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Abstract

Computation of spectral structure and risk measures from networks of multivariate
financial time series data has been at the forefront of the statistical finance literature
for a long time. A standard mode of analysis is to consider log returns from the equity
price data, which is akin to taking first difference (d = 1) of the log of the price data.
Sometimes authors have considered simple growth rates as well. Either way, the idea
is to get rid of the nonstationarity induced by the unit root of the data generating
process. However, it has also been noted in the literature that often the individual
time series might have a root which is more or less than unity in magnitude. Thus first
differencing leads to under-differencing in many cases and over differencing in others.
In this paper, we study how correcting for the order of differencing leads to altered
filtering and risk computation on inferred networks. In summary, our results are: (a)
the filtering method with extreme information loss like minimum spanning tree as well
as filtering with moderate information loss like triangulated maximally filtered graph
are very susceptible to such d-corrections, (b) the spectral structure of the correlation
matrix is quite stable although the d-corrected market mode almost always dominates
the uncorrected (d = 1) market mode indicating under-estimation in the standard
analysis, and (c) the PageRank-based risk measure constructed from Granger-causal
networks shows an inverted U-shape evolution in the relationship between d-corrected
and uncorrected return data over the period of analysis 1972-2018 for historical data of
NASDAQ.
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1 Introduction

Financial markets are complex interactive systems, susceptible to disturbances from internal
instability as well as external perturbations. As the returns series from the stocks and
other financial assets exhibit complex interdependence, a natural way to infer about the
underlying market dynamics has been to analyze the observed cross correlations. Stocks
belonging to the same or related sector, tend to exhibit correlated price movements e.g.
the historical correlations utilized in pair trading [34]. On the other hand, it is likely that
information specific to a particular company will affect that company’s stock only. Study of
the spectral distribution of the empirical correlation matrix has become a standard toolkit
to capture the internal structure of the market by finding out the major and minor modes
of fluctuations [31]. Another complementary measure of market instability is given by the
notion of systemic risk, which provides an idea of vulnerability of the market to small
localized shocks. A common feature of almost all the analysis done in the literature are
dependent on one standard methodology of converting price data into log return by first-
differencing the log price series (r = ∆log(P ) where r is return and P is price). However,
there is a known fact in the literature that the first-differencing may not be appropriate for
all stocks as it might lead to over-differencing and under-differencing [10]. Yet, surprisingly
there is a lacuna in the literature on the dependence of eigenspectra and risk measures to
this seemingly innocuous modeling choice. In this paper, we attempt to fill that gap and
characterize the structures that are robust to the choice of en masse first-differencing.

Before describing the results, we first provide a brief summary of the developments in
network studies on financial correlation matrices. In one of the first attempts, Plerou et
al. [28] analyzed the cross-correlation matrix of stock price changes of 1000 largest U.S.
companies for the period 1994-1995, and they showed that the correlation matrix has the
universal properties of the Gaussian orthogonal ensemble of random matrices. Following
the lead, a large literature developed on analysis to large dimensional correlation matrices,
especially on the applications of random matrix theory to filter statistically significant
eigenmodes from the spectral structure of the matrices [31]. A natural extension of this
stream of work led to the development of clustering studies in the comovement matrices.
In an influential work, Mantegna [22] introduced a graph theoretic visualization of the
topological relations, obtained from the correlation matrix. This led to a surge of studies
in the intersection of network theory and statistical properties of financial time series.
Subsequently, the concepts of asset trees and more generally, asset graphs were introduced.
The asset tree or the minimum spanning tree is a connected graph without any closed
loop such that the sum of pairwise distance is minimized [22, 24]. In general, the asset
graphs provide a network view of the stocks with a hierarchy in the strength of correlation
values [25]. Ref. [13] compared how strongly correlated clusters of stocks are expressed as
branches in the asset tree and as clusters in asset graphs, and found that the eigenvector
corresponding to the largest eigenvalue has larger components on the central nodes and a
few eigenvectors corresponding to the next largest eigenvalues are more or less localized.
Further developments in this domain have been discussed in Ref. [31].

A parallel development took place in terms of quantification of entanglement in the
financial markets. Past few decades have witnessed massive expansion, soaring complexity
and inter-connectedness of the financial markets, leading to questions of how to regulate
such complexity [6]? Changes in correlation and the corresponding spectral structure poten-
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tially impacts the system’s vulnerability to a financial shock [17]. The induced risk can lead
to a major crisis or depression in the world economy, such as the 2008 global financial crisis
that spurred the financial institutions to study and measure this risk accurately. It is a chal-
lenging task to identify the extent of the risk beforehand. Several assessment methodologies
are in place such as the identification of systemically important financial institutions (SIFIs)
developed by the International Monetary Fund, the Bank of International Settlement and
Financial Stability Board. Earlier this risk was conceptualised in terms of the financial in-
stitutions like banks. But according to the current reality, as companies can access funding
without going through banks, the relation between market and institution is more relevant
and must be taken into account. Ref. [30] advocated for appropriate regulation to contain
the risk. Ref. [9] argued that to comprehend the risk fully, the risk measure has to integrate
bank failure contagion with financial markets spillover effects and payment and settlement
risks. Ref. [1] showed that financial networks are “robust-yet-fragile” in the sense that
interconnectedness entails increased ability to absorb shock but interconnectedness beyond
a certain level make the financial system susceptible to contagion.

As an increase in the risk would be a direct consequence of the complexity and intercon-
nectedness of the network, it is very important to capture the network relationship among
the financial institutions. To do so, three concepts emerged- “too central to fail”, “too big
to fail” and “too connected to fail” (see [35]). Among these the notion of “too central to
fail”, as argued by [35], extracts most information from the network and a risk measure was
crated based on PageRank centrality. Notably, [35] built their measures based on the find-
ings of [3] who described that all the available measures of the risk are based on one of the
four L’s of financial crises: leverage, liquidity, losses, and linkages. They developed several
econometric measures based on linkages, to capture connectedness in the financial network
using principal component analysis as well as Granger Causality network. These measures
have a focus on the network topology of asset returns. On the other hand, considering
publicly traded financial institutions and defining a systemic event as simultaneous losses
among multiple financial institutions, CoVaR by [2], and Co-Risk by [7], were developed.
Since these two measures do not correlate well with the risk measure capturing the “too
central to fail” mechanism [35] and do not directly related to the comovement matrices that
will be the building block of our work, we will not consider them in the following.

In this paper, we show that the construction of the asset graphs as well as estimation of
vulnerability (following the “too central to fail” paradigm) depends on the construction of
return series. The standard practice to create the log returns is by taking first difference (d
= 1) of the log of price data, in order to remove the non-stationarity induced by unit roots in
the data [10]. However, the time series is likely to have a root more or less than unity. Thus
first differencing leads to under-differencing in many cases and over differencing in others.
This is a known phenomenon in the literature, however there is surprisingly little work in
this domain. As De Prado stated in his book [10] published in 2018: “After Hosking’s paper,
the literature on this subject has been surprisingly scarce, adding up to eight journal articles
written by only nine authors” (p. 76), where the original paper by Hosking was written in
1981 [14].

With this motivation, we used fractional differencing instead of integer differencing to
construct the return of an asset. This is particularly useful for the processes with long
term dependence. In the following, we investigate how would the spectral structure and the
risk measures change by the choice of difference parameter. In a nutshell, our comparative
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analysis indicates that the risk measure and the topology of networks can change quite a bit
depending on the order of differencing fo the primitive return series. We have carried out
all of our analysis on historical NASDAQ data (ranging from 1972 to 2018). In particular,
we have created moving windows of 300 stocks with the lagrest market capitalization every
year, where the windows have a length of four years. This choice of window construction
is quite standard in the literature [17] and our findings are robust to alternative specifica-
tions. On each of the window, we compute the spectral structure, composition of filtered
network and risk measures using the return series constructed from first differencing (d =
1) and optimally chosen d based on ARFIMA (autoregressive fractionally integrated moving
average) specification.

To summarize the results, we make a series of observations. First, optimally chosen
order of differencing (d parameter) has a wide range of distribution, roughly from 0.5 to 1.4
with some infrequent outliers, with a mode of the histogram close to 1. Thus on an average,
the standard calculations are correct. Second, the largest eigenvalues corresponding to
optimally chosen d obtained from all the windows, are very similar in magnitude to those
obtained from d = 1 although the former typically dominates the latter. Also, the bulk of the
distribution of the eigenvalues are very similar to each other. But this is where the similarity
ends and dissimilarity begins. The third observation is that a big difference appears on the
construction of minimum spanning tree (or MST in short). We create a similarity measure
based on the number of common edges between two MSTs corresponding to each window
for d = 1 and optimally chosen d for stocks. In the beginning of our data (in the windows
corresponding to 1970s and 80s), the match was barely in the order of 30%. however, there is
an almost linear trend of catching up as the share of common edges increased, with almost
70% match towards the end of the data (in 2010s). A very similar pattern is seen with
less stringent filtering techniques like TMFG triangulated maximally filtered graph. Fourth,
we compute risk measure capturing vulnerability of stocks from Granger causal matrices
constructed from the time series data of returns. Then we study the similarity between
the risk measures obtained via d = 1 and optimally chosen d. This relationship shows
an inverted U -shaped pattern where peak of the similarity is found in the 1990s, which
continues till the beginning of 2000. Thus the similarity in the risk-measure seems to be
non-monotonic.

The rest of the paper is arranged as follows. In section 2, we provide a short introduction
to fractional differencing and ARFIMA model followed by a brief introduction to the spectral
structure and construction of risk measures from Granger-causal networks. In section 2.5,
the data, used for statistical analysis, is described. Results are presented in section 3. We
summarize the findings and conclude with remarks on the implications of the results in
section 4.

2 Comovement Structure of Multivariate Financial Data and
Fractional Differencing

In this section, we will discuss the methodology we have adopted in this paper. Our main
objective is to detect the extent of changes in a network induced by fractional differencing.
We are particularly interested to see the impact on the risk measures and the topological
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properties of the network. First, we are going to discuss some of the key concepts that will
help us to measure this impact.

2.1 Long Memory and ARFIMA

In this subsection, we will briefly introduce the long memory and ARFIMA model. In
statistical analysis of time series data, an AutoRegressive Integrated Moving Average model
(ARIMA) is a well-known way to model, infer and forecast a time series. If X is not a
stationary process then the differencing parameter has to be an integer- commonly taken
to be one or two. This method is frequently used in practice for short term dependence
in the time series. However, some economic and financial time series exhibits long term
dependence- commonly called long memory [27]. For such series, the autocorrelation de-
cays hyperbolically- much slowly than exponential decay. [21] showed that fractionally
differentiated series can give rise to long memory. Based on this idea the ARIMA can be
generalised as ARFIMA- AutoRegressive Fractionally Integrated Moving Average. A series
Xt is a time series then ARFIMA(p,d,q) model is defined like the following:

Φ(L)(1− L)d(Xt − µ) = Θ(L)ut where ut ∼ iid(0, σ2u), (1)

where L is the backward-shift operator, d is the fractional differencing parameter (takes any
real value) and Φ(L) = 1−φ1L− ...−φpLp and Θ(L) = 1 + θ1L− ...+ θqL

q. The stochastic
process Xt is stationary if d ∈ (−0.5, 0.5). If d > 0.5, then the process will possess infinite
variance and so won’t be stationary. An ARFIMA(0, d, 0) process boils down to simply

(1− L)d(Xt − µ) = ut, where ut ∼ iid(0, σ2u). (2)

2.2 Spectral Analysis of Equal Time Correlation Matrix

Basic topological properties of a network can be described by the distribution of the spec-
trum of the adjacency matrix. It is well-known that networks generated by the same random
process have same distribution of the eigenvalues. Spectrum also helps to understand some
of the key properties of the interacting units of the network. For an example, the ex-
treme (highest) eigenvalue of the adjacency matrix gives us significant insight about the
market mode or the collective response of the entire market to external information. To
be more precise, spectral analysis of the equal time correlation matrix reveals three types
of fluctuations: (i) due to the market mode that is common to all stocks, (ii) sectoral
contributions (related to specific business sectors) and (iii) idiosyncratic (i.e., specific to
individual stocks’ dynamics). These are captured by segregating the network spectra into
three parts: (i) largest and most extreme eigenvalue (ii) deviating eigenvalues and (iii) bulk
of the eigenspectra respectively. The following equation illustrates the decomposition ([28],
[31], [17]):

C = Cmarket + Cgroup + Crandom (3)

= λ1u1u
T
1 +

Ng∑
i=2

λiuiu
T
i +

N∑
i=Ng+1

λiuiu
T
i , (4)
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where C is the N × N correlation matrix, decomposed into three parts, and Ng denotes
number of eigenvalues deviated from the bulk except the top one (the threshold for the bulk
is typically determined by Marcenko-Pastur distribution [31]). λis and uis are eigenvalues
and eigenvector respectively. Finally, uT represents transpose of the u vector. In this work,
we will investigate how strongly fractional differencing affects extreme eigenvalues and the
rest of the distributions.

2.2.1 Sensitivities of Filtering Algorithms: Minimum Spanning Tree

A method to obtain the graph-theoretic visualization of the network, based on the topologi-
cal relation of the stocks, was proposed in [22]. Using the equal time correlation coefficients
of the daily difference of logarithm of closure price of stocks, ref. [22] obtained the taxonomy
of a portfolio of stocks traded in a financial market. As correlation coefficient cannot be
considered as a metric (correlations can be negative, whereas a distance measure is always
nonnegative), the distance between two stocks is defined in the following way-

di,j =
√

2(1− ρi,j) (5)

These calculated pairwise distances are then used to construct a minimum spanning tree
(MST) that connects N nodes of the network with N − 1 edges, such that the total sum of
the pairwise distances, i.e.

∑
i,j di,j is minimum. These constructions played an important

role in portfolio optimization, see for example [24]. In this work, we examine the impact of
fractional differencing on the constructed MST.

2.2.2 Sensitivities of Filtering Algorithms: Triangulated Maximally Filtered
Graph

The TMFG method [23] is a filtering technique used to construct a subnetwork from a
correlation matrix which captures the most relevant information between the nodes and
minimizes spurious associations. The resultant graph is a clique-tree composed of four
nodes cliques connected with three node cliques. TMFG imposes a structural constraint
to retain 3(N − 2) edges of the original network as opposed to filters like MST contains
only N −1 edges, thus retaining far more information than MST. TMFG produces a planar
network, i.e. the network can be drawn on a sphere with no edges crossing. We will examine
the impact of fractional differencing on the graph constructed by TMFG method.

2.3 Risk Measure from Granger-Causal Networks

To understand the impact on overall risk, we will adopt a risk measure from the Granger-
Causal network as described in [35]. In order to study the propagation of the shock, Ref. [3]
first used the notion of Granger causality which captures the directionality of the connections
between the stocks. For two return time series (corresponding to ith and jth stock), the
stock i is said to Granger-cause stock j if past values of stock i contain information that
along with the past information contained in stock j predicts the present value of stock j
better than that with the past information in stock j alone. Statistically, the prediction-
performance is captured through linear regression. let Rit and Rjt be two stationary time
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series with zero mean, then the Granger-causality between ith and jth stock are obtained
through the output of the following two regression equations:

Rit = aiRit−1 + bijRjt−1 + eit

Rjt = ajRjt−1 + bjiRit−1 + ejt , (6)

where a and b are regression parameters and ei, ej are uncorrelated white noise processes.
If bij is statistically significant then we say that the time series of stock j Granger-causes
the time series of stock i. So in the graph representation, the two nodes will be connected,
but the direction will be from j to i. If bji is also significant then the direction is both way
i.e. there is a feedback relationship. If none of them are significant, then there is no edges
between these two nodes.

If the i-th asset Granger causes j-th asset then the (i, j)th element of the adjacency
matrix will be 1, otherwise, it is chosen to be 0:

A[i, j] =

{
1 if i→ j

0 otherwise
(7)

The degree of Granger causality is defined by the fraction of nondiagonal elements of A[i, j]
taking value 1, i.e. the fraction of statistically significant Granger-causal relationship. It is
also called a macro measure or macro connectedness as opposed to the micro connectedness
that estimates the connectedness of individual financial institution [16] or listed firms, in
general.

Ref. [35] prescribed a measure of centrality using the PageRank algorithm, originally
proposed by [26] to rate or order Web pages, from a “too central to fail” perspective and
shown the other measures of systemic risk like conditional value at risk (CoVaR) and
marginal expected shortfall (MES) are inconsistent with each other as well as with the
Rank measure. PageRank is defined as follows:

Rankit =
1− α
N

+ α
∑
j

EijtRankjt, (8)

where α is called a damping factor, N is total number of financial institutions and Eijt
is the normalized Granger-causal matrix. It is worthwhile to note here that PageRank is
essentially a generalization of eigenvector centrality, which in turn is defined to measure the
importance of the nodes based on their overall connectivity. In the present discussion, we
will not pursue the methodological discussion of eigenvector centralities. Interested readers
can consult Ref. [3] for an overview of the construction and application of eigenvector-based
measures of risk.

2.4 Description of the Analysis

Now we will provide a brief outline of our methodology and implementation.

1. To determine the appropriate differencing parameter, we first fit the log returns of in-
dividual stocks by a ARFIMA(0, d, 0) model. We adopt the semiparametric estimation

W.P. No. 2020-07-01 Page No. 8



IIMA • INDIA

Research and Publications

procedure proposed by Ref. [12]. this method is based on spectral regression. With
this we get the estimated differencing parameter d. For each stock then we calculate
two log-return series:- one with the usual method (unit differencing) and the second
with the estimated optimal differencing parameter. We call the second return series as
d-corrected return series. If the log-price of an asset i is defined as Xi, then the usual
log return is defined as R(t) = (1−L)X(t) and the d-corrected log return is defined as
Rd(t) = (1−L)dX(t). For empirical implementation, we have utilized fracdiff package
in R (see https://cran.r-project.org/web/packages/fracdiff/fracdiff.pdf).

2. We need one more correction in the return data to reliably construct the correla-
tion matrix. It has been recognized in the literature that spurious correlations arise
from volatility clustering ([15]; see also [11]). Therefore, we consider the Generalized
Auto-Regressive Conditional Heteroskedasticity (GARCH)(1,1) model (see [32] for a
textbook treatment) to adjust the return series for latent volatility. Conditioning on
the filtration F({{Riτ}t−1−∞}Ni=1),

Ri,t = µi + σitεit, (9)

σ2it = ωi + αi(Ri,t−1 − µi)2 + βiσ
2
i,t−1 (10)

where µ, σ, ω and α are coefficients of the equation and N is total number of stocks.
To control for heteroscedasticity-induced correlations, we adjust the returns for each
stock by dividing by the latent volatility series estimated using a GARCH(1,1) model
on the return series as follows:

R̃it =
Rit
σ̂i,t

for the i-th stock at t-th time point. (11)

The resultant return series would be free of the effects of latent volatility. For em-
pirical implementation, we have utilized rugarch package in R (see https://cran.r-
project.org/web/packages/rugarch/rugarch.pdf).

3. To summarize, we construct modified returns for both simple return series (with
differencing parameters 1) and d-corrected return series. Let us call them R̃ and R̄
respectively.

4. Then we calculate the correlation matrix out of R̃ and R̄ for each window, and com-
pare the distributions of the eigenvalues of the correlation matrix (λ in Eqn. 4). In
particular, the largest eigenvalues of the correlation matrices of R̃ are calculated over
each time window to see the dynamic evolution. Since it represents the market mode
([28], [17]), the difference between the two dominant eigenmodes would inform us
about the differences in the strength of the market modes.

5. Next, we calculate the MST (constructed using ape package in R; see https://cran.r-
project.org/web/packages/ape/ape.pdf) from the distance matrices obtained from
equal time correlation matrices constructed (using the transformation following Eqn.
5) from R̃ and R̄ for each window. We define a degree of similarity between two MSTs
(from d = 1 and d-corrected return series) by finding the fraction of edges common to
both graphs with respect to the total number of edges. This gives us an idea of the
stability of the simplest form of the filtered subnetwork inferred from the comovement
structure.
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6. Similar to step 5, we calculate the two TMFGs (constructed using networktoolbox pack-
age in R; see https://cran.r-project.org/web/packages/NetworkToolbox/NetworkToolbox.pdf)
corresponding to R̃ and R̄ return series. Unlike the MST, TMFG should be calculated
from the correlation matrix (or, square of the correlation matrix.) Like step 5, here
also we calculate the degree of similarity by calculating the fraction of edges common
to both the graphs.

7. Next, we calculate PageRank vectors from the Granger-causality matrices (the {i, j}-
th element of the Granger causal matrix denotes Granger causation running from the
j-th return series to the i-th return series, vide Eqn. 6 and 7; evaluated at 5% level
of significance), constructed from simple return series and d-corrected return series.
Therefore, for each stock we obtain two ranks corresponding to two return series.
These ranks represent a risk measure in the form of vulnerability and shock spillover
from one stock to the other.

8. For each window, in order to compare two sets of ranks we calculate the correlation
coefficients between them. This gives us a measure indicating how much the choice
of differencing parameter affects the risk of the network. We utilize three measures of
association: Pearson’s, Kendall’ τ and Spearman’s rank correlation coefficients.

Pearson’s correlation is the usual product moment correlation between variables X
and Y ,

ρ =
cov(X,Y )

σXσY
, (12)

where cov(X,Y ) denotes the covariance between X and Y and σ(.) denotes the stan-
dard deviation.
Spearman’s correlation is the Pearson’s correlation for the rank values of two variables.

ρS =
cov(rank(X), rank(Y ))

σrank(X)σrank(Y )
, (13)

Finally, Kendall’s τ is the difference between the probability of concordance and prob-
ability of discordance, which can be represented as-

τ =
2

n(n− 1)

∑
i<j

sign(xi − xj)sign(yi − yj), (14)

where (xi, yi) and (xj , yj) are two pairs of observations of (X,Y ).

2.5 Data

Our dataset consists of time series data of stocks from NASDAQ (one of the largest trading
market in the world in terms of market capitalization; located in the US) from 1972 to 2018.
The market started operating in 1971 along with operationalization of the NASDAQ index.
Since we are interested in studying the evolution of the market structure, we divide the
available time period in overlapping, moving windows of 4 years’ length (the windows cover
1972-75, 1973-76 and so on). there are 47 such windows. In each window, we choose top 300
stocks in terms of market capitalization (calculated as equity price multiplied by number of
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Figure 1: Histogram of GPH (Geweke and Porter-Hudak) estimates of differencing param-
eters for 300 stocks in time windows 2013-16 and 2015-18. The mode of the distribution is
close to one in both cases. However, the distributions exhibit a sizeable range approximately
from 0.5 to 1.4. A similar pattern can be found on the other windows as well (not shown
here).

outstanding shares). Thus every window in our dataset would consist of 300 stocks (except
the first one, which has 124 due to missing data) with daily closing price for four consecutive
years (the first closing price recorded on 1st January or the first trading day of the year,
and the last data-point being the last recorded closing price on 31st December or the last
trading day of the relevant year).

A known problem of historical equity data is that often for some days the is not reported.
To make sure that our dataset does not suffer from too many missing data points, we restrict
the choice of the stocks within each window, to have at least 95% of the closing price data.
therefore, out of around 1000 trading days in four years (market remains closed on weekends
and other holidays) each stock should have at least 950 reported closing price. We replace
the missing return values by zeros.

3 Results

Here we describe the results of our analysis on the spectral structure, filtering and the risk
measure.

3.1 Spectral Structure

First we report the results from exercise on choice of optimal degree of differencing. The
difference parameter d is estimated by GPH (Geweke and Porter-Hudak [12]). For 300
stocks in the time-window 2013-16 and 2015-18, the histograms of estimated difference
parameter are shown in Fig. 1. We can see that there is considerable dispersion around 1.
The question is whether taking unit difference for all the stocks to create the return would
affect the analysis of data. To investigate it we first calculate the return series using those
estimated parameters. In Fig. 2, we have plotted the d-corrected return series and the
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(a) (b)

Figure 2: Visual comparison: d-corrected return series and simple return series of two
stocks from 2014-17 snapshot. Panel (a): corresponds to a stock with d > 1 and Panel (b):
refers to a stock with d < 1. Visually it is difficult to differentiate the top return series
(d-corrected) from the bottom return series (d = 1). However, the correlation structure
changes quite substantially as we will demonstrate in the following.

(a)

(b)

Figure 3: (Color online) Illustration of the similarities and differences in spectral structure
for simple and d-corrected return series. Panel (a): The bulk of the spectra for 2015-18
data, Panel (b): Evolution of the largest eigenvalues corresponding to the d-corrected and
uncorrected correlation matrices over time (1972-2018). Each point represent the largest
eigenvalues evaluated within a single window. While the left panel shows that the differences
in the bulk of the eigenvalues is very minimal, the right panel shows that the dominant
eigenvalue corresponding to the market mode, exhibits higher magnitudes in almost all
windows for the d-corrected return data. However, that difference has gradually diminished
over time.
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return series obtained by unit differencing for two different stocks. These plots show that
visual differences between the return series are not very prominent.

In Fig. 3a, we show the probability density function of the eigenvalues of the correlation
matrices constructed from the d-corrected and d = 1 return series. The differences in the
bulk of the empirical distribution are very minimal. In Fig. 3b, we plot the dominant eigen-
values of each of the overlapping 4 year-long windows across time from 1972 to 2018. We see
that while there are substantial differences in magnitude in the first 12 windows, the differ-
ence becomes much less pronounced in the later periods. However, the dominant eigenvalue
of the correlation matrix obtained from d-corrected network almost always dominates the
dominant eigenvalue of the uncorrected correlation matrix.

To summarize, the differences in the spectral structure seems to be existent, but minimal.
Our later analysis on the other hand, shows that both filtering as well as risk measures
calculations are substantially affected by the choice of optimal d.

3.2 Filtering: Dissimilarities across MSTs and TMFGs

Next, we construct the correlation matrices from the return data and the construct the
corresponding distance matrices (using the transformation given in Eqn. 5). Based on the
distance matrices, we compute the MSTs. Our analysis shows that there are substantial
differences in the MSTs.

First, we motivate our findings based on a simple, small-scale exposition with only 20
stocks. Fig. 4a shows a subgraph of a minimum spanning tree for d = 1 and d-corrected
return series. We can see that node 18 was at the periphery of the graph before appropriate
differencing. It becomes a more central node (right panel) after correcting for appropriate d.
The opposite happens to node number 7. One can try to match the other nodes as well and
confirm that their positions also often changes. This comparison illustrates that the MST
structure can change quite substantially depending on the choice of difference parameter.

Next, we quantify this the degree of similarity across two MSTs and two TMFGs.
Obviously when we plot the MSTs (or TMFGs) with 300 stocks, it is not visually possible
to count all the changes. So we have created a measure of similarity by taking the ratio of
the number of common edges to the total number of edges. It is useful to note that an MST
with N number of nodes will have N − 1 edges. Therefore, in our case, the denominator
would be 299 as the number of stocks is 300. For a TMFG with N number of nodes will have
3(N−2) edges and so the denominator will be 894. Fig. 4b and Fig. 4c show the proportion
of identical edges in two MSTs and TMFGs respectively, across consecutive windows of
four years’ lengths. The smooth lines were obtained by a nonparametric locally weighted
polynomial regression method, called LOWESS (locally weighted scatter-plot smoother),
which combines several regression models into a meta-model. Each of those regression
lines are estimated through weighted least square method on a subset of data, determined
by nearest neighbors algorithm [8]. A smoothing parameter controls the flexibility of the
model. A clear pattern is visible indicating an increasing trend in the degree of similarity
over time.
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(a)

(b) (c)

Figure 4: (Color online) Visual exposition of instability of the MSTs. Panel (a): We have
deliberately chosen a small sample size (only 20 stocks) to clearly identify the shifts in
relative positions of the stocks on the MST. The MST in the left has been constructed
from d-corrected return series and the MST in the right has been constructed from sim-
ple/uncorrected return series. As can be seen from the figures, node 18 appears in the
backbone of the MST after correcting the return series whereas node number 7 goes to
the periphery. Panel (b): Proportion of matching edges across MSTs constructed from
d-corrected and d= 1 return series, across 47 windows over time (1972-2018). Panel (c):
Proportion of matching edges across TMFGs constructed from d-corrected and d= 1 return
series, across 47 windows over time (1972-2018).
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(a) (b)

Figure 5: (Color online) Evolution of the association measures between risk measures calcu-
lated from d-corrected and d = 1 return series: Panel (a): Pearson’s correlation, Spearman’s
correlation and Kendall’s tau over three-year-window staring from 1972 till 2018. Panel (b):
Trend in three measures of association and their 95% confidence intervals. We are observing
an inverted U -shaped pattern across the full time period. The trends are plotted identically
to those found in the Panel (a) for ease of comparison.

3.3 Risk Measure from Granger Causal Networks

Finally, we want to examine whether two sets of PageRanks (corresponding to two choices
of differencing parameter) are significantly different from one other. A significant differ-
ence would suggest that the choice of differencing parameter is important for determining
systemic risk. We first calculate the extent of linear association between these two series.
Fig. 5a shows Pearson’s correlation, Spearman’s correlation and Kendall’s tau for every
four years window starting from 1973. We can see that at the initial period the correlation
is a bit unstable. But with time it stabilizes. The smoothed lines in the plot obtained by
LOWESS regression, suggest that the association increased approximately till 2000. During
the first two decades of this century it decreases gradually over time.

3.4 Robustness: Subsample Analysis

To check for robustness of our results, we performed a subsample analysis consisting the
top 100 stocks from our original data of 300 stocks in each window. The subsample analysis
corroborates our earlier results. We have provided the results in the Appendix. In Fig.
6a and Fig. 6b, we observed that the same upward trend is present across time in the
proportion of matched-edges for both MST and TMFG networks. As in the Fig. 3b of the
time series of dominant eigenvalues obtained from the full-sample, Fig. 7a also represents
the identical features for the subsample. Similarly, Fig. 7b confirms presence of an inverted
U -shaped pattern in the similarity measures between two sets of PageRanks, obtained from
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the subsample. In summary, these results validate our earlier results from the full-sample
analysis and concurs on the effects of d-correction.

4 Summary

Analysis of spectral structure of large dimensional financial data is at the forefront of the
literature on statistical finance, risk analysis and portfolio optimization (see for example
[31], [5], [19]). Risk measures obtained from lagged comovement structure of financial data
is a prominent area of research in the complementary domain of risk analytics and financial
networks (see for example Ref. [4], [33]). One common feature across (almost) all of the
relevant studies is the way return series is constructed from raw price data. It has been
widely recognized in the literature that the raw price data is non-stationary in nature.
Typically, the first stage of analysis is to construct log return, i.e. to take first difference
of the log price series. The idea behind this operation is to get rid of the unit root in
the raw price data by first differencing. However, it has also been noticed for quite some
time that choosing the difference operator d to be exactly 1 may not be appropriate for
all stocks [10]. Sometimes this leads to over-differencing, and sometimes it leads to under-
differencing. Thus all of the following network studies that utilizes the return data as the
primary building block, could potentially be susceptible to the order of differencing.

In this paper, we address precisely this question: Does the order of differencing matter
for constructing return series in terms of the correlation-based studies analyzing collective
dynamics, filtered networks and risk measures? We analyze this question on a large di-
mensional historical stock price data obtained from NASDAQ (1972-2018). We have shown
that the impact of the choice of differencing parameter can be mild but significant in the
spectral structure of the correlation matrices. After correcting for the difference parame-
ter, the eigenspectra seem slightly heavier in the tail. Although the differences are very
marginal, the dominant eigenvalue of the eigenspectra from d-corrected correlation matrix
almost always seems to dominate the dominant eigenvalue obtained from the eigenspectra
of d = 1 correlation matrix.

More prominent differences start showing up once we construct the minimum spanning
trees (MST) from the correlation matrices, following Ref. [22]. We see that the degree of
mismatch for the MSTs was quite high in the beginning of the period of analysis and the
mismatch decreased almost monotonically over the years. However, even the latest value of
the mismatch is in the order of around 30%. A similar feature is also observed in case of
triangulated maximally filtered graphs (TMFG) which retain more information than MSTs.
Empirical results show that the effects of d-corrections are substantial in the filtered asset
graphs.

Finally, we analyze risk measures constructed from the Granger causal matrices, which
accounts for interdependence of the stocks with a lag and therefore, provides a summary
measure of propensity of shock spillovers. Following Ref. [35], we construct a PageRank-
based measure of risk from the Granger causal matrices. Our analysis indicates that there
is an inverted U -shaped relationship between the risk measures obtained from d-corrected
and uncorrected returns. The degree of similarity increased for almost the first half of the
period considered and then it started decreasing.
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We can summarize the implications as follows. One, for individual time series the effects
of d-correction are not substantial. However, the correlation matrices of multivariate return
series exhibit subtle discrepancies manifested in minor changes in the eigenspectrum. Two,
well known filtering algorithms like minimum spanning tree and triangulated maximally
filtered graph show substantial change with respect to d-corrections. Since they are often
inputs for further analysis (a prominent example being portfolio optimization, see e.g. [18],
[29], [20]), caution need to exercised about identification of the true correlation structure
and the resultant filtered graphs. Although, the analyzed data indicates that the d-corrected
results for filtered networks are becoming more and more similar to the standard d = 1 result
over time. Finally, for lagged comovements indicated by the Granger causal matrices, the
fit between d-correction and d = 1 results is decreasing in the later half of the sample period
(1972-2018). These last two features combined together indicate a chasm between the equal
time and lagged comovement structures.

The present analysis is important from the point of view of management of risk in a
complex, evolving and interdependent financial system. Further exploration is necessary
to establish the extent to which the d-correction would impact filtering analysis and com-
putation of risk on financial networks for stock price data from other markets (e.g. from
developed countries, other asset classes and same asset class with high frequency data) and
if the effects differ systematically across countries with different levels of financial maturity.
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5 Appendix

(a) (b)

Figure 6: (Color online) Subsample analysis of MST and TMFG networks. Panel (a):
Proportion of matching edges across MSTs constructed from d-corrected and d= 1 return
series of 100 stocks, across 47 windows over time (1972-2018). Panel (b): Proportion of
matching edges across TMFGs constructed from d-corrected and d= 1 return series of 100
stocks, across 47 windows over time (1972-2018). As in the full-sample analysis here also
we see an upward trend in proportion of match across time.
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(a) (b)

Figure 7: (Color online) Subsample analysis with top 100 stocks across 47 windows from
1972 till 2018. Panel (a): Evolution of the largest eigenvalues corresponding to the d-
corrected and uncorrected correlation matrices. The plot shows that the subsample anal-
ysis concurs with the full-sample analysis. Panel (b): Association between risk measures
calculated from d-corrected and d = 1 return series; Evolution of Pearson’s correlation,
Spearman’s correlation and Kendall’s tau.
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