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Abstract 

To create a precise model structure and perform fault monitoring algorithms for a wide range of complex 

systems along with dynamic behavioural characteristics, the causal graph-based methods were considered 

herein. In this paper, a new scheme was devised based on fast fault detection mechanism relying on the 

Directed Hypergraph Observer model. 

The performance of the suggested pattern is illustrated by a case study including systems with single 

energy. Noting that the modern methods possess a large range of applications for the reliability and energy 

effectiveness analysis related to multi-energy systems. The Directed Hypergraph model architecture was 

exploited to generate the diagnostic condition based on a graphical observer. 
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1. INTRODUCTION 

 

Monitoring sophisticated industrial 

manufactories is an important task so as to insure 

the reliability, safety and maintenance of the 

required product quality [1]. This is notably real 

wherever regarding interconnections among 

productions, failures and maintenances. 

Complicated systems demand refined approaches to 

analyzing the failing impacts on the global system 

performance [2]. Recent reliability engineering 

always faces defiance related to the system 

description and model quantification. 

In order to describe the dynamic behaviour of 

complex processes, the associated model can be an 

explicit mathematical set of equations (e.g state 

space representations) as already mentioned in [3, 

4]. This type of representation generally involves a 

itemized information about the system 

characteristics and parameters to obtain a rigorous 

and precise model. In point of fact, the analytical 

interpretation has no correlation with the physical 

framework of the system. It considers the system as 

a black box without taking into account the 

energetic, structural and causal aspects of the state 

variables. Besides, it is tough to treat with the huge 

number of equations representing the dynamic 

behaviour of the various and interesting phenomena 

happening in the large scale systems together with 

the coupling of several energies known as complex 

systems. One manner to get away with these 

arduous problems is to imply the graphical 

approaches taken account of the energy transfer. 

Based on the structural properties and causal 

analysis of the energy transfer, graphical 

approaches (whether at a qualitative or quantitative 

level) are especially relevant for modelling 

engineering processes and improving Fault 

Detection and Isolation associated procedures (see 

[5, 6] and references therein for more details). 

It is for this reason that the hypergraph 

formalism dedicated to reasoning in qualitative way 

is needed. The qualitative method rests on knowing 

rules and is further suitable when analytical models 

are hard to obtain or unavailable [7]. Hypergraphs 

are special well-respected as a generalization of 

graphs allowing an explicit description of the 

relationships. These tools are used in many areas of 

sciences [8, 9, 10, 11]) and are even useful in 

engineering applications. 

As being a unified graphical language founded 

on qualitative way, the hypergraph is approved to 

enhance the illustration of energy distributions over 

linked physical parts at any given time so as to obey 

the natural causality as underlined in [12, 13, 14, 

15, 16, 17]. 

In the above-stated earlier works, a great deal of 

attention is paid to the system modelling problem. 

However, the graphs-based fault diagnosis scheme 

using the Directed Hypergraphs model was not 

introduced in the literature yet. Thus, an alternative 

framework for enhancing the FDI performances is 

required. 

The motivation underlying this work was to 

sustain the structural notions and characteristics of 

a causal graphical modelling to improve fault 

detection targets. In this paper we focused on the 

hypergraph modelling used as a basis for the 

creation of a generic representation for the systems. 

Thereby, the graphical formalism should enable us 
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to guarantee a systematic generation of information 

needed for system analysis and can then be used for 

fault diagnosis. To this end, a new form of residual 

generation was described based on the designed 

observer using the Directed Hypergraphs model. 

The remainder of this paper is structured as 

follows. Section 2 introduced some necessary 

preliminaries and defined the problem statement. 

Section 3 was devoted to the main results related to 

the proposed fault monitoring framework using 

hypergraph observers to detect the actuator, sensor 

and physical faults. To prove the proposed model 

performance and efficiency, tutorial case studies 

were provide in section 4. Section 5 presents a 

discussion and remarks of the graphical concept for 

the dynamic systems. Section 6 drew the main 

conclusions of the paper.  

 

2. PRELIMINARIES 

 

This section provided some elementary 

definitions involving hypergraphs and Directed 

Hypergraphs. The interested reader can refer to [7, 

18, 19] for further fundamental details associated to 

the theory of hypergraphs. 

 

2.1. Definition 1: (Hypergraph) 

Hypergraphs are an ordinary generalization of 

undirected graphs in which edges may be connected 

to any number of vertices (i.e. may contain more 

than two vertices). More exactly, a finite 

hypergraph 𝐻 = (𝑉(𝐻), 𝜀(𝐻))
 
includes a finite set  

𝑉(𝐻) and a family of subsets 𝜀(𝐻) of non-empty 

subsets of  𝑉(𝐻). The component of  𝑉(𝐻)and 

𝜀(𝐻) are respectively called vertices and 

hyperedges, or simply edges of the hypergraph.  

Throughout the present paper, we shall use the 

formal notation  𝐻(𝑉, 𝜀)
 
to denote the hypergraph 

𝐻. 𝑉 = (𝑣1, 𝑣2. . . . . . . 𝑣𝑛)is the set of vertices and 𝜀
= (𝜀1, 𝜀2. . . . . . 𝜀𝑚)is the set of hyperedges where 𝜀𝑖
⊆ 𝑣for 𝑖 = 1. . . . . . . . 𝑚. 

 

2.2. Definition 2: (Sub-Hypergraph) 

A hypergraph 𝐺filling 𝑉(𝐺) ⊆ 𝑉(𝐻), 𝜀(𝐺) ⊆
𝜀(𝐻) is called a sub-hypergraph of 𝐻. 

 

2.3. Definition 3: (Directed Hypergraph) 

 

A directed hypergraph is a pair (𝑣, 𝜀) where 𝑣is 

a finite set of vertices and𝜀 ⊆ 2𝑣 × 2𝑣is a set of 

hyperarcs (hyperedges), such that each
 
𝜀 = (𝑇(𝜀)

, 𝐻(𝜀)) ∈ 𝜀 is an ordered pair of non-empty disjoint 

subsets 𝑇(𝜀) and 𝐻(𝜀); where 𝑇(𝜀) and 𝐻(𝜀) are 

the sets of vertices that appear respectively in the 

tail and the head of the hyperarc e. We say that e is 

an incident on each vertex in 𝑇(𝜀) ∪ 𝐻(𝜀), e is an 

outgoing hyperedge from 𝑣and for each 𝑣 ∈ 𝐻(𝜀), 
e is an incoming hyperedge to 𝑣. 

 

3. DIRECTED HYPERGRAPH OBSERVERS 

BASED FAULT DETECTION SCHEMES 

 

The proposed fault detection architecture 

integrates the use of graphical observers to detect 

malfunctions at degraded components (sensors, 

actuators and system elements).This can be 

achieved by combining both of the cause and effect 

relationships and the qualitative reasoning. In this 

way, the observer model is systematically obtained 

from the Directed Hypergraph modelling and taken 

on thereafter for the qualitative analysis of the 

detection stage. 

The suggested structure of the FD scheme is 

depicted in Fig. 1; where the principle is to estimate 

all the components of the state vector or, more 

generally, the system outputs, and, using the output 

estimation error of the observer, which are normally 

sensitive to faults, as the residuals of the FD 

system. This can be insured via a directed 

hypergraph observer. Therefore, the detection 

scheme must behave via assessing the residual 

indicator and then takes the decision. The main 

contributions of the paper may be summarised as 

follows: 

− Synthesizing the generic hypergraph observers, 

the Directed Hypergraph Observer (DHO) based 

on the Directed Hypergraph model of the 

system (causal manipulations, structural 

observability....) therein. 

− Presenting a new FD procedure based on a 

systematic approach by taking into 

consideration the theories of the qualitative 

reasoning and causal reasoning. 

System

Observer

K

+

-

( )u t
( )y t

( )ŷ t

( )r t

Directed Hypergraph

 DH model

Function

Decision making

Residual Evaluation

Residual Generator

 Fig. 1.  Structure of the proposed FD system 

 

3.1. Directed Hypergraph Observers Design 

The Directed Hypergraph Observer (DHO) with 

proportional gain for linear systems is directly 

derived from the obtained hypergraph as following 

the below steps: 

Step 1. Verify the presence of redundant outputs: 

the choice of non-redundant outputs can lead to 

compute the observer gain with the minimum 

dimensions. Nevertheless, it is even able to 

construct a Luenberger observer in spite of the 

existence of redundant outputs which does not 

affect observability.  The computation becomes so 

easy and reduced when redundant outputs are 

eliminated. 
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Step 2. Check the structural observability of the 

system: This later is represented through the 

Directed Hypergraph which is known as a universal 

depiction of the directed graph and identical to the 

bond graph description [21] [22]. From a 

hypergraphical viewpoint, Property 1 is used to 

verify  the structural observability of the system in 

the linear or linearized part of the hypergraph 

pattern. 

Property 1. (structural observability). The 

hypergraph model dedicate to depict a 

linear/linearized physical system is considered 

structurally observable if there is a causal hyperpath 

among the output of each causal hyperpath, and if 

all causal energy processors inputs are linearly 

independent [20].  

Step 3. Linear injection of the output: two different 

linear injections are added to the unknown variables 

of the dynamic components constituting the 

Directed Hypergraph Observer. This generic 

representation totally includes the correction terms 

𝐾𝑖(𝑦 − 𝑦̂)through hyperedges reaching each 

unknown variables with a power conjugate 

corresponding to the energy storage elements of the 

Directed Hypergraph Observer DHO model, as 

indicated in Figures 2 and 3, respectively. 

de

dt

i
K

ˆy y−

 
Fig. 2. C-element with a linear output injection in 

the DH observer. 

df

dt

i
K

ˆy y−

 
Fig. 3. I-element with a linear output injection in 

the DH observer. 

 

Step 4. The Directed Hypergraph Observer gain 

calculation: To determine both transfer functions of 

the Directed Hypergraph model corresponding to 

the system and the associated DH observer, the 

causal manipulations are envisaged. In fact, the 

Directed Hypergraph Observer gain is directly 

calculated from the DH model via closed loops and 

causal hyperpaths regarding the Mason rule. Based 

on the classical pole placement methods, the 

characteristic polynomial of  the desired polynomial 

𝑃𝑑(𝑆) and the observer 𝑃(𝐴−𝐾𝐶)(𝑠) are identifying 

in order to get the gain. 

Remark. A closed loop is defined as closed 

hyperpaths between the peaks of a hypergraph and 

a path of a hyperedge starting from the output of a 

node and returning to the input of the same node. 

 

4.   CASE STUDY: HYDRAULIC SYSTEM 

 

Let us consider a simple Hydraulic System 

consisting of two tanks depicted in Figure 4, where 

𝑄𝑒is the input flow, 𝑄and 𝑄𝑠are, respectively, the 

outputs flow in tank 1 and tank 2 and h1 and h2 are, 

respectively, the level-tank 1 and the level-tank 2. 

Figure 5 shows the Hamiltonian Bond Graph 

(HBG) model in integral causality of the hydraulic 

system . 

M

MSf: Qe

h2

h1

C2C1

R1 R2Q
Qs
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 Fig. 4. Hydraulic system with two tanks 
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Fig. 5. Hamiltonian Bond Graph HBG Model in  

integral causality 

This system is defined by the following 

differential equations:  

{
 
 
 
 

 
 
 
 (𝑐1): 𝐶ℎ1

𝑑𝑃1
𝑑𝑡

= 𝑄𝑒 − 𝑄

(𝑐2): 𝐶ℎ2
𝑑𝑃2
𝑑𝑡

= 𝑄 − 𝑄𝑠

(𝑐3): 𝑄 =
1

𝑅1
(𝑃1 − 𝑃2)

(𝑐4): 𝑄𝑠 =
1

𝑅2
. 𝑃2

 
Such that 𝑃1 = 𝛾ℎ1and 𝑃2 = 𝛾ℎ2, 𝐶ℎ1 , 𝐶ℎ2 are 

respectively the hydraulic capacitance of tank 1 and 

tank 2 and 𝑅1, 𝑅2are respectively, the hydraulic 

resistance of tank 1 and tank 2. 

The parameters for system are defined in table 1. 
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Table 1. Parameters for hydraulic system with 

two tanks 

Parameter Symbol Value 

Tank Section 1 𝐶1 1𝑚2 

Tank Section 2 𝐶2 2𝑚2 

Hydraulic 

Resistance 

𝑅1 10𝑚(𝑚2𝑠−1)−1 

Hydraulic 

Resistance 

𝑅2 20𝑚(𝑚2𝑠−1)−1 

 

The Directed Hypergraph model𝐻𝑑 = (𝑉𝑑, 𝜀𝑑) 

consists of seven vertices 𝑉𝑑 = {𝑄𝑒 , 𝑄, 𝑄𝑠, 𝑃̇1, 𝑃̇2, 𝑃1
, 𝑃2} and six hyperedges 𝜀𝑑 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6} 

where 𝜀1 = ({𝑄𝑒 , 𝑄}, {𝑃̇1}), 𝜀2 = ({𝑃̇1}, {𝑃1}), 

𝜀3 = ({𝑃1, 𝑃2}, {𝑄}), 𝜀4 = ({𝑄, 𝑄𝑠}, {𝑃̇2}), 𝜀5 =

({𝑃̇2}, {𝑃2})and 𝜀6 = ({𝑃2}, {𝑄𝑠}).  

The hypergraph model𝐻 = (𝑉, 𝜀) is made up of 

seven vertices 𝑉 = {𝑄𝑒 , 𝑄, 𝑄𝑠 , 𝑃̇1, 𝑃̇2, 𝑃1, 𝑃2} and 

six hyperedges 𝜀 = {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6} 

where 𝜀1 = {𝑄𝑒 , 𝑄, 𝑃̇1},𝜀2 = {𝑃̇1, 𝑃1},𝜀3 = {𝑃1, 𝑃2
, 𝑄}, 𝜀4 = {𝑄, 𝑄𝑠, 𝑃̇2}, 𝜀5 = {𝑃̇2, 𝑃2}and 𝜀6 = {𝑃2,

𝑄𝑠}. 
 

Table 2. Hyperedge associated with the hypergraph 

model and Directed Hypergraph model 

 

Based on Equation (1), the hypergraph models 

and Directed Hypergraph models of the hydraulic 

system are given in Figure (6) and Figure (7), 

respectively. 

Q
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Fig. 6. Hypergraph model 

1


3


5
4



2


6


e
Q

Q

s
Q

1
P

2
P

1
P

2
P

 

Fig. 7. Directed Hypergraph model 

Before starting the design of the Directed 

Hypergraph Observer, as mentioned above the 

following steps must be validated: 

Step 1. Verify the presence of redundant outputs: 

The useless calculations can be kept away from by 

removing the redundant outputs, however, this step 

is omitted in this illustrative example since the 

number of detectors 𝐷𝑒  equal to the number of 

detectors𝐷𝑓. 

Step 2. Checking of the observability of the 

Directed Hypergraph model 

This step depicts the stages to elaborate the 

Luenberger observer utilizing a Directed 

Hypergraph model. The algorithm is defined as 

follows: 

− Unknown variables 𝑈𝐾 = {𝑃̇1, 𝑃̇2} in the 

system can be derived from the input and 

output variables: 

                             {
𝑃̇1 =

1

𝐶1
(𝑄𝑒 − 𝑄)

𝑃̇2 =
1

𝐶2
(𝑄 − 𝑄𝑠)

 

− There is a directed path from each 

unknown variable 𝑈𝐾 = {𝑃̇1, 𝑃̇2}arriving 

at the detectors. 

Equation 

Hyperedge 

associated with 

the hypergraph 

model 

Hyperedge 

associated with 

the Directed 

Hypergraph 

model 
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Step 3. Linear injection of the output: 

The Directed Hypergraph Observer model can 

be depicted as shown in figure 8. 
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 Fig. 8. Directed Hypergraph Observer model 

Step 4: The Directed Hypergraph Observer gain 

calculation 

The state variables of the system in figure 7, are 

associated to two storage elements C. The order of 

DH model is therefore, equal to two : 𝑥 = [𝑥1   𝑥2]
𝑇

  
The characteristic polynomial of the state matrix is 

𝑃(𝐴)(𝑠) calculated by the notions of closed loops 

and causal paths as shown in table 3. 

With 𝜀1 =
1

𝐶1
 , 𝜀3 =

1

𝑅1
 , 𝜀4 =

1

𝐶2
 and 𝜀6 =

1

𝑅2
 

 

Loops 1 and 2 are disjoint. We then arrive at: 

𝐷(𝑠) = 1 − (−
1

𝑅1𝐶1𝑠
−

1

𝑅2𝐶2𝑠
−

1

𝑅1𝐶2𝑠
)

+ (
1

𝑅1𝐶1𝑠
⋅

1

𝑅2𝐶2𝑠
) 

The gain of the causal path is worth: 𝑇1(𝑠) =
1

𝑅1𝐶1𝐶2𝑆
2 with 𝐷1   =   1

 
So, we will have the transfer function :  

𝐻(𝑠)

=

1
𝑅1𝐶1𝐶2

𝑠2 + (
1

𝑅1𝐶1
+

1
𝑅2𝐶2

+
1

𝑅1𝐶2
) 𝑠 +

1
𝑅1𝑅2𝐶1𝐶2  

Thereby, the characteristic polynomial of the 

system is determined as : 

𝑃(𝐴)(𝑠) = 𝑠
2 + (

1

𝑅1𝐶1
+

1

𝑅2𝐶2
+

1

𝑅1𝐶2
) 𝑠

+
1

𝑅1𝑅2𝐶1𝐶2
 Noting that the roots of the desired 

characteristic polynomial are selected to be rather 

faster than those of the model. 𝑠𝑑1 = −0.31
 
and  

𝑠𝑑2 = −0.032 are respectively the values of the 

desired poles. Hence, the characteristic polynomial 

of the system becomes: 𝑃𝑑(𝑠) = 𝑠
2 + 0.35 𝑠 +

0.01 

The characteristic polynomial 𝑃(𝐴−𝐾𝐶)(𝑠)in 

closed loop is calculated from the Directed 

Hypergraph Observer model (see figure 8) using 

the same procedure cited above as shown in table 4 

𝑃(𝐴−𝐾𝐶)(𝑠) = 𝑠
2 + (

1

𝑅1𝐶1
+

1

𝑅2𝐶2
+

1

𝑅1𝐶2
+

𝐾2

𝐶2
+

𝐾1

𝑅1𝐶2
) 𝑠 + (

1

𝑅1𝑅2𝐶1𝐶2
+

𝐾2

𝑅1𝐶1𝐶2
) The identification 

between 𝑃𝑑(𝑠) and  𝑃(𝐴−𝐾𝐶)(𝑠) provides the gain 

values 𝐾1 =  − 0.2 and 𝐾2   =    0.35 

 

Simulation results 

The initial condition of the DH model states are 

take into account null before carrying out the 

simulation of the different faulty scenarios on the 

Matlab toolbox MTIDS(Matlab Toolbox for 

Interconnected Dynamical Systems ). The graphical 

Luenberger observer of the DH model is given in 

the below diagram ( see figure 9). 

 

Table 3. Closed loops gain for the DH model 
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Table 4. Closed loops gain for the DHO model 

 

 

 
Fig. 9. Hydraulic system and its observer (DHO) 

 

The numerical values of system Parameters 

Hydraulic system with two tanks are summarized in 

Table 1. The control input (input pump flow) is 𝑄𝑒
= 0.1𝑚3/𝑠. 

Figure 10 shows a clear precision in the 

estimation of the state variables of the system. We 

can see the paths of the state variable h1 and the 

state variable h2 (see figure 11) and the estimation 

error is null (see figure 12). 

 
Fig. 10. State variable evolution h1 

 
Fig. 11. State variable evolution h2 

 
Fig. 12. Estimation error 

 

So as to ensure the efficiency of the scheme 

dedicated to the fault detection issue using the 

graphical Luenberger observer, two fault scenarios 

were considered: 

Actuator Failure: A pump failure. 

Structural Failure: A water leak in tank 1. 

− Scenario 1: Actuator failure 

We considered now an actuator fault occurring 

between 400s and 500s. This fault affects the 

outputs, so, those lasts are drawn aside from their 

nominal values, see figures 13 and 14 . 

 
Fig. 13. Evolution of the output Q 
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Fig. 14. Evolution of the output Qs 

 

It is obviously easy to observe that, in faulty-

free case, the residual signals are equal to zero, but, 

during the time interval[400𝑠, 500𝑠], they were 

different from zero. 

Besides,  the actuator fault was detected at the 

same time of its triggering (see figures 15 and 16). 

 
Fig. 15. Residual response R1 

 
Fig. 16. Residual response R2 

 

− Scenario 2: Structural Fault 

The structural fault is represented by physically 

by the appearance of a leakage in the first tank. 

Indeed, the reduction of the water’s height 

generates a fall of the pressure as well as the flow. 

The appearance of the structural failure of 

amplitude equal to −0.01𝑚3𝑠−1 at instant 400 s 

(see Figures 17 and 18). 

 
Fig. 17. Response of Q in the case of a structural 

failure 

 
Fig. 18. Response of Qs in the case of a structural 

failure 

 

Figure 19 shows a clear precision of estimation 

of the state variables of the system. We can clearly 

see the paths of the state variable h1 and the state 

variable h2 (see figure 20). 

 
Fig. 19. State variable evolution h1 in the case  

of a structural failure 

 
Fig. 20. State variable evolution h2 in the case of 

a structural failure 

 

The dynamics of the system has changed and 

the residues are different from zero from the 

moment 400s as shown in figures 21 and 22. 

 
Fig. 21. Residual response in an abnormal 
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Fig. 22. Residual response in an abnormal 

operation R2 

 

5.   DISCUSSION AND REMARKS 

 

Despite the abundance of works dealing with 

several fault diagnosis methods, the issue of fault 

monitoring and identification remains open to 

research. In fact, analytical redundancy and 

observers approaches, known as classical methods, 

often have a limited relationship with the structure 

of the monitored system [23]. In this context, the 

fundamental concept of parity space is often 

referred to in order to restrain failure caused by a 

fault over running using additional physical sensors 

[24]. As for the parametric estimation approach, the 

theory involved a continuous estimation of the 

process parameters through the input/output 

measurements [25]. All information originate in the 

black box identification procedure of the recorded 

information; thereby, it is rather difficult to 

comprehend which physical system component has 

been damaged. On the other hand, classical 

observers require more analytical techniques (such 

as poles placement, LMIs...) for different gains 

calculation [26]. Hence, due to the cost of parity 

space method and the difficulty of implementation 

of the parametric estimation approach, the graphical 

observers-based method is widely used techniques 

for residual generations. Few research works are 

founded on the building of the graphical observer 

because of the difficulty of synthesizing a graphical 

observer [27] [28]. 

The innovative interest of the present paper 

consists in the use of directed hypergraph observer 

for fault monitoring, which may affect the 

considered system.  The Directed Hypergraph tool 

is considered as a favorite solution capable of 

building models taking into account the process 

knowledge. It relies on the qualitative model 

developed from deep physical understanding of the 

complex system, thus avoiding the complexity of 

numerical calculations. A novel diagnosis 

framework for fault motoring was investigated 

herein based on energy concept and qualitative 

reasoning. It aimed to provide a systematic 

approach to the modeling, analysis and FD 

schemes.  In addition, the construction of Directed 

Hypergraph Observer used for dynamic systems 

and any physical domain, provides an estimate of 

the system state from its model. It aimed 

particularly to improve the monitoring time and the 

performances. 

Unlike the existing observers [29] [30], the 

proposed Directed Hypergraph Observer is a 

graphical model founded on energy transfer 

between dynamic elements of the studied system. 

Indeed, the Directed Hypergraph model is taken up 

to ameliorate the description of interconnected 

physical parts and to oby the natural causality 

(Known as integral causality). The future 

comportment is defined per its current state 

representation, and subsequent input to a physical 

process. Energy exchanges among system 

components can modify its states. At that instant, 

the Directed Hypergraph representation needs the 

utilization of natural causality, which enhances the 

synthesis and the refinement of the proposed graph. 

The work presented in this paper introduced a 

control tool for people who develop Directed 

Hypergraph models, since it is possible to build a 

graphical observer directly from a Directed 

Hypergraph model where the matrix calculations 

can be directly derived from the Directed 

Hypergraph Observer, avoiding the algebraic 

manipulation of matrices. From the procedure of 

the present work it is possible to build an observer 

with a simpler structure than the structure of the 

bond graph observer which requires a derived 

causality assignment for all storage elements in the 

BG model. Therefore, the causality of the sensors 

have to be reversed as shown in [31], which means 

that the calculation of the observer gain is also 

simpler. 

 

6.   CONCLUSION 

 

In this paper, qualitative-based graphics have 

been developed for modelling and fault detection 

issues, broadly founded on causal and physical 

principles. The aim was to build an observer model 

for fault detection algorithms dedicated to 

engineering system to sustain an understanding of 

the system performance. 

The importance of the directed Hypergraph DH 

tool lies essentially in its structure, which allows a 

structural modelling that displays the relationships 

between the variables of the system by hyperedges. 

The Directed Hypergraph model can be constructed 

from mathematical equations, based on the process 

knowledge using the Bond Graph BG model in 

integral causality developed from physical 

understanding of the dynamic systems. 

To benefit from the advantages of the Directed 

Hypergraph tool, we managed to extend the DH 

model from a pure modelling task to a graphical 

observer-based fault detection tool. It is therefore 

necessary, in this case, to reconstruct the state from 

the information available on the input and output. 

This observer is often known as a reconstructed or 

state estimator. 

The residues are then obtained by differentiating 

the measured outputs from their estimates. The 
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application of the proposed approach has been 

achieved through the illustration of a Hydraulic 

system with two tanks. The Luenberger observer 

was synthesized based on the Directed Hypergraph 

DH tool. 

Finally, the appearance of undesirable effects is 

perfectly detected. The simulations validate the 

effectiveness of the proposed method. 
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