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Abstract

The Developmental Origins of Health and Disease hypothesis predicts that early-life environmental exposures can be detri-
mental to later-life health and that mismatch between the pre- and post-natal environment may contribute to the growing
non-communicable disease epidemic. Within this is an increasingly recognized role for epigenetic mechanisms; for exam-
ple, epigenetic modifications can be influenced by nutrition and can alter gene expression in mothers and offspring.
Currently, there are few whole-genome transcriptional studies of response to nutritional alteration. Thus, we sought to
explore how nutrition affects the expression of genes involved in epigenetic processes in Drosophila melanogaster. We manip-
ulated Drosophila food macronutrient composition at the FO generation, mismatched F1 offspring back to a standard diet
and analysed the transcriptome of the FO-F3 generations by RNA sequencing. At FO, the altered (high-protein, low-
carbohydrate) diet increased expression of genes classified as having roles in epigenetic processes, with co-ordinated down-
regulation of genes involved in immunity, neurotransmission and neurodevelopment, oxidative stress and metabolism.
Upon reversion to standard nutrition, mismatched F1 and F2 generations displayed multigenerational inheritance of altered
gene expression. By the F3 generation, gene expression had reverted to FO (matched) levels. These nutritionally induced
gene expression changes demonstrate that dietary alterations can up-regulate epigenetic genes, which may influence the
expression of genes with broad biological functions. Furthermore, the multigenerational inheritance of the gene expression
changes in F1 and F2 mismatched generations suggests a predictive adaptive response to maternal nutrition, aiding the
understanding of the interaction between maternal diet and offspring health, with direct implications for the current non-
communicable disease epidemic.
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Background

Exposure to aberrant or harmful environments during develop-
ment and early life can be detrimental to later life health. From
these observations is derived the Developmental Origins of
Health and Disease (DOHaD) hypothesis [1-4], which seeks to
explain why the period from conception to birth and the first
few years of life is critical for determining life-long susceptibil-
ity to non-communicable diseases (NCDs). Many NCD pheno-
types are thought to be caused by developmental perturbations
that are a consequence of altered epigenetic marks [2, 5],
induced by environmental exposure during critical periods of
development [6]. Alteration to the epigenome regulates gene
expression through DNA methylation, histone and chromatin
modifications [7, 8] providing plasticity to the genome.
Consequently, phenotypes under epigenetic regulation provide
a pathway through which the genome can interact with the
environment [9]. If the epigenetic modifications occur at a time
during which they are able to affect the germ line, such modifi-
cations may also influence development of the offspring [6].

The interaction between the environment and the epige-
nome and the resulting phenotypic adaptations, coupled with
the growing NCD epidemic, has led to the predictive adaptive
response (PAR) hypothesis [10]. This hypothesis states that
nature of the PAR is determined by the degree of mismatch
between the foetal pre-natal and its ultimate post-natal envi-
ronments. This mismatch results from the information that the
foetus receives on environmental conditions while in utero, to
which it will respond adaptively by programming its biology to
expect that environment. If the actual post-natal environment
matches the prenatal prediction, then the PARs are appropriate
and disease risk is low; if they do not match then the PAR is
inappropriate, and disease risk is increased. For instance, obe-
sity has a distinct epigenetic profile. This pattern could be
established in early life as a response to the maternal, foetal
and/or early post-natal environment, and later-life nutritional
mismatch could mean that the individual has been pro-
grammed inappropriately, leading to an increased risk of obe-
sity and associated diseases later in life [11]. This implies that
the epigenetic hallmarks of early-life exposures may be able to
be maintained or ‘stored’ in such a way as to produce long-
lasting effects [12].

Along with stress, drugs and environmental toxicants, one of
the main factors that can cause epigenetic perturbation is nutri-
tion; evidence from humans, supported by experiments in
rodents, suggest that early-life nutrition can affect the long-term
health not only of the individual but also of their offspring [13-15],
potentially through epigenetic mechanisms [16-20]. Consistent
with the DOHaD hypothesis, strong links exist between both
maternal and early-life nutrition and cardiovascular disease [21],
diabetes and obesity [22] along with asthma and allergy, autoim-
mune disease, cancer and mental health [23-26]. Inappropriate
maternal nutrition in rodents has been linked to incorrect epige-
netic ‘priming’ during foetal or post-natal life [27, 28]; in particular,
experiments conducted in Drosophila show that diets high in car-
bohydrate content (sugar) have been shown to programme meta-
bolic status and diabetes [29, 30].

Many nutrition-related phenotypes have been attributed to
changes in epigenetic processes and a classic example of this is
that of methyl supplementation, which influences coat colour in
agouti mice [31]. Nutrition influences are separated into direct
effects (on the mother/father themselves) and also indirect (on
the offspring or maternal provisioning) effects. Direct effects can
be exemplified by high-fat diets inducing obesity and metabolic

syndrome, due to the methylation pattern of particular genes
and promoters involved in body weight and adipocyte differentia-
tion such as leptin [32] and peroxisome proliferator-activated
receptor gamma (PPARY) [33] and the differential DNA methyla-
tion detected in metabolic syndrome in both humans and
rodents [34, 35]. Indirect effects on offspring metabolic phenotype
can occur via maternal diet. For example, rodents exposed to
high-fat diets in utero have altered epigenetic patterns and meth-
ylation status of particular genes, for example those expressed in
and secreted by adipose tissue such as adiponectin and leptin
genes [36]. Further, a high-fat diet during pregnancy and lactation
can induce epigenetic modifications and differential expression
of the p-opioid receptor (involved in drug metabolism), and corre-
sponding hypomethylation of the promoter regions of the gene,
in mouse offspring [37]. Additionally, maternal protein restriction
in rodents can cause hypomethylation of particular genes
involved in metabolic processes in foetus and offspring such as
those that regulate metabolism in the liver [38, 39|, those that
contribute to cholesterol and fatty acid metabolism [40] and those
that regulate metabolic pathways that control lipid metabolism
between the liver and adipose tissue [41] and can also affect
methylation in the developing placenta [42]. Such epigenetic per-
turbation is not just limited to foetal and early life; the post-natal
period is also susceptible to the epigenetic effects of nutrition. For
example, hypermethylation of the promoter region of the ano-
rexigenic neurohormone proopipmelanocortin occurs in overfed
rats [43], and post-natal folic acid supplementation can lead to
hypermethylation of peroxisome proliferator-activated receptor
alpha (PPARw), a nuclear transcription factor gene [44]. This sensi-
tivity of the epigenome to the effects of the environment (nutri-
tion) also extends into adulthood, where epigenetic changes
in response to nutritional changes have been observed in rats
[45-47).

In addition to metabolic genes, altered nutrition appears to
have broader genomic consequences. For instance, a study in
dairy cattle showed that nutrition can also alter markers of
inflammation and oxidative stress [48]; in rats, a protein-
restricted diet in pregnancy leads to an increased susceptibility
to oxidative stress in offspring [49], while in humans, a high car-
bohydrate diet increases the oxidative stress response [50]. A
high-fat, high-carbohydrate meal can induce oxidative and
inflammatory stress as reflected by increased reactive oxygen
species (ROS) generation in both normal weight [51] and in
obese people [52], suggesting that oxidative stress and inflam-
mation are major mechanisms involved in metabolic disorders
associated with obesity [53] and can also induce epigenetic
changes [35]. Environmental stress can induce DNA and
histone-modified changes in gene expression in organisms
ranging from plants [54] to humans [55]. In terms of applicability
to health, we know that low doses of ROS, from calorie-
restricted or high-carbohydrate diets, promote health and life-
span in numerous species [56]. Thus, considering the above,
along with the PAR hypothesis, it is likely that such biological
responses to nutrition reflect the idea that induced epigenetic
changes that underpin physiological change and aid in the
adaptation of an individual, and potentially its offspring, to an
adverse environment [57].

Thus, considering that gene-specific studies of altered nutri-
tion have demonstrated broad and diverse genetic and epigenetic
consequences, it is pertinent to apply this concept to the whole
genome. Nutrition is commonly investigated as an environmen-
tal factor that is expected to influence the epigenetic landscape,
and there are several examples in the literature of response to
altered nutrition being inherited multigenerationally [27, 58-60]



and transgenerationally (F3 and beyond, [31]). As such, altered
gene expression, via epigenetic marks in response to nutrition,
coupled with the PAR hypothesis, could be the key to understand-
ing the prevalence of obesity and metabolic syndrome. Here, we
explore the PAR hypothesis and the ability of nutrition to affect
gene expression at a whole-genome level by manipulating the
diet of the fruitfly, Drosophila melanogaster, to investigate the
extent to which gene expression is changed by differing levels of
macronutrients. Previous research has shown that a high-sugar
maternal diet can alter the body composition of larval Drosophila
offspring for at least two generations [29], as well as demonstrat-
ing that nutrition is able to influence traits relative to metabolic
syndrome, longevity and the immune response [30, 61, 62].
Further, evidence also exists of a multigenerational response to
the maternal condition (immune challenge, maternal age,
Nystrand and Dowling, 2014 [63]). Considering such traits and
responses are often under epigenetic control, we predict that
dietary manipulation will have broad consequences for the
expression of genes involved in epigenetic processes.

Methods
Fly Husbandry

Drosophila melanogaster stocks used in this study were wild-type
Canton-S flies from the Bloomington Drosophila Stock Center at
Indiana University. Drosophila were cultured in a dedicated
invertebrate laboratory using standard techniques. Briefly, flies
were maintained in laboratory incubators at 25°C in a P Selecta
HOTCOLD-C incubator. Larvae were reared on either a standard
low-protein high-carbohydrate (LPHC, standard laboratory fly
food) or a high-protein low-carbohydrate (HPLC) diet. These dif-
ferential diets consisted of standard brewer’s yeast (Health2000,
New Zealand), sugar (New Zealand Sugar Company, Auckland,
New Zealand) and cornmeal (Health 2000) in varying ratios
(Table 1). Agar (A7002, Sigma-Aldrich, St Louis, MO, USA), pro-
pionic acid (Thermo Fisher, New Zealand, AJA693) and Nipagin
(47889, Sigma-Aldrich, 10% w/v in 100% ethanol) were added in
equal amounts. Gross energy (kJ/g) of both the LPHC and HPLC
food types was determined by bomb calorimetry, and total pro-
tein content (%) was calculated using the total combustion
method (Table 1) by the Institute of Food, Nutrition and Human
Health at Massey University, Palmerston North, New Zealand.

Nutrition Experiments

Drosophila were manipulated under anaesthesia (CO,) and ini-
tially raised on LPHC (low-protein, high-carbohydrate, standard
fly) food. To enable mating, 50 female flies were segregated

Table 1: Fly diet components and content information

Component High protein Low protein
Agar (g) 9 9
Cornmeal (g) 66.7 66.7
Sugar (g) 31.24 46.7
Yeast (g) 148.76 16.7
Propionic acid (ml) 6.6 6.6
Nipagen (ml) 5 5
Water (1) 1 1
Protein (%) 8 53
Gross energy (kJ/g) 0.9 2.1
Yeast:sugar ratio 1:0.2 1:2.8
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within 4h of eclosion and incubated with 10-15 male flies, on
LPHC food, for 24 h. Female flies were separated and incubated
on either LPHC or HPLC diet. Female flies laid eggs in their speci-
fied food and the F1 offspring from the HPLC diet were either
maintained on HPLC, or mismatched onto LPHC diet (Fig. 1). The
further offspring then remained on those matched or mis-
matched diets, relative to the FO generation. Thus, the biological
mismatch relates to flies from an HPLC (non-standard) dietary
background that are mismatched onto an LPHC background.

At each generation, RNA was extracted from female
Drosophila at 5days post-eclosion using a modified kit protocol
(Supplementary File 1). Following the extraction process, RNA
was stored at —80°C until needed.

Transcriptomic Experiments

Two FO generation replicates from each of the LPHC and HPLC
diets and two replicates from the F1, F2 and F3 generations with
matched and mismatched diets were prepared, resulting in 16
total RNA samples submitted to the Otago Genomics and
Bioinformatics Facility at the University of Otago (Dunedin, New
Zealand) under contract to the New Zealand Genomics Limited for
library construction and sequencing. The libraries were prepared
using TruSeq stranded mRNA sample preparation kit according to
the manufacturer’s protocol (Illumina). All libraries were normal-
ised, pooled and pair-end sequenced on 2 lanes of high-output

Diet

FO (4 hrs) [ LPHC
B HPLC

24 hrs after mating females fed either
LPHC (control) or HPLC diet
FO (24 hrs)
?
(M) | (MM)

Offspring of females on

HPLC diet either
maintained on a F1
matched HPLC diet (M)
or returned to LPHC
mismatched diet (MM) |
m "’
M :

Figure 1: Fly diet experiments. LPHC, low-protein, high-carbohydrate (standard)
diet; HPLC, high-protein low-carbohydrate diet; F1(M), F2(M) and F3(M), flies
maintained on LPHC diet for three generations; F1(MM), F2(MM) and F3(MM),
flies that were raised on HPLC in the FO generation, and mismatched back to
LPHC at eclosion in the F1 generation and were maintained for two more gener-
ations on the mismatched (LPHC) diet. Two replicates of each condition were
used for transcriptomic experiments.
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flowcell HiSeq 2500, V3 chemistry (lllumina), generating 100 bp
reads. Libraries had an average insert size of ~208 bp.

Transcriptomic output was analysed in CLC Genomics
Workbench Version 8.5.1. Reads were aligned to the
D. melanogaster reference genome (BDGP6) as implemented in
CLC Genomics Workbench, and differential gene expression
(EDGE test) was calculated between samples using an absolute
fold change value of >1.5, and an false discovery rate-corrected
P-value of <0.001. These values were selected so that the fold
change was of high enough magnitude that it could be validated
in the lab by Nanostring, and the P-value was stringent to
reduce false positives. Transcriptomic data were validated by
Nanostring: samples were submitted to the Otago Genomics
and Bioinformatics Facility at the University of Otago (Dunedin,
New Zealand) under contract to the New Zealand Genomics
Limited for nCounter Custom Gene Expression assays
(Nanostring). Total RNA (100ng) in a total volume of 5puL was
processed using the standard nCounter XT Total RNA protocol
[64]. Raw data were exported and QC-checked using
Nanostring’s nSolver data analysis tool (wWwww.nanostring.com).
Per the Nanostring CodeSet design criteria, 25 candidate genes
for validation were chosen, including two housekeeping genes
incorporated (Mnf and Rpl32, Table 2). Raw data were normal-
ized to the geometric mean of both the positive controls
(included in the hybridisation steps) and the nominated house-
keeping genes. Normalized Nanostring data were compared
with transcriptomic data, and the Pearson’s correlation coeffi-
cient was calculated in R [65].

Gene Ontology Analyses

Functional annotation clustering (FAC) was undertaken in the
Database for Annotation, Visualization and Integration of

Table 2: Codeset design for Nanostring

Gene Accession Position NSID

asfl NM_079439.2 601-700 NM_079439.2: 600
Caf1-105 NM_136745.3 1231-1330 NM_136745.3: 1230
Def NM_078948.2 8-107 NM_078948.2: 7
E(bx) NM_167819.2 4681-4780 NM_167819.2: 4680
E(Pc) NM_078974.2 2551-2650 NM_078974.2: 2550
E(spl)m4-BFM NM_079786.1 241-340 NM_079786.1: 240
E(sp)m5-HLH ~ NM_079787.2  396-495 NM_079787.2: 395
Fbp1l NM_079341.1 3001-3100 NM_079341.1: 3000
Mnf NM_168444.1 866-965 NM_168444.1: 865
Hml NM_079336.2 7236-7335 NM_079336.2: 7235
Hmt4-20 NM_130497.2 3201-3300 NM_130497.2: 3200
Inos NM_058057.4 1026-1125 NM_058057.4: 1025
Lip3 NM_057983.3 946-1045 NM_057983.3: 945
Lsd-1 NM_170092.2 836-935 NM_170092.2: 835
Lsplbeta NM_057276.3 1351-1450 NM_057276.3: 1350
Ocho NM_080514.1 416-515 NM_080514.1: 415
Pc NM_079475.2 991-1090 NM_079475.2: 990
Pgm NM_079936.2 841-940 NM_079936.2: 840
Rpl32 NM_170461.1 342-441 NM_170461.1: 341
Sap30 NM_132934.2 216-315 NM_132934.2: 215
Su(var)3-3 NM_140937.2 1781-1880 NM_140937.2: 1780
Su(var)3-7 NM_079618.2 3516-3615 NM_079618.2: 3515
Top2 NM_057412.3 3111-3210 NM_057412.3: 3110
Tpsl NM_134983.2 2056-2155 NM_134983.2: 2055
Ubx NM_206497.1 1321-1420 NM_206497.1: 1320

Gene, gene symbol based on FlyBase nomenclature; NSID, Nanostring internal
identifier; Position, region in the target mRNA being probed.

Discovery (DAVID) v6.8 [66, 67] with the following categories:
COG_ONTOLOGY, GOTERM_BP_DIRECT, GOTERM_CC_DIRECT,
GOTERM_MF_DIRECT, KEGG_PATHWAY and INTERPRO. Up- and
down-regulated genes from the FO generation were submitted sep-
arately to DAVID for FAC and analysed against a background of
genes that were expressed and detectable in this dataset, to iden-
tify gene oncology (GO) terms that were significantly enriched
between the HPLC and LPHC FO generation.

Statistical Analyses

Significant differences in mean gene expression between differ-
ent dietary conditions and generations were calculated via anal-
ysis of variance (ANOVA) and Tukey’s post hoc testing, as
implemented in R [65].

Results
RNAseq Data

Summary statistics for transcriptomic work is shown in
Supplementary File 2. Briefly, each sample yielded between
3164 Mbases and 4286 Mbases (average 4001 Mbases), with an
average number of reads of 32 006 648 reads (range 25 310 758-
34 288 584 reads). The mean quality score was an average of 36
Q (range 35.4-35.72 Q).

Differential Gene Expression

Of 17 490 genes annotated in the Drosophila genome and con-
tained within the CLC reference database, 12 424 were
expressed and detected across generations in these transcrip-
tomic experiments. At FO, of these 12 424 genes, 2946 were dif-
ferentially expressed between HPLC and LPHC [1074 (8.6%)
down-regulated and 1872 (15.1%) up-regulated (Supplementary
File 3)], with an absolute fold change of >1.5, and an FDR-
corrected P-value of <0.001, as determined by EDGE test as
implemented in CLC table.

Gene Ontology

DAVID uses a clustering approach to reduce redundancy; GO
terms that are similar, are clustered together. Each term within
the cluster is given a P-value, and the cluster itself is given an
enrichment score (the geometric mean in -log scale of the indi-
vidual GO term P-values). An enrichment score of 1.3 is equiva-
lent to a non-log P-value of 0.05.

Functional annotation clustering of genes that are up-
regulated in HPLC vs. LPHC indicated that the data set was
highly enriched for genes that are involved in epigenetic proc-
esses such as chromatin binding [enrichment score (ES) 10.64],
DNA replication (ES 4.64), chromatin regulation (ES 1.62), his-
tone binding and phosphorylation (ES 1.60) (Table 3).
Conversely, clustering of genes that are down-regulated in
HPLC vs. LPHC indicated that the data set was highly enriched
for genes that are involved in immunity (ES 11.41), fatty acid
metabolism (ES 3.49), neurotransmission (ES 3.35), cellular met-
abolic processes (ES 2.49) and oxidative stress pathways (ES
2.19, Table 4). Table 5 lists the GO term classes and protein
classes that are significantly up- or down-regulated in the FO
(HPLC vs. LPHC) generations, followed by those GO terms and
protein classes that are up- or down-regulated in MM vs. M flies
at each of the F1, F2 and F3 generations.
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Validation

Based on the genes that were up-regulated in this study, we
selected a panel for 20 genes for transcriptomic data validation.
All transcriptomic samples were validated by Nanostring, per-
sample r value of 0.81-0.95 and whole data set correlation r of
0.86 (Supplementary File 4).

Multigenerational Gene Expression of Genes of Interest

Alteration of diet appears to lead to a characteristic suite of
gene expression changes. To determine whether the suite of
up-regulated genes observed in HPLC is maintained across mis-
matched generations when the HPLC diet is removed, we ana-
lysed the expression levels of particular groups of genes classed
as having roles in epigenetic processes in F1, F2 and F3 matched
(M) and mismatched (MM) flies. We observed a specific pattern
of expression for every gene; the intermediate-level mainte-
nance of the up-regulation of the genes in the F1 and F2 genera-
tion, followed by a reversion to FO (matched) gene expression
levels by the F3 generation. Fig. 2 displays a selection of indica-
tive graphs which display this effect, with ANOVA significance
data listed in Table 3 (described in Supplementary File 5) and
significant pairwise comparisons as determined by Tukey’s post
hoc testing (Supplementary File 6) indicated by solid and dashed
lines. There is no significant difference between the expression
of epigenetic genes when comparing the FO LPHC diet and the
F3MM flies, despite an intermediate and significant difference
between F1 and F2 flies mismatched onto LPHC diets. For genes
that were significantly down-regulated in FO HPLC flies, we
observe the same pattern of gene expression in the opposite
direction; genes that are down-regulated in response to diet
remain at a low level in the F1 and F2 mismatched cohorts
(FIMM and F2MM) but by F3, their gene expression has regained
the same level as the LPHC (FO) generation (Fig. 3 and
Supplementary Files 5 and 7). This effect is genomewide, and
applies to every gene tested from the lists generated by DAVID.

Discussion

The primary goal of this study was to investigate the effect of
nutrition on the expression of genes involved in epigenetic
processes. We have demonstrated that an HPLC diet results in
genomewide up-regulation of epigenetic genes in the FO genera-
tion compared to that observed in a standard Drosophila LPHC
diet; this effect was so strong that the overwhelming majority
of genes that were up-regulated in response to diet had GO
terms categorized as being involved in epigenetic processes,
with very few other classes of genes categorized as significantly
up-regulated. Classes of genes that were down-regulated in
response to the HPLC diet vs. LPHC were broader in scope; these
included genes that have GO terms with roles in the immune
response, cell signalling, oxidative stress, carbohydrate and
fatty acid metabolism and neurotransmission. Thus, this study
shows that altering an LPHC diet to an HPLC results in genome-
wide up-regulation of genes classified as having roles in epige-
netic processes, with a co-ordinated down-regulation of genes
classified as having broad physiological functions. The co-ordi-
nated nature of the gene expression data we observed imply,
firstly, that genes with GO terms categorized as having roles in
the processes of neurotransmission, oxidative stress, metabo-
lism and immunity appear to be under epigenetic control, and,
secondly, that this epigenetic control, and altered biological
response, is influenced by nutrition.
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In response to the genomic and epigenomic changes observed
in the FO generation, we further questioned whether dietary
alteration resulted in developmental programming of the biologi-
cal response to diet; specifically, whether the changes induced by
the HPLC diet in the FO generation persisted beyond FO, upon
removal of the HPLC diet. The genomic changes induced in the FO
generation persisted at intermediate levels in mismatched F1
and F2 generations in the absence of the HPLC diet. By the F3 gen-
eration, gene expression in the mismatched flies had reverted
back to the level observed in the FO matched generation. We
hypothesize, firstly, that this multigenerational inheritance of
gene expression, followed by a reversion to matched FO levels by
the time the F3 generation is reached, indicates moderate epige-
netic programming in the form of a predictive adaptive response
(PAR); the gene expression changes induced by the dietary envi-
ronment experienced by the FO female flies may be maintained
by her offspring. This intermediate maintenance may be consid-
ered either as an adaptive response to an environment that
the F1-F3MM offspring are ultimately not experiencing or mainte-
nance could be considered a form of bet-hedging, to mean that
the offspring are primed to equally respond if their environment
changes. Given that these data display a reversion to the unchal-
lenged nutritional state after three generations, we further
hypothesize that the ‘correction’ of the induced genomic changes
by F3 implies that dietary reversion to match the FO generation
may be able to correct an altered genomic landscape, effectively
reversing an altered nutrition-induced phenotype.

The environment is able to interact with genes through epige-
netic mechanisms [9] particularly during development [2-4].
Crucially, this could also lead to the alteration of the epigenome of
the germ cells [6]. Any permanent alteration to the germ cell epige-
nome [68] may then be transmitted through the germ line, with
adverse phenotypic consequences for offspring [1, 69]. For example:
adult-onset diseases can be induced through embryonic exposure
to environmental toxins, primarily endocrine disruptors [5, 70-72];
toxic stress can modify Drosophila development by the suppression
of Polycomb group genes, with epigenetic inheritance of develop-
mental alterations by unchallenged offspring [73] and; mutations
in chaperone proteins such as Hsp90 can induce a heritably altered
chromatin state in Drosophila, suggesting a transgenerational epige-
netic phenotype [74]. Thus, if epigenetic modifications do become
permanent, these modifications can be inherited by future genera-
tions and affect disease susceptibility [58, 75].

A large number of studies report transgenerational inheri-
tance in a range of eukaryotes (reviewed in [76]). Many of these
studies, particularly in mammals, report inheritance of the
acquired trait over two or three generations. Concordant with
the work by Jirtle and Skinner [58], we agree that these effects
should not be defined as truly transgenerational, because,
mechanistically, exposure of an FO gestating female to an envi-
ronmental stimulus (nutrition, toxicants or stress) also exposes
the F1 embryo (Fig. 1, [77]). Furthermore, for species that
develop in utero, parental exposure also exposes the germ cells
that will form the F2 generation. Thus, traits present in the F2
generation should be considered as multigenerational, rather
than transgenerational, as they could have been induced by
direct environmental exposure through the foetus and the germ
line. This concept is equally applicable to Drosophila because,
while they do not gestate, they do harbour ovarioles in their
ovaries which contain developing follicles or egg chambers [78],
thus their F1 eggs are exposed to the maternal environment.
Further, F1 larvae, which in these experiments were raised on
an HPLC diet before being mismatched back to LPHC, contain
ovaries and germ cells for the F2 generation. Thus, to reflect this


https://academic.oup.com/eep/article-lookup/doi/10.1093/eep/dvx019#supplementary-data
https://academic.oup.com/eep/article-lookup/doi/10.1093/eep/dvx019#supplementary-data
https://academic.oup.com/eep/article-lookup/doi/10.1093/eep/dvx019#supplementary-data
https://academic.oup.com/eep/article-lookup/doi/10.1093/eep/dvx019#supplementary-data
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direct exposure, some studies searching for evidence of true
transgenerational inheritance are declining to assay the F1 gen-
eration entirely [79] due to the fact that transmission to the F1
generation can be indicative of both parental effects and pro-
gramming [80]. Thus, here we describe our findings from the F1
and F2 generations as multigenerational inheritance, because
the gene expression changes induced by the environment in the
parental generation revert to FO levels after the F2 generation.

The current NCD epidemic is aetiologically very complex,
but it is thought to be mediated, in part, by developmental aber-
rations arising from the inheritance of altered epigenetic marks
[2, 5]. Many metabolic phenotypes and gene expression differ-
ences are linked to differential epigenetic marks that are nutri-
tionally induced. For example, a protein-restricted diet during
pregnancy causes hypomethylation of the hepatic PPARx and
glucocorticoid receptor genes in rats and promotes the same
hypomethylation in the F1 and F2 offspring of FO rats fed a
protein-restricted diet during pregnancy, despite the nutritional
challenge being only in the FO generation [27]. Others have
reported evidence of embryonic environmental exposure influ-
encing the phenotype of the F1 generation in species as diverse
as humans, rats, chordate fish, Daphnia and isopods [59, 60, 81—
84] as well as, specifically, maternal nutrition exerting effects
on the F1 phenotype [59, 60]. Such research strongly implies
that epigenetic effects could be the key to understanding the
current epidemic of overweight and obese, and associated met-
abolic syndromes, particularly if nutrition in the FO generation
can induce a PAR to nutrition, as we hypothesize is occurring
here. Interestingly, comprehensive studies using animal models
that investigated the effect of both protein restricted and
energy-rich diets during pregnancy on the phenotype of the off-
spring showed that offspring born to dams fed these different
diets exhibited persistent metabolic changes, similar to those
observed in human metabolic disease such as obesity, insulin
resistance and hypertension [15], indicating an element of
developmental programming and a possible PAR. These find-
ings imply that both famine (protein restriction) and energy-
rich diets, when mismatched back to adequate nutrition, are
similarly detrimental to the metabolic health of offspring and
that it is possibly the mismatch itself between inadequate nutri-
tion and proper nutrition which is leading to metabolic disease
phenotypes. This highlights the fact that epigenetic mecha-
nisms play a highly complex role in human obesity and meta-
bolic pathways [15, 85-87].

In addition to the striking expression level changes observed
in genes that have GO terms classified as having roles in epige-
netic processes, one major source of change that we observed in
these data are genes involved in oxidative stress. Malnutrition
or excess of particular nutrients can cause oxidative damage
[88]. For example, hyperglycaemia, which is an excess of sugar
in the blood and one of the hallmarks of diabetes, is linked to a
diet that is rich in carbohydrates and fat [89, 90]. continuedAn
accumulation of sugar can lead to tissue damage, and this can
be maintained because of metabolic memory [35], which itself
may induce epigenetic changes and altered gene expression [35,
91, 92]. Given that the increased carbohydrate intake can induce
oxidative stress as reflected by increased ROS generation
[51, 52], our results are consistent with the observation that
high-carbohydrate diets are implicated in increased oxidative
and metabolic stress [e.g. [49] and that the genome may be
responding adaptively to dietary stressors]. We know that oxi-
dative stress responses are often under epigenetic control [55]
and also, that maternal nutritional deficiency in pregnancy can
lead to altered methylation and increased oxidative DNA
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damage in the brains of adult offspring [93], which, as well as
being directly influenced by nutrition, may predispose to neuro-
logical disorders in later life.

Consistent with, and leading on from this observation, these
data display a decrease in the expression of genes involved in
neurotransmission and neurodevelopment when exposed to an
HPLC diet. There is strong evidence linking oxidative stress to
neurodegeneration and neurodegenerative disease, such as
Alzheimer’s disease [94]. In addition, it is also clear that an
increase in the production of ROS, induced by environmental
factors, can increase the risk of a multitude of neurodegenera-
tive diseases [95]. Thus, it stands to reason that, in these data,
nutrition may be impacting on the production of ROS and the
expression of genes involved in ROS pathways and those
involved in neurotransmission and neurodegeneration.

In addition to the DOHaD hypothesis, there are also free rad-
ical early-life theories, which link environmental agents (e.g.
diet and heavy metals) with perturbations of gene regulation
and expression (e.g. in the APP gene) and the onset of, for exam-
ple Alzheimer’s disease [96]. Free radical early-life theories also
link the necessity for oxygen in histone demethylase action to
epigenetic processes in development [97]. These theories are
supported by the observation that nutrition during pregnancy
can induce epigenetic changes that result in altered nervous
system development [98] and also offspring cerebral function
[99]. Further, nutrient availability during the pre and postnatal
periods can lead to long-lasting changes in neuron development
[100] as well as influence the development of psychopathologi-
cal behaviour [101]. This is because nutritional deficit may lead
to altered brain development [102], possibly via epigenetic fac-
tors that can lead to changes in brain structure and function
[103]. Micronutrient availability can heavily influence neuro-
transmission, due to the fact that the function of the brain is
inherently related to its metabolism of nutrients [103] in the
form of vitamins and minerals that function as co-enzymes in
neurotransmission and neurotransmitter metabolism. Given
that the gene expression data presented here display significant
changes in gene expression in pathways relevant to neurotrans-
mission, these data are supportive of these linkages.

Thus, through our data, we hypothesize that the genome-
wide changes we observe in genes involved in epigenetic path-
ways could be responsible for the gene expression changes in
other, broad, biological process seen in response to diet. The
intermediate maintenance of these gene expression changes,
even when the HPLC diet is removed, suggests a PAR to diet; the
biology of the mismatched flies is programmed to respond to a
particular diet, and is responding adaptively, with altered gene
expression in the absence of HPLC, albeit at a slightly lower
level. The complete reversion of this in the F3 generation sug-
gests an element of phenotypic rescue, implying that altered
nutrition did not affect the germ line and that the gene expres-
sion changes are not fixed transgenerationally and thus may
have the capacity to be corrected over time.

To date, while the effects of dietary manipulation on fecund-
ity and lifespan in Drosophila have been reported [30, 104-106],
none of the studies have assayed the whole-genome gene
expression in response to diet. This study contributes to our
understanding of the myriad ways in which nutrition can influ-
ence gene expression, phenotypes and future health outcomes,
with relevance to the DOHaD hypothesis and the current NCD
epidemic. While our study demonstrates multigenerational
inheritance of gene expression values, rather than transgenera-
tional, it is worth noting that the phenotypic effects of gene
expression changes, rather than the gene expression itself, can
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Figure 2: Indicative graphs of gene expression of genes up-regulated in the FO generation, with significances as determined by ANOVA, between F0O and F3 generations
on matched and mismatched diets. Pairwise comparisons by Tukey’s post hoc testing indicated by solid and dashed lines, as described in the key. Y axis denotes mean
expression level from transcriptomic experiments, and X axis denotes the dietary condition as per Figure. 1. Note differing Y axis scales. Gene names are stated as per

their FlyBase gene symbol IDs.
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Figure 3: Indicative graphs of gene expression of genes down-regulated in the FO generation, with significances as determined by ANOVA, between F0O and F3 genera-
tions on matched and mismatched diets. Pairwise comparisons by Tukey’s post hoc testing indicated by solid and dashed lines, as described in the key. Y axis denotes
mean expression level from transcriptomic experiments, and X axis denotes the dietary condition as per Figure. 1. Note differing Y axis scales. Gene names are stated
as per their FlyBase gene symbol IDs.
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persist and show multigenerational, and potentially transge-
nerational, inheritance. For example, a low-protein diet given to
Drosophila can increase H3K27me3 through up-regulation of the
Enhancer of zeste (E(z)) protein, a protein that is a catalytic com-
ponent of the Polycomb Repressive Complex 2 methyltransfer-
ase. Interestingly, while the up-regulation of the (E)z protein
was not detected in the F2 generation, the associated increase
in methylation H3K27me3 (a specific chemical modification -
trimethylation — of histone H3 at the lysine 27 residue) was in
fact detected in the F2 generation [79] and the co-ordinated
effect on longevity was also present through to the F2 genera-
tion. This suggests that while the gene expression and protein
level is not inherited per se, the effects and/or functions of those
genes possibly could be. It is possible that a phenomenon such
as this may be present in these data; a permissive state may be
achieved whereby we might not detect gene expression changes
inherited to F3 and beyond, but we may see associated genomic
conformational or phenotypic changes in F3 and beyond.
Further functional studies based on dietary manipulation are
required to confirm this. In particular, it will be pertinent to
prove causality between an epigenetic alteration and a change
in regulation of genes involved in the traits we observe. To do
so, we suggest a combination of phenotypic measures such as
assessing lifespan, oxidative stress resistance, and immunity,
as well as exploiting mutant Drosophila strains for genes of
interest, to assess the effect of epigenetic alterations on down-
stream gene expression and associated phenotypes. Further
functional studies are especially pertinent due to the wealth of
evidence demonstrating that high-protein diets in Drosophila
can alter Drosophila development and fitness, particularly ovary
development and reproductive output [107-110], heat stress tol-
erance [110, 111], body composition [109] and egg-to-adult via-
bility [111]. The different caloric content between the HPLC and
LPHC diets cannot be discounted as a confounding factor; how-
ever, the wealth of evidence pertaining to the epigenetic effects
of high-protein diets that support these data implies that the
gene expression changes detected in these data are driven by
the protein/carbohydrate content of the food, rather than a
caloric difference.

Thus, here we have identified characteristic suites of genes
that are responsive to altered nutrition and the maintenance of
altered gene expression upon removal of the nutritional chal-
lenge in multiple generations. This has broad implications for
our understanding of DOHaD, the PAR hypothesis and the NCD
epidemic and will be vital in directing future functional research
in this area.
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