
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-024-09430-8

Timing‑aware analysis of shared cache interference
for non‑preemptive scheduling

Thilo L. Fischer1 · Heiko Falk1

Accepted: 13 September 2024
© The Author(s) 2024

Abstract
In multi-core architectures, the last-level cache (LLC) is often shared between cores.
Sharing the LLC leads to inter-core interference, which impacts system performance
and predictability. This means that tasks running in parallel on different cores may
experience additional LLC misses as they compete for cache space. To compute
a task’s worst-case execution time (WCET), a safe bound on the inter-core cache
interference has to be determined. We propose an interference analysis for set-asso-
ciative shared least-recently-used caches. The analysis leverages timing information
to establish tight bounds on the worst-case interference and classifies individual
accesses as either cache hits or potential cache misses. We evaluated the analysis
performance for systems containing 2 and 4 cores using shared caches up to 64 KB.
The evaluation shows an average WCET reduction of up to 23.3% for dual-core sys-
tems and 8.5% for quad-core systems.

Keywords Shared cache · WCET analysis · Multi-core · Event-arrival curve

1 Introduction

Real-time systems are subject to timing requirements, meaning that the tasks in a
real-time system must be completed before their associated deadline. Otherwise, the
system can fail with catastrophic consequences. In order to verify that the timing
requirements are met even in the worst-case, static analyses need to be performed
on the system. An important property to analyze is the worst-case execution time
(WCET) of each task, which describes the longest duration required to complete an
instance of that task.

 * Thilo L. Fischer
 thilo.leon.fischer@tuhh.de

 Heiko Falk
 heiko.falk@tuhh.de

1 Institute of Embedded Systems, Hamburg University of Technology, Am
Schwarzenberg-Campus 1, 21073 Hamburg, Germany

http://orcid.org/0000-0002-6309-8979
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09430-8&domain=pdf

 Real-Time Systems

Modern architectures use caches to bridge the performance gap between the fast
processor core and the slower memory. Although caches improve the average case
performance of a system, careful analysis is required to determine their worst-case
behavior. When analyzing the behavior of a cache, cache-hit-miss-classifications
(CHMC) are used to describe whether an access will be a hit, a miss, or result in
unknown behavior. These classifications can be used to derive a safe upper bound on
the WCET. Analyses (Ferdinand and Wilhelm 1999; Touzeau et al. 2019) based on
the well established framework of abstract interpretation (Cousot and Cousot 1977)
have been developed to analyze the contents of caches. These analyses perform data-
flow analyses to determine the maximal and minimal intra-task cache interference
for each access to a particular cache block. The result of these data-flow analyses
directly induces the CHMC classifications when considering the associativity of the
cache.

In modern systems, the trend is shifting from single-core to multi-core systems,
where the memory hierarchy typically consists of multiple cache levels, with the last
level cache shared between cores. The parallel execution of tasks on different cores
influences the state of the shared cache, invalidating the cache hit classifications if
the additional cache conflicts due to cache sharing are not considered. For this rea-
son, the effects cache sharing have to be taken into account in the system analysis.
However, inter-core interference on shared caches is notoriously difficult to quan-
tify. This unpredictability leads to potential overestimation of the worst-case timing
behavior. To avoid this overestimation, it is essential to establish a tight bound on
the effects of inter-core cache interference.

In this paper, we propose a novel analysis approach to derive cache hit classi-
fications for individual accesses, considering inter-core interference. The approach
is applicable to set-associative shared caches using the least-recently-used (LRU)
replacement policy. To quantify inter-core interference, we model cache accesses
issued by each task as an event stream. These event streams are characterized using
the concept of event-arrival curves, which have been applied previously in network
calculus (Le Boudec and Thiran 2001) and real-time calculus (Thiele et al. 2000).
By applying the concept of event-arrival curves to shared caches, we can examine
the inter-arrival time between multiple cache access events and quantify the impact
on the shared cache.

This perspective on inter-core cache interference essentially induces a time-to-
live (TTL) for information stored in the shared cache. The TTL of a cache block cor-
responds to the time frame during which interfering tasks cannot issue a sufficient
number of conflicting accesses to evict the cache block. Consequently, if a block
is accessed before its time-to-live has expired, the access will definitely result in a
cache hit. We use the term interference curve for an event-arrival curve describing
shared cache interference in this paper.

For a single interfering task, the interference curve can be derived from the con-
trol-flow graph of that task. This was first demonstrated in Fischer and Falk (2023).
However, when multiple tasks run on a single interfering core, they can collaborate
to evict data from the shared cache. In this paper, we extend the concept of interfer-
ence curves from a single task to multiple tasks executing on the same core using
the max-plus algebra. This paper focuses on non-preemptive scheduling, as this

Real-Time Systems

application has not been explored previously. Interference curves have been applied
to preemptively scheduled systems in Fischer and Falk (2024). Non-preemptive
scheduling is of interest for real-time systems as it avoids context switching costs. In
the presence of caches, each context switch creates cache-related preemption delay
(Altmeyer and Maiza Burguière 2011). In particular for the multi-level cache hier-
archy considered in this paper, there exist additional indirect effects of preemptions
that increase the context switching costs (Chattopadhyay and Roychoudhury 2014).
Non-preemptive scheduling avoids these delays.

The key contributions of this paper are:

• Formulation of an ILP model to derive event-arrival curves for inter-core cache
interference by a single task.

• Modelling of non-preemptive scheduling using interference curves.
• Design of a data-flow analysis that leverages timing information to classify

shared cache accesses as cache hits or potential misses using interference curves.
• Correctness proofs for all components of the presented analysis.
• An evaluation demonstrating the scalablility and significant improvements over

previous methods (Hardy et al. 2009; Nagar and Srikant 2016).

The remainder of this paper is structured as follows: in Sect. 2, related research is
discussed. Section 3 discusses the system model and explores existing analyses for
shared caches. Section 4 describes the general workflow of the presented analy-
sis. We introduce the event-arrival perspective on cache interference in Sect. 5. In
Sect. 6 accesses to the shared cache are classified as cache hits or potential misses
by applying the interference curves in a data-flow analysis. An evaluation using real-
istic workloads is presented in Sect. 7. Section 8 concludes the paper.

2 Related work

For over two decades, many different facets of cache behavior and cache-related
delays have been analyzed. Ferdinand and Wilhelm (1999) introduced may and must
analyses that determine whether data will potentially or definitely be present in the
cache. The concrete state of the system is abstracted using abstract interpretation
(Cousot and Cousot 1977) to the minimal and maximal age of a cache block. Twenty
years later, Touzeau et al. (2019) presented an abstraction based on zero-suppressed
binary decision diagrams that allows for a precise analysis of may/must information.

The may and must analyses are qualitative analyses. Each individual access to
the cache is analyzed and classified as either a hit, a miss, or unknown. In contrast,
quantitative analyses provide an upper bound on the total delay due to some cache
behavior. One such quantitative analysis is the persistence analysis, which deter-
mines whether a set of accesses can result in at most one cache miss (Ferdinand and
Wilhelm 1999; Reineke 2018).

A survey of multi-core analysis techniques was published by Maiza et al.
(2019), whereas cache specific analyses were surveyed by Lv et al. (2016).

 Real-Time Systems

Cache-related preemption delay (CRPD) occurs when multiple tasks are
assigned to a single core and preemptions are allowed. CRPD for single-level
caches has been studied extensively (Lee et al. 1998; Altmeyer and Maiza Bur-
guière 2011). Chattopadhyay and Roychoudhury (2014) presented the first CRPD
analysis for a two-level cache hierarchy, focusing on non-inclusive caches. Zhang
and Koutsoukos (2016) developed an analysis for inclusive cache hierarchies. The
more recent work by Rashid et al. (2022) introduced the concept of L1-UCBs and
L2-UCBs to compute CRPD in a two level non-inclusive cache hierarchy.

Xiao et al. (2017, 2022) integrated the effects of inter-core interference from
shared caches directly into the schedulability analysis for non-preemptive sys-
tems. They compute an interference penalty by multiplying the number of
accesses to potentially evicted cache blocks by a cache miss penalty.

Yan and Zhang (2008) and Zhang and Yan (2009) analyzed direct-mapped
shared instruction caches in multi-core systems. Yan and Zhang (2008) differen-
tiate between accesses which are contained in loops and those which are not in
loops. An L2 cache hit is degraded to a cache miss if an interfering task accesses
the same cache set. Zhang and Yan (2009) models inter-core interference in an
ILP to determine the worst-case execution time.

Hardy et al. (2009) analyzed set-associative shared caches in multi-core sys-
tems by counting the number of potentially interfering cache blocks. This value
is called the cache block conflict number (CCN). An access to a cache block is
classified as a hit if the number of conflicting blocks is less than the associativity
minus the block age. Liang et al. (2012) extended this approach by incorporat-
ing a lifetime analysis. The lifetime analysis determines which tasks are running
concurrently, as tasks with a disjoint lifetime do not create any mutual interfer-
ence on the cache. While this approach yields safe results, it is pessimistic as it
assumes that an interfering task can potentially issue all interfering accesses con-
currently at any point in time.

Kelter (2014) analysed shared caches by evaluating all possible state combina-
tions of tasks executing on different cores. Due to the high analysis overhead, this
approach proved to be feasible only for small systems.

Zhang et al. (2022) aimed to reduce the pessimism of the CCN analysis by
excluding infeasible interferences. Memory accesses are grouped based on their
location in the control-flow graph. This creates a happens-before partial order on
all accesses contained in a task. Using this ordering, infeasible combinations of
interfering accesses are excluded from the interference estimation. The additional
execution time caused by cache misses due to interference is computed using the
cumulative execution count of all accesses to potentially evicted cache blocks. This
upper bound for the additional execution time is named worst-case-extra-execution-
time (WCEET). They evaluate the approach for dual-core systems and compare it to
the CCN approach. The approach is evaluated for a single instance of a single co-
running task. Using the MRTC benchmark suite (Gustafsson et al. 2010), an average
WCET reduction of 13% is reported. However, in the median only a 1% improve-
ment is achieved.

A similar approach was used by Dharishini and Murthy (2021) to analyze
multi-threaded programs running on multi-core systems. Synchronization points

Real-Time Systems

between threads are used to determine which sections of the program may run in
parallel in different threads. This information is then used to reduce the number
of potentially occurring conflicts.

Nagar and Srikant (2014, 2016); Nagar (2016) approach the cache interference
problem from a different perspective. They developed a shared cache analysis by
capturing inter-core interference in an ILP model. The total amount of possible
interfering accesses originating from competing tasks is statically determined and
used to limit the interference experienced by the analysed task. The worst-case
distribution of interfering accesses along the control-flow graph (CFG), which
results in the largest increase in execution time, is then determined by solving the
ILP. The analysis thus determines the worst case interference placement (WCIP).
This approach does not depend on the exact interleaving of memory accesses
issued by different tasks and yielded more precise WCET estimations than the
CCN classification method. In addition to the precise ILP model, an approxi-
mate algorithm is presented, which exhibits similar precision but lower analy-
sis overhead compared to the ILP model. In this paper, we pursue an orthogonal
approach. Instead of limiting the total number of interfering accesses, we exam-
ine how quickly a sequence of multiple accesses may be issued.

The two techniques presented by Zhang et al. (2022) and Nagar (2016) do not
produce a hit or miss classification for any single cache access but only bound
the overall increase in execution time for the complete program. That is, they are
quantitative analyses. The problem of classifying each individual access is more
complex than determining the WCEET in the sense that given a classification of
individual accesses, a safe WCEET value can be determined, but the inverse is
not possible. In this paper, we tackle the harder problem of classifying each indi-
vidual access as a cache hit or potential miss.

Oehlert et al. (2018); Oehlert (2021) presented a method to quantify memory
accesses issued by a task using event-arrival curves. Memory access events are
derived from the program code at the level of basic blocks. To compute an upper
bound on the number of events arriving in a given time frame, an ILP model
using implicit path enumeration is developed. The event-arrival curves are used
to analyze, and subsequently improve, the bus contention in multi-core systems.
Based on this work, we develop an ILP model to quantify inter-core cache inter-
ference. Instead of quantifying the total number of memory accesses, we ana-
lyze how much time is required for a task to access a given number of interfering
cache blocks.

3 System model & background

In this section, we discuss the assumptions made by the analysis on the system archi-
tecture and describe existing analysis approaches to establish the current landscape
of shared cache analysis.

 Real-Time Systems

3.1 System model

The system architecture considered in this paper consists of multiple cores
with private L1 caches, which are connected to a shared L2 cache via a shared
bus. The shared cache uses the least-recently-used (LRU) replacement policy.
The analysis is applicable to set-associative shared caches employing the LRU
replacement policy with associativity A . As cache sets operate independently of
one another, we may consider them in isolation during the analysis. We concen-
trate on instruction caches in this paper because the memory layout of the pro-
gram code is known at compile time. However, the analysis approach is general
and can be applied to data, instruction, and unified caches.

The analysis requires that the minimal and maximal blocking time for an
access over the shared bus is known and finite, e.g. due to round-robin arbitration.

We denote the set of all cores by C . In the remainder of the paper, we use the
convention that C ∈ C represents the core of the task currently under analysis,
while C� ∈ C⧵{C} represents an interfering core. The set of tasks executing on
a core C are denoted by TC . We use the convention that � ∈ TC refers to the task
under analysis and � ∈ TC� refers to an interfering task. An instance of a task is
called a job.

In our formalization, we differentiate between the sets TC� ,C� ∈ C⧵{C} to support
partitioned scheduling. Partitioned scheduling refers to the fact that the mapping of a
task to the executing core does not change. However, the analysis is applicable both
to partitioned and non-partitioned scheduling of tasks. When applying the analysis
to non-partitioned scheduling, all tasks � ≠ � can cause shared cache interference
for � . This needs to be considered when determining the interference curves, which
means that the set of tasks potentially executing on a core C′ needs to be updated to ⋃

C∈C TC ⧵ {�} . We note that, due to its higher predictability, partitioned scheduling
will likely lead to more precise analysis results.

We impose no restrictions on the order in which tasks are executed, i.e., there are
no execution order dependencies between tasks. Each task � may be executed repeat-
edly, with a minimal inter-arrival time of Period(�) cycles.

The pair (V� ,E�) represents the control-flow graph (CFG) of � . The set V� con-
tains the nodes in the graph, whereas the edges between nodes are contained in the
set E�.

The set of accesses performed by a task � to the shared cache are denoted by
Acc� , whereas the set of accessed cache blocks is denoted by B� . Each access targets
a particular cache block, which is given by the function cb ∶ Acc� → B�.

Multiple cache accesses may be associated to each node v ∈ V� . However, it is
required that the accesses associated to a node are ordered, i.e., they will be issued
in a specific order when executing v. This is necessary, as the conflicts occurring
between these accesses has to be known during the analysis. This restriction may
prohibit speculative execution and out-of-order execution. These features are prob-
lematic for a cache analysis, because it is no longer possible to statically predict
which accesses are performed or in which order they happen. This is a problem for
WCET analyses in general and not just limited to the presented analysis.

The notation introduced above is summarized in Table 1.

Real-Time Systems

3.2 Background on shared cache analysis

In this section, we will give an introduction into cache analysis and analysis of inter-
core interference for shared caches.

Ferdinand and Wilhelm (1999) introduced the May and Must analyses for LRU
caches. These analyses perform a data-flow analysis on the control-flow graph of the
analyzed task � to determine the minimal and maximal age of every cache block at
each program location.

The Must analysis computes the maximal number of conflicting cache blocks
accessed since the last access to a given cache block. As we focus on a single cache
set at a time, the Must information at particular program location can be represented
by a mapping Must ∶ B� → {0,… ,A − 1} ∪ {∞} , where ∞ indicates that the block
is definitely not contained in the cache. A mapping Must(b) = n < A shows that at
most n conflicting cache blocks have been accessed by the analyzed task since the
last access to b. Consequently, an access to the cache block b would result in a cache
hit.

The difference between the maximal age of a cache block and the associativity of
the cache is called the resilience, which corresponds to the minimal amount of addi-
tional interference for which a cache miss may occur.

The May analysis is the analog to the Must analysis in that it computes the mini-
mal age of cache blocks and can be used to deduce definite cache misses. We denote
the minimal age of a cache block by the mapping May ∶ B → {0,… ,A − 1} ∪ {∞} .
For an in depth description of the Must and May analyses see Ferdinand and Wil-
helm (1999). To differentiate between the information regarding the first and second
level cache, we use a superscript, i.e., Mayl,Mustl for l ∈ {1, 2}.

The May and Must information of the L1 cache can be used to determine the
cache access classification (CAC) for the second level cache. The CAC indicates
whether the access will reach the shared cache always (A), never (N), or whether the
behavior is uncertain (U) (Hardy and Puaut 2008). This is represented by the func-
tion: CAC ∶ Acc� → {A,N,U} . Assuming the access is always performed on the L1
cache, the CAC for the L2 cache is defined as follows:

Table 1 General notation

Symbol Meaning

C Set of all cores
TC Set of tasks assigned to core C
� ∈ TC The task for which to analyze the shared cache
� ∈ TC� , C ≠ C� A task causing interference at the shared cache
A Associativity of the shared cache
Acc� Set of all shared cache accesses from �
B� Set of all cache blocks of �
cb ∶ Acc� → B� Mapping of an access to the targeted cache block
Period(�) Period of task �
(V� ,E�) Nodes and edges in the control-flow graph of task �

 Real-Time Systems

As noted above, without any additional interference, an access will definitely result
in a cache hit, if the Must age of the targeted cache block is less than the cache’s
associativity. For shared caches, the classification process must account for inter-
core interference in addition to intra-task interference. An intuitive approach is to
consider all potentially interfering cache blocks as actually interfering with the ana-
lyzed access. The number of such interfering blocks is called the cache block con-
flict number (CCN). When deriving cache hit classifications, the associativity of the
shared cache is effectively reduced by the conflict number. This approach was pre-
sented by Hardy et al. (2009) and later refined by Liang et al. (2012) to consider
only tasks that may execute in parallel. The pessimism in this approach is apparent
as interfering tasks may not access all potentially interfering cache blocks simulta-
neously, repeatedly, and at any point in time.

Formally, the interference caused by a task � ∈ TC� is defined as:

An access a ∈ Acc� issued by task � running on core C to the shared cache is classi-
fied as a cache hit if and only if:

Instead of classifying accesses to the shared cache individually, Nagar and Srikant
(2014, 2016); Nagar (2016) analyzed shared cache interference by computing an
upper bound on the additional delay. The actual WCET of a task in a multi-core
environment is calculated as the sum of the WCET without interference and the
extra execution time due to inter-core interference.

Next, we will provide an overview of the approach, which works by solving the
so-called worst-case interference placement (WCIP) problem. It is important to
note that the approach is only formulated for a single instance of interfering tasks
in the existing literature (Nagar and Srikant 2014, 2016; Nagar 2016). We will
also introduce an extension of the approach that allows for the analysis of multi-
ple interfering jobs from the same task after explaining the basic approach.

The goal of the approach is to find the worst-case distribution of interfering
accesses in the control-flow graph of the analyzed task, resulting in the largest
increase in execution time. The number of interfering accesses is determined
beforehand from the control-flow graph of the interfering tasks. We call this value
the interference budget. For a single instance of an interfering task, this interfer-
ence budget can be determined by solving an ILP that maximizes the number
of accesses to the shared cache. This method uses the implicit path enumeration
technique (IPET) as presented in Li and Malik (1997).

(1)CAC(a) =

⎧
⎪⎨⎪⎩

A if May1(cb(a)) = ∞

N else ifMust1(cb(a)) < ∞

U otherwise

.

(2)CCN� = |B�| = |{cb(a) ∣ a ∈ Acc�}|.

(3)Must2(cb(a)) +
∑
C�≠C

∑
𝜑∈TC�

CCN𝜑 < A.

Real-Time Systems

Nagar and Srikant present an ILP that provides a precise and safe solution to
the problem and an approximate algorithm, which also provides a safe result. The
approximate algorithm is comparable in precision to the ILP solution but requires
much lower computational effort (Nagar 2016). In the following, we will focus on
the approximate algorithm to solve the WCIP problem.

The algorithm approximates the problem by assuming that all accesses to the
shared cache of the analyzed task lie on a singular path. These accesses are then
ordered by the cache age of the targeted cache block. Accesses with a high age in the
cache are easily evicted and are placed at the front of the queue. The algorithm then
greedily removes accesses from the front of the queue. For each removed access,
the interference budget is reduced according to the resilience of the targeted cache
block, and the interference penalty is increased by one cache miss. The algorithm
stops when the budget is depleted or all accesses have been converted to cache
misses.

A single interfering access can contribute to the eviction of multiple cache
blocks. For this reason, the interference budget is multiplied by the overlapping fac-
tor. The overlapping factor is the maximum number of accesses that can be affected
by a single interfering access. This is the second approximation performed by the
algorithm. The overlapping factor can be determined by a data-flow analysis, which
keeps track of the maximal number of overlapping cache hit paths. A cache hit path
of an access is a path along which the access will experience a cache hit Nagar and
Srikant (2014).

The pseudocode for the approximate WCIP algorithm is shown in Algorithm 1.
In the algorithm, the total interference penalty I is computed by computing a penalty
for each cache set s. The value Bs denotes the interference budget, i.e., the number
of interfering accesses, and CCN(s) is the sum of conflicting cache blocks from all
interfering tasks. The value numhitsk

s
 corresponds to the number of cache accesses

resulting in a cache hit, where the targeted cache block has a resilience of k. This
means that for numhitsk

s
 accesses, the access may result in a cache miss after at least

k interfering accesses. Consequently, the maximal age of the targeted cache block is
A − k . The value os is the overlapping factor as described above.

 Real-Time Systems

Algorithm 1 Compute the approximate WCIP penalty (Nagar and Srikant 2016).

Input: For each cache set s:
interference budget Bs, the cumulative CCN for cache set s: CCN(s),
the number of shared cache accesses numhitsks with resilience k,
the overlapping factor os.
Output: Worst-case cache interference penalty I

1: I ← 0
2: for all cache sets s do
3: Bs ← os ·Bs

4: for k ← 1, . . . ,A do
5: if CCN(s) ≥ k then
6: if Bs ≤ k · numhitsks then
7: I ← I + (

⌈
Bs

k

⌉
· L2miss)

8: Bs ← 0
9: else

10: I ← I + (numhitsks · L2miss)
11: Bs ← Bs − (numhitsks · k)
12: end if
13: end if
14: end for
15: end for

The evaluation in Nagar (2016) reports WCET improvements for 9 out of 27
tasks from the MRTC benchmark suite (Gustafsson et al. 2010). In the evaluation,
interference is generated by a single instance of the task nsichneu.

Note that this algorithm assumes that the number of interfering accesses can
be determined a priori. This value is then used to compute the final WCET esti-
mate of a task. However, when tasks are executed repeatedly, a single interfering
task � may be executed multiple times during the execution of the analyzed task
� . Thus, the interference budget actually depends on the maximal execution time.

Consider the following example for clarification. Let WCET0(�) be the time
required to execute � without any inter-core interference and let the interfering
task � be activated periodically with a minimum inter-arrival time of Period(�)
cycles. � may be executed up to

⌈WCET0(�)

Period(�)

⌉
+ 1 times in a time frame of WCET0(�)

cycles.
To get the total interference budget from � , the execution count of � has to be

multiplied by the number of interfering accesses per execution of � . The result
can then be used to compute the interference penalty I0 using the WCIP approach.

Let WCET1(�) = WCET0(�) + I0 . Due to the increased execution time, the inter-
fering task � may be activated more often. I.e., it is possible that the following holds:

(4)
⌈WCET0(𝜏)

Period(𝜑)

⌉
<
⌈WCET1(𝜏)

Period(𝜑)

⌉
.

Real-Time Systems

Consequently, the interference budget increases due to the higher execution time,
and it is necessary to repeat the computation of the penalty value of the WCIP
approach using an increased interference budget. For this reason, we make the fol-
lowing observation:

Observation 1 When using the WCIP approach to compute the WCET of a task, the
WCIP problem has to be solved iteratively, as the number of interfering accesses is
not known a priori. The iteration can be stopped when the resulting WCET value
has converged.

Without this iterative application, the WCIP approach is only applicable
to systems where each task is executed at most once. To our knowledge, this
dependence between repeated task executions and the WCIP approach has not
been discussed previously. We compare the approach presented in this paper to
the iterative WCIP approach in Sect. 7.

We will now discuss another approach to analyze conflicts in shared caches.
Zhang et al. (2022) present a different quantitative analysis approach. In their
approach, infeasible cache conflicts are eliminated from the interference compu-
tation by considering the order in which conflicts have to occur.

This is done by transforming the control-flow graph of the analyzed task and
the interfering task into an unordered region (UR) control-flow graph. An unor-
dered region is defined to be a cache access that is not contained in a loop, or sets
of cache accesses contained in an out-most loop. The unordered regions are the
nodes of the UR-CFG. The key property of the UR-CFG is that it is loop free.
Thus, when the control of the program has advanced to another UR, it may never
return to a previous UR. All possible paths through the UR-CFG are enumerated
and are named constant execution order paths (CEOP). Due to its reliance on
the constant execution order paths, we refer to this method as the CEOP analysis
approach.

It is now possible to detect infeasible conflicts in the shared cache as the con-
flict pairs between unordered regions can be mutually exclusive. Intuitively, when
an access at the start of � experiences interference in the shared cache from an
access near the end of � , an access performed later by � will never conflict with
an access performed by � at the beginning. Consider two tasks � and � consist-
ing of two unordered regions (UR�

1
,UR�

2
) and (UR�

1
,UR

�

2
) , respectively. When an

access contained in UR�
1
 experiences interference from an access contained in

UR
�

2
 , the accesses contained in UR�

2
 will not conflict with accesses contained in

UR
�

1
 . Note that this obviously only holds for a single instance of the interfering

task �.
The approach then computes the maximal number of shared cache accesses

that are subject to inter-core interference. The interference penalty is determined
by multiplying the number of affected accesses with the L2 cache miss penalty.
To model multiple instances of an interfering task � , the penalty is multiplied by
the number of jobs from � that may execute in parallel to the analyzed task �.

 Real-Time Systems

The evaluation performed in Zhang et al. (2022) compares the analysis pre-
cision of the CEOP analysis to the CCN approach for a single interfering task
instance. The evaluation is performed using the MRTC benchmark suite (Gustafs-
son et al. 2010). In total 169 different task pairings are evaluated. For 63 (37.3%)
task pairings no WCET improvement is achieved. For a total of 92 (54.4%) task
pairs the improvement is ≤ 1% . On average, the WCET is reduced by 13%.

The number of interfering instances is assumed to be known in Zhang et al.
(2022). This means that, like noted for the WCIP approach in Observation 1, an
iterative computation is necessary to compute the final WCET value. Again, to the
best of our knowledge, the iterative nature of the approach for repeated task execu-
tions has not been discussed before.

We note that while the interference computed by the CEOP approach, as
described above, scales linearly with the number of conflicting jobs, the WCIP
approach scales sub-linearly. I.e., in the WCIP method, the penalty occurring due
to two instances of an interfering task is less or equal to two times the penalty of a
single instance. This follows directly from the construction of the WCIP problem.
The number of interferences required to trigger an additional cache miss increases
monotonically until all shared cache accesses are considered cache misses. We cap-
ture this fact in the following observation:

Observation 2 The WCIP approach scales better than the CEOP approach, when the
number of interfering cores / tasks / jobs increases.

The respective evaluations of the WCIP approach and the CEOP approach
assume a single interfering job. The improvement over the baseline CCN analysis
will be smaller when considering repeated task activations. As the median WCET
improvement for the MRTC benchmark suite is 0% and 1% , for WCIP and CEOP
respectively, it is expected that these quantitative approaches perform similar to the
CCN analysis for the periodic task model considered in this paper. We compare the
precision of the WCIP approach to the presented analysis, which solves the harder
problem of classifying individual accesses, in Sect. 7.

4 Analysis overview

We will now give an overview of the analysis presented in this paper. The aim of
the analysis is to classify each access to the shared cache as either a cache hit or a
potential cache miss. This means that the presented analysis is a qualitative analysis,
unlike the WCIP and CEOP approaches, which are quantitative analyses and only
provide an upper bound on the total delay due to cache sharing.

The key idea of the proposed analysis is to analyze the timing of accesses to the
shared cache. At the start of the analysis, we determine how quickly an interfering
task can issue conflicting accesses to the shared cache. Then, we determine for each
access from the analyzed task, how long ago the requested data was inserted into the
shared cache. Using this information, it is possible to determine whether interfering

Real-Time Systems

tasks running on other cores could have evicted the accessed data prior to the ana-
lyzed access. The analysis approach is divided into the following five steps:

1. Initial best-case and worst-case execution time analysis for each task.

2. Cache interference analysis from individual tasks using event-arrival curves.

3. Bounding interference for non-preemptively scheduled task sets.

4. Data-flow analysis to determine cache hit classifications.

5. Final WCET analysis using the new hit classifications.

 We will now give a detailed description of the five analysis steps.
Step 1: To perform the shared cache analysis, we require both worst-case and

best-case timing information on a basic block level. Thus, as the first step, an
isolated timing analysis is conducted for each task. To compute WCET estimates,
accesses to the shared cache are considered to be cache misses. The best-case
execution time (BCET) is computed using a classical age-based abstract domain
as presented by Ferdinand and Wilhelm (1999), without considering the impact
of inter-core interference. The BCET analysis assumes that tasks are not sharing
code across cores. Otherwise, a task running on another core could effectively
prefetch data into the shared cache, while the analyzed task is performing some
other action, such as performing computations using data stored in the private
L1 cache. This would invalidate the BCET estimate. In order to allow for sharing
code across cores, the BCET analysis could assume that every access to shared
code in the shared cache results in a cache hit.

Step 2: Following the initial timing analysis, the event-arrival curves of cache
access events originating from interfering tasks � ∈ TC� are derived. More pre-
cisely, it is determined how much time has to pass for � to access a particular
number of interfering cache blocks by solving an ILP model. The ILP model con-
tains a parameter to specify the required level of interference. As the replacement
algorithm for each cache set operates independently, the ILP model is solved
repeatedly for all cache sets and interference levels from 1 to the cache associa-
tivity. The solutions of the ILP for the different parameters give rise to the inter-
ference curve of � . During this step, the BCET information is used to arrive at a
safe upper bound on the interfering traffic on the shared cache. This step is dis-
cussed in detail in Sect. 5.2.

Step 3: The previous step yields interference information for all interfering
tasks � ∈ TC� . However, when multiple tasks are assigned to execute on a core C′ ,
these tasks can collaborate to evict data from � ∈ TC . In the third step, we extend
the concept of interference curves from individual tasks to a set of tasks running
on a single core C′.

 Real-Time Systems

We analyze the impact of non-preemptively scheduling tasks on an interfering
core C′ by evaluating potential sequences of task executions on C′ and performing
a convolution of the associated event-arrival curves in the max-plus algebra. This
allows us to compute a safe upper bound on the total interference created by an
interfering core executing multiple different tasks in a non-preemptive fashion.
This step is explained in Sect. 5.3. The total inter-core interference experienced
by a task � ∈ TC is then given as the sum of the interference caused by other cores
C� ∈ C⧵{C}.

Step 4: Based on the information from the previous analysis steps, a backward
data-flow analysis (DFA) is performed on the control-flow graph of the analyzed
task (Aho et al. 2007, p. 597ff). The DFA investigates all accesses which potentially
result in a cache hit. An access is considered as a potential-hit, if it results in a cache
hit without any inter-core interference. For each potential-hit there exist correspond-
ing cache accesses which initially caused the relevant cache block to be loaded into
the shared cache. The DFA determines the maximal duration between these pairs
of cache accesses, which load the block into the shared cache and subsequently
access it again. Additionally, it also keeps track of any intra-task interference. By
evaluating the interference curves of interfering cores for the maximal load-access
path duration, the inter-core interference can be safely bounded. This means that
potential-hits can be classified as either definite cache hits or potential cache misses.
The foundations for hit classifications based on timing information are presented in
Sect. 6.1 and the data-flow analysis is presented in Sect. 6.2.

Step 5: We use the access classifications computed in the previous step in a
WCET analysis to determine the final WCET for each task. The results achieved in
this WCET analysis are evaluated in Sect. 7.

5 Interference curves for shared cache interference

This section deals with the first key component of the timing-aware cache interfer-
ence analysis presented in this paper. In Sect. 5.1, we introduce the concept of inter-
ference curves and motivate their use in the analysis of shared cache interference.
The following Sect. 5.2 corresponds to the second step of the analysis as described
in the previous section. In it, we show how interference curves can be derived from
the control-flow graph of a task using best-case execution time information. Finally,
in Sect. 5.3, the third step of the analysis is discussed. The interference curves of
multiple tasks are combined to compute the total interference resulting from a non-
preemptively scheduled set of tasks.

5.1 Definition and motivation of interference curves

We formally introduce interference curves and motivate why it is beneficial to ana-
lyze shared cache interference from this perspective in this section.

Traditionally, shared cache interference has been quantified by counting the num-
ber of cache blocks that an interfering task may load into the shared cache. The

Real-Time Systems

pessimism of this approach becomes apparent when the time that passes between
accesses to the conflicting blocks is considered.

Under the LRU replacement policy, cache blocks are ordered using the least-
recently-used property. Consequently, the age of a cache block b ∈ B� corre-
sponds to the number of different cache blocks, which were stored in the cache
since the last access to b. It follows that multiple accesses to the same conflicting
cache block do not cause further aging of b in the cache, as the set of conflicting
blocks does not change.

Using this observation, we define the notion of an aging-event for a cache-block
in the context of shared cache interference as an access by an interfering task, which
causes the age of an analyzed cache block to increase. Consequently, multiple events
correspond to multiple accesses targeting a set of distinct cache blocks.

Definition 1 (Interference curve) An interference curve �� is a function, which
maps a time frame of Δt cycles to the maximal number of cache blocks accessed by
� ∈ TC� : �� ∶ ℕ0 → ℕ0 , where ℕ0 = ℕ ∪ {0}.

A mapping ��(Δt) = n means that there exists a scenario in which � will
access n different cache blocks during a time frame of Δt cycles. The statement
��(Δt) = n is thus equivalent to the fact that there exists an initial hardware state
and path in the CFG of � that causes accesses to n distinct cache blocks under
the constraint that the best-case duration of the path is less or equal to Δt cycles.
Note that we refer to the best-case execution time here, as the fastest execution of
an interfering task causes the worst-case interference for the analyzed task.

Figure 1 shows an example for such an interference curve. The x-axis shows a
time interval, and the y-axis represents how many different cache blocks may be
accessed. In this example, the interference grows quickly in the beginning. Two
interfering accesses may happen almost instantaneously. After a time frame of 122
cycles, the task may have issued accesses to 3 different cache blocks. However, the
time interval required to observe a larger amount of interference is significantly

Fig. 1 Example of an event-arrival curve expressing shared cache interference. Derived from the
aiifft01 benchmark of the EEMBC AutoBench suite

 Real-Time Systems

higher. To observe interference from 8 conflicting blocks takes 1119 cycles. This
example curve has been derived from the aiifft01 benchmark from the EEMBC
benchmark suite (Poovey et al. 2009), with a shared cache size of 4 KB using the
approach presented in the upcoming subsection.

This clearly demonstrates the pessimism in the currently available analysis tech-
niques (Liang et al. 2012; Nagar 2016; Zhang et al. 2022). All these techniques
assume that every conflicting block may be accessed instantaneously by an inter-
fering task. However, we can see here that it takes a substantial amount of time for
the interfering task to generate the traffic on the shared cache. Accounting for this
delayed onset of interference after storing data in the shared cache is the key idea
behind the timing-aware shared cache analysis presented in this paper.

5.2 Deriving interference curves of a task

This section shows how an interference curve, as seen in Fig. 1, can be derived from
a task’s control-flow graph.

To derive an event arrival curve from the CFG of a task � , we have to associate
cache accesses to the nodes in the CFG (V�,E�) . For data caches, this relation arises
from the memory-accessing instructions contained in the program and their respec-
tive target addresses. For instruction caches, cache accesses originate from fetching
operations in the processor pipeline, so we have to consider the pipeline behavior.

Let ⇝⊂ V𝜑 × B𝜑 be a relation that contains the pair (v, b) iff executing the node
v ∈ V� may cause an access to the block b ∈ B� . A path � is a sequence of nodes
� = (v1,… , vp) with (vi, vi+1) ∈ E�, i ∈ {1,… , p − 1} . The execution of a path � in
the CFG of � causes another task � to experience n interfering cache accesses:

Using this relation, we derive the interference curve of a task � . Note that �� is a
step function. Furthermore, we are only interested in the arrival of the first A events,
as after A events all previously cached blocks are evicted from an LRU cache. Thus,
we can capture a task’s cache access behavior by deriving the minimal time required
to access 1, 2, … , A distinct cache blocks. These values correspond to the location
of the steps in Fig. 1, where the interference jumps upwards.

To compute the minimal time required for a particular number of events, we
utilize an ILP model based on the implicit path enumeration technique (Li and
Malik 1997). We base the model on the variant presented by Oehlert et al. (2018),
which evaluates bus contention in a multi-core system. As the basic construction
of the ILP model is out of the scope of this paper, we focus only on the additional
constraints required to model cache interference. In the following, we present the
variables and constraints introduced into the model to capture inter-core cache
interference. The notation is summarized in Table 2.

To decide whether a particular cache block will contribute to the interfer-
ence, we introduce a binary decision variable for each cache block. This decision

(5)n =
|||||
⋃
v∈�

{
b ∈ B� | v ⇝ b

}|||||
.

Real-Time Systems

variable indicates whether the cache block is accessed on the considered path.
The variables are denoted by tb for b ∈ B� . The indicator variables tb are con-
strained by the constraints given in Eq. (6) and Eq. (7), where qv is the variable
containing the execution count of v.

Thus, if any node v is executed which may access the block b, the indicator variable
tb may take the value 1, otherwise it is set to 0. The number of variables tb depends
on the number of cache blocks potentially accessed by � . For an instruction cache,
this scales linearly with the code size of the analyzed task � and is inversely propor-
tional to the cache line size.

To determine the time frame during which n cache blocks may be accessed,
only paths containing accesses to at least n cache blocks are considered:

In summary, the cache interference modeling requires an additional binary variable
for each cache block (see Eq. 6), a corresponding constraint (see Eq. 7), and a con-
straint enforcing the required level of interference (see Eq. 8). The size of the ILP
model is thus similar to the size of the underlying IPET formulation (Oehlert et al.
2018), with the additional constraints growing linearly in the code size of the ana-
lyzed task.

In the model, n is a parameter which may be set to values in {1, … , A} to
determine the minimal cycle count required for different levels of interference.

Consequently, the objective of the ILP is to minimize the number of cycles
required to cause accesses to n distinct cache blocks, as shown in Eq. (9). The
path duration is computed as the sum of the execution time contributions zv of
each node v ∈ V�:

(6)0 ≤ tb ≤ 1

(7)tb ≤
∑

v∶ v⇝b

qv

(8)n ≤
∑
b∈B�

tb .

(9)minimize
∑
v∈V�

zv .

Table 2 ILP variables Symbol Meaning

qv ∈ ℕ Execution count of a node v ∈ V�

zv ∈ ℕ Execution time contribution from v ∈ V�

tb ∈ {0, 1} Indicates whether a conflicting block b ∈ B is accessed
sv ∈ {0, 1} Indicates whether v ∈ V� is the starting node of the path
ev ∈ {0, 1} Indicates whether v ∈ V� is the final node of the path

 Real-Time Systems

The execution time contribution zv depends on the best-case execution time and the
execution count qv of the node v. As we do not make assumptions about the distribu-
tion of events inside the nodes, the time contributions of the first and last nodes of
the (partial) path are reduced to a single cycle.

To clarify this, consider a simple linear CFG with three nodes, v1, v2, v3 , as an
example. Assume that each node in the graph contains an access to a single cache
block and has a BCET of 100 cycles. When we want to answer the question of how
quickly contents in the shared cache may age three times, only the complete path
(v1, v2, v3) is a viable candidate. The other partial paths in the CFG generate two or
fewer events. The BCET of the complete path is 300 cycles. However, the access to
the shared cache in node v3 might not happen at the very end of processing v3 , but
near the beginning of v3 . Thus, in a real execution, three events may happen already
after, for example, 210 cycles. To generate a safe lower bound, we assume that
accesses associated to a node will happen at the very beginning (end) of the final
(first) node in the considered path. Hence, the first and last node are considered to
contribute only a single cycle to the execution time. A safe lower bound on the time
to observe three events for this example would thus be 102 cycles. This approxima-
tion is needed to ensure the safety of the result but also introduces some pessimism
into the analysis. To combat this pessimism, the analysis can be performed at a finer
scale by virtually splitting large basic blocks in the CFG into multiple smaller nodes.

Note that by determining interference on the basis of paths in the CFG, we
implicitly eliminate mutually exclusive accesses from the interference computa-
tion. For example, consider the control-flow graph shown in Fig. 2. The nodes
v1, v2, v3, v4 ∈ V� each contain an access targeting a different cache block. The max-
imal interference caused by this CFG is 3 blocks: either the blocks {b1, b2, b4} or
{b1, b3, b4} are accessed. The blocks b2 and b3 are never accessed together on the
same path. Such mutually exclusive access behavior is therefore safely excluded
from the event-arrival curves, leading to a tight estimation of the possible interfer-
ence. In contrast, the standard CCN interference estimation technique simply counts

Fig. 2 Example CFG containing four nodes v1, v2, v3, v4 ∈ V� . Nodes contain accesses
a1, a2, a3, a4 ∈ Acc� , and target cache blocks b1, b2, b3, b4 ∈ B� , respectively. The accesses a2 and a3 are
mutually exclusive. The maximal interference caused by this CFG is 3

Real-Time Systems

the number of potentially accessed blocks and would thus conclude a maximal inter-
ference of 4.

To construct the complete interference curve for a task � ∈ TC� , the presented
ILP is solved for all parameter values 1 ≤ n ≤ A . Let Δt1,… ,ΔtA denote the solu-
tion of the ILP for a task � for interference levels n = 1,… ,A , respectively. If the
task never causes n or more interfering accesses during any execution, the ILP will
be infeasible for that parameter. In that case we set the value Δtn = ∞ . Using these
results, the interference curve for a task � is defined as follows:

As noted before, the interference on different cache sets is analyzed independently
of each other. Interference curves are thus derived seperately for each cache set.
Assuming that a single task is assigned to each core, we can now give a safe upper
bound on the total interference using the computed curves.

Theorem 1 The interference ��(Δt) at the shared cache over a time frame of Δt
cycles, experienced by the task � ∈ TC from other cores C′ ≠ C , given that all cores
C′ only process a single task is bounded by the addition of the curves �� from co-
running tasks � ∈ TC� ,∀C� ∈ C⧵{C}:

Proof We prove the theorem by contradiction. Assume that there exists a task that is
subject to n′ interfering accesses at the shared cache over a time frame of Δt cycles
with n� > 𝛾𝜏(Δt) . Due to the least-recently-used replacement property, interfering
accesses issued by two different cores C′

1
 and C′

2
 can not collaborate to create larger

interference than the sum of both contributions. It follows that there must be a core
C′ ≠ C with TC� = {�} , that issued more than n� = ��(Δt) interfering accesses.
However, the solution computed for the interference parameter n� by the ILP gives
the smallest duration of any path from � causing at least n� interfering accesses. We
conclude that no path causing more than n� interference with duration ≤ Δt exists in
� ’s CFG and have proven the theorem by contradiction. ◻

Using the cumulative interference function �� , the time-to-live of a cache block
b ∈ B� can be expressed as a function of its Must age.

Definition 2 (Time-to-live) The time-to-live (TTL) of a cache block b ∈ B� in the
shared cache is given by the function TTL� ∶ {0,… ,A − 1} → ℕ0 ∪ {∞}:

(10)𝜂𝜑(Δt) =

⎧
⎪⎪⎨⎪⎪⎩

1 if Δt1 ≤ Δt < Δt2,

2 if Δt2 ≤ Δt < Δt3,

⋮

A if ΔtA ≤ Δt,

0 otherwise.

(11)��(Δt) =
∑

�∶ TC� ={�}, C
�≠C

��(Δt).

 Real-Time Systems

The value age refers to the maximal number of conflicting blocks that have been
accessed by � since the last access to b, without considering the inter-core interfer-
ence, i.e., the Must age of b.

Note that the TTL of a block may be +∞ cycles in case the interfering tasks
never create sufficient interference to trigger the eviction.

5.3 Analyzing non‑preemptive scheduling

The approach described in the previous section computes an interference curve
�� based on the control-flow graph of a singular task � ∈ TC� . The total inter-
ference �� experienced by the analyzed task � ∈ TC at the shared cache is then
computed as the sum of the interference curves of all tasks � ∈ TC� running on
interfering cores C′ , as formulated in Eq. (11). This method is only applicable to
systems where a single task causes interference per core. When multiple differ-
ent tasks are executed on the same core, these tasks can collaborate to evict data
from the shared cache.

The interference curve of one particular task may be vastly different from the
interference curve of another task. To safely classify cache accesses to a shared
cache in a such a system, we must determine the worst-case interference caused
by the set of tasks TC′ running on each interfering core C′ ≠ C.

In this section, we compute the interference curve resulting from multiple
tasks executing on a single core under non-preemptive scheduling. This consti-
tutes the third step of the presented analysis.

Under non-preemptive scheduling, once a task has started to execute, it will
not be interrupted until it has finished its computations. This contrasts preemp-
tive scheduling, where the scheduler may decide to interrupt the currently run-
ning task in favor of a different task. An application of interference curves to
preemptive scheduling is presented in Fischer and Falk (2024).

We do not assume any precedence constraints between different tasks. I.e.,
the order in which tasks execute on an interfering core C′ is not restricted. Con-
sequently, a task running on core C can experience interference from all other
tasks � ∈

⋃
C�≠C TC� . Furthermore, we do not require a minimal inter-arrival time

between two instances of the same task. This means that the interference bounds
derived in this section are general and apply to all non-preemptive schedules.

This is another differentiating factor to the existing WCIP and CEOP analy-
sis approaches by Nagar (2016) and Zhang et al. (2022). The WCIP and CEOP
approaches inherently operate on the assumption that the number of interfer-
ing jobs is known. Thus, the final WCET value has to be computed in an itera-
tive fashion using the periods of the interfering tasks (see Observation 1). The
approach presented in this section makes no such assumption and the resulting
interference curve is valid for arbitrary task activations patterns.

(12)TTL𝜏(age) = sup
0≤Δt

{Δt ∣ 𝛾𝜏(Δt) < A − age}

Real-Time Systems

The rest of this section is structured as follows: Sect. 5.3.1 provides a brief
introduction to the calculation of event-arrival curves in the max-plus algebra.
We formally describe the interference computation for non-preemptive schedul-
ing in Sect. 5.3.2 and construct an algorithm to compute the resulting interfer-
ence curve in Sect. 5.3.3.

5.3.1 Operations in max‑plus algebra

When multiple tasks execute on the same core, they all contribute to the inter-
ference at the shared cache. To compute the total interference curve for a set of
tasks, the interference curves of the individual tasks running on the core have to
be combined. This calculation is performed using the max-plus algebra.

The max-plus algebra, and its counterpart the min-plus algebra, have been
used in the area of network calculus (Le Boudec and Thiran 2001) to analyze the
traffic in a network, and in real-time calculus to determine the schedulability of a
system (Thiele et al. 2000).

In the max-plus algebra, the operators of addition and multiplication from the
standard algebra are replaced by the maximum and addition operators, respec-
tively. A crucial operator for the calculation of interference curves is the max-
plus convolution. The max-plus convolution of two interference curves ��1

 and ��2

from tasks �1,�2 ∈ TC� is represented using the ⊛ operator:

The max-plus convolution determines the maximal interference caused by two tasks
over a total duration of Δt cycles. This calculation considers all possible distribu-
tions of the Δt cycles between the two tasks, ensuring that the worst-case interfer-
ence is identified by taking the maximum interference value across all time distribu-
tions over ��1

 and ��2
.

An interference curve ��(Δt) addresses the question of how many cache
blocks may cause interference after Δt cycles. However, it can be useful to view
cache interference from an alternative perspective: how much time must elapse
to potentially experience n or more interference events? This perspective can be
taken using the pseudo-inverse of an event-arrival curve. The pseudo-inverse of
an event-arrival curve is defined as:

Thus, the pseudo-inverse �−1(n) gives the minimal duration over which n interfering
accesses may occur and satisfies the following properties (Le Boudec and Thiran
2001):

(13)(𝜂𝜑1
⊛ 𝜂𝜑2

)(Δt) = max
0≤𝛿≤Δt

{𝜂𝜑1
(𝛿) + 𝜂𝜑2

(Δt − 𝛿)}.

(14)�−1(n) = inf{Δt ≥ 0 ∣ �(Δt) ≥ n}.

(15)�(Δt) ≥ n ⟹ �−1(n) ≤ Δt,

(16)𝜂−1(n) < Δt ⟹ 𝜂(Δt) ≥ n.

 Real-Time Systems

Furthermore, in max-plus algebra, −∞ serves as the absorbing element, meaning
that ∀n ∈ ℕ0 ∶ −∞ + n = −∞ . We use the value −∞ to signal infeasible situations.
Such situations arise when computing the interference created by a full execution of
a task � , but the allotted time frame is insufficient to fully execute � according to its
best-case execution time.

To eliminate infeasible situations and thus increase the precision of the final
result, we introduce a window function Wt . The window function Wt ∶ ℕ → {0,−∞}
maps to either 0 or −∞ , depending on the parameter t and the input Δt:

For example, consider the calculation: ((𝜂𝜑1
⊛ 𝜂𝜑2

) +W100)(Δt) . A window W100
with parameter 100 is added to the convolution of ��1

 and ��2
 . The resulting curve

thus yields −∞ for Δt < 100 . By applying a window to a curve, it can be marked
as infeasible for short durations. In the context of interference curves, applying Wt
refines the interference computation by enforcing a minimal duration for the sce-
nario associated to that curve.

We will use these concepts in the next section to compute a safe upper bound on
the interference stemming from a core executing a set of tasks using non-preemptive
scheduling.

5.3.2 Modelling non‑preemptive scheduling

To apply timing-aware interference analysis to non-preemptive scheduling, we
compute an interference curve that captures the worst-case interference created by
multiple tasks assigned to a single interfering core. This encompasses, for example,
scenarios where a task �1 ∈ TC� ends its execution and another task �2 ∈ TC� starts
execution immediately afterward. Consequently, between two subsequent accesses
to a cache block from task � ∈ TC , multiple tasks can contribute interference for the
cache block and trigger its eviction. The goal of this section is to capture all possible
interference scenarios and determine the worst-case interference caused by any of
these scenarios. To this end, we define the different scenarios that may occur on an
interfering core C′.

Definition 3 (Execution Scenario) An execution scenario for an interfering core C′
is a sequence of tasks (�1,… ,�j) ∈ (TC�)j . Let SC� = (TC�)ℕ =

⋃
j∈ℕ(TC�)j be the set

containing all execution scenarios.

The tasks in an execution scenario (�1,… ,�j) ∈ SC� are executed sequentially
in ascending order by the interfering core C′ . We are interested in the behavior of
C′ during a cache block reuse windows, which is the time frame from the point of
storing information in the shared cache up to the point where another access to that
content performed. This means an execution scenario does not represent a complete
execution of the system from startup to shutdown, but models the behavior of the

(17)Wt(Δt) =

{
0 if Δt ≥ t,

−∞ else.

Real-Time Systems

interfering core between accesses to blocks stored in the shared cache. Thus, for an
execution scenario (�1,… ,�j) ∈ SC� , a cache block is stored in the shared cache
by the analyzed task � while the interfering core executes task �1 . The access to be
classified as either a cache hit or potential miss occurs while the interfering core
executes �j.

To issue cache hit classifications that hold even in the worst case, we must com-
pute the worst-case interference curve over all execution scenarios SC′ . Let F be a
function that maps an execution scenario of an interfering core C′ to the associated
interference curve:

Note that the image of FC′ contains functions mapping to −∞ , as a particular execu-
tion scenario may be infeasible for short time durations. A scenario containing a
complete execution of a task � ∈ TC� may not occur in a time frame that is shorter
than the BCET of � . By mapping the interference value for Δt < BCET(𝜑) to −∞ ,
the scenario will not contribute to the maximal interference for Δt < BCET(𝜑).

The worst-case interference created by multiple tasks on a non-preemptive sched-
uled core C′ is given by:

In the remainder of this section, we develop the precise definition of FC′ to complete
the formal model of shared cache interference under non-preemptive scheduling.

The contribution of a task � to the total interference depends on the analyzed
time frame Δt during which interference can occur. Additionally, it depends on the

(18)FC� ∶ SC� → (ℕ0 → (ℕ0 ∪ {−∞})).

(19)�C� (Δt) = max
s∈SC�

{FC� (s)(Δt)}.

Fig. 3 Three different execution scenarios for an interfering core C′ . The cache block reuse window of
the analyzed task, running on core C, is marked in blue. The orange sections of the co-running tasks con-
tribute to the shared cache interference

 Real-Time Systems

fact whether the co-running task � starts and/or ends its execution within the ana-
lyzed reuse window.

Multiple different execution scenarios interfering with the reuse of a cache block
are shown in Fig. 3. The time frame between the initial access to the cache block
and its reuse by the analyzed task � is shown in blue and labeled as the Cache Block
Reuse Window. Three different execution scenarios are shown for the interfer-
ing core. The orange sections in the different scenarios indicate the source of the
inter-core cache interference from co-running tasks on the core C′ . The co-running
tasks creating interference in the three scenarios are labeled as �1 , �2,�3 , and �4 ,
respectively.

We differentiate between four different categories of interfering tasks, named as
follows:

1. single-task: A task already executing at the start of the reuse window that
does not finish executing during the reuse window (�1 from Fig. 3).

2. in-task: A task already executing at the start of the reuse window that finishes
executing during the reuse window (�2 from Fig. 3).

3. out-task: A task that starts during the reuse windows and does not finish dur-
ing the reuse window (�3 from Fig. 3).

4. body-task: A task that starts and finishes during the reuse window (�4 from
Fig. 3).

We will use these categories to quantify how quickly a task may create interfer-
ence. Differentiating between these different categories is useful as we may place
additional constraints on the paths from which the interference curves are derived,
allowing us to create a tighter estimate on the total interference. The interference
curve of a task � in one of the four categories is denoted using a superscript, i.e.,
�
single
� , �in

�
 , �out

�
 , and �body� .

The curve �single� for single-task corresponds to the unconstrained curve as
described in Sect. 5.2. An in-task already executes at the start of the reuse win-
dow and will finish executing during the reuse window. Therefore, the curve for an
in-task of � is computed considering only paths ending in a sink of � ’s CFG.
This is beneficial because by the end of a task’s execution, the private L1 cache
has warmed up, reducing the likelihood of L1 cache misses, which cause shared
cache interference, compared to the task’s initial execution phase. Similarly, an
out-task begins executing during the reuse window. Thus, the �out

�
 curve of � is

computed considering only paths starting at the initial node of the CFG of � . This
consideration is useful as set-associative caches are divided into multiple cache sets.
For example, to interfere with the third cache set, a task may first need to execute
code mapped to the first and second cache set, Hence, the accesses to the third set
are delayed and the interference behavior relative to the unconstrained curve �single�
improves, leading to better cache hit classification performance.

Formally, we observe that by construction
�in
�
(Δt) ≤ �

single
� (Δt), and �out

�
(Δt) ≤ �

single
� (Δt) for all Δt ∈ ℕ . When determining the

curve of a body task, it is guaranteed that the task will fully execute from start to

Real-Time Systems

finish. It is thus infeasible for the curve �body� (Δt) to contribute to interference for
time frames Δt < BCET(𝜑).

Incorporating these constraints imposed by the four categories improves accuracy
of the interference curves. Consequently, the interference bound can be tightened by
differentiating between the stages a task is in while contributing to the shared cache
interference.

Next, we integrate these constraints into the curve derivation ILP presented in
Sect. 5. As before, we adopt the notation of Oehlert et al. (2018) to formulate the
ILP constraints: The binary ILP decision variable sv ∈ {0, 1} indicates whether
a node v ∈ V� in the CFG is used as the starting point in the ILP solution. Sim-
ilarly, the binary ILP variable ev ∈ {0, 1} signifies whether the considered path
ends at v.

Let v0 ∈ V� be the initial node in the CFG of � , whereas Vend
𝜑

⊂ V𝜑 contains all
sinks of the CFG. v0 corresponds to the initial node of the entry function, e.g. the
int main() function, and nodes vend ∈ Vend

�
 correspond to returns from the

entry function. Adding the constraints shown in Eq. (20a) and Eq. (20b) into the
ILP formulation from Sect. 5 allows us to compute interference curves for out-
tasks and in-tasks, respectively.

It is not necessary to perform a dedicated curve derivation for the body-task
curves as they can be derived from the unconstrained curves, which are used to
compute single-task interference. As a body-task � needs to execute for
at least BCET(�) cycles, �body� is induced by �single� using an additional window:

We apply a windowing function WBCET(�) , which ensures that a scenario containing
a body-task of � impacts the final interference computation only for time dura-
tions Δt ≥ BCET(�) , because such a scenario is infeasible for shorter durations.

Using the interference curves of each task in the four categories, we can cal-
culate the total interference created by a core C′ . The scenarios in SC′ can be
partitioned into two types: scenarios that consist only of a single-task, i.e.,
s = (�) ∈ SC� , and scenarios that contain an in-task, out-task and zero or
more body-tasks, i.e., s = (�1,… ,�j) ∈ SC� . We thus differentiate the defini-
tion of FC′ based on the size of the execution scenario:

(20a)sv0 = 1

(20b)
∑

vend∈Vend
�

evend = 1

(21)�body
�

(Δt) = �single
�

(Δt) +WBCET(�)(Δt).

(22)FC�

�
𝜑1, ...,𝜑j

�
=

⎧
⎪⎨⎪⎩

𝜂
single
𝜑1

ifj = 1,

𝜂in
𝜑1
⊛

�
⊛

1<i<j
𝜂
body
𝜑i

�
⊛𝜂out

𝜑j
otherwise.

 Real-Time Systems

When a scenario s ∈ SC� contains only a single task � , i.e., s = (�) , its inter-
ference curve is equal to the interference curve of that task. For scenarios that
contain more than a single task, we compute the worst-case interference as the
max-plus convolution of the curves from the in-task, body-tasks, and the
out-task. The resulting curve requires at least

∑
1<i<j BCET(𝜑i) cycles to be

feasible. For shorter durations, FC� (�1,… ,�j) yields −∞.
Note, in an actual execution of the system a scenario may occur where no in-task

or out-task exists. This might happen if the interfering core remains idle for some
time during the cache block reuse window. However, as we are interested in the worst-
case interference, it is safe to disregard such situations in this computation, as they are
subsumed in the considered scenarios. I.e., an idle core will not create worse interference
conditions than an active core: formally ∀� ∈ TC� ∶ 0 ≤ �in

�
∧ 0 ≤ �out

�
 , by construction

of the interference curves.
Using the function FC′ , defined in Eq. (22), we can determine the maximal inter-

ference caused by a specific scenario s ∈ SC� . Moreover, by taking the maximal
interference over all possible scenarios, we obtain a safe upper bound on the total
interference caused by a non-preemptively scheduled core. This upper bound is
given by �C′ , as defined in Eq. (19).

5.3.3 Algorithmic computation of the worst‑case interference

The upper bound on the interference �C� (Δt) depends on all possible execution scenarios.
As the tasks in the analyzed system may be activated repeatedly, there are infinitely many
different execution scenarios. This makes it intractable to compute interference curves
for all scenarios in SC′ and determine the maximum interference from the results. How-
ever, we are not interested in the interference generated by any specific sequence of tasks
but rather the maximal interference for any sequence of tasks. In this section, we present
an efficient algorithm that computes the function �C′ by directly determining the worst-
case interference for any Δt . The key idea of the presented algorithm is to intelligently

Real-Time Systems

rearrange the required computations, leveraging the properties of the max-plus convolu-
tion, particularly its associativity and commutativity (Le Boudec and Thiran 2001).
Algorithm 2 Compute the worst-case interference curve � for a core C′

Input: Task set TC′ with interference curves ηsingleϕ , ηinϕ , ηoutϕ , ηbodyϕ for all ϕ ∈ TC′ .
Output: Worst-case interference curve µ for up to A events.

1: µ ← (∆t �→ 0)
2: for all ϕ ∈ TC′ do
3: µ(∆t) ← max{µ(∆t), ηsingleϕ (∆t)}
4: end for
5: for all ϕ1 ∈ TC′ do
6: for all ϕ2 ∈ TC′ do
7: µ(∆t) ← max{µ(∆t), (ηinϕ1

� ηoutϕ2
)(∆t)}

8: end for
9: end for

10: repeat
11: done ← True
12: for all ϕ ∈ TC′ do
13: µ′(∆t) ← (µ� ηbodyϕ)(∆t)
14: if ∃δ ∈ N, 1 ≤ δ ≤ µ−1(A) : µ′(δ) > µ(δ) then
15: µ(∆t) ← max{µ(∆t), µ′(∆t)}
16: done ← False
17: end if
18: end for
19: until done = True

The pseudocode to compute the worst-case interference is shown in Algorithm 2.
Line 1, initializes the result to the constant zero function. Lines 2–4 compute the
maximal interference stemming from single-task scenarios by taking the maxi-
mum interference over all curves �single� for all � ∈ TC� . Then, in the following lines
5–9, scenarios that contain exactly two tasks are considered. The in-task and
out-task curves are combined using a max-plus convolution. This calculation
gives the maximal interference caused by any two tasks executing in sequence.

Additionally, this step also prepares the computation of the interference from sce-
narios containing more than two tasks. This is the case, as the max-plus convolution
is commutative and associative, i.e., 𝜂in

𝜑1
⊛ 𝜂

body
𝜑2

⊛ 𝜂out
𝜑3

= (𝜂in
𝜑1

⊛ 𝜂out
𝜑3
)⊛ 𝜂

body
𝜑2

 . Thus,
it is possible to perform the convolutions required by Eq. (22) in any order. We use
this property to first compute the contribution by the in and out tasks before itera-
tively adding additional body tasks to the intermediate result.

The outer loop spanning lines 10–19 iterates until there are no more changes
observed on the result. This is realized using the done flag. If there was a change
made to the curve in the current iteration, the flag is set to False (line 16). Other-
wise, the algorithm terminates.

The inner loop, from lines 12–18, checks whether adding a body task of any �
to the intermediate result � causes the interference to increase. The modified curve

 Real-Time Systems

�′ is computed in line 13 by performing a max plus convolution of � with the body
curve of the currently considered task �.

In line 14, we determine the minimal number of cycles required to generate A
events using the current result � . The value is computed using the pseudo-inverse
of � : �−1(A) . This bound is determined as after A accesses to distinct cache blocks,
all data will be evicted from an A-way LRU cache. Note that �−1(A) is the infimum
(see Eq. 14), so that it may be equal to +∞ , if the curve � never creates A events.

Using this upper time limit �−1(A) , it is checked whether the curve �′ , contain-
ing an additional body task of � , creates higher interference than � for time frames
1 ≤ Δt ≤ �−1(A) . In an implementation, this check can be performed in A compari-
sons using the pseudo-inverse of � and �′.

If the interference increased, the current result is updated to the maximum
of � and �′ (line 15). The maximum is taken as there may be values Δt for which
𝜇(Δt) > 𝜇�(Δt) . In particular, this is the case for Δt < BCET(𝜑) . Finally, line 16
updates the done flag to False to ensure that another iteration of the outer loop is
performed. As noted above, this process terminates if adding another body task of
any � ∈ TC� does not create a worse interference scenario.

Theorem 2 The loop in lines 10 – 19 in Algorithm 2 terminates after at most A − 1
iterations.

Proof The loop terminates if there is no further task � ∈ TC� , such that convolv-
ing the intermediate result � with �body� creates a higher interference curve for
Δt ≤ �−1(A) . We will prove the theorem by induction. Let the value � after i itera-
tions be denoted by �i+2 , and the maximal interference curve by �C′.

Base case: Before reaching the loop, the algorithm computes an intermediate
value, which we denote by �2.

This curve is maximal for up to two events. In other words, the pseudo-inverse
�−1
2

 is minimal for n ≤ 2 . I.e., �−1
2
(n) = �−1

C� (n) for n ≤ 2 . This is the case as the code
in lines 2 – 4 has determined the minimal time required for a single event, whereas
the code in lines 5 – 9 has already performed the convolution of two tasks. Convolv-
ing additional body tasks to the result will not cause 2 events to occur more quickly
than �−1

2
(2) cycles.

Induction step: Given a curve �N such that �−1
N
(n) = �−1

C� (n) for n ≤ N < A .
Another iteration of the loop in lines 10 – 19 will produce �N+1 , such that:

Given Eq. (23) holds, the theorem follows directly, as the algorithm only continues
to iterate as long as there is a change in the interference for Δt ≤ �−1(A) . As the
loop starts with the given value �2 and needs an additional iteration to notice no
change has happened, the loop will stop after (A − 1) iterations.

We will now prove by contradiction that Eq. (23) holds. Assume that there exists
an M, such that M is the smallest M > N + 1 with

(23)∀n ≤ (N + 1) ∶ �−1
N+1

(n) = �−1
C� (n).

Real-Time Systems

Let Δt = �−1
M
(N + 1) , i.e., Δt is the minimal duration to observe at least N + 1

events, according to �M . The curve �M creates higher interference than �N+1 over Δt
cycles. This means that 𝜇M(Δt) > 𝜇N+1(Δt).

By definition of �M , there is a task � such that we can construct �M as the convo-
lution of �M−1 and a body task of � . In particular, by definition of the convolution,
there is a � ≤ Δt such that Eq. (25) holds:

There are two different cases based on the value of 0 < 𝛿 ≤ Δt . If � = Δt , we have
arrived at the contradiction due to the choice of M:

Equation (26) holds because �M−1(Δt) ≤ �N+1(Δt) by choice of M and �body� (0) ≤ 0
for any task � . Equation (24) and Eq. (26) contradict. We thus assume that � is
strictly smaller than Δt.

We note that an iteration only increases the interference. The computed curve
never decreases after another iteration, due to the use of the max operator in line 15.

We know that �−1
M−1

(n) = �−1
N+1

(n) for n ≤ N because these values are already opti-
mal due to �−1

N
(n) = �−1

C� (n) for n ≤ N and because N < (M − 1) . Furthermore, it is
true due to the choice of M that 𝜇−1

M−1
(N + 1) ≥ 𝜇−1

N+1
(N + 1) > Δt . From this it fol-

lows that �M−1(�) = �N+1(�) as 𝛿 < Δt:

We know that �N(�) = �N+1(�) because 𝛿 < Δt < 𝜇−1
N+1

(N + 1) and �−1
N
(n) = �−1

N+1
(n)

for n ≤ N:

By definition of �N+1 , we have arrived at the contradiction:

We have consequently arrived at a contradiction by assuming that there exists a
curve �M , computed by the iterative convolution of body tasks, that yields greater

(24)𝜇−1
M
(N + 1) < 𝜇−1

N+1
(N + 1)

(25)�M(Δt) = �M−1(�) + �body
�

(Δt − �).

(26)�M(Δt) = �M−1(Δt) + �body
�

(0) ≤ �N+1(Δt).

(27)
�M(Δt) = �M−1(�) + �body

�
(Δt − �)

= �N+1(�) + �body
�

(Δt − �).

(28)

�M(Δt) = �M−1(�) + �body
�

(Δt − �)

= �N+1(�) + �body
�

(Δt − �)

= �N(�) + �body
�

(Δt − �).

(29)

�M(Δt) = �M−1(�) + �body
�

(Δt − �)

= �N+1(�) + �body
�

(Δt − �)

= �N(�) + �body
�

(Δt − �)

≤ �N+1(Δt).

 Real-Time Systems

interference than �N+1 for time frames < 𝜇−1
N+1

(N + 1) . As the loop only continues
iterating as long as there is an increase in the curve for interference levels ≤ A , we
have shown that the loop will not change the result of � after A − 2 iterations. This
is true as the initial value of � when entering the loop is already maximal for 2
events. A final iteration is needed by the algorithm as written in Algorithm 2 to
detect that no change has occured, resulting in the final maximal loopbound of A − 1
iterations. ◻

Note in particular that it also follows from the proof of Theorem 2 that the
value � computed by Algorithm 2 is equal to the worst-case interference curve �C′
for up to A events:

Corollary 1 The complexity of Algorithm 2 is O(|TC� |2A2 + |TC� |A3).

Proof The interference curves and the intermediate result can be stored as their
pseudo-inverse, which can be represented as an array of A numbers. Consequently,
the loop in lines 2–4 requires |TC′ |A operations. The nested loops in lines 5–9 per-
form |TC′ |2 convolutions, each of which requires A2 operations. The maximum of
the convolution and the intermediate result can be determined in A operations.
Therefore, lines 5–9 are performed in O(|TC� |2A2) operations. From Theorem 2, we
know that the loop spanning lines 10–19 is executed at most A − 2 times. In each
iteration, a convolution is performed for each task in TC′ . Updating the intermediate
result � requires A operations.

For this reason, the algorithm has a time complexity of
O(|TC� |A + |TC� |2A2 + |TC� |A3) , which is equivalent to O(|TC� |2A2 + |TC� |A3) . ◻

For a given hardware architecture, the associativity of the shared cache is a
constant, relatively small number. Therefore, the complexity of the algorithm col-
lapses to O(|TC� |2) for large task sets.

We can safely bound the inter-core interference at a shared cache for non-preemp-
tive scheduling using Algorithm 2. The total interference from multiple interfering
cores is bounded by the sum of the interference of each individual core:

(30)∀Δt ≤ �−1
C� (A) ∶ �(Δt) = �C� (Δt).

(31)��(Δt) =
∑

C�∶�∈C∧C�≠C

�C� (Δt).

Real-Time Systems

6 Timing‑aware cache hit classification

In Sect. 6.1, we construct a cache hit classification criterion for individual cache
accesses using the interference curves introduced in the previous section. We use
this classification approach to construct a data-flow analysis in Sect. 6.2, which
determines whether a cache access will hit or potentially miss in the LLC. Hence,
this section corresponds to the fourth step of the presented analysis approach.
The output of the DFA are the hit classifications that are used in the final WCET
analysis, which is the final step of the timing-aware shared cache analysis.

6.1 Cache hit condition

Both intra-task and inter-core interference contribute to the eviction of cache
blocks. We account for these interference sources as follows: We determine the
intra-task interference on the path between subsequent accesses to a particular
block b ∈ B� as the set of accessed cache blocks b′ ≠ b , which are mapped to the
same cache set. Inter-core interference is quantified using the interference curves
described in the previous section. The key observation is that, in an LRU cache,
an access to a cache block moves the block to the youngest position in the cache.
Therefore, if a subsequent access to that same block happens quickly enough,
inter-core interference will not be able to evict the block from the shared cache.
For this reason, we determine the path duration between cache accesses to the
same cache block.

To analyze intra-task interference, we abstract a path in the CFG to a sequence of
accesses (ai)mi=1 . The access sequence of a path � = (v1,… , vn) is given by concat-
enating the access sequences associated to each individual node v ∈ �.

Definition 4 Let � = (v1,… , vp) be a path with associated access sequence (ai)mi=1 .
The intra-task interference on � between two accesses a1 and am to the same cache
block cb(a1) = cb(am) is given by

Without loss of generality, we assume that the analyzed access pair occurs as the
first and last accesses in the sequence associated to � , i.e. a1 is the access to move
the target block into the youngest cache position and am is the access to be classified.
Accesses occurring prior to the initial access to the targeted cache block or after the
classified access do not contribute to the intra-task interference.

The set int((ai)mi=1) consists of all cache blocks which may be accessed in the
sequence (ai)mi=1 that conflict with the target cache block cb(am) . Given the associa-
tivity A of the shared cache, we can define the eviction distance along a path.

(32)int((ai)
m
i=1

) =

⎧
⎪⎨⎪⎩
cb(as)

�����
1 ≤ s ≤ m ∶

cb(as) ≠ cb(am) ∧

CAC(as) ≠ N

⎫
⎪⎬⎪⎭
.

 Real-Time Systems

Definition 5 The eviction distance � of a cache block cb(am) along a path with access
sequence (ai)mi=1 is the minimal number of additional interfering cache accesses that
could lead to a cache miss for am:

As mentioned in Sect. 4, we want to analyze paths that may lead to a cache hit on
the shared cache. These paths are characterized by a positive eviction distance. To
denote such paths, we introduce the notion of a potential-hit path.

Definition 6 A path � with associated cache access sequence (ai)mi=1 is called a poten-
tial-hit path for the access am iff:

Equation (34a) contains the requirements for the access am to potentially result in
a hit on a particular path: (a) the access am may reach the shared cache, (b) the tar-
geted cache block is loaded into the cache by a1 , (c) intra-task interference does not
cause the eviction of cb(am).

The only missing piece to classify the access am as a cache hit is to check whether
the inter-core interference is less than the eviction distance on the analyzed path � .
As seen in Eq. (11) and Eq. (31), using interference curves, the inter-core interfer-
ence may be quantified as a function of time. By evaluating �� for the WCET of the
considered path, a safe bound on the inter-core interference can be given. We call
the WCET of the path � the temporal reuse distance of the cache block cb(am).

We will now construct a cache hit classification that depends on the temporal
reuse distance of the cache block and the interference function derived from the
event-arrival curves discussed in Sect. 5.

Theorem 3 An access a ∈ Acc always results in a cache hit if it may only be reached
by traversing potential-hit paths � with access sequence (ai)mi=1 , am = a satisfying:

Proof Consider the scenario that the access a could result in a cache miss. This may
happen for three different reasons: the targeted cache block was (a) not loaded into
the shared cache previously, (b) evicted due to intra-task interference, or (c) evicted
due to inter-core interference.

However, all executions containing a must load the targeted cache block into
the cache and this block will not be evicted due to intra-task interference, as � is
a potential-hit path. Furthermore, ��(WCET(�)) is a safe upper bound on the num-
ber of aging events due to interfering accesses from competing tasks. As Eq. (35)
requires that the eviction distance is strictly greater than the interference, the cache

(33)�((ai)
m
i=1

) = A − ||int((ai)mi=1)||.

(34a)CAC(am) ≠ N,

(34b)cb(a1) = cb(am) ∧ CAC(a1) = A,

(34c)0 < 𝜉((ai)
m
i=1

).

(35)𝛾𝜏(WCET(𝜋)) < 𝜉((ai)
m
i=1

).

Real-Time Systems

block cb(a) will not be evicted due to inter-core interference. Thus, the access will
always result in a cache hit. ◻

The condition given in Eq. (35) can be written equivalently using the time-to-live
function:

At this point, we are able to quantify cache interference using event-arrival curves
and have formulated a sufficient condition to classify an access as a hit. In the next
section, we describe how we can efficiently use these two components to derive a hit
/ potential-miss classification for every access.

6.2 Cache access path analysis

In this section, we utilize Theorem 3 to determine whether specific accesses to the
shared cache definitively result in a cache hit. To this end, we perform a data-flow anal-
ysis (DFA) on the CFG of the analyzed task � ∈ TC . In the DFA, we examine accesses
that would result in a cache hit, provided that no inter-core interference occurs. Check-
ing the condition given in Eq. (35) for a particular access a ∈ Acc� requires knowledge
of the WCET of potential hit-paths leading to the access and their respective eviction
distance. Consequently, we may abstract a path from a concrete sequence of nodes to
a safe upper bound on its execution time and a bound on the intra-task interference,
measured as a set of conflicting blocks potentially accessed on the path.

Path information for access classification is represented in an abstract domain using
a semi-lattice D = (ℕ × 2B𝜏) ∪ {⊥,⊤} . Elements (Δt,B) ∈ ℕ × 2B� represent a maxi-
mal path duration of Δt cycles and intra-task interference B ⊆ B𝜏 . The value ⊤ cor-
responds to a potential cache miss, while ⊥ indicates a finished load-access path. I.e.,
another access will load cb(a) into the shared cache en route to the access a, resulting in
a cache hit. The tuples are ordered (Δt1,B1) ≤ (Δt2,B2) ⟺ Δt1 ≤ Δt2 ∧ B1 ⊆ B2 ,
while ⊤ is the greatest element and ⊥ is the least element. Joining of two elements is
performed by the operator ⊔ :

To compute the data-flow information for all nodes in the control-flow graph, we
conduct a data-flow analysis in the backward direction. We specify the data-flow
information as the mappings in[v] ∶ Acc� → D and out[v] ∶ Acc� → D for v ∈ V� .
Although the analysis is conducted in the backward direction, we use the word in (out)
to denote the data-flow information at the beginning (end) of a node in the regular
sense.

Every node v ∈ V� possesses an associated sequence of cache accesses, which is
denoted using the superscript v, (av

i
)m
i=1

 . The impact of a single cache access av
i
 issued

during the execution of v on the analyzed access a is determined by the function f v
i
 :

(36)WCET(�) ≤ TTL�

(||int((ai)mi=1)||
)
.

(36a)(Δt1,B1) ⊔ (Δt2,B2) = (max(Δt1,Δt2),B1 ∪ B2),

(36b)d ⊔ ⊤ = ⊤, d ⊔ ⊥ = d, d ∈ D.

 Real-Time Systems

 where

The set B′ , defined in Eq. (37), contains all blocks that may be accessed by the ana-
lyzed task � on paths leading to the analyzed access a and conflict with the target
block cb(a).

The first case in Eq. (36c) covers the situation in which the interference on the
shared cache is too high to guarantee a cache hit. This decision is made based on the
bounded path duration Δt and the cumulative interference curve �� . If the interfer-
ence is at least as high as the resilience A − |B�| , where |B′| is an upper bound on the
intra-task interference, the block may be evicted by inter-core interference ��(Δt) .
Thus, the value is updated to ⊤ , showing that this access is a potential miss.

In the second case, the path duration is acceptable and the access av
i
 actually

causes the target block cb(a) to be loaded into the cache. The value is updated to ⊥
to show that the load-access path is terminated at this point and a will result in a
definite hit from this location. In the final case, the data-flow information is propa-
gated further with the updated set of conflicting cache blocks B′ . The functions f v

i

can be composed to operate on sequences of accesses f v
�,…,�

= f v
�
◦… ◦f v

�
.

Data-flow information for accesses contained in v is initially generated by G[v]:

For every access av
t
∈ (av

i
)m
i=1

 associated to the node v, potentially resulting in a cache
hit, G[v] inserts a tuple representing an abstract path. The initial path duration is
approximated by the worst-case execution time of the node v: WCET(v) . The initial
path information, consisting of the duration WCET(v) and the empty set for intra-
task interference, is propagated backwards inside the node v using the function
f v
1,…,(t−1)

 . Note that only accesses from v occurring prior to av
t
 , i.e., av

i
, 1 ≤ i < t can

create a conflict for av
t
 at this stage.

Data-flow information arriving at v from successor nodes is contained in out[v].
This information is propagated backwards along v by P[v]:

The propagation function f v
1,…,m

 is applied to the accesses contained in out[v] which
are not mapped to ⊤ or ⊥ . We do not need to process elements (a,⊤) ∈ out[v] and
(a,⊥) ∈ out[v] , as the analysis has already concluded that the access a will result

(36c)f v
i
(a, (Δt,B)) =

⎧
⎪⎨⎪⎩

(a,⊤) if 𝛾𝜏(Δt) ≥ A − �B��
(a,⊥) else if

CAC(av
i
) = A ∧

cb(a) = cb(av
i
)

(a, (l,B�)) otherwise

(36d)f v
i
(a,⊤) =(a,⊤), f v

i
(a,⊥) = (a,⊥),

(37)B� ∶= B ∪
{
cb(av

i
)
||| cb(a) ≠ cb(av

i
) ∧ CAC(av

i
) ≠ N

}
.

(38)G[v] =
{
f v
1,…,(t−1)

(av
t
, (WCET(v), �))

||| 1 ≤ t ≤ m ∶ av
t
is potential-hit

}
.

(39)P[v] =
{
f v
1,…,m

(a, (Δt +WCET(v),B))
||| (a, (Δt,B)) ∈ out[v]

}
.

Real-Time Systems

in either a potential cache miss or definite cache hit, respectively. The path dura-
tion Δt is increased to Δt +WCET(v) to reflect the fact that it may increase by up to
WCET(v) cycles by extending the path over v.

Increasing the WCET of the path by WCET(v) can overapproximate the actual
path duration and reduce the analysis precision. This overestimation occurs because
the required time of accesses and computations that are not part of the path are
included in WCET(v) . Consider the following example for clarification: Assume a
basic block issues the access sequence b1, b2, b1, b3 to the shared cache. We want to
analyze the second access to the cache block b1 . The potential-hit path for that access
thus consists of the first three accesses b1, b2, b1 . Using Eq. (38), the duration of the
path is safely estimated to be the WCET of the complete basic block WCET(v) . We
can refine this calculation by considering the bus stalling delay in isolation. Instead
of including the bus stalling penalties directly in the execution time of a basic block,
we may account for potential bus contention separately. To determine the maximal
duration of a potential-hit path, we add the maximal stall time for every access to
the shared cache that occurs on the path. This approach leads to more precise path
durations, as the bus stalling penalty is considered only for accesses that actually lie
on the analyzed path. This optimization can be implemented by computing the value
WCET(v) without potential bus stalling delays and adjusting Eq. (36c) to increment
the duration l for each access to any cache set. Note that this refinement requires a
compositional hardware architecture.

The incoming data-flow information for node v is the combination of G[v] and
P[v] (Eq. 40), whereas the outgoing data-flow information consists of the merged
information from all successors w ∈ V� with (v,w) ∈ E� (Eq. 41).

Here, the join operation ⊔ is extended to data-flow mappings by pair-wise joining of
elements associated to the same access event.

Each node is initialized with the empty set: in[v] = out[v] = �. The values of in[v]
and out[v] are computed iteratively until they converge. Then, an access a can be
safely classified as a cache hit if no node v exists with (a,⊤) ∈ in[v].

(40)in[v] =G[v] ⊔ P[v]

(41)out[v] =
⨆

(v,w)∈E�

in[w]

Fig. 4 Example CFG containing three nodes v1, v2, v3 . The nodes v1 and v3 each contain an access to the
same cache block. The node v2 is part of a loop and may be executed multiple times

 Real-Time Systems

6.2.1 Ensuring termination

In its current formulation, the semi-lattice D used in the DFA has infinite height, as
the path duration is not limited. Therefore, D does not satisfy the ascending chain
condition. In other words, it is not guaranteed that the data-flow information con-
verges after a finite number of iterations. We modify the analysis to guarantee termi-
nation in the following way.

We know that all feasible paths contained in the analyzed CFG are of finite dura-
tion as we assume that all tasks terminate and thus have a finite WCET. In practice,
however, non-termination of the analysis can occur when information is propagated
along a path that is infeasible in reality.

Consider the example CFG in Fig. 4. The graph contains three nodes v1, v2, v3 .
The nodes v1 and v3 access the same cache block and the access in v1 is performed in
all circumstances. The access in v3 may result in a cache hit depending on the dura-
tion of the path from v1 to v3 . However, the CFG contains a loop over node v2 , which
is part of the path from v1 to v3.

Assume that the interfering cores will never create a sufficient amount of interfer-
ence to evict the block accessed in v3 . The data-flow analysis will not terminate, as
the loop duration is potentially unbounded. Note that this is the case even when an
upper loop bound exists, as this information is not available to the data-flow anal-
ysis. The DFA is inherently unaware of how many loop iterations have been per-
formed already.

To correct this behavior, it is possible to limit the maximal duration value in the
abstract domain. Instead of allowing the path duration to take an arbitrary duration
Δt ∈ ℕ , only a limited interval [1, L𝜏] ⊂ ℕ can be permitted. A natural choice for L�
is the lowest duration to experience the maximal interference over one full execution
of � , i.e., �(WCET(�)) . L� is thus given by:

In case a path duration exceeds this value while being propagated along a node, the
duration is instead capped at the upper limit L� . This limit on the path duration is
safe, as it never underestimates the potential inter-task interference due to the choice
of L� . Using this upper limit on the path duration, only a finite number of updates
may be applied to an abstracted path until the value necessarily stabilizes.

Termination is now ensured, but in practice, the number of iterations required
for termination may still be prohibitively large. To solve this problem, we widen
an abstracted path (Δt,B) to ⊤ after the number of performed propagations over
nodes exceeds a certain threshold value. This procedure is safe as we do not intro-
duce faulty cache hit classifications here. However, some precision is sacrificed. We
evaluate the impact of different threshold values in Sect. 7.3.

6.2.2 Relative precision

In this section, we discuss the relative precision of the presented analysis com-
pared to the baseline analysis, which was first presented in Hardy et al. (2009).

(42)L� = �−1
�
(��(WCET(�))).

Real-Time Systems

We abbreviate the timing-aware classification presented in this paper as the TAC
method.

It is clear that the quantification of interference over time using event-arrival
curves can yield more precise results than assuming that every potentially conflict-
ing block causes interference at all points in time. However, the TAC classification
approach presented in this paper is not strictly more precise than the CCN method.
This is caused by the inherent loss of precision in the path abstraction.

Consider the control-flow graph in Fig. 4 as an example. Assume that the shared
cache is 4-way associative and that interfering tasks may store up to 3 conflicting
blocks in the cache. The CFG of the analyzed task contains three nodes v1, v2, v3 .
The accesses a ∈ Acc� and b ∈ Acc� are contained in the nodes v1 and v3 , respec-
tively. In this scenario, the access a in v1 causes the block cb(a) to be loaded into the
shared cache, while the node v2 does not contain any accesses to the shared cache.
When performing the access b with cb(b) = cb(a) , no further blocks were loaded
into the cache by the analyzed task. Thus, the block age of cb(b) based on intra-task
interference is 0.

An eviction of cb(b) prior to the access b would require interfering tasks to store
4 conflicting blocks in the shared cache. As, in this example, the interfering task
only accesses up to 3 conflicting blocks, the CCN approach is able to classify the
access as a definite cache hit.

The DFA utilized in the TAC approach has to process the loop which allows the
node v2 to be executed multiple times between v1 and v3 . The duration of the path
from v1 to v3 thus depends on the number of iterations performed by the loop v2 .
Consequently, the path information associated to the access b originating from v3
can be propagated many times along the loop v2 . This is the case as the duration
Δt in the abstract path information (b, (Δt, �)) does not converge until the limit L�
is reached. As we have discussed in the previous section, the DFA is configured to
have a propagation limit for path information, which ensures the quick convergence
of the analysis. Depending on the value of the propagation threshold, abstract path
information may be widened to (b,⊤) . The resulting classification for b by the TAC
approach could thus be a potential cache miss.

We conclude that the TAC technique is not strictly more precise compared to
the classification provided by the standard CCN analysis. However, it is possible to
combine the two techniques to create a more precise analysis. To consider a cache
access as a hit, it is sufficient that either the CCN analysis or the TAC analysis clas-
sifies the access as a cache hit. To combine the two classifications approaches, first,
the CCN classification is determined. If the result is not a conclusive cache-hit, TAC
analysis can be utilized to decide whether the access is a cache hit or potential miss.

It is important to note that the cache hit classifications of the combined approach
are not merely the union of the hit classifications from the timing-aware and baseline
techniques when considered in isolation. In fact, a beneficial interaction emerges
when both approaches are combined: A cache access that is not classified as a cache
hit by either the timing-aware or baseline classifications alone can be classified as
a cache hit when both approaches are combined. This situation can occur when
the timing-aware classification fails to classify an access as a cache hit because the
potential hit-path is too long. The potential hit path duration can be reduced in the

 Real-Time Systems

combined analysis if a cache access on the potential hit path is classified as a cache
hit by the baseline classification but not the timing-aware classification. In the com-
bined analysis, this reduction of the potential-hit path duration can lead to addi-
tional hit classifications that are not possible when the approaches are considered in
isolation.

We compare the precision of the combined TAC+CCN approach with the pure
TAC analysis in the evaluation in Sect. 7.

6.2.3 Iterative application

The DFA of the presented classification approach contains an implicit dependence
between the classification of different accesses. To determine a safe upper bound
for the duration of a path, the WCET of the contained nodes is accumulated. Ini-
tially, these WCET values are derived under the assumption that no access to the
shared cache results in a cache hit. However, after classifying some accesses as
definitive cache hits, these WCET values may be reduced. As a consequence, the
WCET estimate of paths in the CFG also reduces. The DFA can thus be performed a
second time using the tighter WCET values. Accesses previously classified as poten-
tial misses may now be classified as cache hits due to the shorter duration of the
potential-hit paths. Hence, it is possible to apply the DFA iteratively to gain more
and more precise cache hit information in each iteration. The iterative DFA analysis
is performed as long as there are changes in the access classifications. This process
will terminate, because the there is a limited number of cache accesses that can be
classified as cache hits and a hit classification made in a previous iteration will never
be invalidated, as the potential-hit path duration decreases monotonically.

Note that this iterative process has no impact on the interference curves. The
interference curves are derived under the best case assumption, that no interference
will occur at the shared cache. Thus, the interference curves remain the same for all
iterations. Only the upper bound on the path duration is tightened.

7 Evaluation

In order to evaluate the performance and effectiveness of the timing-aware classi-
fication approach, we implemented it in a WCET analyzer (Falk and Lokuciejew-
ski 2010). This tool chain supports the code-generation and WCET analysis for the
ARMv4T instruction set. The target architecture consists of multiple cores with a
3-stage in-order pipeline. Each core is equipped with a private L1 cache, which is
connected to a shared L2 cache using a round-robin arbitrated bus. Our evaluations
cover systems with 2 and 4 cores, where each core executes up to 4 different tasks.
The systems use partitioned scheduling, which means that the mapping of tasks to
their core is fixed. For all configurations, we generated 20 random task sets. The
tasks are taken from the EEMBC AutoBench 1.1 benchmark suite (Poovey et al.
2009) to create a realistic workload. Tasks are released repeatedly, with the minimal
inter-arrival time being denoted by the value Period(⋅) . We generated task periods

Real-Time Systems

using the UUnifast approach (Bini and Buttazzo 2005), with a target utilization of
0.7. The target utilization refers to the best-case scenario, without any inter-core
interference.

References, which are located in a loop often exhibit different behavior on the
first loop iteration compared to subsequent loop iterations. For this reason, we
employ virtual inlining and unrolling, limited at a depth of 3 contexts. This means
that the analyzer differentiates between the first, second, and all following iterations
of a loop, as well as different function call contexts, thereby improving the precision
of the WCET estimate.

As discussed in Sect. 6.2.1, the DFA to classify cache accesses possesses a
propagation threshold parameter. This means that the path information is not
propagated beyond a certain number of nodes, in order to ensure quick termina-
tion of the analysis In this evaluation, the propagation limit of the analysis was
set to 30 nodes, meaning that hit paths containing up to 30 nodes can be detected
by the DFA to result in a cache hit. The impact of this parameter on the precision
and runtime is evaluated in Sect. 7.3.

We configured the private L1 caches with a size of 256 bytes, using direct-
mapping and a cache block size of 16 bytes. For the shared cache, we evalu-
ated cache sizes ranging from 4 to 64 KB, with 8-way associativity, and cache
block size of 64 bytes. Both cache levels use the LRU replacement policy. Data
accesses were not cached and the timing for each access was set to take 3 cycles.
The instruction access timings were set to 1 cycle for an L1 hit, 10 cycles for an
L2 hit and 40 cycles in case of an L2 miss. These timing values do not include
potential bus access delays.

An instruction fetch may be stalled for up to (|C| − 1) ⋅ 40 cycles at the shared
bus due to accesses from other cores. The worst-case access timing consists of
the sum of the bus access delay and the L2 access time. Table 3 shows the dif-
ferent timing values including the worst-case bus stall time. As the number of
cores increases, the relative difference between a cache hit and cache miss dimin-
ishes, because the worst-case access delay is primarily determined by the delay
to access the shared bus. Thus, improvements in the cache hit classifications may
have a smaller impact on the WCET of a task than expected, since the WCET is
also affected by other factors such as the bus access delay.

To evaluate the performance, we utilize two different metrics. The first metric
is the percentage of accesses contained in the CFG that could be classified as a
cache hit. The second metric is the relative WCET achieved by the analyses com-
pared to the WCET using the baseline CCN classifications as the reference value.

Table 3 Worst-case access
timing including the bus
access delay using round-robin
arbitration

Cores L2 hit L2 miss Hit-miss ratio

2 50 80 0.63
4 130 160 0.81

 Real-Time Systems

We use the hit ratio in addition to the relative WCET, as the WCET value
does not capture improved classifications outside the critical path. Additionally,
changes in WCET might be small, even though a significant number of accesses
were newly classified as cache hits as the WCET is also influenced by other fac-
tors such as the bus access delay.

We compare the performance of four different analysis approaches:

1. Baseline classification (CCN)

2. Worst-case interference placement (WCIP)

3. Timing-aware classification (TAC)

4. Timing-aware classification combined with baseline classification (TAC+CCN)

The baseline analysis counts the number of conflicting cache blocks from tasks
running on interfering cores for each cache set. The analysis then assumes that all
potential conflicts occur for every access to the shared cache. This approach was
used in Hardy et al. (2009) and Liang et al. (2012). An access to a cache block is
only classified as a cache hit if the maximal block age is less than the cache associa-
tivity minus the number of potential conflicts.

The second approach we evaluate is the Worst-Case Interference Placement anal-
ysis, as presented by (Nagar and Srikant 2014, 2016; Nagar 2016). An upper bound
on the number of interfering cache accesses is determined and distributed to create
the maximal possible cache miss penalty. In the evaluation, we use the approximate
WCIP algorithm, as it is reported to have similar performance to the precise solu-
tion, with lower analysis overhead. The technique is a quantitative analysis as it only
computes a WCET value without classifying individual accesses. Thus, we are only
able to compare the resulting WCET values but not the number of issued hit clas-
sifications. We selected the WCIP approach over the CEOP approach (Zhang et al.
2022) as the comparison because it promises to scale better for multiple interfering
tasks (see Observation 2).

The third approach is the timing-aware classification based on interference
curves, as it is presented in this paper. We determine the interference curves as
described in Sect. 5 and classify individual cache accesses using the DFA presented
in Sect. 6.2.

As we have discussed in Sect. 6.2.2, the precision of the timing-aware classifica-
tion and baseline classification approaches are incomparable, as both techniques can
perform better than the other one under certain circumstances. We also evaluate the
performance of the combination of both classification approaches. This means that
an access will be considered to be a cache hit if either the baseline classification or
the timing-aware classification has deemed the access to be a cache hit.

The evaluation is structured into multiple parts. In Sect. 7.1, we evaluate the
cache hit classification performance and WCET reduction, and in Sect. 7.2, we

Real-Time Systems

evaluate the analysis overhead incurred by the timing-aware classification when
determining the WCET estimate. The impact of the propagation threshold value,
which was discussed in Sect. 6.2.1, is evaluated in Sect. 7.3.

7.1 WCET reduction

In this subsection, we evaluate the performance of the presented analysis and com-
pare it to other techniques. We use box plots to visualize the results. The line in
the middle of each box represents the median value, whereas the lower and upper
bounds of a box show the 25th and 75th percentile. The whiskers are at most 1.5
times as large as the central box. Data points outside this range are considered out-
liers and are marked by a small cross. The metrics are evaluated for each task and
grouped for each system configuration.

The results of the baseline CCN approach are colored orange. The WCIP
approach is colored purple. The timing-aware classification results, as a standalone
analysis and combined with the baseline approach, are colored in blue and green,
respectively.

Note that the WCIP approach is a quantitative approach, which does not issue hit
classifications. Therefore, the method is absent in the hit ratio evaluation. For the
WCET comparison, we normalize the result of the CCN approach at 1.0. A rela-
tive WCET smaller than 1.0 corresponds to a reduced WCET, while a larger value
means the approach performed worse than the CCN approach.

The results for dual-core systems and quad-core systems are presented in
Sect. 7.1.1 and Sect. 7.1.2, respectively.

Fig. 5 Hit Ratio and relative WCET for dual-core systems with 1 task per core. WCET results are rela-
tive to the baseline CCN approach

 Real-Time Systems

7.1.1 Results for dual‑core systems

We analyzed dual-core systems with 1, 2, and 4 tasks per core. For each task set
size, we generated 20 task sets to be analyzed.

The performance results for single task systems are visualized in Fig. 5. The left-
hand figure shows the hit ratio, i.e., the percentage of cache accesses in the control-
flow graphs, which were successfully classified as a cache hit. The WCIP approach
is a quantitative analysis, therefore it does not appear in the comparison of hit ratios.
The right-hand figure shows the relative WCET compared to the CCN approach.

For the smallest cache size of 4 KB, the baseline analysis achieves a median hit
ratio of 0% (26.6% avg.). Using the TAC approach, as presented in this paper, the
median hit ratio increases to 66.5% (63.2% avg.). When the two approaches are com-
bined, the hit ratio further increases to 70.2% (69.2% avg.). Consequently, we see
that by leveraging timing information the hit classification precision can be drasti-
cally increased.

When increasing the shared cache size to 8 KB, the CCN approach is able to clas-
sify significantly more accesses as cache hits. The median hit ratio rises to 73.7% .
However, the average is only 64.4% as there are some systems with 0% hit classifica-
tions. The TAC achieves a similar median hit ratio of 74.1% , while the average lies
at 72.2%.

While both, the CCN and TAC approaches have a comparable median hit ratio,
when combining both approaches, the median hit ratio increases to 81.5% (80.3%
avg.). This exemplifies the positive effects that occurs when the TAC classification
can make use of the CCN classifications to classify additional accesses as cache hits.

For the higher cache sizes from 16 KB to 64 KB, the CCN and TAC+CCN
approaches converge to a median hit ratio of 89.1% . The pure TAC approach stabi-
lizes at a hit ratio between 75.0% and 77.6%.

Fig. 6 Hit Ratio and relative WCET for dual-core systems with 2 tasks per core. WCET results are rela-
tive to the baseline CCN approach

Real-Time Systems

The impact on the WCET estimate relative to the CCN approach is shown on the
right-hand side of Fig. 5.

The biggest changes occur for the smallest 4 KB cache, as this is the configu-
ration, where the CCN approach had a median hit ratio of 0% . In the median, the
WCIP approach has no effect on the WCET compared to the CCN approach. On
average, we observed 5.1% reduction in the WCET. This is congruent with the
reports from Nagar and Srikant (2016), which also reports 0% median WCET reduc-
tion. More precisely WCET improvements were reported for 9 out of 27 benchmarks
(Nagar and Srikant 2016). In some cases, the WCET computed using WCIP, was
larger than the reference value computed using the CCN approach.

The approach presented in this paper performs better than WCIP. We measured
a median WCET improvement of 15.2% and 15.4% , for the TAC and TAC+CCN
methods, respectively. The average improvement for TAC is 8.9% . The smaller aver-
age improvement results from the fact that there are benchmarks in which TAC per-
forms worse than CCN. However, when combining the TAC and CCN approaches,
the average reduction stays high at 16.5% . Note, that the combined TAC+CCN
approach will never perform worse than the CCN approach.

Using WCIP for the larger 8 KB cache configuration, the average and median
WCET reduction is 0.3% and 0.0% . Using only the classifications from the TAC
method, the WCET increases by 2.5% in the median. However, for the TAC+CCN
approach, the WCET is reduced by a median of 2.0% and 6.3% on average.

For larger cache size the WCIP and TAC+CCN methods perform equally well
as the CCN approach, while only using TAC classifications increases the WCET by
5.1% to 5.9% in the median.

We conclude that it is beneficial to use a combined approach, which falls back on
the results of the CCN analysis, in case the more complex analyses fail to provide
better results. This is the case for both the WCIP, and TAC approach, which can be
outperformed by the standard CCN analysis.

Fig. 7 Hit Ratio and relative WCET for dual-core systems with 4 tasks per core. WCET results are rela-
tive to the baseline CCN approach

 Real-Time Systems

We also analyzed dual-core systems with two tasks assigned to each core. Again,
we evaluated 20 task sets for this configuration. The hit ratio and relative WCET
reduction are shown in Fig. 6.

The results show a similar picture compared to the single task systems: For small
cache configurations up to 8 KB, the standard analysis is unable to issue any hit
classifications, due to the total code size of interfering tasks.

The WCIP approach is able to achieve reductions in the average WCET of 6.2%
and 7.4% for the 4 KB and 8 KB L2, respectively. However, the median improve-
ment is 0.3% and 0.1% , respectively.

The TAC and TAC+CCN methods yield significantly higher hit ratios and WCET
reductions for the 4 KB and 8 KB cache sizes. The median hit ratios of 64.6% and
ca. 73.8% cause a median WCET reduction of 18.4% for 4 KB and 20.5% to 21.6%
for 8 KB caches, respectively. For 16 KB caches the TAC+CCN approach reduce
the average WCET by 8.7%.

For the 32 KB and 64 KB cache size, the TAC approach, without the CCN classi-
fications as fallback, performs slightly worse than the pure CCN approach, resulting
in a median WCET increase of 5.6% and 5.5% . The CCN analysis gives high cache
hit ratios, which prevents improvements in the WCET estimate. For these cache
sizes, the cache is able to accommodate most of the code at the same time, resulting
in few inter-core conflict misses. In the median, the WCET is not changed for when
using the combined TAC+CCN approach. For the 32 KB shared cache, the WCET
is reduced by 2.9% on average.

We further increased the task set size and analyzed dual-core systems contain-
ing four tasks per core. The hit ratio and relative WCET reduction are shown in
Fig. 7. A pattern similar to the 1 task-per-core and 2 tasks-per-core systems can be
observed for these systems. The presented TAC analysis is able to issue hit classifi-
cations even for small caches and thus generates a reduction in the relative WCET.
For larger shared caches, the baseline analysis performance rapidly increases once a

Fig. 8 Hit Ratio and relative WCET for quad-core systems with 1 tasks per core. WCET results are rela-
tive to the baseline CCN approach

Real-Time Systems

threshold cache size has been reached. For even larger caches, the inter-core interfer-
ence becomes less significant as most code is able to fit in the shared cache simulta-
neously. On average, the code size for each core was 27.7 KB.

The average WCET reductions using the WCIP approach were 3.5% , 3.7% ,
7.4% , 3.6% , and −0.2% for the 4 KB to 64 KB cache sizes. In contrast, the qualita-
tive TAC+CCN method achieved significantly higher performance compared to the
CCN and WCIP methods. The average WCET reductions were 15.0% , 20.3% , 23.3% ,
14.7% , and 3.0% . The performance of TAC was similar to TAC+CCN for all cache
sizes below 64 KB, as the CCN approach had a median hit ratio of 0% in these con-
figurations. Consequently, falling back to the CCN classification provided no signifi-
cant precision increase.

7.1.2 Results for quad‑core systems

To analyze the scalability of the presented approach to higher core counts, we also
analyzed quad-core systems containing 1, 2, and 4 tasks per core, with shared caches
between 4 to 64 KB.

The evaluation results for 20 systems containing a single task per core are shown
in Fig. 8. Compared to the dual-core systems with one task per core, as shown in
Fig. 5, the number of cache hit classifications are considerably lower. The reason
behind this is that by doubling the number of cores from 2 to 4, the number of inter-
fering cores triples from 1 to 3. Thus, a quad-core system has inherently higher
inter-core interference, which makes it harder to issue definite hit classifications.

For all cache size configurations, the performance of the WCIP approach was
close to the CCN approach. The average WCET reduction was between −0.1% and
1.3% . It can be seen that in the small configurations, where the CCN approach clas-
sifies all accesses as cache misses, the WCIP approach may compute a larger WCET
value than the CCN method, which classifies all L2 accesses as cache misses. This

Fig. 9 Hit Ratio and relative WCET for quad-core systems with 2 tasks per core. WCET results are rela-
tive to the baseline CCN approach

 Real-Time Systems

overestimation is a result of the approximations made in the WCIP approach. The
WCIP approach assumes that all potential cache hits lie on the worst-case path in
the CFG and computes the penalty accordingly. When the potential interference is
so large that all potential hits are classified as cache misses, the resulting penalty can
lead to a WCET estimate which exceeds the WCET assuming all L2 cache accesses
will result in a cache miss.

For the 4 KB cache the TAC analysis is classifying a smaller fraction of L2
cache accesses as hits compared to the dual-core system. The median hit ratio is
8.4% , leading to a 1.1% median WCET reduction. The performance of the analysis
increases for larger cache sizes. The WCET is reduced further for 8 KB and 16 KB
caches, where the TAC+CCN analysis has a median hit ratio of 31.4% and 53.3%,
respectively. In contrast, the CCN analysis has a median hit ratio of 0% for up to
16 KB. These hit classifications result in a median WCET reduction of 4.7% (5.2%
avg.) and 7.2% (6.7% avg.) for 8 KB and 16 KB shared caches.

For the 32 KB shared cache configuration, the CCN analysis is able to issue
hit classifications for 74.1% of accesses in the median, compared to 78.5% for the
TAC+CCN analysis. This gap in the hit ratio leads to an average WCET reduction
of 3.7%. For the largest evaluated cache size of 64 KB, the CCN and TAC+CCN
approaches lead to a similar hit classification ratio, as the impact of inter-core inter-
ference on the worst-case performance diminishes. However, there are outliers for
which better hit classifications where made, leading to an average WCET reduction
of 1.2%.

On average, the three interfering cores had a total code size of 19.9 KB. This is
reflected in the performance of the CCN approach. For the 16 KB cache configura-
tion, the median hit ratio is 0%. However, as soon as the shared cache size reaches
32 KB, and exceeds the code size of the interfering tasks, the hit ratio jumps to
74.1% . These results clearly demonstrate the pessimism of the CCN approach, in
particular for small cache sizes.

Fig. 10 Hit Ratio and relative WCET for quad-core systems with 4 tasks per core. WCET results are
relative to the baseline CCN approach

Real-Time Systems

We also analyzed quad-core systems with two tasks assigned to each core. This
means that six different tasks can contribute to the eviction of data from the shared
cache. The evaluation results for this configuration are shown in Fig. 9. The large
potential of inter-core interference hinders the CCN approach to issue many hit clas-
sifications. The median hit ratio is 0% for all cache sizes.

The TAC+CCN analysis achieves a median hit ratio of 0.0% , 13.2% , 34.2% ,
55.1% , and 71.3% , for the cache sizes 4 KB – 64 KB respectively. The resulting aver-
age WCET reduction is 0.1% , 2.2% , 5.4% , 8.4% , and 7.6% . The TAC and TAC+CCN
methods perform identically for 4 KB – 32 KB, as the CCN does not issue hit classi-
fications for these cache sizes. In the 64 KB configuration, relying solely on TAC hit
classifications yields a WCET reduction of 5.9% over CCN, compared to 7.6% when
both qualitative analyses are combined.

Using the WCIP algorithm, the WCET is reduced on average by −0.2% , −0.3% ,
0.2% , 2.2% , and 2.9% . The median relative WCET remains unchanged for 4 KB to
16 KB, whereas a 1.3% and 1.0% decrease are observed for the 32 KB and 64 KB
configuration.

The results for quad-core systems with 4 tasks per core are shown in Fig. 10. This
means that in total 12 different tasks can contribute to the eviction of data stored
in the shared cache. Furthermore, these 12 tasks can be executed repeatedly, which
further increases the potential inter-core interference. As the CCN approach does
not issue hit classifications, i.e., assumes all shared cache access to result in cache
misses, the TAC and TAC+CCN approaches perform identically.

In contrast, the timing aware classification presented in this paper achieves an
average hit ratio of 0% , 4.3% , 21.2% , 39.6% , and 51.2% . The WCET median WCET
is reduced by 0.0% (0.0% avg.), 0.2% (0.6% avg.), 2.6% (3.0% avg.), 6.1% (6.3% avg.),
and 8.3% (8.5% avg.), for 4 KB – 64 KB L2 caches respectively.

The quantitative WCIP method has no impact on the median WCET for cache
sizes up to 32 KB. For the 64 KB cache, the relative WCET is decreased by 0.6% in
the median and 1.9% on average.

7.2 Runtime evaluation

In this subsection, we take a look at the analysis overhead of the proposed analysis
and compare it to the runtime of the CCN and WCIP approach. The evaluations
were conducted on an Intel Xeon Server containing 48 cores running at 3.2GHz. All
analyses were configured to use only a single processor core.

The runtime of the CCN method consists of the cache block conflict number
summation for every cache set and a WCET analysis. It is the approach with the
lowest analysis overhead.

To compute the WCET using the WCIP approach, the following steps are per-
formed: (a) calculate WCET without inter-core interference, (b) determine number
of conflicting accesses per task execution for each cache set, (c) determine number
of cache hits with resilience k = 1,… ,A , (d) iteratively solve the interference place-
ment problem until the WCET converges.

 Real-Time Systems

In Nagar and Srikant (2016), the number of cache hits and the interference budget
is calculated by determining loop bounds and the maximal execution count of each
function. By determining these values, it is possible to bound the execution count of
each access to the shared cache. The total access count to the shared cache and the
number of hits with particular resilience is then given as the sum of all execution
counts for the corresponding accesses.

We determine the interference budget by solving an IPET ILP that maximizes
the number of L2 cache accesses for a single execution of the task. We apply the
same ILP based approach to determine the number of cache hits with different lev-
els of resilience. This means, that for each task and each cache set we solve A + 1
ILPs. The approach of using ILPs, which we employ in this paper, is mentioned as a
potentially more precise alternative to the execution count based estimate in Nagar
and Srikant (2016).

Using the period of the interfering tasks, we determine how many times each
interfering task may be released during a single instance of the analysed task. The
approximate WCIP algorithm computes the interference penalty based on these val-
ues. Algorithm 1 is performed multiple times until the WCET estimate converges as
described in Sect. 3.2.

The runtime of the presented analysis consists of: (a) the BCET/WCET analysis
used to derive the event-arrival curves and required to perform the DFA, (b) the
derivation of the interference curves, (c) the computation of interference due to
non-preemptive scheduling, (d) the DFA to classify accesses, (e) the final WCET
analysis.

To derive the interference curves, up to A ILPs are solved for each task and cache
set. Each of these ILPs provides a solution that is used to define the interference
curves, as given in Eq. (10). Up to 2A additional ILPs have to be solved to deter-
mine the interference curves for the in-task and out-task categories. It is not
always necessary to solve all ILPs, because for example, a task that only accesses
three distinct cache blocks in a cache set will never generate four or more events.

Table 4 Average analysis time in minutes

Cores Cache size 1 Task 2 Tasks 4 Tasks

CCN WCIP TAC CCN WCIP TAC CCN WCIP TAC

2 4 KB 0.2 0.8 2.1 0.7 2.6 5.7 1.3 5.3 11.7
8 KB 0.3 1.5 3.1 1.0 5.3 8.2 1.8 12.1 16.9
16 KB 0.4 3.1 3.2 1.3 10.9 9.1 2.5 23.6 19.4
32 KB 0.3 5.7 3.4 1.1 20.3 9.9 2.1 44.8 20.6
64 KB 0.3 10.4 3.2 0.8 34.7 9.7 1.9 80.5 23.7

4 4 KB 0.6 2.3 5.2 1.4 6.0 12.3 2.9 12.7 25.5
8 KB 0.8 5.0 7.3 2.0 12.5 17.5 4.2 29.7 36.7
16 KB 1.1 9.8 8.0 2.7 25.9 20.2 5.5 61.1 42.0
32 KB 1.0 18.8 8.2 2.5 48.4 21.6 4.9 124.5 47.8
64 KB 0.7 35.8 8.3 1.6 88.2 23.1 3.5 220.0 57.7

Real-Time Systems

Hence, the ILPs determining the time required for more than three events will be
infeasible and do not need to be solved.

The interference curves are then combined according to Algorithm 2. The result-
ing total interference curves are used in the following data-flow analysis to classify
the individual cache accesses.

Table 4 shows the average analysis runtimes of the three analysis approaches.
Using the presented analysis, the time required on average to analyse a dual-core

system with a single task per core ranges from 2.1 to 3.4 minutes depending on the
cache size. The TAC analysis has an overhead between 8.9× and 12.2× compared to
the baseline analysis. For single task quad-core systems, the analysis took between
5.2 and 8.3 minutes on average. The overhead over the CCN analysis ranges from
7.3× to 11.4× . Setting the number of tasks per core to 2, the runtime of the TAC
analysis increases to 5.7–9.9 minutes for dual-core systems and 12.3–23.1. For a
task set size of 4 tasks per core, the timing-aware analysis requires between 11.7
and 23.7 minutes for two cores and from 25.5 to 57.7 minutes for four cores on
average. Over all configurations, the overhead of the presented TAC analysis ranges
from 7.3× to 16.6×.

From the construction of the analysis, a linear scaling of the analysis time is
expected when increasing the system size. This can trend be observed in Table 4.
When doubling the number of tasks for dual-core systems, the analysis runtime
increases by a factor of 2.8× from 1 to 2 tasks and 2.2× from 2 to 4 tasks. For quad-
core systems, the runtime scales by a factor of 2.6× and 2.2× respectively. When
keeping the number of tasks constant and doubling the core count from 2 to 4 cores,
the runtime scales by a factor of 2.5× , 2.2× , and 2.3× , for 1, 2, and 4 tasks per core
respectively.

For the CAC and TAC analysis, the runtime for large caches can decrease com-
pared to the medium-sized caches. For example, for dual-core systems the analysis
of 64 KB caches is faster than for 32 KB caches for 1 and 2 tasks per core. With 4
tasks per core, this trend is also visible in the CCN analysis but not the TAC analy-
sis. As this trend occurs also in the CCN analysis, we conclude that it is not inherent
to the analyses but rather a property of the underlying WCET analysis tool.

For the presented analysis, the main contributor to the runtime are the ILPs for-
mulated in Sect. 5 to derive the event-arrival curves. As the ILPs are independent of
each other, this step can be parallelized to reduce the time requirement. To explore
this aspect, we performed the analysis of the largest systems, four cores each execut-
ing four tasks, while allowing up to four ILPs to be solved in parallel. The required
time for the analysis dropped to 12.6, 18.4, 22.9, 24.7, and 28.4 minutes, for the
different cache sizes respectively. These values indicate a reduction of the required
runtime by a factor of 2× . Thus, we conclude that the scalability of the presented
analysis can be improved by parallelizing the required computations.

The data-flow analysis presented in Sect. 6.2 was insignificant compared to deriv-
ing the interference curves, with an average runtime of less than two seconds per
system. Combining the interference curves to account for non-preemptive schedul-
ing of tasks, i.e., executing Algorithm 2, did not create significant overhead, taking
less than a second to compute.

 Real-Time Systems

We observe, that the runtime of our implementation of the WCIP approach is
significantly higher compared to the presented TAC analysis. This is a consequence
of the way the interference budget and number of cache hits are determined in our
implementation of the approach. We solve multiple ILP models to determine these
values. As mentioned above, Nagar and Srikant (2016) used an efficient alternative,
which operates directly on the control-flow graph of each task. Thus, a more effi-
cient implementation of the WCIP approach is possible. However, as seen in the
previous section, the WCIP approach performs similar to the CCN approach, and is
significantly outperformed by the presented TAC analysis.

7.3 Propagation limit sensitivity

To classify shared cache access as cache hits, the duration of potential-hit paths is
analysed in the presented TAC approach. The maximal duration of these paths is
determined using the data-flow analysis developed in Sect. 6.2.

In order to guarantee termination of the data-flow analysis, an upper bound L� is
imposed on the abstract path duration. This bound corresponds the duration required
to experience the maximal inter-core interference. Bounding the path duration
ensures that the analysis terminates. However, it may require many iterations for a
path to converge on this upper limit.

To ensure quick convergence, we introduced a propagation limit, which widens
the information for an access to ⊤ , when the propagation limit is exceeded. This
means that after propagating path information over a certain number of nodes in the
CFG without finding the start of the potential-hit path, i.e. the access that loads the
target block into the shared cache, the DFA gives up on this path and classifies the
access as a potential miss.

We now explore whether this cut off threshold is necessary and how it affects the
analysis precision. The results from the previous sections were determined using a
propagation limit of 30 nodes. This means, that potential-hit paths containing up to
30 nodes may be recognized by the DFA as resulting in a cache hit. To explore the
sensitivity of the analysis to this parameter, we performed the analysis of single-task
systems with different threshold values.

First the propagation limit is decreased to 5 nodes. As only short hit paths may
be recognized with this setting, a decrease in the number of successful cache hit
classifications is expected. We observed that a lower path propagation threshold had
no significant impact on the analysis precision. The average hit ratio results were
within 0.2% of the results obtained with the higher threshold of 30 nodes. To check
whether a higher propagation limit is useful, we increased the propagation limit to
150 nodes. As for the lower propagation limit, the hit ratio results were within 0.2

Real-Time Systems

percentage points. Thus, a higher propagation limit yields only minor improvements.
These results suggest that accesses to the shared instruction cache exhibited highly
localized behavior.

The average runtime of the data-flow analysis was 0.17 seconds with the propaga-
tion limit set to 30. Decreasing the limit to 5 reduced the runtime to 0.035 seconds,
whereas increasing the limit to 150 caused the analysis to require 1 s on average.
When removing the propagation limit altogether, 32 of the 200 analyzed systems
did not terminate after a cutoff of 4 h per core. We conclude that the propagation
limit is necessary, but the analysis precision is not very sensitive to the choice of the
parameter value.

8 Conclusion

In this paper, we have presented a novel analysis perspective for shared caches in
multicore systems. In the analysis, the inter-core interference between tasks run-
ning on different cores is expressed using event-arrival curves. These curves quan-
tify how much time must pass until an interfering task accesses multiple conflicting
cache blocks. A core executing multiple tasks using non-preemptive scheduling can
be analyzed in this framework by considering different task execution scenarios. The
total interference of the scenarios is then computed by convolving the individual
task curves in the max-plus algebra. This perspective enables us to view inter-task
cache interference as a function of time.

To classify accesses to the shared cache as cache hits, we designed a data-flow
analysis, which determines the temporal reuse distance of cache blocks stored in
the shared cache. These two components, the event-arrival curves and the tempo-
ral reuse distance, allow us to derive safe cache hit classifications for individual
accesses to the shared cache.

We evaluated the performance of the analysis using realistic workloads from the
EEMBC AutoBench 1.1 benchmark suite. We evaluated systems containing up to 4
cores with 1, 2, and 4 tasks per core. The shared cache size ranged from 4 KB to 64
KB. Utilizing the classifications derived using the presented approach yielded better
results compared to the baseline classifications.

The baseline analysis collects all potentially accessed cache blocks and assumes
that these blocks may be accessed at any time, which caused the analysis to not pro-
duce any hit classifications for many systems. Compared to this baseline analysis,
the presented analysis performed particularly well for systems with a small cache
size relative to the total program size.

Additionally, we compared the WCET estimates with the quantitative WCIP
approach presented by Nagar and Srikant (2014, 2016); Nagar (2016). We observed
that the presented approach gave more precise results for all system configurations.

In the future, it would also be interesting to develop an analysis that determines
precise temporal reuse values, e.g., using an IPET ILP to determine the longest dura-
tion for each potential-hit path. Such an analysis would likely not scale but it could
provide valuable insights into the optimal classification of accesses. In particular, it

 Real-Time Systems

is of interest whether the hit ratio of large systems is limited by the precision of the
analysis, or whether it is inherent to the system itself and no better classifications are
possible.

We imposed no restrictions on the set of feasible scenarios SC′ . This means that
the results are general as all sequences of task executions on C′ are considered. In
the future, the properties of the chosen scheduling approach could be used to dis-
regard infeasible scenarios. The interference curves could be tightened in this way,
improving classification performance.

To reduce the required runtime of the analysis, it is conceivable to compute safe
approximations of the interference curves instead of precise curves. For example,
instead of computing the exact interference curves, as defined in Eq. (10), a sub-
set of the step locations could be determined, while safely approximating the inter-
ference curve at the unknown values. This trade off between runtime and precision
could be explored in future work.

As presented in this paper, the interference generated from multiple cores is com-
puted in isolation. Considering dependencies or potential interleavings of tasks on
multiple cores could increase the analysis precision. This is a topic for future work.

Another direction for future research are memory layout optimizations. Interfer-
ence curves could be used to guide the placement of data objects and code in the
memory layout to reduce interference and increase worst-case performance.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability The evaluation results used to generate the figures are available upon request from the
corresponding author.

Declarations

Conflict of interest The authors have no Conflict of interest to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aho AV, Lam MS, Sethi R et al (2007) Compilers: principles, techniques and tools, 2nd edn. Pearson
Education, London

Altmeyer S, Maiza Burguière C (2011) Cache-related preemption delay via useful cache blocks: sur-
vey and redefinition. J Syst Archit 57(7):707–719. https:// doi. org/ 10. 1016/j. sysarc. 2010. 08. 006

Fischer TL, Falk H (2023) Analysis of shared cache interference in multi-core systems using event-
arrival curves. Proc Real-Time Netw Syst 23:23–33. https:// doi. org/ 10. 1145/ 35757 57. 35936 43

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.sysarc.2010.08.006
https://doi.org/10.1145/3575757.3593643

Real-Time Systems

Fischer TL, Falk H (2024) Shared cache analysis under preemptive scheduling. In: Proceedings of
Design, Automation & Test in Europe Conference (DATE), pp 1–6. https:// doi. org/ 10. 23919/
DATE5 8400. 2024. 10546 581

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst
30:129–154. https:// doi. org/ 10. 1007/ s11241- 005- 0507-9

Chattopadhyay S, Roychoudhury A (2014) Cache-Related preemption delay analysis for multilevel
noninclusive caches. ACM Trans Embed Comput Syst (TECS) 13(5s):1–29. https:// doi. org/ 10.
1145/ 26321 56

Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), pp. 238–252, https://
doi. org/ 10. 1145/ 512950. 512973

Dharishini PPP, Murthy PVR (2021) Precise shared instruction cache analysis to estimate WCET of
multi-threaded programs. In: Proc. of INDICON, pp 1–7, https:// doi. org/ 10. 1109/ INDIC ON525
76. 2021. 96916 20

Falk H, Lokuciejewski P (2010) A compiler framework for the reduction of worst-case execution
times. Real-Time Syst 46(2):251–300. https:// doi. org/ 10. 1007/ s11241- 010- 9101-x

Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior prediction for real-time systems.
Real-Time Syst 17(2):131–181. https:// doi. org/ 10. 1023/A: 10081 86323 068

Gustafsson J, Betts A, Ermedahl A, et al (2010) The mälardalen WCET benchmarks—past, present
and future. In: 10th International Workshop on Worst-Case Execution Time Analysis (WCET
2010), pp 136–146, https:// doi. org/ 10. 4230/ OASIcs. WCET. 2010. 136

Hardy D, Puaut I (2008) Wcet analysis of multi-level non-inclusive set-associative instruction caches.
In: Proceedings of Real-Time Systems Symposium, pp 456–466, https:// doi. org/ 10. 1109/ RTSS.
2008. 10

Hardy D, Piquet T, Puaut I (2009) Using bypass to tighten WCET estimates for multi-core processors
with shared instruction caches. In: Proceedings of 30th IEEE Real-Time Systems Symposium, pp
68–77, https:// doi. org/ 10. 1109/ RTSS. 2009. 34

Kelter T (2014) Wcet analysis and optimization for multi-core real-time systems. Technische Universität
Dortmund, Dortmund

Le Boudec JY, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the inter-
net, 1st edn. Springer, Berlin

Lee CG, Hahn H, Seo YM et al (1998) Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Trans Comput 47(6):700–713. https:// doi. org/ 10. 1109/ 12. 689649

Li YTS, Malik S (1997) Performance analysis of embedded software using implicit path enumeration.
IEEE Trans Comput-Aided Design Integr Circuits Syst 16(12):1477–1487. https:// doi. org/ 10. 1109/
43. 664229

Liang Y, Ding H, Mitra T et al (2012) Timing analysis of concurrent programs running on shared cache
multi-cores. Real-Time Syst 48(6):638–680. https:// doi. org/ 10. 1007/ s11241- 012- 9160-2

Lv M, Guan N, Reineke J et al (2016) A survey on static cache analysis for real-time systems. Leibniz
Trans Embed Syst. https:// doi. org/ 10. 4230/ LITES- v003- i001- a005

Maiza C, Rihani H, Rivas JM et al (2019) A survey of timing verification techniques for multi-core real-
time systems. ACM Comput Surv (CSUR) 52(3):1–38. https:// doi. org/ 10. 1145/ 33232 12

Nagar K (2016) Precise analysis of private and shared caches for tight WCET estimates. Indian Institute
of Science Bangalore, Bengaluru

Nagar K, Srikant YN (2014) Precise Shared Cache Analysis using Optimal Interference Placement. In:
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pp 125–
134, https:// doi. org/ 10. 1109/ RTAS. 2014. 69259 96

Nagar K, Srikant YN (2016) Fast and precise worst-case interference placement for shared cache analy-
sis. ACM Trans Embed Comput Syst. https:// doi. org/ 10. 1145/ 28541 51

Oehlert D (2021) Worst case execution time oriented code optimization of hard real-time multicore sys-
tems. Technische Universität Hamburg, Hamburg

Oehlert D, Saidi S, Falk H (2018) Compiler-based extraction of event arrival functions for real-time sys-
tems analysis. In: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), pp 4:1–4:22,
https:// doi. org/ 10. 4230/ LIPIcs. ECRTS. 2018.4

https://doi.org/10.23919/DATE58400.2024.10546581
https://doi.org/10.23919/DATE58400.2024.10546581
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1145/2632156
https://doi.org/10.1145/2632156
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/INDICON52576.2021.9691620
https://doi.org/10.1109/INDICON52576.2021.9691620
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1109/RTSS.2008.10
https://doi.org/10.1109/RTSS.2008.10
https://doi.org/10.1109/RTSS.2009.34
https://doi.org/10.1109/12.689649
https://doi.org/10.1109/43.664229
https://doi.org/10.1109/43.664229
https://doi.org/10.1007/s11241-012-9160-2
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1145/3323212
https://doi.org/10.1109/RTAS.2014.6925996
https://doi.org/10.1145/2854151
https://doi.org/10.4230/LIPIcs.ECRTS.2018.4

 Real-Time Systems

Poovey JA, Conte TM, Levy M et al (2009) A benchmark characterization of the EEMBC benchmark
suite. IEEE Micro 29(5):18–29. https:// doi. org/ 10. 1109/ MM. 2009. 74

Rashid SA, Nelissen G, Tovar E (2022) Tightening the crpd bound for multilevel non-inclusive caches. J
Syst Archit. https:// doi. org/ 10. 1016/j. sysarc. 2021. 102340

Reineke J (2018) The Semantic Foundations and a Landscape of Cache-Persistence Analyses. Leibniz
Trans Embed Syst. https:// doi. org/ 10. 4230/ LITES- v005- i001- a003

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
2000 IEEE International Symposium on Circuits and Systems (ISCAS), pp 101–104 vol.4, https://
doi. org/ 10. 1109/ ISCAS. 2000. 858698

Touzeau V, Maïza C, Monniaux D, et al (2019) Fast and exact analysis for LRU caches. Proceedings of
the ACM on Programming Languages (POPL). https:// doi. org/ 10. 1145/ 32903 67

Xiao J, Altmeyer S, Pimentel A (2017) Schedulability analysis of non-preemptive real-time schedul-
ing for multicore processors with shared caches. In: 2017 IEEE Real-Time Systems Symposium
(RTSS), pp 199–208, https:// doi. org/ 10. 1109/ RTSS. 2017. 00026

Xiao J, Shen Y, Pimentel AD (2022) Cache interference-aware task partitioning for non-preemptive real-
time multi-core systems. ACM Trans Embed Comput Syst (TECS) 21(3):1–28. https:// doi. org/ 10.
1145/ 34875 81

Yan J, Zhang W (2008) WCET analysis for multi-core processors with shared L2 instruction caches. In:
2008 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp 80–89,
https:// doi. org/ 10. 1109/ RTAS. 2008.6

Zhang W, Yan J (2009) Accurately estimating worst-case execution time for multi-core processors with
shared direct-mapped instruction caches. In: 2009 15th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pp 455–463, https:// doi. org/ 10.
1109/ RTCSA. 2009. 55

Zhang Z, Koutsoukos X (2016) Cache-related preemption delay analysis for multi-level inclusive caches.
In: Proceedings of the 13th International Conference on Embedded Software (EMSOFT), https://
doi. org/ 10. 1145/ 29684 78. 29684 81

Zhang W, Lv M, Chang W, et al (2022) Precise and scalable shared cache contention analysis for WCET
estimation. In: Proceedings of the 59th ACM/IEEE Design Automation Conference, pp 1267–1272,
https:// doi. org/ 10. 1145/ 34895 17. 35306 13

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Thilo L. Fischer is currently a doctoral candidate at the Institute of
Embedded Systems, Hamburg University of Technology. He
received his master’s degree with distinction in Computer Science
from the Hamburg University of Technology in 2021. His research
interests include compiler-based analyses and optimizations, with a
particular focus on multi-level caches for real-time systems.

https://doi.org/10.1109/MM.2009.74
https://doi.org/10.1016/j.sysarc.2021.102340
https://doi.org/10.4230/LITES-v005-i001-a003
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1145/3290367
https://doi.org/10.1109/RTSS.2017.00026
https://doi.org/10.1145/3487581
https://doi.org/10.1145/3487581
https://doi.org/10.1109/RTAS.2008.6
https://doi.org/10.1109/RTCSA.2009.55
https://doi.org/10.1109/RTCSA.2009.55
https://doi.org/10.1145/2968478.2968481
https://doi.org/10.1145/2968478.2968481
https://doi.org/10.1145/3489517.3530613

Real-Time Systems

Heiko Falk received the PhD degree in computer science from the
University of Dortmund, Germany, in 2004. From 2004 until 2011,
he worked as assistant professor in the embedded systems group at
the Technical University of Dortmund. Between 2011 and 2015, he
worked as full professor for embedded systems and real-time systems
at Ulm University (Germany). Since 2015, he is full professor at
Hamburg University of Technology (TUHH) and heads the Institute
of Embedded Systems. His PhD focused on high-level source code
optimizations. Typical embedded multimedia applications only use a
small fraction of their execution time to compute audio or video data.
Most of the execution time is used to evaluate complex control flow.
Motivated by this observation, he developed novel techniques for
control flow optimization at the source code level. Another focus of
his work is on code generation and optimization for performance and
predictability of safety-critical real-time systems. The WCC com-
piler initially established by him and developed by the research teams
led by him is the currently only known compiler which is able to sys-

tematically reduce the worst-case execution time (WCET) of programs by tightly integrating static timing
analyses into the code generation and optimization stage. He works on novel concepts to handle parallel-
ism during real-time analysis and optimization. Mutual interferences between tasks running preemptively
on the same CPU, or between tasks running on different cores and using shared resources are the key
challenges of his current work. Since embedded systems regularly have to meet various additional design
constraints besides real-timeliness, his current research also puts an emphasis on multi-criterial optimiza-
tions. He and his team develop novel compiler optimizations that are able to systematically trade, e.g.,
performance versus energy efficiency versus code size. He regularly publishes his research results at pres-
tigious conferences and journals edited, e.g., by Springer, ACM or IEEE. He regularly serves as program
committee member and reviewer for the international research community, and he was conference chair
and local host of the 2023 edition of the ACM/IEEE Embedded Systems Week (ESWEEK).

	Timing-aware analysis of shared cache interference for non-preemptive scheduling
	Abstract
	1 Introduction
	2 Related work
	3 System model & background
	3.1 System model
	3.2 Background on shared cache analysis

	4 Analysis overview
	5 Interference curves for shared cache interference
	5.1 Definition and motivation of interference curves
	5.2 Deriving interference curves of a task
	5.3 Analyzing non-preemptive scheduling
	5.3.1 Operations in max-plus algebra
	5.3.2 Modelling non-preemptive scheduling
	5.3.3 Algorithmic computation of the worst-case interference

	6 Timing-aware cache hit classification
	6.1 Cache hit condition
	6.2 Cache access path analysis
	6.2.1 Ensuring termination
	6.2.2 Relative precision
	6.2.3 Iterative application

	7 Evaluation
	7.1 WCET reduction
	7.1.1 Results for dual-core systems
	7.1.2 Results for quad-core systems

	7.2 Runtime evaluation
	7.3 Propagation limit sensitivity

	8 Conclusion
	References

