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Synthesis, biological evaluation 
and molecular docking studies 
of 6‑(4‑nitrophenoxy)‑1H‑imidazo[4,5‑b]
pyridine derivatives as novel antitubercular 
agents: future DprE1 inhibitors
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Abstract 

Tuberculosis is an air-borne disease, mostly affecting young adults in their productive years. Here, Ligand-based drug 
design approach yielded a series of 23 novel 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives. The required 
building block of imidazopyridine was synthesized from commercially available 5,5-diaminopyridine-3-ol followed 
by four step sequence. Derivatives were prepared using various substituted aromatic aldehydes. All the synthesized 
analogues were characterized using NMR, Mass analysis and also screened for in vitro antitubercular activity against 
Mycobacterium tuberculosis (H37Rv). Four compounds, 5c (MIC-0.6 μmol/L); 5g (MIC-0.5 μmol/L); 5i (MIC-0.8 μmol/L); 
and 5u (MIC-0.7 μmol/L) were identified as potent analogues. Drug receptor interactions were studied with the help 
of ligand docking using maestro molecular modeling interphase, Schrodinger. Here, computational studies showed 
promising interaction with other residues with good score, which is novel finding than previously reported. So, these 
compounds may exhibit in vivo DprE1 inhibitory activity. 
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Introduction
Tuberculosis is major threat for mankind from past sev-
eral decades. Tuberculosis is the leading cause of death 
from infectious diseases [1]. Although the number of 
tuberculosis cases decreased during the twentieth cen-
tury, the emergence of HIV and the incidence of multi-
ple-drug resistance (MDR) have increased the difficulty 
of treating many new cases. Despite of the efforts taken to 
improve the outcome of tuberculosis care, the discovery 
of new antibiotics against the causative agent is not in a 
race of expected progress [2, 3]. With this, new and more 
effective molecules with novel mechanism of action are 
required to discover which may shorten the treatment, 

improve patient adherence, and reduce the appearance of 
resistance [4].

Furthermore, Mycobacterium tuberculosis (M. tuber-
culosis) has also proven one of the world’s most dread-
ful human pathogen because of its ability to persist 
inside humans for longer time period in a clinically inac-
tive state. Roughly 95% of the general population who 
infected (33% of the worldwide population) built up an 
inert infection [5, 6]. The current available vaccine, Myco-
bacterium bovis Bacillus Calmette–Guerin (BCG). M. 
tuberculosis stimulates a solid response, however it has 
ability to oppose the body’s activities to kill it and regard-
less of the possibility of underlying disease is effectively 
controlled. The discovery of drugs with novel mechanism 
of action is required because of the expanding number of 
MDR, which are strains of M. tuberculosis that are resist-
ant to both isoniazid and rifampicin (first line therapy), 
with or without protection from different medications, 
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broadly extensively drug resistance (XDR) and MDR 
strains additionally resistant to any fluoroquinolone and 
any of the second-line against TB injectable medications 
(amikacin, kanamycin, or capreomycin). Imidazopyridine 
derivatives are very important, versatile motifs with sig-
nificant applications in medicinal chemistry [7–9].

The imidazopyridine scaffold was found in a number of 
marketed drug formulations and drug candidates such as 
antiulcer-zolimidine [10] and tenatoprazole [11–13], sed-
ative-zolpidem [14], anxiolytic-saripidem [15] and necop-
idem [16, 17], analgesic and antipyretic-microprofen [18], 
cardiotonic-olprinone [19, 20], anti-tumour-3-deazane-
planocin A [21, 22]. Fortunately, 3-deazaneplanocin A 
was also found to be effective for the treatment against 
Ebola virus disease [23–26]. In addition, compounds 
containing the moiety imidazopyridine have significant 
biological applications such as antimycobacterial, antico-
ccidial, antimicrobial [27–34].

In other words, the therapeutic application of imida-
zopyridine is not restricted, and need to explore to the 
fullest for the betterment of mankind. Here, we are look-
ing forward to uncover the potential of 1H-imidazo[4,5-
b]pyridine nucleus as a biological agent, hence, we 
thought to synthesize 6-(4-nitrophenoxy)-2-substi-
tuted-1H-imidazo[4,5-b]pyridine derivatives. Purposely 
4-nitrophenoxy substitution was chosen on 6th position 
of 1H-imidazo[4,5-b]pyridine ring because it was proved 
that the nitro containing compounds shown binding with 
cys387 residue of DprE1 enzyme protein.

Reports of World Health Organisation (WHO) in past 
couple of years pointed out that, the global burden of 
tuberculosis is increasing drastically across the globe. 
With this threatening scenario of tuberculosis infection, 
it’s a strict need to search promising drugs which will 
effectively kill the mycobacterium within short duration 
of time. Here, we have made an attempt to synthesized 
novel compounds of imidazopyridine series for antitu-
bercular activity, which may target particularly decapre-
nyl-phosphoryl-ribose 2′-epimerase (DprE1) enzyme 
(DprE1 is a novel target for which no drug is available in 
market till date) in search of novel lead for antitubercular 
drug discovery to serve the society.

Experimental
Chemistry
All the chemicals were obtained from Sigma Aldrich, 
Germany, Merk India, Rankem India, Loba Chemi, India, 
Signichem laboratories, India. Melting points (m.p.) 
were detected with open capillaries using Veego Melt-
ing point apparatus, Mumbai India and are uncorrected. 
IR spectra were recorded on IR Affinity-1S (FTIR, Schi-
madzu, Japan) spectrophotometer. 1H and 13C NMR was 
obtained using a JEOL, JAPAN ECZR Series 600  MHz 

NMR Spectrometer using tetramethylsilane (TMS) as 
internal standard. All chemical shift values were recorded 
as δ (ppm), coupling constant value J was measured in 
hertz, the peaks are presented as s (singlet), d (doublet), t 
(triplet), dd (double doublet), m (multiplet). The purity of 
compounds was controlled by thin layer chromatography 
(Qualigens Fine Chemicals Mumbai, silica gel, GF-254).

General procedure for synthesis
5,6-Diaminopyridine-3-ol and different substituted aro-
matic aldehydes were commercially available. The process 
of four step reaction sequence was initiated with acety-
lation of 5,6-diaminopyridine-3-ol 1 which on reaction 
with acetic anhydride forms compound 2 by nucleophilic 
substitution reaction [35]. To increase the reactivity of –
OH, the hydroxyl group, it is converted to its potassium 
salt by stirring compound 2 [36] with K2CO3 in dimeth-
ylformamide (DMF) for 3–4  h and then, p-chloroni-
trobenzene diluted in DMF (1:1) was added drop-wise 
for 1 h [37]. Again reaction mixture was stirred for 2–3 h 
to obtained compound 3. Further, the reactions mixture 
was poured in cold 10% sodium hydroxide [38, 39]. The 
compound 4 was precipitated out which further recrys-
tallized by ethanol [40, 41]. Compound 4 on reaction 
with different substituted aromatic aldehydes (Table  1) 
in presence of Na2S2O5 yielded compound 5 derivatives 
(Scheme 1). 
1: 5,6-diaminopyridine-3-ol. IR v = 1390  cm−1 (C–N 

str), 1780  cm−1 (aromatic ring), 3320  cm−1 (O–H str), 
1H NMR: (600 MHz, DMSO) δ 6.4 (1H, d, J = 2.7 Hz), 7.7 
(1H, d, J = 2.7 Hz).13C NMR (100 MHz, DMSO) δ (ppm) 
100.9, 135.2, 140.4, 153.2. MS m/z: calcd for C5H7N3O 
found 125.13 (M–H)−: 124.61.
2: N-(3-acetamido-5-hydroxypyridin-2-yl)acetamide. 

IR v = 1670 cm−1 (C–O str), 1670 cm−1 (aromatic ring), 
3420  cm−1 (O–H str), 1H NMR: (600  MHz, DMSO) 
δ 2.7–2.9 (6H, m), 7.2 (1H, d, J = 2.3  Hz), 7.8 (1H, d, 
J = 2.3  Hz).13C NMR (100  MHz, DMSO) δ (ppm) 23.9, 
100.9, 121.7, 135.2, 142.5, 153.2, 168.7. MS m/z: calcd for 
C9H11N3O3 found 209.20 (M–H)−: 208.65.
4: 5-(4-nitrophenoxy)pyridine-2,3-diamine. IR 

v = 1540 cm−1 (N–O str), 1680 cm−1 (C–O ether), 1530, 
1620  cm−1 (aromatic ring), 1440  cm−1 (C–N str), 1H 
NMR: (600 MHz, DMSO) δ 6.8 (1H, d, J = 2.8 Hz), 7.2–
7.3 (4H, m), 7.8 (1H, d,  J = 2.8 Hz).13C NMR (100 MHz, 
DMSO) δ (ppm) 100.9, 116.9, 124.5, 135.2, 140.4, 143.2, 
151.5, 163.8. MS m/z: calcd for C11H12N4O3 found 248.23 
(M–H)−: 247.63.
5a: 4-[6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridin-

2-yl]benzene-1,2-diol. Yield: 32%. M.P. 140  °C–142  °C. 
IR v = 1540  cm−1 (N–O str), 1150  cm−1 (C–O ether), 
1480, 1550, 1690, 1740 cm−1 (aromatic ring), 3470 cm−1 
(O–H str), 1H NMR: (600  MHz, DMSO) δ 4.0 (2H, s), 
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Table 1  Synthesis of compounds from 5a–w 

Compound 
ID R-Group Compound 

ID R-Group

5a
OH

OH
5m

CH3

OH

5b

F

OH

5n

CH3

5c

OH

OH 5o
Br

5d

Br

OH

5p
CH3

5e
Cl

5q

CH3

5f
F

5r

OH

O

CH3

5g

O
CH3

O

CH3

5s

O

CH3

O
CH3

5h
NO2

5t
Cl

5i
NO2

5u
Br

5j
Br

5v

NO2

5k
Cl

5w

F

5l
CH3
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6.9 (1H, dd, J = 8.9, 0.4 Hz), 7.2 (2H, dd, J = 8.4, 1.5 Hz), 
7.3 (1H, d, J = 1.8  Hz), 7.4 (1H, dd, J = 8.9, 1.8  Hz), 7.9 
(1H, d, J = 1.6 Hz), 8.0 (2H, dd, J = 8.4, 1.9 Hz), 8.6 (1H, 
d, J = 1.6 Hz).13C NMR (100 MHz, DMSO) δ (ppm) 40.4, 
115.3, 119.7, 123.5, 126.8, 130.1, 137.8, 145.3, 146.6, 
151.2. MS m/z: calcd for C18H12N4O5 found 364.08 
(M–H)−: 363.53.
5b: 5-fluoro-2-[6-(4-nitrophenoxy)-1H-imidazo[4,5-b] 

pyridin-2-yl]phenol. Yield: 45%. M.P. 157  °C–159  °C. 
IR v = 1420  cm−1 (N–O str), 1190  cm−1 (C–O ether), 
1430, 1540, 1890  cm−1 (aromatic ring), 3220  cm−1 
(O–H str), 1H NMR: (600  MHz, DMSO) δ 4.0 (2H, s), 
6.3 (1H, d, J = 1.6  Hz), 6.4 (1H, dd, J = 8.5, 1.6  Hz), 7.2 
(2H, dd, J = 8.5, 1.5 Hz), 7.6 (1H, d, J = 8.5 Hz), 7.9 (1H, 
d, J = 1.6  Hz), 8.0 (2H, dd, J = 8.5, 1.9  Hz), 8.7 (1H, d, 
J = 1.6  Hz).13C NMR (100  MHz, DMSO) δ (ppm) 40.4, 
100.5, 113.4, 117.2, 127.8, 140.4, 148.9, 158.7, 162.2. 
MS m/z: calcd for C18H11FN4O4 found 366.07 (M–H)−: 
365.37.
5c: 3-[6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridin-2-yl] 

benzene-1,2-diol. Yield: 30%. M.P. 148  °C–150  °C. IR 
v = 1380 cm−1 (N–O str), 1120 cm−1 (C–O ether), 1490, 
1630, 1770 cm−1 (aromatic ring), 3360 cm−1 (O–H str), 
1H NMR: (600 MHz, DMSO) δ 4.0 (2H, s), 6.9 (1H, dd, 
J = 8.0, 1.3  Hz), 7.1–7.3 (3H, m), 7.3 (1H, dd, J = 7.8, 
1.3  Hz), 7.9 (1H, d, J = 1.6  Hz), 8.0 (2H, dd, J = 8.4, 
1.9  Hz), 8.6 (1H, d, J = 1.6  Hz). 13C NMR (100  MHz, 
DMSO) δ (ppm) 40.4, 115.6, 126.3, 137.8, 145.2, 146.5, 
152.3. MS m/z: calcd for C18H12N4O5 found 364.09 
(M–H)−: 363.49.
5d: 4-bromo-3-[6-(4-nitrophenoxy)-1H-imidazo[4,5-

b]pyridin-2-yl]phenol. Yield: 49%. M.P. 135  °C–137  °C. 
IR v = 1470  cm−1 (N–O str), 1140  cm−1 (C–O ether), 
1580, 1630, 1850  cm−1 (aromatic ring), 3320  cm−1 
(O–H str), 1H NMR: (600 MHz, DMSO) δ 4.0 (2H, s), 
6.9 (1H, d, J = 8.2 Hz), 7.0 (1H, dd, J = 8.2, 2.7 Hz), 7.2 

(2H, dd, J = 8.4, 1.5 Hz), 7.3 (1H, d, J = 2.7 Hz), 7.9 (1H, 
d, J = 1.6  Hz), 8.0 (2H, dd, J = 8.4, 1.9  Hz), 8.6 (1H, d, 
J = 1.6 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 40.4, 
115.6, 129.9, 138.6, 148.9, 158.7. MS m/z: calcd for 
C18H11BrN4O4 found 427.21 (M–H)−: 426.65.
5e: 2-(2-chlorophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 52%. M.P. 152  °C–154  °C. IR 
v = 1420 cm−1 (N–O str), 1160 cm−1 (C–O ether), 1620, 
1740, 1730  cm−1 (aromatic ring), 3420  cm−1 (O–H str) 
1H NMR: (600  MHz, DMSO) δ 4.1 (2H, s), 7.1 (1H, d, 
J = 8.1 Hz), 7.2-7.4 (3H, m), 7.9 (1H, dd, J = 7.6, 1.7 Hz), 
8.0–8.7 (3H, m), 8.7 (1H, d, J = 1.6  Hz). 13C NMR 
(75  MHz, DMSO) δ (ppm) 40.4, 113.4, 126.8, 140.4, 
158.7. MS m/z: calcd for C18H11ClN4O3 found 366.76 
(M–H)−: 365.57.
5f: 2-(2-fluorophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 43%. M.P. 137  °C–139  °C. IR 
v = 1370  cm−1 (N–O str), 1190  cm−1 (C–O ether), 
1710, 1770, 1780  cm−1 (aromatic ring), 3450  cm−1 
(O–H str) 1H NMR: (600 MHz, DMSO) δ 7.2–7.5 (3H, 
m), 7.3–7.5 (2H, m), 7.6 (1H, d, J = 1.7 Hz), 7.9 (1H, dd, 
J = 7.6, 1.7 Hz), 8.1 (2H, dd, J = 8.3, 2.1 Hz), 8.4 (1H, d, 
J = 1.7 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 100.9, 
114.2, 127.5, 140.4, 152.3, 156.0, 160.4. MS m/z: calcd for 
C18H11FN4O3 found 350.09 (M–H)−: 349.57.
5g: 2-(2,6-dimethoxyphenyl)-6-(4-nitrophenoxy)-1H-

imidazo[4,5-b]pyridine. Yield: 46%. M.P. 128 °C–130 °C. 
IR v = 1510  cm−1 (N–O str), 1120  cm−1 (C–O ether), 
1650, 1760, 1660  cm−1 (aromatic ring), 3520  cm−1 
(O–H str) 1H NMR: (600  MHz, DMSO) δ 3.8 (6H, s), 
6.9 (2H, dd, J = 8.1, 1.2 Hz), 7.3 (2H, dd, J = 8.4, 1.3 Hz), 
7.4–7.5 (2H, m), 8.1 (2H, dd, J = 8.3, 2.1 Hz), 8.2 (1H, d, 
J = 1.7 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 55.8, 
100.9, 117.2, 130.6, 140.4, 151.2, 156.0. MS m/z: calcd 
for C20H16N4O5 found 392.12 (M–H)−: 391.56.
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Scheme 1  Synthesis of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives
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5h: 6-(4-nitrophenoxy)-2-(4-nitrophenyl)-1H-imidazo 
[4,5-b]pyridine. Yield: 26%. M.P. 164  °C–166  °C. IR 
v = 1360 cm−1 (N–O str), 1175 cm−1 (C–O ether), 1750, 
1770, 1790 cm−1 (aromatic ring), 3130 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.4, 1.4 Hz), 
7.8 (1H, d, J = 1.6 Hz), 7.9 (2H, dd, J = 8.8, 1.6 Hz), 8.1–
8.2 (4H, m), 8.7 (1H, d, J = 1.6 Hz). 13C NMR (100 MHz, 
DMSO) δ (ppm) 100.9, 115.0, 126.1, 135.2, 145.4, 156.0. 
MS m/z: calcd for C18H11N5O5 found 377.09 (M–H)−: 
376.47.
5i: 6-(4-nitrophenoxy)-2-(3-nitrophenyl)-1H-imidazo 

[4,5-b]pyridine Yield: 29%. M.P. 149  °C–151  °C. IR 
v = 1380 cm−1 (N–O str), 1160 cm−1 (C–O ether), 1610, 
1720, 1770 cm−1 (aromatic ring), 3490 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.4, 1.4 Hz), 
7.6 (1H, dd, J = 8.7, 7.6  Hz), 7.8 (1H, d, J = 1.6  Hz), 8.0 
(1H, dd, J = 7.9, 1.6  Hz), 8.1–8.2 (4H, m) 8.7 (1H, d, 
J = 1.6 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 100.9, 
117.2, 126.9, 140.4, 156.0. MS m/z: calcd for C18H11N5O5 
found 377.20 (M–H)−: 376.59.
5j: 2-(2-bromophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 33%. M.P. 170  °C–172  °C. IR 
v = 1490 cm−1 (N–O str), 1230 cm−1 (C–O ether), 1680, 
1710, 1820  cm−1 (aromatic ring), 3300  cm−1 (O–H 
str) 1H NMR: (600  MHz, DMSO) δ 7.3 (2H, dd J = 8.3, 
1.2 Hz), 7.3–7.5 (2H, m), 7.6 (1H, d, J = 1.7 Hz), 7.7 (1H, 
dd, J = 7.9, 1.1 Hz), 7.9 (1H, dd, J = 7.6, 1.6 Hz), 8.1 (2H, 
dd, J = 8.3, 2.1  Hz), 8.4 (1H, d, J = 1.7  Hz). 13C NMR 
(100  MHz, DMSO) δ (ppm) 100.9, 112.5, 126.3, 140.4, 
156.0. MS m/z: calcd for C18H11BrN4O3 found 410.01 
(M–H)−: 409.43.
5k: 2-(4-chlorophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 30%. M.P. 142  °C–144  °C. IR 
v = 1380 cm−1 (N–O str), 1180 cm−1 (C–O ether), 1690, 
1850, 1730  cm−1 (aromatic ring), 3230  cm−1 (O–H 
str) 1H NMR: (600  MHz, DMSO) δ 7.3 (2H, dd, J = 8.3, 
1.2 Hz), 7.6 (1H, d, J = 1.6 Hz), 7.7–7.8 (4H, m), 8.1 (2H, 
dd, J = 8.3, 2.1  Hz), 8.4 (1H, d, J = 1.6  Hz). 13C NMR 
(100  MHz, DMSO) δ (ppm) 100.9, 115.0, 128.0, 135.2, 
151.2, 156.0. MS m/z: calcd for C18H11ClN4O3 found 
366.05 (M–H)−: 365.04.
5l: 2-(4-methylphenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 32%. M.P. 160  °C–162  °C. IR 
v = 1350 cm−1 (N–O str), 1240 cm−1 (C–O ether), 1650, 
1710, 1810  cm−1 (aromatic ring), 3140  cm−1 (O–H str) 
1H NMR: (600 MHz, DMSO) δ 2.3 (3H, s), 7.2–7.3 (4H, 
m), 7.66 (1H, d, J = 1.8 Hz), 7.9 (2H, dd, J = 7.9, 1.6 Hz), 
8.1–8.1 (3H, m). 13C NMR (100  MHz, DMSO) δ (ppm) 
100.9, 115.0, 129.3, 139.7, 140.4, 151.2, 156.0. MS m/z: 
calcd for C19H14N4O3 found 346.10 (M–H)−: 345.57.
5m: 5-methyl-2-[6-(4-nitrophenoxy)-1H-imidazo[4,5-

b]pyridin-2-yl]phenol Yield: 28%. M.P. 142 °C–144 °C. IR 
v = 1410 cm−1 (N–O str), 1120 cm−1 (C–O ether), 1630, 

1710, 1720  cm−1 (aromatic ring), 3410  cm−1 (O–H str) 
1H NMR: (600 MHz, DMSO) δ 2.2 (3H, s), 7.2–7.2 (2H, 
m), 7.3 (2H, dd, J = 8.3, 1.2  Hz), 7.6 (1H, d, J = 1.7  Hz), 
7.6 (1H, dd, J = 8.1  Hz), 8.1 (1H, d, J = 1.7  Hz), 8.1 (2H, 
dd, J = 8.3, 2.1 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 
21.4, 100.9, 115.8, 127.8, 140.4, 152.3, 158.7. MS m/z: 
calcd for C19H14N4O4 found 362.10 (M–H)−: 361.15.
5n: 2-(2-methylphenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 41%. M.P. 135  °C–137  °C. IR 
v = 1450 cm−1 (N–O str), 1140 cm−1 (C–O ether), 1730, 
1810, 1730  cm−1 (aromatic ring), 3120  cm−1 (O–H str) 
1H NMR: (600  MHz, DMSO) δ 2.2 (3H, s), 7.3 (2H, dd, 
J = 8.4, 1.2 Hz), 7.3 (1H, dd, J = 7.9, 1.1 Hz), 7.4–7.6 (2H, 
m), 7.6 (1H, d, J = 1.8  Hz), 7.7 (1H, dd, J = 7.7, 1.6  Hz), 
8.1–8.1 (3H, m). 13C NMR (100  MHz, DMSO) δ (ppm) 
19.8, 100.9, 124.4, 130.7, 140.4, 151.2, 156.0. MS m/z: 
calcd for C19H14N4O3 found 346.10 (M–H)−: 345.47.
5o: 2-(3-bromophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 30%. M.P. 166  °C–168  °C. IR 
v = 1490  cm−1 (N–O str), 1190  cm−1 (C–O ether), 1660, 
1720, 1740 cm−1 (aromatic ring), 3340 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.3, 1.2 Hz), 
7.4 (1H, td, J = 8.0  Hz), 7.5 (1H, dd, J = 8.0, 1.6  Hz), 7.6 
(1H, dd, J = 8.0, 1.5  Hz), 7.7 (1H, d, J = 1.6  Hz), 8.0 (1H, 
s, J = 1.5  Hz), 8.1 (2H, dd, J = 8.3, 2.1  Hz), 8.4 (1H, d, 
J = 1.6  Hz) 13C NMR (100  MHz, DMSO) δ (ppm) 100.9, 
126.8, 135.2, 140.4, 151.5, 156.0. MS m/z: calcd for 
C18H11BrN4O3 found 410.0 (M–H)−: 409.45.
5p: 2-(3-methylphenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 34%. M.P. 148  °C–150  °C. IR 
v = 1470  cm−1 (N–O str), 1250  cm−1 (C–O ether), 1670, 
1750, 1860  cm−1 (aromatic ring), 3560  cm−1 (O–H str) 
1H NMR: (600  MHz, DMSO) δ 2.2 (3H, s), 7.2–7.3 (3H, 
m), 7.5 (1H, dd, J = 7.9, 7.7 Hz), 7.6–7.7 (2H, m), 7.9 (1H, 
dd, J = 1.6, 1.5 Hz), 8.1–8.2 (3H, m). 13C NMR (100 MHz, 
DMSO) δ (ppm) 20.9, 100.9, 119.7, 135.2, 151.2, 151.5, 
156.0. MS m/z: calcd for C19H14N4O3 found 346.10 
(M–H)−: 345.50.
5q: 2-(3-methylphenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 40%. M.P. 171  °C–173  °C. IR 
v = 1330  cm−1 (N–O str), 1160  cm−1 (C–O ether), 1680, 
1650, 1820 cm−1 (aromatic ring), 3340 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 2.2 (3H, s), 7.2–7.4 (3H, m), 
7.4 (1H, dd, J = 7.9, 7.7  Hz), 7.6–7.6 (2H, m), 7.9 (1H, s, 
J = 1.5 Hz), 8.1–8.2 (3H, m). 13C NMR (100 MHz, DMSO) 
δ (ppm) 20.9, 100.9, 117.2, 128.4, 130.4, 140.4, 151.5, 156.0. 
MS m/z: calcd for C19H14N4O3 found 346.10 (M–H)−: 
345.41.
5r: 5-methoxy-2-[6-(4-nitrophenoxy)-1H-imidazo[4,5-b] 

pyridin-2-yl]phenol Yield: 31%. M.P. 144  °C–146  °C. 
IR v = 1370  cm−1 (N–O str), 1260  cm−1 (C–O ether), 
1720, 1710, 1690 cm−1 (aromatic ring), 3310 cm−1 (O–H 
str) 1H NMR: (600 MHz, DMSO) δ 3.8 (3H, s), 6.5 (1H, 
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d, J = 1.6  Hz), 7.0 (1H, dd, J = 8.4, 1.6  Hz), 7.3 (2H, dd, 
J = 8.3, 1.3  Hz), 7.5–7.5 (2H, m), 8.1 (2H, dd, J = 8.3, 
2.1  Hz), 8.3 (1H, d, J = 1.7  Hz). 13C NMR (100  MHz, 
DMSO) δ (ppm) 55.4, 100.6, 117.2, 135.2, 156.0, 161.8. 
MS m/z: calcd for C19H14N4O5 found 378.09 (M–H)−: 
377.52.
5s: 2-(3,4-dimethoxyphenyl)-6-(4-nitrophenoxy)-1H-

imidazo[4,5-b]pyridine. Yield: 38%. M.P. 166 °C–167 °C. 
IR v = 1350  cm−1 (N–O str), 1130  cm−1 (C–O ether), 
1655, 1690, 1710  cm−1 (aromatic ring), 3320  cm−1 
(O–H str) 1H NMR: (600  MHz, DMSO) δ 3.7 (3H, s), 
3.8 (3H, s), 6.5 (1H, d, J = 6.2 Hz), 7.3 (2H, dd, J = 8.4, 
1.4 Hz), 7.4 (1H, d, J = 1.7 Hz), 8.0 (1H, d, J = 1.7 Hz), 
8.1 (2H, dd, J = 8.3, 2.1  Hz). 13C NMR (100  MHz, 
DMSO) δ (ppm) 56.1, 111.0, 119.7, 128.2, 140.4, 152.3, 
156.0. MS m/z: calcd for C20H16N4O5 found 392.11 
(M–H)−: 391.53.
5t: 2-(3-chlorophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 26%. M.P. 158  °C–160  °C. IR 
v = 1380 cm−1 (N–O str), 1220 cm−1 (C–O ether), 1665, 
1780, 1670 cm−1 (aromatic ring), 3540 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.3, 1.2 Hz), 
7.4–7.5 (2H, m), 7.6 (1H, dd, J = 8.0, 1.6 Hz), 7.7 (1H, d, 
J = 1.6  Hz), 7.8 (1H, s, J = 1.5  Hz), 8.1 (2H, dd, J = 8.3, 
2.1  Hz), 8.4 (1H, d, J = 1.6  Hz). 13C NMR (100  MHz, 
DMSO) δ (ppm) 100.9, 119.7, 126.8, 129.5, 151.7, 156.0. 
MS m/z: calcd for C18H11ClN4O3 found 366.05 (M–H)−: 
365.55.
5u: 2-(3-bromophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 41%. M.P. 160  °C–162  °C. IR 
v = 1330  cm−1 (N–O str), 1280  cm−1 (C–O ether), 1620, 
1830, 1790 cm−1 (aromatic ring), 3130 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.3, 1.2 Hz), 
7.6 (1H, d, J = 1.7  Hz), 7.7 (2H, dd, J = 8.2, 1.6  Hz), 7.8 
(2H, dd, J = 8.2, 1.6  Hz), 8.1 (2H, dd, J = 8.3, 2.1  Hz), 8.4 
(1H, d, J = 1.7 Hz). 13C NMR (100 MHz, DMSO) δ (ppm) 
100.9, 119.7, 128.3, 135.2, 151.2, 156.0. MS m/z: calcd for 
C18H11BrN4O3 found 410.0 (M–H)−: 409.46.
5v: 6-(4-nitrophenoxy)-2-(3-nitrophenyl)-1H-imidazo 

[4,5-b]pyridine. Yield: 32%. M.P. 128  °C–130  °C. IR 
v = 1340 cm−1 (N–O str), 1240 cm−1 (C–O ether), 1680, 
1840, 1770 cm−1 (aromatic ring), 3210 cm−1 (O–H str) 1H 
NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.4, 1.4 Hz), 
7.6 (1H, dd, J = 8.6, 8.0  Hz), 7.7 (1H, d, J = 1.6  Hz), 8.1 
(2H, dd, J = 8.4, 2.1  Hz), 8.3 (1H, dd, J = 8.0, 1.9  Hz), 
8.5 (1H, dd, J = 8.6, 1.9  Hz), 8.6 (1H, d, J = 1.6  Hz), 8.9 
(1H, dd, J = 1.6, 1.5 Hz). 13C NMR (100 MHz, DMSO) δ 
(ppm) 100.9, 117.8, 135.2, 151.2, 156.0. MS m/z: calcd for 
C18H11N5O5 found 377.07 (M–H)−: 376.45.
5w: 2-(2-fluorophenyl)-6-(4-nitrophenoxy)-1H-imidazo 

[4,5-b]pyridine. Yield: 29%. M.P. 140  °C–142  °C. IR 
v = 1390  cm−1 (c), 1240  cm−1 (C–O ether), 1630, 1840, 
1690  cm−1 (aromatic ring), 3310  cm−1 (O–H str) 1H 

NMR: (600 MHz, DMSO) δ 7.3 (2H, dd, J = 8.3, 1.4 Hz), 
7.3–7.5 (3H, m), 7.6 (1H, d, J = 1.7  Hz), 7.9 (1H, dd, 
J = 7.6, 1.6  Hz), 8.1 (2H, dd, J = 8.3, 2.1  Hz), 8.4 (1H, 
d, J = 1.7  Hz). 13C NMR (100  MHz, DMSO) δ (ppm) 
100.9, 115.0, 130.6, 151.2, 160.4. MS m/z: calcd for 
C18H11FN4O3 found 350.08 (M–H)−: 349.53.

Biological evaluation
All synthesised compounds were subjected to anti-tuber-
cular activity against the pathogenic strain for Mycobac-
terium tuberculosis (H37Rv) ATCC 27294. M. tuberculosis 
(Mtb) H37Rv ATCC 27294 used for determination of MIC 
was cultured according to method reported previously by 
Martin et al. [42]. A single seed lot maintained at − 70 °C 
was used for obtaining the inoculums for all the experi-
ments. The bacteria was grown in roller bottles contain-
ing Middlebrook 7H9 broth supplemented with 0.2% 
glycerol, 0.05% Tween 80 (Sigma), and 10% albumin dex-
trose catalase obtained from Difco Laboratories, USA, at 
37 °C for 7–10 days. The cell colony was harvested by car-
rying out centrifugation then it was washed twice in 7H9 
broth again it was suspended in fresh 7H9 broth. Sev-
eral aliquots of 0.5 ml were dispensed and the seed lots 
of suspension was stored at − 70  °C for further use. To 
test the viability of prepared culture one of the vial was 
thawed and plate cultured to determine the colony form-
ing unit (CFU). For compounds 5a–w, stock solutions 
and dilutions were prepared, all test compound stocks 
and dilutions were prepared in DMSO. Minimum Inhibi-
tory Concentrations (MIC) of all test compounds were 
determined in Middlebrook 7H9 broth by the standard 
microdilution method. In a 384 well plate 1 ml of serial 
two-fold dilutions of test compound was poured in con-
centration range of 100 µM–0.19 µM. The control wells 
contained media and culture controls only; Isoniazid 
was used as standard reference for the assay. As per the 
reported method, 40 ml (3–7 × 105 CFU/ml) of the bac-
terial culture was added to all the wells. Only the control 
wells were devoid of culture. The plates were incubated at 
37 °C for 5 days packed in gas permeable polythene bags. 
After the completion of incubation period, each well was 
introduced with a freshly prepared 1:1 mixture of Resa-
zurin (0.02% in water), and 10% Tween 80 with 8 ml in 
quantity. It was understood that change in colour indi-
cates growth or inhibition, if the colour of solution in well 
changes to blue then it is assumed as inhibition and if 
changes to pink then growth of the culture. To determine 
this change all the plates were again incubated for 24  h 
at 37 °C and then the change in each well was observed. 
A concentration at which change of colour from blue to 
pink in inhibited shall be considered as the MIC. Solu-
tions from all the wells were studied for their absorbance 
at 575 nm and 610 nm then ratio was calculated, an 80% 
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inhibition was considered as MIC. The minimum bacteri-
cidal concentration (MBC) is the lowest concentration of 
an antibacterial agent required to kill the bacteria under 
study. Aliquots from sample wells (MIC and higher) 
from the MIC plates were diluted 1:10 and sub cultured 
on 7H10 agar plates. These were incubated at 37  °C for 
3–4 weeks (without test compounds), CFU was studied. 
The lowest concentration of test compound that resulted 
in a reduction of about two log10 CFU from the initial 
unit was considered as MBC.

Molecular docking
Crystal structure of protein (PDB code: 4KW5) was 
obtained from RCSB protein Data Bank. The receptor 
molecule was refined using protein preparation wizard 
module on the maestro molecular modeling interphase, 
Schrodinger software. Ligands-glycerol, imidazole, FAD 
and ethyl ({2-[(1,3-benzothiazol-2-ylcarbonyl)amino]
thiophen-3-yl}carbonyl)carbamate were already pre-
sent within the receptor in bound form. All ligands 
were removed except ethyl ({2-[(1,3-benzothiazol-2-yl-
carbonyl)amino]thiophen-3-yl}carbonyl)carbamate to 
allow for docking protocol [43–50]. For this study, all the 
ligands were prepared and docked for in flexible docking 
mode and atoms located within a range of 3.0 Å from the 
amino acid residues were selected in the active site. The 
docking calculations and energy minimization were set in 
the ligand docking module, most of the parameters were 
set default. This cavity consisted of amino acid residues 
Lys134, Tyr314, Ser228, Lys367, Asn385, Gln336, His132, 
Val365, Gln334, Cys387, Tyr60, Lys418. This cavity was 
selected on the basis of reported crystal structure of 
lead molecule ethyl ({2-[(1,3-benzothiazol-2-yl carboxyl)
amino]thiophen-3-yl}carbonyl) carbamate.

Results and discussion
Chemistry
The process of four step sequence was initiated with acet-
ylation of 5,6-diaminopyridine-3-ol 1 on reaction using 
acetic anhydride to form compound 2. Detail reaction 
data is not mentioned for this step in the manuscript as 
this is well known step in organic synthesis. Further, com-
pound 2 was treated with potassium carbonate diluted in 
dimethyl formamide and latter with p-chloronitroben-
zene to form ether linkage 3. The reaction sequence was 
continued with process of deacetylation by refluxing 
with 70% sulphuric acid and 10% sodium hydroxide for 
20–30  min to obtained compound 4. Compound 4 was 
treated with various substituted aryl aldehydes to get 
desired derivatives. Reaction steps were monitored by 
TLC. Spectroscopic studies were carried out for all the 
synthesized compounds including intermediates. The IR 

spectrum showed absorption bands at 1540 cm−1 (N–O 
str) confirms the presence of nitro group, 1180  cm−1 
(C–O str) confirms the ether linkage, bands at 1480 cm−1, 
1550 cm−1, 1690 cm−1, 1740 cm−1 indicates the presence 
of aromatic rings. 1H NMR study displays the protons 
between δ 7.3 and 8.3 belongs to aromatic ring of imida-
zopyridine. The 13C NMR studies indicate the aromatic 
carbons. The compounds were also confirmed by mass 
analysis.

Molecular docking
The molecular docking study was carried out to uncover 
the best possible binding modes for newly synthesized 
derivatives with the enzyme (DprE1). The docking simu-
lations were carried out by Glide docking tool of Maes-
tro molecular modeling interphase (Schrodinger, USA). 
The receptor employed here was specifically DprE1 (PDB 
code: 4KW5) obtained from RCSB Protein Data Bank 
(RCSB-PDB). The initial crystal structure consisted of the 
bound ligand, it was removed and the missing loops were 
added. The docking scores of all the compounds were 
presented in (Table  2). The interacting amino acid resi-
dues were identified as Tyr 314, Lyn134, Trp230, Gln 334, 
Asp389, Phe313, Ser228, Gln312, Lys418, Trp320, Tyr60. 
The binding modes of the four compounds are presented 
in (Fig. 1). Imidazopyridine nucleus of compound 5c has 
shown number of overlaps in pi–pi stacking with Trp230, 
and Tyr314 also H-bond was observed between nitrogen 
of pyridine of Imidazopyridine nucleus and Ser228. Both 
the hydroxyl groups on substituted phenyl ring shows 
interaction with Gln312. Nitro on phenyl ring connected 
to Imidazopyridine nucleus by ether linkage shows inter-
action with Lys418. In compound 5g, nitrogen of Imi-
dazopyridine ring forms hydrogen bond with Ser 228. 
Tyr314 also shows pi–pi stacking with Imidazopyridine 
nucleus. Compound 5i emphasizes on interactions of 
oxygen, proton of nitro group on phenyl ring connected 
by ether linkage with Trp230, Phe313 respectively where 
as two oxygen and a proton from nitro group on substi-
tuted phenyl ring forms H-bonds with Tyr60, Asp389 and 
Gln334 respectivey, proton also forms overlapping salt 
bridge with Asp389. In compound 5u, nitrogen from Imi-
dazopyridine ring forms H-bond with Ser228 and pi–pi 
stacking with Tyr314, oxygen of phenyl substituted nitro 
group has shown interaction with Gln 312. Interactions 
produced by these molecules are quite similar to the lead 
molecule TCA1, this directs that a substitution with Imi-
dazopyridine nucleus may contribute towards the DprE1 
selectivity leading to development of the target specific 
lead molecules for this series forming potent antituber-
cular agents.
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Antitubercular activity
In vitro anti-tubercular studies for determination of 
minimum inhibitory concentration (MIC) and minimal 
bactericidal concentration (MBC) The in  vitro studies 
were carried out on M. tuberculosis H37Rv (ATCC 27294) 
strain to determine MIC of test compounds with Isonia-
zid as standard reference. Microbial culture was devel-
oped on Middlebrook 7H9 broth supplemented with 
0.2% glycerol, 0.05% Tween 80 (Sigma), and 10% albumin 
dextrose catalase. The test compounds were prepared as 
stock and dilutions in DMSO and MIC was determined 
by microdilution technique. After the incubation period 
of culture in presence or absence of test compounds, the 
viability of bacteria was determined by observing the col-
our change from blue to pink of resazurin mixture which 
acts as indicator of the inhibitory activity and potency. It 
was found that compounds 5c, 5g, 5i and 5u exhibited 
MIC between 0.5 and 0.8 µM which is found very close 
to the standard reference Isoniazid with MIC of 0.3 µM. 
The compounds with good MIC were found to be sub-
stituted with nitro, methoxy, hydroxyl and halogens like 
fluorine, chlorine, bromine. Earlier it was reported that 
nitro group containing compounds inhibit DprE1 selec-
tively due to conversion of the nitro to reduce form and 
then its interaction with Cys387 residue. Here, we didn’t 
observed any interaction of synthesized compounds with 
Cys387 but most of compounds exhibited good docking 
score with better In vitro antitubercular activity. Further-
more, we have plan to test the compounds with subject to 
enzyme specific DprE1 inhibitory activity.

Conclusion
We have reported a series of 6-(4-nitrophenoxy)-
1H-imidazo[4,5-b]pyridine Derivatives 5a–w. Newly 
synthesized compounds were tested for their In  vitro 
antitubercular activity on the virulent strain H37RV of 
M. tuberculosis. Few compounds have shown attractive 
antitubercular activity, among the active compounds, 
5c, 5g, 5i and 5v have shown good potency towards M. 
tuberculosis strain. Molecular docking studies were also 
carried out using the reported crystal structure of DprE1, 
we studied flexible binding modes for the synthesized 
compounds in comparison with the cocrystal reference 
molecules TCA1 and BTZ043. Interestingly, same com-
pounds (5c, 5g, 5i and 5v) were come up with excellent 
docking score. Knowledge from the molecular docking 
studies emphasize that further modifications are also 
possible in the series of molecules to develop better com-
pounds for potential DprE1 inhibitory activity. Previ-
ously, it was reported that nitro group gets reduced and 
forms adduct with Cys387 to exhibit DprE1 inhibitory 
activity. Current molecular docking studies strikes on 
interactions of synthesized chemical structures with vari-
ous amino acid residues but does not showed any inter-
action with Cys387 residue but shown excellent docking 
score. These compounds may exhibit DprE1 inhibitory 
activity. This information on ligand binding in active site 
from crystal structure can be utilised for further medici-
nal chemistry efforts to study enzyme specific inhibition 
study (Additional file 1).

Table 2  Data of the in vitro studies for M. tuberculosis (H37Rv) and docking score of synthesized compounds

Compound ID Antitubercular activity MIC 
(μmol/L) on H37RV

Docking score Compound ID Antitubercular activity MIC 
(μmol/L) on H37RV

Docking score

5a 1.2 − 7.234 5m 1.7 − 6.964

5b 1.5 − 7.140 5n 1.2 − 5.761

5c 0.6 − 7.500 5o 1.1 − 6.657

5d 1.1 − 7.400 5p 1.5 − 6.193

5e 1.7 − 6.695 5q 1.4 − 6.186

5f 2.3 − 7.081 5r 1.6 − 7.084

5g 0.5 − 7.698 5s 1.4 − 5.793

5h 1.1 − 7.286 5t 1.8 − 5.761

5i 0.8 − 8.825 5u 0.7 − 8.213

5j 2.1 − 7.611 5v 2.6 − 6.657

5k 1.9 − 6.685 5w 1.0 − 5.836

5l 1.3 − 5.761 Isoniazid 0.3 − 7.328
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Fig. 1  Binding model of compounds 5c, 5g, 5i and 5u with DprE1 target cavity. It represents hydrogen bonds, hydrophobic interactions and pi-pi 
interactions
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Additional file

Additional file 1. 1H and 13C NMR spectra of all newly synthesized (5a–w) 
compounds.
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