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ABSTRACT 

This concept article introduces a transformative vision to reduce the population burden of chronic 
disease by focusing on data integration, analytics, implementation and community engagement. Known 
as PHOENIX (The Population Health OutcomEs aNd Information EXchange), the approach leverages a 
state level health information exchange and multiple other resources to facilitate the integration of 
clinical and social determinants of health data with a goal of achieving true population health monitoring 
and management. After reviewing historical context, we describe how multilevel and multimodal data 
can be used to facilitate core public health services, before discussing the controversies and challenges 
that lie ahead. 
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1. Introduction 

Despite tremendous investment in research [1] and having the greatest annual healthcare 

expenditure per capita [2], population-level health indices are poorer in the US compared to peer 

high-income countries [3,4]. Life expectancy declined in the US for the first time in nearly a 

quarter century in 2015 [5] and then again in 2016 [6]. Cardiovascular disease (CVD) is the leading 

cause of death in the US [7] and hypertension accounts for the largest fraction of attributable risk 

[8]; however, most of the variation in mortality can be traced to social, behavioral and metabolic 

factors [8]. 

The most vulnerable among us suffer the greatest burden of chronic diseases with increasing 

socioeconomic inequalities widening health disparities [9,10]. Consequently, there is great interest 
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in the ability to integrate data on social determinants of health with clinical information available 

from electronic health records [11-13]. Multiple funding agencies are also focusing on data 

integration beyond these sources, highlighting key information compiled by public health and 

social service organizations as well as community stakeholders [14]. Despite such interest, few 

programs have demonstrated the capacity to build the necessary networks or resolve technical 

barriers that limit health information exchange (HIE) impact. While emerging approaches prompt 

excitement [15,16], additional research is necessary [17-20]. 

Included among the approaches garnering enthusiasm is the concept of research universities 

working with health systems, governmental entities, and non-governmental organizations in 

collaboration to address the challenges of massive data amalgamation [21]. By serving as impartial 

stewards of health information, conducting research to address knowledge gaps and disseminating 

information about best practices, research universities can be pivotal institutions in this effort. 

Research universities are ideally positioned to help bring about a new golden era of chronic disease 

prevention that will use multidimensional and multimodal geospatial data to inform the work of 

public health and social service agencies. Indeed, we agree that academia can play a key role 

specifically in improving public health practice capacity via systemwide cross-sector collaboration 

(akin to existing collaborations between academia and industry, healthcare and national health 

research agencies) [22]. In what follows, we review historical context and introduce a 

transformative vision to reduce the population burden of chronic disease by focusing on analytics, 

implementation and community engagement. Known as PHOENIX (The Population Health 

OutcomEs aNd Information EXchange), this approach leverages a state level HIE and multiple 

other resources to facilitate the integration of clinical and social determinants of health information 

with a goal of achieving true population health management. 

2. Historical Context 

2.1 The Golden Era of Chronic Disease Epidemiology 

Sanitation during the first half of the 19th century and infection-control efforts through the first 

half of the 20th century achieved unprecedented improvements in population health [23]. As 

infectious disease epidemics subsided in much of the developed world, a focus on 

noncommunicable diseases emerged [24]. On the heels of World War II, major investments in 

science, medical and public health research ushered in a “Golden Age” of chronic disease 

epidemiology [25]. The recognition of tobacco as a carcinogen prompted new public health 

policies and cultural norms. Effective treatments were developed for leading causes of mortality. 

In turn, progress in prevention of chronic diseases contributed to a dramatic increase in U.S. life 

expectancy (see [26] for a review). 

The chronic disease era of epidemiology was inspired by the sanitarian notion that ‘mass disease’ 

occurs when ‘society is out of joint’ [26]. That is, when social disruptions result in crowded living 

situations, exposure to harmful substances, inequitable distribution of resources, and other harmful 

conditions. Classic studies during the 1940s-50s categorized CVD as a ‘mass disease’ based on 

tenfold international variation of prevalence. Subsequent investigations linked the global variation 

to differences in saturated fat intake, serum cholesterol and hypertension; smoking was also 

recognized as a key contributor. These findings inspired public health programming during the 

1960s-70s directed at prevention of CVD. Better therapies for hypertension were introduced in the 
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1980s and statins followed in the 1990s to address high cholesterol. By year 2000, CVD incidence 

had declined by approximately 70% compared to 1968 [27]. However, the trends appear to be 

stagnating as age-adjusted mortality rates increased in the U.S. from 2000-to-2017 for both males 

and females ages 35-74 years [28-30]. 

2.2 Rising Health Inequalities 

While U.S. premature mortality rates declined from 1966 to 1980 in all socioeconomic strata 

defined by county income quintile and race/ethnicity, relative health inequities between whites and 

people of color widened over the next two decades [31]. County-level differences in life 

expectancy also increased from 1980- to- 2014, and hypertension among residents age ≥ 30 years 

accounted for 62% of the variation [9]. These changes were primarily mediated by correlates of 

social disadvantage, particularly behavioral and metabolic risk factors [8,9]. In short, ‘Place 

Matters’ [32], especially for hypertensive heart disease as seen in the fourfold difference between 

U.S. counties with top and bottom decile mortality rates [33]. Hypertension remains a ‘mass 

disease’ in the modern era and vulnerable groups are severely impacted. 

Health disparities are primarily driven by differences in social determinants (e.g., poverty, 

inadequate access to healthcare and nutritious foods, chronic stress, etc.). However, much remains 

unknown about how pathophysiology is affected by social factors and their correlates (e.g., 

lifestyle changes, urbanization, migration and acculturation), especially for hypertension. 

Consequently, modern frameworks call for multilevel systems approaches that pay attention to 

both societal- and molecular-level contributors to health equity (i.e., “the absence of unfair and 

avoidable or remediable differences in health among social groups” [34]) [35,36]. 

2.3 The Precision Medicine Paradox 

History shows that health agendas tend to sway back and forth between medical care and primary 

prevention approaches [37]. During the waning years of the chronic disease era of epidemiology 

(1950-2000), the focus shifted towards technology and clinical care. This shift appears to have 

been driven by a revived form of genetic determinism (see [38] for a review). Despite upwards of 

ten billion dollars of public funding in the U.S. alone, genomic research has not yet translated into 

substantial gains in population-level health outcomes [39-41]. Nor has genomics made a 

substantial contribution to our understanding of population-level racial health disparities (e.g., in 

CVD [42]). Less than 1% of published genomics studies have progressed beyond basic science or 

preclinical research [43]. In short, there is an ‘evidence dilemma’ supporting the role of genomics 

in clinical practice and public health [39,44]. This translation gap has been described as a ‘valley 

of death’ [45] that underlies the modern ‘paradox of precision medicine’ [46,47]; i.e., increasing 

technological capacity followed by decreasing application towards public health improvement. 

2.4 Pivot Towards Public Health & Epidemiology 

Efforts to fill the translation gap described above have intensified in the U.S. with the launch of 

the Precision Medicine Initiative and the “All of Us” research program [48]. The Precision 

Medicine concept has responded to criticisms by adopting principles of public health [49] and 

recognizing epidemiology as “a fundamental building block of the translational research 

enterprise” [50]. This shift prompted the Health Department of Western Australia to coin the term 
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“Precision Public Health” in 2013 [51]. Analogous to the aims of Precision Medicine, Precision 

Public Health seeks to provide the right interventions at the right place and time to the right 

population [52]. A key pivot is the increasing focus on implementation science and descriptive 

epidemiology [53], as Precision Public Health “… requires robust primary surveillance data, rapid 

application of sophisticated analytics to track the geographical distribution of disease, and the 

capacity to act on such information” [54]. So-called “Big Data” integration is another key element 

[49, 55-57], though much of the discussion is theoretical. 

The relevance of surveillance [58] and the importance of program evaluation [59] are not new to 

public health. What is new is the modern landscape of health information. Challenges presented 

by the unprecedented amount and complexity of data include: i) technical difficulties accessing, 

integrating and sharing health information across multiple domains [60,61] and modalities [62]; 

ii) ethical [63] and epistemological concerns [64-66]; iii) implications of data inaccuracies and 

selective measurement in routinely collected data [67,68]; and iv) a growing potential for spurious 

correlations in large datasets [55,65,69]. In turn, a strong foundation in surveillance and descriptive 

epidemiology is needed to establish an iterative process for interpreting what we know and what 

we don’t know from within and across scientific disciplines (and public health sectors) [55]. 

There is increasing focus on small-area analytics to assess the local burden of disease (e.g., 

www.healthdata.org/lbd) and promote effective targeting and uptake of evidence-based 

interventions [67]. That is, identifying county-level [70] or city-level [71] health disparities that 

may be masked in national metrics can inspire strategic public health action. For example, a recent 

study provided evidence of strong geographic differences in cardiovascular health across the U.S. 

by using linked ‘micromap’ plots and multilevel logistic regression models to analyze cross-

sectional vital statistics and administrative data [72]. Importantly, status as a racial minority or low 

socioeconomic status explained 51% of the variation, while state-level factors accounted for an 

additional 28% (e.g., soda drink taxes, farmers markets, convenience stores). Due to the 

spatiotemporal properties of social determinants of health, longitudinal studies are needed to better 

understand how the dynamics between societal factors, built and natural environments and 

individual-level characteristics contribute to health equity. Equally important are finer-scale 

geospatial analyses to inform local public health programming and connections with clinical care 

[73]; e.g., by developing ‘community vital signs’ [74] and linking social determinants and service 

information to electronic health records [11]. Fortunately, the recent technical advances have 

generated a massive amount of spatiotemporal data across multiple modalities at a much finer scale 

and resolution [75,76]. 
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3. Where do we go next? An introduction to PHOENIX - The Population Health 

OutcomEs aNd Information Exchange (Fig. 1) 

 

Figure 1. The Population Health OutcomEs aNd Information EXchange Conceptual Model 

3.1 Overview 

We do not suffer from a lack of information. Health care systems, researchers, government 

agencies, and not-for-profits collect and warehouse masses of data. However, these databases do 

not interact smoothly; it is labor intensive and often cost prohibitive to blend the information 

together. Privacy laws also add a layer of complexity. Therefore, existing data are not routinely 

shared among institutions, community members and researchers. While some repositories hold 

invaluable information, no single source integrates data to convey a timely snapshot of local factors 

that are related to health equity and outcomes. As a result, data for public health action are 

fragmented, incomplete, and typically lag by months or even years. Consequently, programs and 

interventions are often guided by intuition rather than evidence. To address this, Wayne State 

University (WSU) is developing PHOENIX - the first shared data repository of its kind in 

Michigan. 

3.2 Public Health Data Commons 

Supported by a grant from the Michigan Health Endowment Fund (MHEF), the PHOENIX 

program design is informed by the NHLBI framework for community-engaged implementation 

research and action towards health equity [14,77]. Beginning with a focus on Southeast Michigan 

and the metro Detroit region, we are addressing critical challenges identified by NHLBI by 

creating a public health data commons and providing a mechanism for coordinated access to 

multidimensional health information (Table 1). We are working with internal partners at WSU to 
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catalog existing datasets, codebooks and instructions on pursuing collaboration with investigators 

who maintain these resources. In parallel, we are collating publicly available administrative 

datasets and codebooks, either directly (e.g., using Google Map and Places Application 

Programming Interfaces (APIs)) or by working with independent contractors (e.g., Loveland 

Technologies). The backbone of our shared data infrastructure is our relationship with two large 

HIEs that will provide targeted information from electronic health records (EHRs) statewide: the 

Michigan Health Information Network (MiHIN) and Great Lakes Health Connect (GLHC). These 

two entities, which recently merged, provide complementary access to information from every 

health system and a large number of ambulatory care clinics in the state of Michigan, with data 

linkage at the individual patient level across healthcare settings.  

Table 1. Example Data Targeted by PHOENIX 

Social environment & Clinical Information 

Electronic Health Records shared by Michigan Health Information 

Exchanges 

State of Michigan Vital Statistics 

US Census/ American Communities Survey 

Uniform Crime Reports 

WSU Investigator Databases 

National Center for Education Statistics 

Patient/Resident Generated Health Data 

Built environment (e.g., Points of Interest) 

Neighborhood Characteristics 

Healthcare Resources 

Grocery Stores, Restaurants, Liquor Licenses 

Schools and Daycare Facilities 

Places of Worship 

Parks, Sidewalks, Alleys 

Tax Status, Foreclosures, Blight Violations, Occupancy 

Transportation and Mobility 

Natural environment 

Environmental Protection Agency Data (e.g., Air & Water 

Pollution—Particulate Matter) 

Climate (Satellite Images) 

Policy Environment 

Blight Removal Program 

Rental Registration Compliance 
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As a first step, MiHIN has agreed to secure modified Business Associate Agreements (BAAs) to 

enable data sharing with PHOENIX. Once done, MiHIN will then create a data lake using 

information (e.g., vital signs, laboratory test results, body mass index, medications, social history, 

diagnosis codes) contained within Admission Discharge and Transfer (ADT) alerts and Continuity 

of Care Documents (CCD) for PHOENIX to access. These data will be de-identified but linked at 

the patient level by a common key identification number. Further, home addresses will be 

converted to geographic indicators enabling data aggregation at the ZIP code, census tract, and 

census block level (as admissible based on prevalence under local, state and national public health 

policies). While details of the merger with MiHIN are being worked out, GLHC has maintained a 

patient-level longitudinal cohort since 2009 that is continuously updated with ADT and CCD 

information for all new healthcare encounters. By leveraging this resource PHOENIX will be able 

to access historical data and establish robust time-trends. Key to the PHOENIX program 

applications is that MiHIN/GLHC have already standardized/integrated data elements received 

from different health systems, created an anonymized unique patient identifier across systems and 

established portals to push/pull information to an array of different end-users across the state. 

3.3 Applications 

PHOENIX will model the type of HIPAA-compliant, cloud-based and integrated data 

infrastructure needed to leverage state-wide HIEs towards public health surveillance, community 

risk stratification, community engagement and program evaluation – an overarching purpose far 

more evolved than optimization of individual patient care data as in typical HIEs [78]. MiHIN and 

GLHC provide invaluable services by receiving and coordinating EHRs from providers statewide. 

The PHOENIX program will complement these efforts by integrating social determinants 

information from multiple administrative datasets to create and share community as well as patient 

risk stratification scores. This will also foster more direct collaboration between health care 

providers, social services and public health organizations, and other community stakeholders. 

3.3.1 Mapping Disease Burden ‘Hot Spots’ 

As we have shown with a beta version of PHOENIX [79], one of the most accessible utilities of 

our shared data infrastructure will be to determine and monitor the incidence of targeted conditions 

that are deemed important by community stakeholders. During a recent community-engaged health 

assessment the Detroit Health Department identified the need for timely, locally relevant data 

regarding chronic conditions such as asthma as a surveillance priority for community members 

and public health partners. Current estimates of asthma burden in Detroit and surrounding 

communities typically rely on information from the Michigan Behavioral Risk Factor Surveillance 

System (MiBRFSS). However, the MiBRFSS was not designed to be representative of the Detroit 

area. Because Michigan residents are mostly white and Detroit residents are mostly black, and 

because the latter disproportionately suffer asthma, the disease burden in Detroit is underestimated 

by MiBRFSS. The MiBRFSS is also not designed to capture neighborhood level variation in 

asthma, and there is a lag of more than a year in availability of data. PHOENIX will provide timely, 

relevant information about emergency department visits and hospital admissions for asthma at the 

ZIP code, census tract or census block level. Because MiHIN and GLHC accrue data on a daily 

basis, this approach will enable rapid ‘hot-spot’ identification and facile evaluation of potential 

intervention outcome benefits. By also overlaying social determinants information, we can conduct 

geospatial analyses to better understand interrelationships and design interventions that are specific 
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to community needs. We will similarly target additional health concerns that account for major 

fractions of morbidity and mortality and are deemed important by community members. To that 

end, we have particular interest in understanding how blood pressure impacts CVD risk, and how 

social determinants affect related health outcomes. 

3.3.2 Patient-Level & Community-Level Risk Classifications 

Recently, a machine learning algorithm using key indicators of social disadvantage, behavior and 

environmental conditions obtained from publicly available data sets explained about 70% of U.S. 

county-level variation in premature mortality [80]. Machine learning modeling of data in EHRs 

can also predict intermediate outcomes with a fair degree of accuracy (e.g., emergency admission 

within 24 months [81], one-year incident hypertension [82], and left ventricular hypertrophy [83]). 

Use of longitudinal information enhances prediction performance compared to cross-sectional 

models [84-86]. Similar results have been produced using large clinical research datasets [87,88], 

with advanced deep learning techniques [89], and with classical regression techniques [90-92]. 

These types of information can be shared by HIEs. For example, a recent study provided evidence 

that risk scores developed using a combination of EHR and community data can identify patients 

in need of wraparound services for social determinants and sharing this information with providers 

appears to have increased referrals and uptake [16,93]. 

The PHOENIX program will develop patient-level and community-level risk stratification models 

for identifying susceptibility to target conditions and service needs. These models will integrate 

information about social, built, natural and policy environments using HIPAA-compliant 

information shared by MiHIN and GLHC through the data lake created for PHOENIX. We will 

develop novel solutions for specific risk classification problems by using hierarchical models, 

multiple machine learning algorithms (e.g., random tree forest, neural networks) and classical 

techniques based on evidence from previous studies including approaches employed Global 

Burden of Disease study group, as appropriate. We will also adapt novel methods that involve 

community members in quantitatively weighting the importance of specific health topics [15]. 

Community risk scores will be shared via the PHOENIX website; future efforts will emphasize 

incorporation of such risk scores into provider workflows either directly through their EHR or 

indirectly via secure web-based applications. 

3.3.3. Public Health Program Targeting & Evaluation 

The PHOENIX program will host a custom-made interactive website to share health information 

with a broad array of community stakeholders. Users will be able to, i) map the incidence of 

targeted conditions and upstream risk factors, ii) overlay social determinant information about 

natural, built, social and policy environments, iii) make basic comparisons between communities, 

and iv) crudely estimate health equity impact and economic benefits of programs and policies that 

lessen the burden of disease. Providing this information to community stakeholders will enhance 

their capacity to seek support and target interventions towards areas in greatest need. PHOENIX 

will provide community stakeholders with a unique resource to evaluate program and policy 

benefits guided by the CDC Framework for Program Evaluation [59]. We will also leverage shared 

data to investigate changes in health equity indicators as a function of community revitalization 

activities (e.g., blight removal, expansion of public-private partnerships for violence prevention, 
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etc.). Over time, PHOENIX will iteratively enable better evaluations and stronger partnerships that 

focus on data-driven goals. 

3.3.4 Benefit-Cost and Economic Analyses 

PHOENIX will also include information about medical expenditures and indirect but associated 

societal costs to motivate investments that improve health equity. We can estimate potential cost-

savings if community exposures are removed or protective factors are enhanced. PHOENIX will 

do just that while also providing a mechanism to share information with policymakers and other 

stakeholders in order to motivate community investments that improve health equity. 

3.3.5 Expanding Reach Through Education 

Academic health centers are poised to lead the way in public health sciences, pioneering evaluation 

and implementation strategies [21]. Specifically, academic health centers can leverage university 

resources and influence as neutral brokers of knowledge about the value, benefits, risks and costs 

of precision public health to cultivate community-wide understanding of ethical, legal and social 

implications [21]. Engaging university expertise in medicine, epidemiology, health services 

research, environmental science, sociology, economics, health marketing, urban design, political 

science and other disciplines can address complex barriers to population health improvement. 

The PHOENIX program will specifically address another critical challenge identified by NHLBI: 

education and training of the broader local biomedical community. We propose to develop 

educational materials, establish curricula and develop tools to enhance training. Cultivating an 

appreciation of social determinants of health is particularly important -- a stance supported by the 

American Medical Association’s Accelerating Change in Medical Education Consortium. The 

PHOENIX team will do this in part by enlisting medical students and fellows to collate information 

about social services that are available in local communities (as described in [94]), cataloging 

social determinants screening tools, and conducting prospective research and secondary data 

analyses. Equally imperative are steps to increase health and statistical literacy among clinicians 

and patients alike as we move into the so-called “Big Data” era [95-97]. The public health data 

commons managed by PHOENIX and community outreach initiatives will also provide ample 

opportunities for students to conduct secondary data analyses, develop health messaging materials, 

evaluate programs and estimate cost benefits. PHOENIX will also be connected with a biobank 

and clinical data registry under development at WSU. 

3.3.6 Community Engagement 

A strength of the PHOENIX project is its capacity to build on existing WSU-community 

collaborations. In 2015, WSU established the Office for Community Engaged Research (OCEnR) 

under the Office for the Vice President of Research. For the PHOENIX project, OCEnR will 

engage the community through open dialogue to determine needs and employ community 

members to help implement targeted initiatives. OCEnR is focused on sustaining health and well-

being of community members through citizen engagement, collaboration and partnerships. As a 

university and community-wide resource, OCEnR offers a variety of services and trainings to 

promote community engagement and recruitment in research. OCEnR has extensive experience in 
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creating community advisory boards and conducting focus groups for variety conditions/topics 

with local and industry partners. 

OCEnR works closely with the School of Social Work which has over 660 active community 

agency and organization partners through which undergraduate and graduate social work students 

are placed for internships. This diverse group of organizations includes, but is not limited to, 

community-based governmental entities, community-based not-for-profit groups, health care and 

mental health service providers, schools, and service providers for the elderly. OCEnR also works 

with the School of Medicine which partners with local, county and state public health departments. 

Capitalizing on these existing relationships will enable the PHOENIX project to more 

meaningfully, quickly and effectively engage with community members. 

4. Controversy & Challenges 

4.1 Promises & Pitfalls of Precision Public Health 

Not everyone is keen on the idea of merging public health with concepts borrowed from precision 

medicine, especially when genomics is involved [63,98-100]. The utility of Precision Public 

Health has been questioned because its goals and strategies are not fundamentally different from 

those of traditional public health [101]. Moreover, there is concern “…that an unstinting focus on 

precision medicine by trusted spokespeople for health is a mistake — and a distraction from the 

goal of producing a healthier population” [101]. On the other hand, there is room for optimism if 

the recent pivot towards epidemiology and focus on social determinants [102] can produce 

demonstrable results that reinvigorate public health [99]. PHOENIX will increase the availability 

and accessibility of high-quality information on the distribution and determinants of health – a 

core public health function. 

PHOENIX seeks to better understand the social determinants that underlie the geographic 

distribution of population-level health equity indicators. The focus on individual healthcare is also 

grounded in a population perspective; for instance, efforts to develop patient-level risk 

stratification tools will prioritize prevalent and costly health problems that are amendable to 

intervention (e.g., hypertension). PHOENIX is not predicated on genomics per se, although we 

seek to develop a system that can be used to evaluate potential health benefits of interventions and 

programs that may include genomic information. At the outset of our program, we expect that the 

integration of routinely collected data will be most informative about upstream [103] social-

structural factors that might modify public health programming and clinical care outcomes [11,55]. 

4.2 Data Quality & Coverage 

Quality of information is critical in users' assessments and perceptions of HIE programs (i.e., 

healthcare professionals including administrators, clinicians, program supervisors and medical 

directors at organizations with care managers, social workers, patient navigators and health 

coaches who receive event notifications) [104]. Clinical information we will receive is primarily 

going to be shared from EHRs and thus could be subject to bias from fragmented data and selective 

ascertainment [17,105-107]. Furthermore, EHR data are limited compared to what is typically 

collected in prospective research studies [108]. Therefore, we will perform community screening 

events and supplement the shared data with program participant generated information; e.g., by 
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incorporating new technologies (e.g., via smart phone applications) and capturing exposures that 

occur away from home [109]. We may additionally seek to develop services targeted towards low-

income residents aiming to strengthen the social safety-net (e.g., by working with local barber 

shops and salons [110]) [111]. Indeed, we are keen to avoid steps that may widen social disparities 

and/or potentially increase overdiagnosis [18,68,112]. 

4.3 Engagement & Agency 

We do not yet know the best way to get social determinants information into the right hands to 

improve population-level health outcomes. Clinicians, government and elected officials, 

community organizations, and citizens all have a role to play and we are deliberately engaging 

each of these groups. Many physicians report that they do not have time or resources to consider 

social determinants [94]. Therefore, we are working with our health system and HIE partners to 

identify knowledge gaps and determine optimal strategies to incorporate such information into 

clinical practice (e.g., by developing strategies that incorporate nurses/pharmacists and streamline 

dissemination). To that end, as part of the CDC 1817 grant program and in collaboration with the 

Michigan Department of Health and Human Services, we are testing a pilot version of an 

application programming interface (API) that will make PHOENIX social determinant data readily 

available to clinicians within systemwide EHRs. Our dissemination strategy also relies heavily on 

community stakeholders with considerable agency; i.e., persons with motivation and ability to 

pursue, interpret and apply health information [113,114]. On the other hand, by establishing a 

surveillance system we also gain the capacity to evaluate the impact of low agency interventions 

(e.g., environmental policies, impact of community programs). 

Collaborations with state and local health departments will help ensure that information from 

PHOENIX informs public health programming and response. To this end, we are working with 

local and state public health partners and other stakeholders to establish standard operating 

procedures including reporting protocols that are designed to optimize the utility of the information 

we generate. Together, our team will identify priority conditions, establish minimum reporting 

requirements, and develop templates for figures, tables and text that are in-line with local, state 

and national norms and policies. The initial demonstration of the 

PHOENIX program in Southeastern Michigan will focus on priority conditions among those 

recently identified by the Detroit Health Department’s community-engaged health assessment that 

have major public health implications across the lifespan (Table 2). 
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Table 2. Baseline Priority Conditions 

Cardiovascular Disease 

Hypertension (high blood pressure) 

Heart failure 

Coronary heart disease (heart attack) 

Cerebrovascular disease (stroke) 

Mental Illness and Substance Use Disorders* 

Diagnosable mental, behavioral or emotional disorder that 

causes serious functional impairment that substantially limits 

one or more major life activities (or child’s functioning in 

family, school or community activities) [e.g., depression, 

anxiety, post-traumatic stress and borderline personality 

disorders; schizophrenia]. 

Recurrent use of alcohol and/or drugs that causes clinically 

significant impairment, including health problems, disability, 

and failure to meet major responsibilities at work, school or 

home. 

Asthma 

Pediatric and adult 

Maternal Morbidity and Mortality 

Hypertensive pregnancy disorders (e.g., preeclampsia) 

Preterm delivery 

*adapted from the Substance Abuse and Mental Health Service 

Administration 

4.4 Privacy 

Privacy is a critical concern. We will report information and share aggregated community-level 

information with appropriate protections as defined under BAA that ensure HIPAA compliance. 

We will share community-level health information with residents, public health and social service 

agencies as described above. Likewise, we will develop technical solutions to upload patient-level 

health information obtained with consent in the community to HIEs that can inform providers and 

payers to enable care coordination. We also envision working within defined BAA to access de-

identified, limited use datasets to facilitate core public health functions, quality improvement 

initiatives, comparative effectiveness research and economic impact assessments as allowable 

under the HIPAA privacy rule (see [115] for explanation of public health and research 

accommodations). 

4.5 Sustainability 

Perhaps the greatest challenge is sustainability. Public health is markedly underfunded. Fewer than 

three percent of the U.S. healthcare budget is currently allocated towards public health [116]. 
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Compared to peak spending in the wake of 9/11 in 2002, public health’s share of total U.S. health 

expenditures decreased by 17% as of 2014 and a decline of 25% is projected by 2023. The decline 

in public health expenditures from 2008 to 2014 amounted to a $40 billion loss in just six years. 

Consequently, many public health agencies are understaffed and ill-equipped to develop robust 

surveillance systems [117]. PHOENIX is one model of supporting local public health by partnering 

with university services supported by internal/extramural funds. Our goal is to be able to provide 

evidence of potential short- and long-term financial benefits of health programs. We also hope that 

disseminating the information will influence policy and programmatic decisions about support for 

public health and social service agencies in our community [117]. 

With the above understanding, development of financing mechanisms beyond reliance on 

university resources or extramural grant support is critical. A potential strategy may be for the 

PHOENIX program to collect fees from health systems, payers, investigators and other 

stakeholders for services involving advanced data integration and analytics. Users who pay a 

subscription fee would obtain restricted cloud access to de-identified and simulated datasets that 

are developed for specific use-case scenarios. All data would be manipulated in the cloud and no 

data would be exported to end users. Under this model, health systems, payers and investigators 

would pay in order to access population-level information and avoid costs related to data 

management and analytics. For stakeholders without such expertise, the PHOENIX team would 

conduct analyses on a fee for service basis. Early demonstrations would focus on ‘hot spotting’ 

[118], ‘cold spotting’ [119] and reducing waste in the healthcare system [120]. By focusing on 

analytics to enable population health management, we could expand the utility and impact of our 

HIE partners [121,122]. Moreover, if successful, this financing mechanism will sustain our ability 

to provide actional information to community members and public health/social service agencies 

at no cost. 

We hope that the PHOENIX program framework will be scalable to other states across the nation 

that choose to adapt the model to their specific needs. In-turn, this would create a synchronous 

network that focuses on leveraging HIE to facilitate core public health activities in concert with a 

diverse array of national stakeholders. 

5. Conclusion 

Despite significant advances in disease specific therapies and on-going, substantial expenditures 

on healthcare in this country, U.S. life expectancy is declining. The plateau in mortality from 

conditions such as CVD has prompted calls for transformative research that emphasizes data 

integration, use of new technologies, implementation science and community participatory 

research [123]. The PHOENIX program was developed in direct response to these calls. 

PHOENIX will enhance chronic disease surveillance, establish bi-directional communication 

pathways with public health and social service agencies, target and evaluate the impact of 

community-based interventions, and facilitate community-engaged research. In doing so, 

PHOENIX expects to foster innovation and discovery of solutions that will better individual health 

and improve population-level outcomes. 
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