} \prod_{g \in G} \Box^{(1,u)}(k/I) \, e_{g+G_r} \widehat{\otimes}_k^u \varinjlim_{r \to +\infty} \varprojlim_{I \in \mathcal{P}(k)} \prod_{h \in H} \Box^{(1,u)}(k/I) \, e_{h+H_r} \longrightarrow
$$

$$
\varinjlim_r u \varprojlim_r \prod_{I \in \mathcal{P}(k)} \bigcup_{(g,h)}^{\square, u} (k/I) e_{(g+G_r, h+H_r)}
$$

As before, let M (resp. N) be the l.h.s. (resp. the r.h.s.) in the previous equation. Then

$$
M = \underbrace{\lim}_{I \in \mathcal{P}(k)} M / \overline{IM} , N = \underbrace{\lim}_{I \in \mathcal{P}(k)} N / \overline{IN} .
$$

We show that $M/\overline{IM} \hookrightarrow N/\overline{IN}$ in an embedding with the relative topology, for any $I \in$ $\mathcal{P}(k)$. Now,

$$
M/\overline{IM} = \varinjlim_{r} \prod_{g} (k/I) e_{g+G_r} \widehat{\otimes}_{k/I}^u \varinjlim_{r} \prod_{h} (k/I) e_{h+H_r} = \varinjlim_{r} \left(\prod_{g} (k/I) e_{g+G_r} \widehat{\otimes}_{k/I}^u \prod_{h} (k/I) e_{h+H_r} \right),
$$

and

$$
N/\overline{IN} = \varinjlim_{r} \prod_{(g,h)} (k/I) e_{(g+G_r,h+H_r)}
$$

where $\underline{\lim}^u$ and $\widehat{\otimes}^u_{k/I}$ are taken in the category $\mathcal{CLM}_{k/I}^u$. So, our statement is reduced to the fact that, for k, G, and H, discrete, if k^G (resp. k^H , resp. $k^{G \times H}$) indicates the k-algebra of functions $G \to k$ (resp. $H \to k$, resp. $G \times H \to k$) with the discrete topology, we have an inclusion \sim

$$
k^G \otimes_k k^H \hookrightarrow k^{G \times H}.
$$

We are especially interested in

Corollary 4.8.

1. For any $r \in \mathbb{Z}$,

(4.8.1)
$$
\mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p) = \varprojlim_{s \to +\infty} \mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^s\mathbb{Z}_p)
$$

where $\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^s\mathbb{Z}_p)$ is equipped with the discrete topology. It is the \mathbb{Z}_p algebra of all maps $\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p \to \mathbb{Z}_p$ equipped with the p-adic topology;

2. For any $r \in \mathbb{Z}$,

(4.8.2)
$$
\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p) = \varprojlim_{s,t\to+\infty} \mathscr{C}(p^{-t}\mathbb{Z}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^s\mathbb{Z}_p)
$$

where $\mathscr{C}(p^{-t}\mathbb{Z}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^s\mathbb{Z}_p)$ is equipped with the discrete topology. It is the \mathbb{Z}_p -Hopf algebra of all maps $\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p \to \mathbb{Z}_p$ equipped with the topology of simple convergence on $\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p$ for the p-adic topology of \mathbb{Z}_p ;

$$
\mathcal{S}.
$$

(4.8.3)
$$
\mathscr{C}_{\text{unif}}(\mathbb{Q}_p, \mathbb{Z}_p) = \varinjlim_{r \to +\infty}^u \mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{Z}_p) ;
$$

4.

(4.8.4)
$$
\mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p) = \varprojlim_{s \to +\infty} \mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p/p^s \mathbb{Z}_p).
$$

Remark 4.9. Formula [4.7.1](#page-26-0) shows that $\mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p)$ is a Hopf algebra object in $\mathscr{CLM}_{\mathbb{Z}_p}^u$.

Remark 4.10. We point out a tautological, but useful, formula which holds in $\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{F}_p)$. For any $h \in \mathbb{Q}_p/p^{r+1}\mathbb{Z}_p$, let e_h denote as before the function $\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p \to \mathbb{F}_p$ such that $e_h(h) = 1$ while $e_h(x) = 0$, if $x \in \mathbb{Q}_p/p^{r+1}$, $x \neq h$. For any $i \leq r$, the function

$$
x_i:\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p\longrightarrow \mathbb{F}_p,
$$

was introduced in [\(1.12.4\)](#page-8-3). We then have

(4.10.1)
$$
x_i = \sum_{h \in \mathbb{Q}_p/p^{r+1}\mathbb{Z}_p} h_i e_h ,
$$

where $h_i = x_i(h)$.

Lemma 4.11. Let G and K be as above but assume G is discrete. Then in the category \mathcal{CLC}_K

1.

$$
\mathscr{C}(G,K) = \prod_{g \in G} K e_g
$$

is a Fréchet K-algebra.

2.

$$
\mathscr{C}_{\rm unif}^{\rm bd}(G,K)=\ell_\infty(G,K)
$$

is the Banach K-algebra of bounded sequences $(a_g)_{g \in G}$ of elements of K, equipped with the componentwise sum and product and with the supnorm.

Proof. Obvious from the definitions.

Lemma 4.12. Let G and K be as above, but assume G is compact. Then in the category \mathcal{CLC}_K

$$
\mathscr{C}(G,K)=\mathscr{C}_{\rm unif}^{\rm bd}(G,K)=\ell_\infty^0(G,K)
$$

is the Banach K-algebra of sequences $(a_g)_{g \in G}$, with $a_g \in K$, such that $a_g \to 0$ along the filter of cofinite subsets of G, equipped with componentwise sum and product and with the supnorm.

Proof. This is a straightforward generalization of the classical wavelet decomposition. See [\[11,](#page-44-7) Prop. 1.16]. \Box

Proposition 4.13. Let G and K be as in all this section. Then in the category \mathcal{CLC}_K we have :

1.

$$
\mathscr{C}(G,K) = \varprojlim_{r \to -\infty} \mathscr{C}(G_r,K) \text{ for the restrictions } \mathscr{C}(G_r,K) \to \mathscr{C}(G_{r+1},K).
$$

In particular, $\mathcal{C}(G, K)$ is a Fréchet K-algebra.

 \Box

$$
\mathscr{C}_{\rm unif}^{\rm bd}(G,K)=\varinjlim_{r\to+\infty}\mathscr{C}_{\rm unif}^{\rm bd}(G/G_r,K)
$$

for the embeddings

$$
\mathcal{C}_{\text{unif}}^{\text{bd}}(G/G_r, K) \hookrightarrow \mathcal{C}_{\text{unif}}^{\text{bd}}(G/G_{r+1}, K)
$$
,

where the inductive limit of Banach K-algebras is strict. In particular, $\mathcal{C}_{\text{unif}}^{\text{bd}}(G,K)$ is a complete bornological K-algebra.

3. The natural morphism

$$
\mathscr{C}_{\rm unif}^{\rm bd}(G,K) \longrightarrow \mathscr{C}(G,K)
$$

is injective and has dense image.

Proof. It is clear. For the notion of a bornological topological K-vector space we refer to [\[18,](#page-45-4) §6]; the fact that the notion is stable by strict inductive limits is Example 3 on page 39 of loc.cit. . The statement on completeness is proved in [\[18,](#page-45-4) Lemma 7.9]. \Box

Proposition 4.14. Let G and H be locally compact groups as in Proposition [4.7.](#page-26-2) Then

(4.14.1)
$$
\mathscr{C}(G,K)\widehat{\otimes}_{\pi,K}\mathscr{C}(H,K)\stackrel{\sim}{\longrightarrow}\mathscr{C}(G\times H,K),
$$

while the canonical map

(4.14.2)
$$
\mathscr{C}_{\rm unif}^{\rm bd}(G,K)\widehat{\otimes}_{\pi,K}\mathscr{C}_{\rm unif}^{\rm bd}(H,K)\longrightarrow\mathscr{C}_{\rm unif}^{\rm bd}(G\times H,K)
$$

is a strictly closed embedding of complete bornological algebras.

Proof. In the case of G and H compact this is detailed in the Example after Prop. 17.10 of [\[18\]](#page-45-4). In the general case [\(4.14.1\)](#page-29-0) follows by taking projective limits. The statement for $\mathscr{C}_{\rm unif}^{\rm bd}(G,K)$ reduces instead to [\(4.7.2\)](#page-26-1). \Box

We point out that $(\mathcal{CLC}_K, \hat{\otimes}_{\pi,K})$ is a K-linear symmetric monoidal category. From Remarks [4.7](#page-26-2) and [4.14,](#page-29-1) we conclude

Proposition 4.15. Let G be as in Definition [4.1,](#page-24-1) and let A be either k or K, as before, and $\mathscr{C}(G, A)$ be as in loc.cit... We regard $(\mathcal{CLM}_{k}^u, \widehat{\otimes}_k)$ and $(\mathcal{CLC}_K, \widehat{\otimes}_{\pi,K})$ as symmetric monoidal categories. The coproduct, counit, and inversion

$$
\mathbb{P}(f)(x,y) = f(x+y) , \varepsilon(f) = f(0_G) , \rho(f)(x) = f(-x) ,
$$

for any $f \in \mathscr{C}(G, A)$ and any $x, y \in G$, define a structure of topological A-Hopf algebra on $\mathscr{C}(G, A)$, in the sense of the previous monoidal categories.

The following result describes the structure of the Hopf algebras of functions

$$
\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p \to \mathbb{Z}_p/p^{a+1}\mathbb{Z}_p ,
$$

for any $r, a \in \mathbb{Z}$ and $a \geq 0$ in terms of the functions x_i

$$
x_i:\mathbb{Q}_p/p^{i+1}\mathbb{Z}_p\longrightarrow\mathbb{F}_p
$$

introduced in [\(1.12.4\)](#page-8-3). See also Remark [4.10.](#page-28-0)

2.

Proposition 4.16. For any $i \in \mathbb{Z}$, let x_i be as in [\(1.12.4\)](#page-8-3) and let X_i be indeterminates. For $r \in \mathbb{Z}$ and $i \in \mathbb{Z}_{\geq 0}$, let $\mathbb{F}_p(r, i)$ denote the \mathbb{F}_p -algebra

$$
\mathbb{F}_p[X_r, X_{r-1}, X_{r-2}, \ldots, X_{r-i}]/(1 - X_r^{p-1}, 1 - X_{r-1}^{p-1}, \ldots, 1 - X_{r-i}^{p-1}).
$$

The dimension of $\mathbb{F}_p(r,i)$ as a \mathbb{F}_p -vector space is $(p-1)^{i+1}$. Let $X_{r,i} := (X_{r-i}, X_{r-i+1}, \ldots, X_{r-1}, X_r)$ be viewed as a Witt vector of length $i+1$ with coefficients in $\mathbb{F}_p(r, i)$. We make $\mathbb{F}_p(r, i)$ into an \mathbb{F}_p -Hopf algebra by setting

$$
\mathbb{P}X_{r,i}=X_{r,i}\otimes_{\mathbb{F}_p}1+1\otimes_{\mathbb{F}_p}X_{r,i} .
$$

For any $i = 0, 1, \ldots$, the map \mathbb{F}_p -algebra map $\mathbb{F}_p(r, i + 1) \to \mathbb{F}_p(r, i)$ sending X_{r-j} to X_{r-j} if $0 \leq j \leq i$ and X_{r-i-1} to 0 is a homomorphism of \mathbb{F}_p -Hopf algebras. Then, in the category $\mathcal{CLM}_{{\mathbb F}_p}^u$

1. The map

(4.16.1)
$$
\mathbb{F}_p(r,i) \longrightarrow \mathscr{C}(p^{r-i}\mathbb{Z}_p/p^{r+1}\mathbb{Z}_p, \mathbb{F}_p) X_j \longmapsto x_j, \text{ for } r-i \leq j \leq r,
$$

is an isomorphism of \mathbb{F}_p -Hopf algebras.

2. the \mathbb{F}_p -Hopf algebra $\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{F}_p)$ equals

$$
\mathbb{F}_p(r,\infty) := \varprojlim_{i \to +\infty} \mathbb{F}_p(r,i)
$$

with the prodiscrete topology;

3. the topological \mathbb{F}_p -algebra $\mathcal{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{F}_p)$ equals $\mathbb{F}_p(r, \infty)$ equipped with the discrete topology.

Proof. Parts 1 and 2 are [\[17,](#page-45-5) Teorema 3.31]. Part 3 follows by forgetting the topology. \Box

Remark 4.17. Notice that the \mathbb{F}_p -algebras $\mathbb{F}_p(r, i)$ are perfect.

Corollary 4.18. For $r \in \mathbb{Z}$ and $i, a \in \mathbb{Z}_{\geq 0}$

1. the topological $\mathbb{Z}_p/p^{a+1}\mathbb{Z}_p$ -algebra $\mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^{a+1}\mathbb{Z}_p)$ equals

(4.18.1)
$$
W_a(\mathcal{C}_{unif}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p)) = W_a(\mathbb{F}_p(r,\infty))
$$

equipped with the discrete topology. Therefore,

(4.18.2)
$$
\mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p) = \mathcal{W}(\mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p)) = \mathcal{W}(\mathbb{F}_p(r,\infty))
$$

equipped with the p-adic topology.

2. the $\mathbb{Z}_p/p^{a+1}\mathbb{Z}_p$ -Hopf algebra $\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^{a+1}\mathbb{Z}_p)$ equals

(4.18.3)
$$
W_a(\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p)) = W_a(\mathbb{F}_p(r,\infty))
$$

with the prodiscrete topology. Therefore,

(4.18.4)
$$
\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p)=\mathrm{W}(\mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p))=\mathrm{W}(\mathbb{F}_p(r,\infty))
$$

equipped with the product topology of the prodiscrete topology of $\mathbb{F}_n(r,\infty)$ on the components.

Definition 4.19. We set

$$
\mathscr{C}=\mathscr{C}(\mathbb{Q}_p,\mathbb{Z}_p).
$$

For any $r, a \in \mathbb{Z}$ with $a \geq 0$, we define a Fréchet \mathbb{Z}_p -subalgebra of \mathscr{C}

$$
\mathscr{C}_{r,a} := \{ f \in \mathscr{C} \mid f(x + p^{r+1} \mathbb{Z}_p) \subset f(x) + p^{a+1} \mathbb{Z}_p, \forall x \in \mathbb{Q}_p \}.
$$

Let F be the set-theoretic map

(4.19.1)
$$
F: \mathscr{C} \longrightarrow \mathscr{C}
$$

$$
f \longmapsto f^p
$$

Then

$$
\mathcal{C}_{r,a+1} \subset \mathcal{C}_{r,a} \text{ and } \mathcal{C}_{r,a} \subset \mathcal{C}_{r+1,a}
$$

$$
(4.19.3) \t\t\t p^{a+1} \mathscr{C} \subset \mathscr{C}_{r,a}
$$

is an ideal of $\mathscr{C}_{r,a},$ and F induces a map

$$
(4.19.4) \t\t\t F: \mathscr{C}_{r,a} \longrightarrow \mathscr{C}_{r,a+1} .
$$

There exists a canonical map

(4.19.5)
$$
R_{r,a}: \mathscr{C}_{r,a} \longrightarrow \mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{Z}_p/p^{a+1}\mathbb{Z}_p) f \longmapsto R_{r,a}(f)
$$

such that

$$
\pi_{a+1} \circ f = R_{r,a}(f) \circ \pi_{r+1}
$$

which sits in the exact sequence

$$
(4.19.6) \quad 0 \longrightarrow p^{a+1} \mathscr{C} \longrightarrow \mathscr{C}_{r,a} \xrightarrow{R_{r,a}} \mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p, \mathbb{Z}_p/p^{a+1}\mathbb{Z}_p) = W_a(\mathbb{F}_p(r,\infty)) \longrightarrow 0
$$

We conclude

Proposition 4.20. For any $r \in \mathbb{Z}$ and any $a \in \mathbb{Z}_{\geq 1}$, the map $f \mapsto \pi_1 \circ f$ induces an isomorphism

(4.20.1)
$$
\mathscr{C}_{r,a}/p\mathscr{C}_{r,a-1} \xrightarrow{\sim} \mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p).
$$

For $a = 0$ we similarly have

(4.20.2)
$$
\mathscr{C}_{r,0}/p\mathscr{C} \stackrel{\sim}{\longrightarrow} \mathscr{C}_{\text{unif}}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{F}_p).
$$

The inverse of the isomorphism of discrete \mathbb{F}_p -algebras

$$
\mathcal{C}_{r,a}/p\mathcal{C}_{r,a-1} \xrightarrow{\sim} \mathcal{C}_{r,0}/p\mathcal{C}
$$

is provided by the map

(4.20.4)
$$
F^a: \mathcal{C}_{r,0}/p\mathcal{C} \xrightarrow{\sim} \mathcal{C}_{r,a}/p\mathcal{C}_{r,a-1}
$$

$$
f \longmapsto f^{p^a}.
$$

Proof. The first formula follows from [\(4.19.3\)](#page-31-0) and [\(4.19.6\)](#page-31-1). In fact,

$$
\mathcal{C}_{r,a}/p\mathcal{C}_{r,a-1} = (\mathcal{C}_{r,a}/p^a \mathcal{C})/p(\mathcal{C}_{r,a-1}/p^{a-1} \mathcal{C}) = W_a(\mathbb{F}_p(r,\infty))/pW_{a-1}(\mathbb{F}_p(r,\infty)) = \mathbb{F}_p(r,\infty).
$$

Similarly for the other formulas.

By iteration, we get

Corollary 4.21.

(4.21.1)
$$
\mathscr{C}_{r,a}/p^{a+1}\mathscr{C} \xrightarrow{\sim} \mathscr{C}(\mathbb{Q}_p/p^{r+1}\mathbb{Z}_p,\mathbb{Z}_p/p^{a+1}\mathbb{Z}_p) = W_a(\mathbb{F}_p(r,\infty)).
$$

For any $f \in \mathcal{C}_{r,a}$ there exist $f_0, f_1, \ldots, f_a \in \mathcal{C}_{r,a}$, well determined modulo $p\mathcal{C}$, such that

(4.21.2)
$$
f \equiv f_0^{p^a} + pf_1^{p^{a-1}} + p^2 f_2^{p^{a-2}} + \cdots + p^a f_a \mod p^{a+1} \mathscr{C}.
$$

5 *p*-adically entire functions bounded on \mathbb{Q}_p

We prove here the statements announced in the Introduction, namely Theorem [1.15,](#page-9-0) Theorem [1.17,](#page-9-1) Proposition [1.18,](#page-9-2) Proposition [1.19,](#page-10-0) Proposition [1.21,](#page-10-1) Proposition [1.22,](#page-10-2) and Theo-rem [1.25.](#page-11-1) We assume $q = p$ from now on, so in particular Ψ stands for Ψ_p .

We start with the proof of Theorem [1.15.](#page-9-0)

Proof. (of Theorem [1.15\)](#page-9-0) It suffices to prove the statement over \mathbb{Z}_p . Notice that

$$
\mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}] = \mathbb{Z}_p[\Psi(\lambda p^{-i} x) | i \in \mathbb{Z}, \lambda \in \mathbb{Z}_p^{\times}].
$$

Both rings $\mathbb{Z}_p[[(\lambda x)_i] \mid i \in \mathbb{Z}, \lambda \in \mathbb{Z}_p^{\times}]$ and $\mathbb{Z}_p[\Psi(\lambda p^{-i}x) \mid i \in \mathbb{Z}, \lambda \in \mathbb{Z}_p^{\times}]$ are contained in the \mathbb{Z}_p -Banach ring $\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{Z}_p)$ which may be identified with $W(\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p))$ equipped with the *p*-adic topology. Then $AP_{\mathbb{Z}_p}$ consists of $W(\mathbb{F}_p[(\lambda x)_i | i \in \mathbb{Z}, \lambda \in \mathbb{Z}_p^{\times}])$. Notice that $\mathbb{F}_p[(\lambda x)_i \mid i \in \mathbb{Z}, \lambda \in \mathbb{Z}_p^{\times}]$ is a perfect subring of the perfect ring $\mathscr{C}_{\text{unif}}(\mathbb{Q}_p, \mathbb{F}_p)$, since $(\lambda x)_i^p = (\lambda x)_i$, for any i, λ . It suffices to prove

Lemma 5.1. For any fixed $\lambda \in \mathbb{Z}_p^\times$, the closure of $\mathbb{Z}_p[\Psi(\lambda p^i x) | i = 0, 1, 2, \dots]$ in $W(\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p))$ coincides with of $W(\mathbb{F}_p[(\lambda x)_i \mid i=0,-1,-2,\ldots]).$

Proof. We may as well assume $\lambda = 1$ and prove

Sublemma 5.2. The closure of $\mathbb{Z}_p[\Psi(p^ix) | i = 0, 1, 2, \ldots]$ in $W(\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p))$ coincides with of $W(\mathbb{F}_p[x_i \mid i = 0, -1, -2, \dots]).$

Proof. Let C be the closure of $\mathbb{Z}_p[\Psi(p^ix) | i = 0, 1, 2, \ldots]$ in $W(\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p))$. The formula $[x_{-i}] = \lim_{N \to \infty} \Psi(p^i x)^N$

shows that $W(\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p)) \subset C$. It will suffice to show that, as functions $\mathbb{Q}_p \to \mathbb{Z}_p$

$$
\Psi(x) \in \mathrm{W}(\mathbb{F}_p[x_i \mid i=0,-1,-2,\ldots]) .
$$

We write the restriction of $\Psi(x)$ to a function $\mathbb{Q}_p \to \mathbb{Z}_p$ as

$$
\Psi(x) = (\Psi_0(x), \Psi_1(x), \Psi_2(x), \dots)
$$

with $\Psi_i \in \mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{F}_p)$ and $\Psi_0(x) = x_0$. We have, from $(0.0.5)$, the formula in $\mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{Q}_p)$

$$
(5.2.1) \ \Psi(x) + p^{-1}\Psi(px)^p + \cdots + p^{-i}\Psi(p^ix)^p^i + \cdots = x = (\ldots, x_{-i}, \ldots, x_{-2}, x_{-1}; x_0, \ldots)
$$

From [\(5.2.1\)](#page-32-1) we deduce that, as functions in $\mathscr{C}_{\text{unif}}(\mathbb{Q}_p, p^{-i}\mathbb{Z}_p)$ (5.2.2)

$$
\Psi(x) + p^{-1}\Psi(px)^p + p^{-2}\Psi(p^2x)^{p^2} + \dots + p^{-i}\Psi(p^ix)^{p^i} = (x_{-i}, \dots, x_{-2}, x_{-1}; x_0, \dots)
$$

This shows, inductively on i , that

$$
\Psi_i \in \mathbb{F}_p[x_j | j = 0, -1, -2, \ldots, -i].
$$

 \Box

Definition 5.3. Let $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_{\geq 1}$. We define $\mathscr{E}_{r,a}^{\circ}$ (resp. $\mathscr{T}_{r,a}^{\circ}$) to be the \mathbb{Z}_p -subalgebra of $\mathscr{E}_{p^r}^{\circ}$ (resp. of $\mathscr{T}_{p^r}^{\circ}$) (cf. Definition [1.16\)](#page-9-4) consisting of those functions f such that

(5.3.1)
$$
f(x + p^{r+j} \mathbb{C}_p^{\circ}) \subset f(x) + p^{a+j} \mathbb{C}_p^{\circ} , \quad \forall x \in \mathbb{Q}_p \text{ and } \forall j \in \mathbb{Z}_{\geq 1} .
$$

Remark 5.4. For the rest of this section the statements valid for the rings $\mathscr{E}_{r,a}^{\circ} \subset \mathbb{Q}_p\{x\}$ hold equally well, and with the same proof, for the rings $\mathscr{T}_{r,a}^{\circ} \subset \mathcal{O}(\Sigma_{p^{-r}})^{\circ}$. For short, we deal with the former only.

Notice that

(5.4.1)
$$
\mathscr{E}_{r,a+1}^{\circ} \subset \mathscr{E}_{r,a}^{\circ} \subset \mathscr{E}_{r+1,a+1}^{\circ} \text{ and } p\mathscr{E}_{r,a}^{\circ} \subset \mathscr{E}_{r,a+1}^{\circ}
$$

and that we have a map F as in Definition [4.19](#page-31-2) such that

(5.4.2)
$$
F(\mathscr{E}_{r,a}^{\circ}) \subset \mathscr{E}_{r,a+1}^{\circ}.
$$

Remark 5.5. We have

$$
\mathscr{E}_{p^r}^{\circ} := \mathscr{E}_{r,0}^{\circ} \ .
$$

We already proved (Proposition [0.1](#page-2-2) and Corollary [3.4\)](#page-19-1) that $\Psi(x) \in \mathscr{E}_{0,0}^{\circ}$. Therefore, for any $i \in \mathbb{Z}_{\geq 0}$ and $\ell = 0, 1, \ldots, p - 1$, the function $\Psi(p^{i-r}x)^{\ell p^a}$ belongs to $\mathscr{E}_{r-i,a}^{\circ} \subset \mathscr{E}_{r,a}^{\circ}$.

Lemma 5.6. If a sequence of functions $n \mapsto f_n \in \mathscr{E}_{r,a}^{\circ}$ (resp. $\in \mathscr{T}_{r,a}^{\circ}$) converges to $f \in \mathbb{C}_p\{x\}$ (resp. to $f \in \mathcal{O}(\Sigma_{p^{-r}})^\circ$) uniformly on bounded subsets of \mathbb{C}_p (resp. of $\Sigma_{p^{-r}}$) then $f \in \mathscr{E}_{r,a}^\circ$
(resp. $\in \mathscr{T}_{r,a}^\circ$). Therefore $\mathscr{E}_{r,a}^\circ$ (resp. $\mathscr{T}_{r,a}^\circ$) is a closed \mathbb{Z}_p -subalgebra o $(\mathcal{O}(\Sigma_{p^{-r}})^\circ, \text{standard})$). The induced Fréchet algebra structure on $\mathscr{E}_{r,a}^\circ$ (resp. on $\mathscr{T}_{r,a}^\circ$) will be called standard.

Proof. We deal, to fix ideas, with the case of $\mathscr{E}_{r,a}^{\circ}$. We show that for any $c \in \mathbb{Q}_p$ and $j = 0, 1, \ldots,$

$$
f(c + p^{r+j+1} \mathbb{C}_p^{\circ}) \subset f(c) + p^{a+j+1} \mathbb{C}_p^{\circ}.
$$

By assumption, for any $s, t \in \mathbb{N}$, there exists $N = N_{s,t}$ such that if $n \geq N$, then

$$
(f_n - f)(p^{-s}\mathbb{C}_p^{\circ}) \subset p^t \mathbb{C}_p^{\circ} .
$$

So, for c and j as before, let s be such $c + p^{r+j+1} \mathbb{C}_p^{\circ} \subset p^{-s} \mathbb{C}_p^{\circ}$, and let t be $\geq j + a + 1$. Then, for any $n \geq N_{s,t}$,

$$
(f_n - f)(c + p^{r+j+1} \mathbb{C}_p^{\circ}) \subset (f_n - f)(p^{-s} \mathbb{C}_p^{\circ}) \subset p^t \mathbb{C}_p^{\circ} \subset p^{j+a+1} \mathbb{C}_p^{\circ}.
$$

Therefore $f \in \mathscr{E}_{r,a}^{\circ}$.

Notice that Proposition [1.18](#page-9-2) follows from Lemma [5.6,](#page-33-0) by taking $a = 0$.

Let r, a be as in Definition [5.3.](#page-33-1) Any function $f \in \mathscr{E}_{r,a}^{\circ}$ induces a continuous function $f_{\vert \mathbb{Q}_p} : \mathbb{Q}_p \to \mathbb{Z}_p$. The \mathbb{Z}_p -linear map

(5.6.1)
$$
Res^{\circ} : (\mathscr{E}_{r,a}^{\circ}, \text{standard}) \longrightarrow \mathscr{C}_{r,a} \subset \mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p) , f \longmapsto f_{|\mathbb{Q}_p} ,
$$

is continuous and injective. By composition, we obtain, for any $r \in \mathbb{Z}$ and any $a, h = 0, 1, \ldots$, a morphism

$$
(5.6.2) \ \ R_{r,a} \circ Res^{\circ} : (\mathscr{E}_{r,a}^{\circ}, \text{standard}) \longrightarrow \mathscr{C}(p^{r-h}\mathbb{Z}_p/p^{r+1}\mathbb{Z}_p, \mathbb{Z}_p/p^{a+1}\mathbb{Z}_p) = W_a(\mathbb{F}_p(r,h)) \ ,
$$

where the r.h.s. is equipped with the topology of $(4.18.3)$. The kernel of that map is the set of $g \in \mathscr{E}_{r,a}^{\circ}$ such that $-\log ||g||_{p^{h-r}} \geq a+1$. From [\(5.6.1\)](#page-33-2) we also get maps of Fréchet \mathbb{Z}_p -algebras

(5.6.3)
$$
Res^{\circ} : (\mathscr{E}_{\lambda}^{\circ}, \{ || ||_{p^r \mathbb{Z}_p} \}_{r \in \mathbb{Z}})^{\wedge} \longrightarrow \mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p) , f \longmapsto f_{|\mathbb{Q}_p} ,
$$

(5.6.4)
$$
Res^{\circ} : (\mathcal{I}_{\lambda}^{\circ}, \{ || ||_{p^r \mathbb{Z}_p} \}_{r \in \mathbb{Z}})^{\wedge} \longrightarrow \mathscr{C}(\mathbb{Q}_p, \mathbb{Z}_p) , f \longmapsto f_{|\mathbb{Q}_p}.
$$

Lemma 5.7. Let $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_{\geq 0}$ be as before.

1. Any series of functions of the form

(5.7.1)
$$
\sum_{\ell=0}^{p-1} \sum_{i=0}^{\infty} c_{\ell,a,i} \Psi(p^{i-r}x)^{\ell p^a} , c_{\ell,a,i} \in \mathbb{Z}_p ,
$$

converges in the standard Fréchet topology of $\mathbb{Q}_p\{x\}$ to an element of $\mathscr{E}_{r,a}^{\circ}$ along the filter of cofinite subsets of $\{0, 1, \ldots, p-1\} \times \mathbb{Z}_{\geq 0}$.

2. For any element $f \in \mathscr{C}_{r,a}$ and for any $s = 0, 1, 2, \ldots$ there exist uniquely determined elements $c_{\ell,b,i} = c_{\ell,b,i}^p \in \mathbb{Z}_p$, such that for

$$
f_{r,a} := \sum_{b=0}^{a} \sum_{\ell=0}^{p-1} \sum_{i=0}^{\infty} c_{\ell,b,i} p^b \Psi(p^{i-r}x)^{\ell p^{a-b}} \in \mathscr{E}_{r,a}^{\circ} ,
$$

where the infinite sum converges in the standard Fréchet topology of $\mathscr{E}_{r,a}^{\circ}$, we have

(5.7.2)
$$
-\log||(f - f_{r,a})||_{p^{-r}\mathbb{Z}_p} \geq a+1.
$$

Same statement for $\mathscr{E}_{r,a}^{\circ}$ replaced by $\mathscr{T}_{r,a}^{\circ}$.

3. For any element $f \in \mathscr{C}_{r,a}$ and any $h = 0, 1, \ldots$, there exist uniquely determined elements $c_{\ell,b,i} = c_{\ell,b,i}^p \in \mathbb{Z}_p$, such that for

$$
f_{r,a,h} := \sum_{b=0}^{a} \sum_{\ell=0}^{p-1} \sum_{i=0}^{h} c_{\ell,b,i} p^b \Psi(p^{i-r} x)^{\ell p^{a-b}},
$$

(5.7.3)
$$
-\log||(f - f_{r,a,h})||_{p^{h-r}\mathbb{Z}_p} \geq a+1.
$$

- 4. The map [\(5.6.2\)](#page-33-3) is surjective.
- 5. The maps [\(5.6.3\)](#page-34-0) and [\(5.6.4\)](#page-34-1) are the isomorphisms of Theorem [1.17.](#page-9-1)

Proof. The first part is clear. As for the second, we observe that, for any $b = 0, 1, \ldots, a$, the map $R_{r,a} \circ Res^{\circ}$ transforms the function $p^b \Psi(p^{i-r}x)^{\ell p^{a-b}}$, for $\ell = 0, 1, \ldots, p-1$, into the Witt vector

$$
(0,\ldots,0,w_b=x_{r-i}^{\ell},0,\ldots,0)\in W_a(\mathbb{F}_p(r,\infty)),
$$

where x_{r-i}^{ℓ} is placed at the b-th level. Since any $y \in \mathbb{F}_p(r,\infty)$ admits a unique expression as a sum, convergent in the prodiscrete topology of $\mathbb{F}_p(r,\infty)$,

$$
y = \sum_{\ell=0}^{p-1} \sum_{i=0}^{\infty} \gamma_{\ell,i} x_{r-i}^{\ell} , \quad \gamma_{\ell,i} \in \mathbb{F}_p ,
$$

is clear that any $w = (w_0, w_1, \ldots, w_a) \in W_a(\mathbb{F}_p(r, \infty))$ admits a unique expression as a sum

$$
\sum_{b=0}^{a} \sum_{\ell=0}^{p-1} \sum_{i=0}^{\infty} [\gamma_{\ell,b,i}] (0, \dots, 0, w_b = x_{r-i}^{\ell}, 0, \dots, 0)
$$

which in turn converges in the prodiscrete topology of $W_a(\mathbb{F}_p(r,\infty))$. More precisely, for any $a, h = 0, 1, \ldots$, we can determine coefficients $c_{\ell,b,i} \in \mathbb{Z}_p$ such that

$$
w - \sum_{b=0}^{a} \sum_{\ell=0}^{p-1} \sum_{i=0}^{h} c_{\ell,b,i} x_{r-i}^{\ell}
$$

has zero image in $W_a(\mathbb{F}_p(r, h))$. So, the function

$$
f_{r,a,h} := \sum_{b=0}^{a} \sum_{\ell=0}^{p-1} \sum_{i=0}^{h} c_{\ell,b,i} p^{b} \Psi(p^{i-r} x)^{\ell p^{a-b}},
$$

is such that

$$
\min \{ v_p(f_{r,a,h}(x) - f(x)) \, | \, x \in p^{r-h}\mathbb{Z}_p + p^r \mathbb{C}_p^{\circ} \} \ge a+1 \, .
$$

Finally, we already observed that the kernel of the map [\(5.6.2\)](#page-33-3) consists of the elements $g \in \mathscr{E}_{r,a}^{\circ}$ such that $-\log ||g||_{p^{h-r}\mathbb{Z}_p} \ge a+1$. This proves 2, 3 and 4.

As for the last part of the statement, we pick any $f \in \mathscr{C}_{unif}(\mathbb{Q}_p, \mathbb{Z}_p)$ and a natural number $N = 0, 1, \ldots$. Then there exists an $M = 0, 1, \ldots$ and $f_M \in \mathscr{C}(\mathbb{Q}_p/p^M\mathbb{Z}_p, \mathbb{Z}_p)$ such that $w_{\infty}(f - f_M) \geq N$. It will suffice to determine an element $g \in \mathbb{Z}_p[\Psi(\lambda x) | \lambda \in \mathbb{Q}_p^{\times}]$ such that $w_{\infty}(g - f_M) \geq N$. We then pick $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_{\geq 0}$ so that $r + 1 \geq M$ and $a + 1 \geq N$. The statement follows from the surjectivity of [\(5.6.2\)](#page-33-3). This concludes the proof.

As a corollary, we obtain the proof of Propositions [1.21](#page-10-1) and [1.22.](#page-10-2) We now give the proof of Proposition [1.19.](#page-10-0)

Proof. (of Proposition [1.19\)](#page-10-0) We discuss $(\mathscr{E}_{\lambda}^{\circ}, \text{standard})$ in order to fix ideas. The case of $(\mathscr{T}^\circ_\lambda,$ standard) is analogous. The coproduct of $\mathscr{E}^\circ_\lambda$ originates from $(0.3.4)$

(5.7.4)

$$
x \mapsto \Psi(x \widehat{\otimes}_{\mathbb{Z}_p} 1 + 1 \widehat{\otimes}_{\mathbb{Z}_p} x) = \Phi(\Psi(x \widehat{\otimes}_{\mathbb{Z}_p} 1), \Psi(px \widehat{\otimes}_{\mathbb{Z}_p} 1), \dots; \Psi(1 \widehat{\otimes}_{\mathbb{Z}_p} x), \Psi(1 \widehat{\otimes}_{\mathbb{Z}_p} px), \dots) =
$$

$$
\Phi(\Psi(x) \widehat{\otimes}_{\mathbb{Z}_p} 1, \Psi(px) \widehat{\otimes}_{\mathbb{Z}_p} 1, \dots; 1 \widehat{\otimes}_{\mathbb{Z}_p} \Psi(x), \widehat{\otimes}_{\mathbb{Z}_p} \Psi(1px), \dots)
$$

and the identification [\(1.9.1\)](#page-7-0). The fact that $\mathscr{E}_{\lambda}^{\circ}$ only depends upon $|\lambda|$ follows from the fact that, for any $f \in \mathbb{C}\lbrace x \rbrace$, the map $\mathbb{Q}_p \to \mathbb{C}\lbrace x \rbrace$, $a \mapsto f(ax)$ is continuous. For any $n \in \mathbb{Z}$, the map $n \iota : \Psi(\lambda^{-1} p^j x) \mapsto \Psi(\lambda^{-1} p^j n x)$, for any $j = 0, 1, \ldots$, is an endomorphism of $\mathscr{E}_{\lambda}^{\circ}$. By continuity, we obtain a map $a \in \mathcal{E}_{\lambda}^{\circ} \to \mathcal{E}_{\lambda}^{\circ}$, for any $a \in \mathbb{Z}_p$. If $m, n \in \mathbb{Z}$ are such that $mn = 1 + ap^N$, for $a \in \mathbb{Z}$ and $N \in \mathbb{Z}$, $\hat{N} >> 0$, $\Psi(\lambda^{-1}p^j mnx)$ is close to $\Psi(\lambda^{-1}p^jx)$. Again by continuity we find that if $a \in \mathbb{Z}_p^{\times}$, $a\iota$ is an automorphism of $\mathscr{E}_{\lambda}^{\circ}$. \Box

We finally prove our Uniform Approximation Theorem [1.25.](#page-11-1)

Proof. We discuss the integral case only; the bounded case follows directly. We first observe that a $\mathcal{CLM}_{\mathbb{Z}_p}^u$ -morphism

$$
(\mathcal{APH}_{0,\mathbb{Z}_p},\text{strip}) = \varinjlim_{\rho \to 0}^u (\mathcal{APH}_{\mathbb{Z}_p}(\Sigma_\rho),\text{strip}) \longrightarrow (AP_{\mathbb{Z}_p},w_\infty)
$$

exists because so does, for any $\rho > 0$, the morphism $(\mathcal{APH}_{\mathbb{Z}_p}(\Sigma_\rho), \text{strip}) \to (AP_{\mathbb{Z}_p}, w_\infty)$. Moreover, that morphism is injective. An element of $\mathcal{APH}_{0,\mathbb{Z}_p}$ is represented by a sequence

 $P_{\rho_n} \in \mathbb{Z}_p[\Psi(x/\lambda) \,|\, \lambda \in \mathbb{Q}_p^{\times}]$ with ρ_n decreasing to 0, such that for any $\varepsilon > 0$, there exists N_{ε} such that for any $m \geq n \geq N_{\varepsilon}$,

$$
||P_{\rho_n}-P_{\rho_m}||_{\mathbb{Q}_p,\rho_m}<\varepsilon.
$$

Let $f \in AP_{\mathbb{Z}_p}$ and let $N \in \mathbb{Z}_{>0}$. By definition of u.a.p. functions, there exists a polynomial

$$
P_N := \sum_{\lambda \in \mathbb{Q}_p^\times} a_\lambda \Psi(x/\lambda)
$$

where $a_{\lambda} \in \mathbb{Z}_p = 0$ for almost all λ , such that

$$
w_\infty(f-P_N)>N.
$$

By [\(3.11.1\)](#page-22-2) of Theorem [3.11,](#page-22-0) for any $N > 0$ there exists $\rho_N > 0$ such that $v_p(P_N(a+x) P_N(a) > N$, for any $a \in \mathbb{Q}_p$ and $x \in \mathbb{C}_p$, $|x| \leq \rho_N$. We may assume that the sequence $N\rightarrow \rho_N$ decreases to 0. We deduce that for $M\geq N$

$$
-\log||P_N - P_M||_{\mathbb{Q}_p,\rho_M} > N.
$$

So, the sequence $N \mapsto P_N$ represents a germ $P \in \mathcal{APH}_{0,\mathbb{Z}_p}$ whose restriction to \mathbb{Q}_p is f. \Box

Remark 5.8. We are not asserting here that there should be a p-adic strip Σ_{ρ} around \mathbb{Q}_p on which f extends analytically. In fact, an inductive limit in the category $\mathcal{CLM}_{\mathbb{Z}_p}^u$ is not necessarily supported by a set-theoretic inductive limit (see section [6.1](#page-36-1) of Appendix A below) and similarly for a locally convex inductive limit of Banach spaces.

6 Appendix A. Non archimedean topological algebra

A prime number p is fixed throughout this paper and $q = p^f$ is a power of p. So, \mathbb{Q}_q will denote the unramified extension of \mathbb{Q}_p of degree f, and \mathbb{Z}_q will be its ring of integers. Unless otherwise specified, a ring is meant to be commutative with 1.

6.1 Linear topologies

Let k be a separated and complete linearly topologized ring; we will denote by $\mathcal{P}(k)$ the family of open ideals of k. We will consider the category \mathcal{CLM}_k^u of separated and complete linearly topologized k -modules M such that the map multiplication by scalars

$$
k \times M \longrightarrow M
$$
, $(r, m) \longmapsto rm$

is uniformly continuous for the product uniformity of $k \times M$. Morphisms of \mathcal{CLM}_k^u are continuous k-linear maps. This is the classical category of $[10, Chap. III, §2]$. See [\[4\]](#page-44-6) for more detail.

Remark 6.1. All over this paper we will assume that in a topological ring R (resp. topological R-module M), the product (resp. the scalar product) map $R \times R \rightarrow R$ (resp. $R \times M \to M$) is at least continuous for the product topology of $R \times R$ (resp. of $R \times M$); morphisms will be continuous morphisms of rings (resp. of R-modules).

By a non-archimedean $(n.a.)$ ring R (resp. R-module M) we mean a topological ring R (resp. R-module M) equipped with a topology for which a basis of neighborhoods of 0 consists of additive subgroups and additive translations are homeomorphisms. So, any valued non-archimedean field K is a n.a. ring in the previous sense and, if K is non-trivially valued, the category LC_K of locally convex K-vector spaces [\[18\]](#page-45-4) is a full subcategory of the category of n.a. K -modules. But, such a field K is never a linearly topologized ring. The ring of integers K° is indeed linearly topologized, but no non-zero object of LC_K is an object of \mathcal{CLM}_K^u .

Definition 6.2. Let R be a topological ring and M be a topological R-module. A closed topological R-submodule N of M is said to be strictly closed if it is endowed with the subspace topology of M.

For any object M of \mathcal{CLM}_k^u , $\mathcal{P}(M)$ will denote the family of open k-submodules of M. The category \mathcal{CLM}_{k}^{u} admits all limits and colimits. The former are calculated in the category of k-modules but not the latter. So, a limit will be denoted by lim while a colimit will carry an apex $(-)^u$ as in $\underline{\lim}^u$. In particular, for any family M_α , $\alpha \in A$, of objects of \mathcal{CLM}_k^u , the direct sum and direct product will be denoted by

$$
\bigoplus_{\alpha\in A}^u M_\alpha \ , \ \prod_{\alpha\in A} M_\alpha \ ,
$$

respectively. We explicitly notice that \bigoplus^u $\bigoplus_{\alpha\in A}^u M_\alpha$ is the completion of the algebraic direct sum $\bigoplus_{\alpha \in A} M_{\alpha}$ of the algebraic k-modules M_{α} 's, equipped with the k-linear topology for which a fundamental system of open k -modules consists of the k -submodules

$$
\bigoplus_{\alpha \in A} (U_{\alpha} + IM_{\alpha})
$$
 such that $U_{\alpha} \in \mathcal{P}(M_{\alpha})$ $\forall \alpha$, and $I \in \mathcal{P}(k)$ is independent of α .

Then the k-module underlying $\bigoplus^u M_\alpha$ in general properly contains the algebraic direct sum $\bigoplus_{\alpha \in A} M_{\alpha}$. It will also be useful to introduce the *uniform box product* of the same family

$$
(6.2.1)\quad \prod_{\alpha \in A} \Box^{\alpha} M_{\alpha}
$$

which, set-theoretically, coincides with $\prod_{\alpha \in A} M_{\alpha}$ but whose family of open submodules consists of all $U := \prod_{\alpha \in A} U_{\alpha}$, with $U_{\alpha} \in \mathcal{P}(M_{\alpha})$, such that there exists $I_U \in \mathcal{P}(k)$ such that $I_U M_\alpha \subset U_\alpha$, for any $\alpha \in A$. The category \mathcal{CLM}_k^u , equipped with the tensor product $\hat{\otimes}_k^u$ of [\[14,](#page-45-6) 0.7.7] (see also [\[10,](#page-44-8) Chap. III, §2, Exer. 28]) is a symmetric monoidal category. The category of monoids of \mathcal{CLM}_k^u is denoted by \mathcal{ALM}_k^u .

For two objects M and N of \mathcal{CLM}_k^u , we have

(6.2.2)
$$
M \widehat{\otimes}_k^u N = \lim_{\substack{P \in \mathcal{P}(M), Q \in \mathcal{P}(N)}} M/P \otimes_k N/Q
$$

so that $\widehat{\otimes}_{k}^{u}$ κ_k^u commutes with filtered projective limits in \mathcal{CLM}_k^u .

6.2 Semivaluations

We describe here full subcategories of \mathcal{CLM}_k^u , and special base rings k, of most common use. We denote by $\mathbb{Z}_{(p)} = \mathbb{Q} \cap \mathbb{Z}_p$, the localization of \mathbb{Z} at (p) . Then \mathbb{C}_p will be the completion of a fixed algebraic closure of \mathbb{Q}_p . On \mathbb{C}_p we use the absolute value $|x| = |x|_p = p^{-v_p(x)}$, for the *p*-adic valuation $v = v_p$, with $v_p(p) = 1$, and $x \in \mathbb{C}_p$.

Definition 6.3. A semivaluation on a ring R is a map $w : R \to \mathbb{R} \cup \{+\infty\}$ such that $w(0) = +\infty$, $w(x + y) \ge \min(w(x), w(y))$ and $w(xy) \ge w(x) + w(y)$, for any $x, y \in R$. We will say that a semivaluation is positive if it takes its values in $\mathbb{R}_{\geq 0} \cup \{+\infty\}.$

Remark 6.4. 1. If w_1, w_2, \ldots, w_n are a finite set of semivaluations on the ring R, so is their infimum

$$
w := \inf_{i=1,\ldots,n} w_i \; .
$$

- 2. The trivial valuation $v_0 : R \to \{0, +\infty\}$, which exists on any ring R, is (in our sensel) a positive semivaluation.
- 3. We will indifferently use the multiplicative notation $|x|_w = \exp(-w(x)).$

For any semivaluation w of a ring R , the family of

$$
(6.4.1) \t R_{w,c} := \{ x \in R \, | \, w(x) \ge c \}
$$

for $c \in \mathbb{R}$ is a fundamental set of open subgroups for a group topology of R. Moreover, $R_{w,0}$ is a subring of R and all $R_{w,c}$ are $R_{w,0}$ -submodules of R. A (*multi-*) semivalued ring $(R, \{w_{\alpha}\}_{{\alpha}\in A})$ is a ring R equipped with a family $\{w_{\alpha}\}_{{\alpha}\in A}$ of semivaluations. A semivalued ring is endowed with the topology in which any $x \in R$ has a fundamental system of neighborhoods consisting of the subsets

$$
x + \bigcap_{\alpha \in F} R_{\alpha, c_{\alpha}}
$$

where F varies among finite subsets of A and, for any $\alpha \in F$, $c_{\alpha} \in \mathbb{R}$. A Fréchet ring (resp. *Banach ring*) is a ring R which is separated and complete in the topology induced by a countable family of semivaluations (resp. by a single semivaluation). If the semivaluations w_α are all positive, the Fréchet (resp. Banach) ring $(R, \{w_\alpha\}_{\alpha \in A})$ is linearly topologized. We will call it a *linearly topologized Fréchet* (resp. *Banach*) ring. When R is an algebra over a Banach ring (S, v) , and the semivaluations w_{α} satisfy

$$
w_{\alpha}(xy) = v(x) + w_{\alpha}(y) \ \forall x \in S, y \in R,
$$

we also say that $R = (R, \{w_\alpha\}_{\alpha \in A})$ is a Fréchet (resp. Banach) S-algebra. In the particular case when (S, v) is a complete non-trivially valued real-valued field (K, v) a Fréchet or Banach S-algebra is a Fréchet or Banach algebra over K in the classical sense. Notice however that we allow v to be the trivial valuation of S or K. We denote by \mathcal{CLC}_K the category of locally convex topological K-vector spaces of $[18]$, where morphisms are continuous K-linear maps, which are moreover separated and complete.

We have the easy

Lemma 6.5. Let (S, v) be a Banach ring and $(R, \{w_n\}_{n=1,2,...})$ be a Fréchet S-algebra. Let (R_n, w_n) be the separated completion of R in the locally convex topology induced by the semivaluation w_n . Assume $w_n(r) \geq w_m(r)$ for any $r \in R$ if $n \leq m$. Then, the identity of R extends to a morphism $R_m \to R_n$ of Banach S-algebras and R is the limit, in the category of n.a. S-algebras, of the filtered projective system $(R_n)_n$.

In particular, a S-subalgebra T of R is dense in R if and only if it is dense in R_n , for any n.

6.3 Tensor products

Let (S, v) be a complete real-valued ring and let $R = (R, \{w_{\alpha}\}_{{\alpha \in A}})$ and $R' = (R', \{w'_{\beta}\}_{{\beta \in B}})$ be two Fréchet S-algebras. Then we define a Fréchet S-algebra $R\widehat{\otimes}_{\pi,S}R'$ as the completion of the S-algebra $R \otimes_S R'$ in the topology induced by the following semivaluations [\[9,](#page-44-3) 2.1.7], for any $(\alpha, \beta) \in A \times B$,

$$
w_{\alpha,\beta}(g) = \sup \left(\min_{1 \leq i \leq n} w_{\alpha}(x_i) + w'_{\beta}(y_i) \right) ,
$$

where the supremum runs over all possible representations

$$
g = \sum_{i=1}^{n} x_i \otimes y_i , \quad x_i \in R , \quad y_i \in R' .
$$

The following proposition follows immediately from Lemma [6.5.](#page-38-1)

Proposition 6.6. Let (S, v) be a Banach ring and $(R, \{w_n\}_{n=1,2,...})$, $(R', \{w'_n\}_{n=1,2,...})$ be two Fréchet S-algebra satisfying the assumption of Lemma [6.5.](#page-38-1) Then, with the same notation, $R\widehat{\otimes}_{\pi,S}R'$ is the limit, in the category of n.a. S-algebras, of the filtered projective system of Banach S-algebras $(R_n \widehat{\otimes}_{\pi, S} R'_n)_n$.

Notice that

- 1. if R and R' are Fréchet algebras over a complete real-valued field (K, v) , with nontrivial valuation v, $R\widehat{\otimes}_{\pi,K}R'$ coincides with both the completed projective and the inductive tensor product of $[18]$ (*cf.* Lemma 17.2 and Lemma 17.6 of *loc.cit.*);
- 2. if R and R' are linearly topologized Fréchet algebras over a linearly topologized Banach ring (S, v) , $R\widehat{\otimes}_{\pi, S}R'$ coincides with $R\widehat{\otimes}_{S}^u R'$.

7 Appendix B. Classical theory of almost periodic functions

The main character of this paper, our function Ψ , shows many analogies with the classical holomorphic almost periodic functions of Bohr, Bochner, and Besicovitch [\[7\]](#page-44-4). In fact many of the subtle function theoretic difficulties which appear in the p -adic setting are also encountered in classical Harmonic Analysis. We feel that a short presentation of the basics of the classical theory might be useful. See also the survey article [\[12\]](#page-45-7).

7.1 Fejér's Theorem

Let $(\mathscr{C}_{\text{unif}}^{\text{bd}}(\mathbb{R},\mathbb{R}),||\,||_{\mathbb{R}})$ be the Banach algebra of bounded uniformly continuous functions $\mathbb{R} \to \mathbb{R}$, equipped with the supnorm on \mathbb{R} . For $\lambda \in \mathbb{R}_{>0}$ let $\mathscr{P}_{\mathbb{R},\lambda} \subset \mathscr{C}_{\text{unif}}^{\text{bd}}(\mathbb{R},\mathbb{R})$ be the strictly closed Banach subalgebra of continuous functions periodic of period λ .

Let us recall the classical Fejér's Theorem [\[20,](#page-45-8) §13.31]. Let $f \in \mathscr{P}_{\mathbb{R},\lambda}$. The Fourier expansion of f is the formal trigonometric series

$$
\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{2\pi n}{\lambda}z) + b_n \sin(\frac{2\pi n}{\lambda}z) ,
$$

with

$$
a_n = \frac{2}{\lambda} \int_0^{\lambda} f(t) \cos(\frac{2\pi n}{\lambda} z) dt , b_n = \frac{2}{\lambda} \int_0^{\lambda} f(t) \sin(\frac{2\pi n}{\lambda} z) dt.
$$

The sequence of the partial sums

$$
S_N(f) = \frac{a_0}{2} + \sum_{n=1}^{N} a_n \cos(\frac{2\pi n}{\lambda}z) + b_n \sin(\frac{2\pi n}{\lambda}z) ,
$$

does not necessarily converge to f uniformly on $\mathbb R$. However, the Cesaro means

$$
\sigma_n = \frac{S_0 + \dots + S_{n-1}}{n}
$$

converge to f uniformly on $\mathbb R$. In particular,

Theorem 7.1. $\mathbb{R}[\cos(\frac{2\pi}{\lambda}x), \sin(\frac{2\pi}{\lambda}x)]$ is dense in the \mathbb{R} -Banach algebra $(\mathscr{P}_{\mathbb{R},\lambda}, || ||_{\mathbb{R}})$.

We will show below that a suitably reformulated p -adic analog of Theorem [7.1](#page-39-3) holds true p-adically.

Definition 7.2. (Bohr's definition of u.a.p. functions) A continuous function $f : \mathbb{R} \to \mathbb{R}$ is uniformly almost periodic (u.a.p. for short) if, for any $\varepsilon > 0$, there exists $\ell_{\varepsilon} > 0$ such that for any interval $I \subset \mathbb{R}$ of length ℓ_{ε} there exists $\tau \in I$ such that

$$
|f(x+\tau)-f(x)|<\varepsilon\ ,\ \ \forall\,x\in\mathbb{R}\ .
$$

It is easy to check that the set of uniformly almost periodic functions $\mathbb{R} \to \mathbb{R}$ is a closed subalgebra $AP_{\mathbb{R}}$ of $(\mathscr{C}_{unif}^{bd}(\mathbb{R}, \mathbb{R}), || ||_{\mathbb{R}})$ [\[7,](#page-44-4) Chap. I, §1, Thms 4°,5°]. We define $AP_{\mathbb{C}} \subset (\mathscr{C}_{\rm unif}^{\rm bd}(\mathbb{R}, \mathbb{C}), || \ ||_{\mathbb{R}})$ similarly.

The following result is Bohr's "Approximation Theorem". We refer to [\[7,](#page-44-4) I.5] for its proof and for a detailed description of the contributions of S. Bochner and H. Weyl.

Theorem 7.3. $AP_{\mathbb{R}}$, $|| \cdot ||_{\mathbb{R}}$ identifies with the completion of the normed ring

$$
(\mathbb{R}[\cos(\frac{2\pi}{\lambda}x),\sin(\frac{2\pi}{\lambda}x)\,|\,\lambda\in\mathbb{R}^{\times}],||\,||_{\mathbb{R}}) .
$$

Similarly for $(AP_{\mathbb{C}}, || ||_{\mathbb{R}})$.

We propose p -adic analogs of those Banach algebras and of the latter theorem.

7.2 Dirichlet series

Let $\mathbb{C}\{x\}$ be the Fréchet C-algebra of entire functions $\mathbb{C} \to \mathbb{C}$, equipped with the topology of uniform convergence on compact subsets of $\mathbb C$. The rotation $z \mapsto iz$ transforms trigonometric series into series of exponentials and Bohr's definition naturally propagates into the following

Definition 7.4. [\[7,](#page-44-4) III.2,1°]. For any interval $(a, b) \subset \mathbb{R}$, an analytic function f on the strip $(a, b) \times i\mathbb{R} \subset \mathbb{C}$ is almost periodic holomorphic on (a, b) if, for any $\varepsilon > 0$, there exists $\ell_{\varepsilon} > 0$ such that for any interval $I \subset \mathbb{R}$ of length ℓ_{ε} there exists $\tau \in I$ such that

$$
|f(x+i\tau)-f(x)|<\varepsilon \quad ,\ \ \forall x\in(a,b)\times i\mathbb{R} \ .
$$

We let $\mathcal{APH}_{\mathbb{C}}((a, b))$ denote the C-algebra of almost periodic holomorphic functions on (a, b) .

Notice that $\mathcal{APH}_{\mathbb{C}}((a, b))$ is a closed subalgebra of the Fréchet algebra $\mathcal{O}((a, b) \times i\mathbb{R})$; the induced Fréchet algebra structure is called *standard*. We may equip $\mathcal{APH}_{\mathbb{C}}((a, b))$ with the finer Fréchet algebra structure of uniform convergence on substrips $(a', b') \times i\mathbb{R}$, for $a < a' < b' < b$. We informally call this topology the strip topology.

The following Polynomial Approximation Theorem [\[7,](#page-44-4) III.3,3°] holds.

Theorem 7.5. $\mathcal{APH}_{\mathbb{C}}((a, b))$ is the Fréchet completion of the C-polynomial algebra generated by the restrictions to $(a, b) \times i\mathbb{R}$ of all continuous characters of R, namely by the maps

(7.5.1)
$$
e_{\lambda} : (a, b) \times i\mathbb{R} \longrightarrow \mathbb{C} , z \longmapsto e^{\lambda z}
$$

for $\lambda \in \mathbb{R}^{\times}$, equipped with the strip topology.

The assignment $(a, b) \mapsto \mathcal{APH}_{\mathbb{C}}((a, b))$ uniquely extends to a sheaf of Fréchet C-algebras on R.

Definition 7.6.

1. We denote by $\mathcal{APH}_{0,\mathbb{C}}$ the stalk of the sheaf $\mathcal{APH}_{\mathbb{C}}$ at 0 equipped with the locally convex inductive limit topology of the system of Fréchet algebras $\mathcal{APH}_{\mathbb{C}}((-\varepsilon,\varepsilon))$ as $\varepsilon \to 0^+$.

2. We denote by $APH_{\mathbb{C}} \subset \mathbb{C}\lbrace x \rbrace$ the Fréchet algebra of global sections of $APH_{\mathbb{C}}$ equipped with the strip topology.

Notice that we have a natural injective morphism, induced by restriction of functions and the properties of the inductive limit

$$
(7.6.1) \tAPH_{\mathbb{C}} \longrightarrow \mathcal{APH}_{0,\mathbb{C}}.
$$

It follows from the combined theorems of approximation Theorem [7.3](#page-40-2) and Theorem [7.5](#page-40-3) that

Corollary 7.7. $(AP_{\mathbb{C}}, || ||_{\mathbb{R}})$ identifies with the completion of the normed ring $(AP\mathcal{H}_{0,\mathbb{C}}, || ||_{\mathbb{R}})$.

Remark 7.8. Sections of the sheaf $\mathcal{APH}_{\mathbb{C}}$ on open subsets of R may be viewed as generalized Dirichlet series [\[7,](#page-44-4) III.3]. A *p*-adic analog on \mathbb{Q}_p of the sheaf $\mathcal{APH}_{\mathbb{C}}$ of Dirichlet series on \mathbb{R} , might be useful in the theory of p-adic L-functions.

8 Appendix C: Numerical Calculations by M. Candilera

The following calculations were performed with $\mathit{Mathematica}^{\mathbb{C}}$. We computed the first coefficients of the series $\Psi_p(T) = \sum_{n=1}^{\infty} b_n T^n$, for $p = 2$, up to the term of degree 2^5 , and for $p = 3$, up to degree 3^4 . We also evaluated the a few coefficients of $\Psi_5(T)$ and $\Psi_7(T)$. We give here tables of the *p*-adic orders of the coefficients b_n for $p = 2, 3$. For those values of p, we also draw the graph of the function $n \mapsto v_p(b_n)$ and compare it with the Newton polygon of Ψ_p (flipped around the y-axis). We confirm experimentally the calculation of the corresponding valuation polygons.

8.1 Very first coefficients

1.
$$
p = 2
$$

\n
$$
\Psi_2(T) = T - 2 \cdot T^2 + 2^4 \cdot T^3 - 11 \cdot 2^5 \cdot T^4 + 7 \cdot 2^{11} \cdot T^5 - 7 \cdot 37 \cdot 2^{12} \cdot T^6 + 3 \cdot 751 \cdot 2^{16} \cdot T^7 - 301627 \cdot 2^{17} \cdot T^8 + 308621 \cdot 2^{26} \cdot T^9 + 2^{27} \cdot T^{10} \cdot u(T),
$$

for a unit $u(T) \in \mathbb{Z}_{(2)}[[T]]^{\times}$.

$$
2. \, p=3
$$

$$
\Psi_3(T) = T - 3^2 \cdot T^3 + 3^7 \cdot T^5 - 2^2 \cdot 7 \cdot 3^{11} \cdot T^7 +
$$

2 \cdot 7 \cdot 13 \cdot 113 \cdot 3^{14} \cdot T^9 - 5 \cdot 89 \cdot 1249 \cdot 3^{22} \cdot T^{11} + 5 \cdot 117 \cdot 217667 \cdot 3^{28} \cdot T^{13} + ...

3. $p = 5$

$$
\Psi_5(T) = T - 5^4 \cdot T^5 + 5^{13} \cdot T^9 - 53 \cdot 59 \cdot 5^{21} \cdot T^{13} +
$$

3 \cdot 11 \cdot 97 \cdot 1123 \cdot 1699 \cdot 5^{29} \cdot T^{17} + 5^{37} \cdot T^{21} \cdot u(T) ,

for a unit $u(T) \in \mathbb{Z}_{(5)}[[T]]^{\times}$.

4. $p = 7$

 $\Psi_7(T) = T - 7^6 \cdot T^7 + 7^{19} \cdot T^{13} - 2 \cdot 31 \cdot 37 \cdot 359 \cdot 7^{31} \cdot T^{19} + 7^{43} \cdot T^{25} \cdot u(T)$,

for a unit $u(T) \in \mathbb{Z}_{(7)}[[T]]^{\times}$.

Figure 5: Newton and valuation polygons of $\Psi_2.$

8.2 First 24 coefficients of $\Psi_2(t)$ and 2-adic order of the 32 first

$b_n t^n$ $\overline{\Psi_2(t)} = \sum_{n\geq 1}$											
b_1	0	b_9	26	b_{17}	61	b_{25}	101				
b_2	1	b_{10}	27	b_{18}	62	b_{26}	102				
b_3	4	b_{11}	33	b_{19}	$70\,$	b_{27}	110				
b_4	5	b_{12}	34	b_{20}	71	b_{28}	111				
b_{5}	11	b_{13}	42	b_{21}	81	b_{29}	121				
b_6	12	b_{14}	43	b_{22}	82	b_{30}	122				
b ₇	16	b_{15}	48	b_{23}	89	b_{31}	128				
b_8	17	b_{16}	49	b_{24}	90	b_{32}	129				

2-adic valuation of the coefficients of Ψ_2

```
b_1 = 1, b_2 = -2, b_3 = 16 = 2^4, b_4 = -352 = -2^5 \cdot 11b_5 = 14336 = 2^{11} \cdot 7· 7, b_6 = -1060864 = -2^{12} \cdot 7 \cdot 37b_7 = 147652608 = 2^{16} \cdot 3 \cdot 751b_8 = -39534854144 = -2^{17} \cdot 301627b_9 = 20711204716544 = 2^{26} \cdot 308621b_{10} = -21454855889485824 = -2^{27} \cdot 3^2 \cdot 13 \cdot 701 \cdot 1949b_{11} = 44195700516541431808 = 2^{33} \cdot 5145056699b_{12} = -181554407879323198423040 = -2^{34} \cdot 5 \cdot 41 \cdot 2273 \cdot 22679509b_{13} = 1489469015852141109009448960 = 2^{42} \cdot 5 \cdot 67733208918623b_{14} = -24421319844213105128638664146944 = -2^{43} \cdot 3^2 \cdot 8179 \cdot 37716952983613b_{15} = 800530746908074643997623203521363968 = 2^{48} \cdot 31 \cdot 71 \cdot 1619 \cdot 826201 \cdot 966018887b_{16} = -52473187457503996327647036404796036743168 = -2^{49} \cdot 31 \cdot 397 \cdot 13687 \cdot 2882489 \cdot 191972726039b_{17} = 6878395240848057051122842718175351390427152384 = 2^{61} \cdot 3 \cdot 47 \cdot 59 \cdot 919 \cdot 24709 \cdot 15791216459521333b_{18} = -1803212578568825704559863338710346864852507172012032= 2^{62} \cdot 3^2 \cdot 19 \cdot 97 \cdot 173 \cdot 1665967 \cdot 581220517 \cdot 140723269997b_{19} = 945424354393817092018179744741353462710753588534117924864= 2^{70} \cdot 7^2 \cdot 23 \cdot 15973 \cdot 44485316159805664956515547941b_{20} = -991360632780906301560343330625129510790528483073480047449866240= 2^{71} \cdot 5 \cdot 167 \cdot 14503 \cdot 15445577653440901 \cdot 2244675152281633901b_{21} = 2079045830009718214618472297232655379089817022368004517660824096997376= 2^{81} \cdot 109 \cdot 23549 \cdot 167442376921 \cdot 2000645152343730624200879183b_{22} = -8720175189463740580963423057535032711261236371520206719551905031269050744832= 2^{82} \cdot 47 \cdot 1867 \cdot 105323 \cdot 2119591 \cdot 80618233393589 \cdot 1141865166972250409671b_{23} = 73150235997673008411264495083486904164758556563477195586370441676376428384144588800= 2^{89} \cdot 3^3 \cdot 5^2 \cdot 175082340917111384848376265817809832605816887352831773b_{24} = -1227258187586069935509530355473988020883482157853428276444146736521211077001846045664083968
```
 $= 2^{90} \cdot 54617 \cdot 76121647308197 \cdot 238451637287968840726339672350427699951944293$

b_3	2	b_{23}	58	b_{43}	135	b_{63}	213
b_5	7	b_{25}	64	b_{45}	141	b_{65}	223
b_7	11	b_{27}	68	b_{47}	151	b_{67}	231
b_9	14	b_{29}	79	b_{49}	159	b_{69}	238
b_{11}	22	b_{31}	87	b_{51}	166	b_{71}	247
b_{13}	28	b_{33}	94	b_{53}	175	b_{73}	255
b_{15}	33	b_{35}	103	b_{55}	183	b_{75}	262
b_{17}	40	b_{37}	111	b_{57}	190	b_{77}	271
b_{19}	46	b_{39}	118	b_{59}	199	b_{79}	279
b_{21}	51	b_{41}	127	b_{61}	207	b_{81}	284

8.3 3-adic values of the first 81 coefficients of $\Psi_3(T)$

3-adic valuation of the coefficients of Ψ_3

References

[1] Francesco Baldassarri, Interpretazione funzionale di certe iperalgebre e dei loro anelli di bivettori di Witt. Tesi di laurea, Padova, 1974.

Figure 6: The Newton and valuation polygons of Ψ_3 .

- [2] Francesco Baldassarri, Una funzione intera p-adica a valori interi. Ann. Scuola Norm. Sup. Pisa, Ser. IV Vol. II (2):321–331, 1975.
- [3] Francesco Baldassarri, The Artin-Hasse isomorphism of perfectoid open unit disks and a Fourier-type theory for continuous functions on \mathbb{Q}_p preprint
- [4] Francesco Baldassarri and Maurizio Cailotto, Closed exact categories of modules over generalized adic rings preprint
- [5] Francesco Baldassarri and Maurizio Cailotto, Duality for functions and measures on locally compact 0-dimensional spaces with values in generalized adic rings preprint
- [6] Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1990.
- [7] Abram S. Besicovitch, Almost periodic Functions, Dover Publications, Inc., New York. pp. xiii+180 (1955).
- [8] Harald Bohr, Zur Theorie der fastperiodischen Funktionen, I, II, III, Acta math. 45 (1924) pp. 29-127, 46 (1925) pp. 101-214, 47 (1926) pp. 237-281.
- [9] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften 261, Springer-Verlag, Berlin 1984, pp. xii+436
- [10] Nicolas Bourbaki, Eléments de Mathématiques. Algèbre Commutative, Chapitres 1 à 4. Springer, 2006 (Masson, Paris 1985).
- [11] Pierre Colmez, Fonctions d'une variable p-adique Ast´erisque 330, 13–59, 2010.
- [12] Roger L. Cooke, Almost-Periodic Functions The American Mathematical Monthly 88, N. 7, pp. 515-526, 1981.
- [13] Jean-Marc Fontaine, Groupes p-divisibles sur les corps locaux, Astérisque, No. $47-48$, Société Mathématique de France, Paris, 1977.
- [14] Alexandre Grothendieck and Jean Dieudonné, Éléments de Géométrie Algébrique I. Grundlehren der Mathematischen Wissenschaften 166, Springer 1971.
- [15] Michel Lazard, Les zéros d'une fonction analytique d'une variable sur un corps valué complet Publ. Math. Inst. Hautes Études Sci. 14: 47–75, 1962.
- [16] Iacopo Barsotti, Metodi analitici per variet`a abeliane in caratteristica positiva. Capitoli 1,2. Ann. Scuola Norm. Sup. Pisa, Ser. III Vol. XVIII (1):1–25, 1964.
- [17] Iacopo Barsotti, Metodi analitici per variet`a abeliane in caratteristica positiva. Capitoli 3,4. Ann. Scuola Norm. Sup. Pisa, Ser. III Vol. XIX (3): 277–330, 1965.
- [18] Peter Schneider, Nonarchimedean functional analysis Springer Monographs in Mathematics, Springer-Verlag, Berlin vi+156 pp., 2002.
- [19] Peter Schneider, Galois representations and (φ, Γ) -modules *Cambridge Studies in ad*vanced mathematics, 164 147 pp., 2017.
- [20] Titchmarsh, E. C., The theory of functions, Reprint of the second (1939) edition, Oxford University Press, Oxford, 1958, pp. x+454.