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Abstract
We investigate the dynamics of an ion confined in a Paul–trap supplied by a fractional periodic impulsional potential. The

Cantor–type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from can-

torian–coordinate systems to Cantor–type cylindrical coordinate systems. By applying this method to the classical Laplace

equation, a fractional Laplace equation in the Cantor–type cylindrical coordinate is obtained. The fractional Laplace equa-

tion is solved in the Cantor–type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a

Paul–trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions,

ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is inves-

tigated and discussed.
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Introduction

A brief summary of ion traps and fractional calculus

techniques are presented here.

Ion traps

Quadrupole ion traps were invented at the beginning

of the 1950s1,2,3 by Paul et al., demonstrating to be

excellent tools to perform mass spectrometry.4–

10Other applications of quadrupole ion traps include

quantum computing, ultraprecise atomic clocks, ion

crystals, high–precision spectroscopy, fractional ion

traps, and etc.3–12 Moreover, the combined (Paul

and Penning) trap13,14 or the Kingdon trap15 can be

successfully used to achieve mass spectrometry with

very good results. Hu et al.18 proposed the Orbitrap

that can be used as a multi-purpose mass spectrom-

eter to examine different types of chemical systems.

High resolution, high-mass accuracy and high

dynamic range are interesting features of the

Orbitrap.18–20

The cylindrical geometry Paul–trap is easier to

design and machine with respect to the hyperbolic

geometry trap, and that is why it is increasingly

attracting interests.21,22 Experiments show that the

cylindrical ion trap has a good resolution so as to

perform mass separation of ions. In addition, its rel-
atively simple geometry and small dimensions make it
very suited for ion trapping experiments. Although it
is possible to confine particles with distinct charge-to-
mass ratios in a Paul trap, this occurs for weakly con-
fined species that are expelled apart from the trap
center. Akerman et al. studied the nonlinear mechan-
ical response of a single laser-cooled ion confined in a
linear RF–Paul trap,23 demonstrating that both linear
and the nonlinear damping components can be
completely and accurately controlled. Mihalcea and
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Vişan24 investigate the dynamics of an ion confined in
a nonlinear Paul trap, which is shown to behave like a
damped parametric oscillator that exhibits fractal
properties and complex chaotic orbits.

In this paper, we studied about dynamics of a con-
fined ion in a Paul–trap supplied by a fractional peri-
odic potential. In this regard, the upcoming section
studies the fractional Laplace equation in cantor-type
cylindrical coordinate. In the next section, the frac-
tional Laplace equation in the cantor-type cylindrical
coordinate is modelled and studied. In a further sec-
tion, ion motion inside a Paul-trap with fractional
potential in the cantor-type cylindrical coordinates
is modelled. The dynamical system consisting of an
ion confined in a Paul–trap is investigated in the pen-
ultimate section, where numerical simulations are also
performed. The effects of the fractional parameter on
the stability regions, ion trajectories, phase space,
maximum trapping voltage, spacing between two sig-
nals and fractional resolution are reviewed and dis-
cussed. In the final section, the results are analyzed
and discussed.

History of fractional calculus

By looking at articles published in recent decades in
the fields of science and engineering, we get
acquainted with the topics of fractional calculus, dif-
ferential equations with fractional derivatives, and
concepts of this kind. So far, many books and
papers in this field have been written from theoretical
and practical points of view.25–31 The subject of frac-
tional calculus is more than 300 years old. The idea of
fractional calculus dates back to the time of basic or
classical calculus, and most theories about it were
developed before the twentieth century. This was
first introduced by Leibniz and L’Hospital’s in 1653.

In the twentieth century, many efforts were made
by various scientists in this field. Caputo, by rewriting
Riemann–Liouville formula, introduced a new deriv-
ative that is now used under the name Caputo deriv-
ative. Notable people who have worked on this topic
during this period are: Hardy, Samko, Weyl, Riesz
and Blair. Since 1970 until now, many people have
studied in this field and also left useful articles and
books. In this regard, Spanier, Oldham, Miller,
Kilbas, Ross and Podlubny can be mentioned. The
best resources for studying fractional calculations
are books and articles of Miller and Ross, Kilbas
and Podlubny. See Ross32 for a more comprehensive
study of the history of fractional calculus.

Basic definitions and theorems of the fractional
derivatives

Definitions of the fractional derivative of order a > 0
are presented in literature.31,33–40 The Riemann-
Liouville and Caputo fractional derivatives are the
most used definitions in our paper.

Definition 1.1. For some a 2 Rþ, let n be the nearest

integer greater than a. The Caputo fractional derivative
of order a of a function hðnÞ is given by,31

Da
�hðnÞ ¼ Jn�a dn

dnn
hðnÞ

¼ 1

Cðn� aÞ
Z n

0

ðn� uÞn�a�1hðnÞðuÞdu (1)

with n� 1 < a � n; n 2 N:

Theorem 1.2. The Riemann-Liouville derivative of

order a > 0 with n� 1 < a � n of the power function

fðnÞ ¼ nb for b > 0 is given by,31

Danb ¼ Cðbþ 1Þ
Cðb� aþ 1Þ n

b�a (2)

Proof. Let hðnÞ ¼ nb (b > 0) then we have,
d
dn ðnbÞ ¼ bnb�1 ) da

dna n
b ¼ b!

ðb�aÞ! n
b�a; replac-

ing the factorials with the “gamma” function leads to,

Danb ¼ da

dna
nb ¼ Cðbþ 1Þ

Cðb� aþ 1Þ n
b�a (3)

Theorem 1.3. The Caputo derivative of order a > 0

with n� 1 < a � n of the power function fðnÞ ¼ nb

for b > 0 satisfies,31

Da
�n

b ¼
Cðbþ 1Þ

Cðb� aþ 1Þ n
b�a; b > n� 1

0; b � n� 1

8><
>: (4)

Proof. (see proof of Theorem (1.2)).

Fractional Laplace equation in the Cantor-type
cylindrical coordinate

This section presents the fractional Laplace equation

in the Cantor–type cylindrical coordinates. The

Cantor–type cylindrical–coordinate method is a pow-

erful tool to convert differential equations on cantor

sets from cantorian–coordinate systems to Cantor–

type cylindrical coordinate systems.
The cantorian–coordinate system was first

described by Yang in 2010.41,42 Both fractional and

classical differential equations in the coordinate

system to cartesian, cylindrical and spherical coordi-

nates are convertible.43,44 Newly, the cantorian–coor-

dinate system is set on the fractals problems to obtain

acceptable and accurate results. We consider the

cantor–type cylindrical coordinates defined in referen-

ces42,45 as, xa ¼ racosah
a; ya ¼ rasinah

a and za ¼ za,

where r 2 ð0;þ1Þ; z 2 ð�1;þ1Þ; h 2 ð0; 2pÞ and
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r2a ¼ x2a þ x2a. The fractional sinah
a and cosah

a can
be defined as follows,

sinah
a ¼

X1
n¼0

ð�1Þn hð2nþ1Þa

C 1þ ð2nþ 1Þa½ � ;

cosah
a ¼

X1
n¼0

ð�1Þn h2an

C 1þ 2an½ �
(5)

Now, according to proposed equations and refer-
ence,45 we can define the fractional gradient and frac-
tional Laplace operators in the Cantor–type
cylindrical coordinate system as follows,

raWðr; h; zÞ ¼ ear
@aW
@ra

þ eah
1

ra
@aW
@ha

þ eaz
@aW
@za

(6)

r2aWðr; h; zÞ ¼ @2aW
@r2a

þ 1

r2a
@2aW

@h2a
þ 1

ra
@aW
@ra

þ @2aW
@z2a

(7)

where, ear ¼ cosah
aea1 þ sinah

aea2; e
a
h ¼ �sinah

aea1 þ
cosah

aea2 and eaz ¼ ea3. Suggested fractional vector
was given by, R ¼ racosah

aea1 þ rasinah
aea2þ

zaea3 ¼ Rre
a
R þ Rhe

a
h þ Rze

a
z .

Fractional Laplace equation in the Cantor-type
cylindrical coordinate

This section focuses on the fractional Laplace equa-
tion in the Cantor–type cylindrical coordinates. The
classical 3D Paul trap has a hyperbolic geometry,
consisting of a ring and two end cap electrodes that
present axial symmetry. In Figure 1, z0 denotes the
distance from the center of the Paul–trap to either of
the endcap electrodes, while r0 denotes the distance

from the center of the Paul-trap to the nearest ring

surface. Almost any geometry of trap electrodes with

ac voltages applied between them, generating a saddle

point in the potential, will cater a pseudo–potential

minimum in which charged particles can be trapped.20

All commonly used mass analyzers use electric and

magnetic fields to apply force on charged particles.1,13

This force causes the oscillating particle to move

around the equilibrium point due to a fractional par-

abolic potential as, Uaðx; y; zÞ ¼ Aðc1x2a þ c2y
2aþ

c3z
2aÞ. Any potential in free space should satisfy the

fractional Laplace equation as,

�2aUa ¼ @2a

@x2a
Ua þ @2a

@y2a
Ua þ @2a

@z2a
Ua ¼ 0 (8)

where @2a

@x2a
Ua; @2a

@y2a
Ua and @2a

@z2a
Ua can be computed

using the definitions of the fractional derivatives.

According to the Theorem (1.2), when a ! 2a we

have,

D2anb ¼ Cðbþ 1Þ
Cðb� 2aþ 1Þ n

b�2a;

n� 1

2
< a � n

2
; b > 0

(9)

let nb ¼ x2a (2a > 0),

D2ax2a ¼ Cð2aþ 1Þ
Cð2a� 2aþ 1Þx

2a�2a ¼ Cð2aþ 1Þ
Cð1Þ ;

n� 1

2
< a � n

2
; 2a > 0

(10)

therefore, in the following we have,

@2aUa

@x2a
¼ Ac1Cð2aþ 1Þ

Cð1Þ ;

@2aUa

@y2a
¼ Ac2Cð2aþ 1Þ

Cð1Þ ;

@2aUa

@z2a
¼ Ac3Cð2aþ 1Þ

Cð1Þ

(11)

from which we obtain,

�2aUa ¼ @2aUa

@x2a
þ @2aUa

@y2a
þ @2aUa

@z2a

¼ A
Cð2aþ 1Þ

Cð1Þ ½c1 þ c2 þ c3� (12)

Equation (13) shows that c1 þ c2 þ c3 ¼ 0 when

�2aUa ¼ 0. For an ion trap, c1 ¼ c2 ¼ 1 and c3 ¼
�2 and for a quadrupole mass filter c1 ¼ �c2 ¼ 1

and c3 ¼ 0. In this paper we focused on the Paul–

ion trap, then we assumed, c1 ¼ c2 ¼ 1 and c3 ¼ �2.

Therefore, the fractional potential given as,

Uaðx; y; zÞ ¼ Aðx2a þ y2a � 2z2aÞ. Using the standard

-U r

z

r0

z0
V0 cos(Ωt)

Figure 1. Schematic view of a r.f. Paul–trap.
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transformations xa ¼ racosah
a; ya ¼ rasinah

a and

za ¼ za, this equation can be transformed into the

Cantor-type cylindrical coordinates. Hence, we can

derive the fractional potential in the Cantor-type

cylindrical coordinates as, Uaðr; zÞ ¼ Aðr2a � 2z2aÞ,
with r2a ¼ r2acos2ah

a þ r2asin2ah
a ¼ x2a þ y2a.

This potential can be produced by four hyperbolic

electrodes. To obtain this form of electrodes, we can

consider the surfaces with same potentials U0=2 and

�U0=2 as, Uaðr0; 0Þ ¼ Aðr2a0 Þ ¼ U0=2 and Uað0; z0Þ ¼
Að�2z2a0 Þ ¼ �U0=2. With this conditions we can find

A ¼ U0

2r2a
0

and A ¼ U0

4z2a
0

; therefore, r2a0 ¼ 2z2a0 . Thereby,

the fractional electrodes shape for the fractional

potential in the presented Cantor–type cylindrical

coordinates given by, Uaðr; zÞ ¼ U0

2r2a
0

ðr2a�
2z2aÞ ¼ �1. The applied electric potential, U0 (that

is applied to the hyperbolic rod’s) is either an r.f.

potential V0cosXt or a combination of a d.c. poten-

tial, U, of the form,1,13 U0 ¼ U� V0cosXt, where X ¼
2pf is the angular frequency (in rad s�1) of the r.f.

field, and f is the frequency in hertz. Using the given

definitions and information, the fractional potential

Uaðr; zÞ can be defined as, Uaðr; zÞ ¼ 1
2r2a

0

ðr2a�
2z2aÞ U� V0cosXtð Þ.

The map of the electric field inside the trap and 3D

simulations for a ¼ 0:9; 0:95; 1 are shown in Figure 2

(a) and (b), while 3D simulation for the classical Paul

trap (a¼ 1) is shown in Figure 3.
As can be seen in Figure 2(a) and (b), for a¼ 1,

equation x2 þ y2 ¼ r2 shows a circle, for a ¼ 0:95

equation x1:9 þ y1:9 ¼ r1:9 represents a smaller irregu-

lar circle compared with a¼ 1 and for a ¼ 0:9, equa-

tion x1:8 þ y1:8 ¼ r1:8 indicates a smaller irregular

circle compared to a ¼ 0:95 and a¼ 1. In Figure 3,

the ring and end cap equations are obtained from

ax2a þ by2a � cz2a ¼ 1 and ax2a þ by2a � cz2a ¼ �1,

respectively. Figure 4(a) and (b) indicate the contour

lines for ring: ax2a þ by2a � cz2a ¼ 1 and end cap:

ax2a þ by2a � cz2a ¼ �1, when a ¼ 1; 0:8; 0:6 and

a¼ 1, b¼ 1, c¼ 2. According to these figures, it can

be concluded that by reducing a from 1 to 0.6, the

contour lines along the axis y ¼ �x become more

elongated.

Fractional motion of trapped ions in the
Paul-trap

In this section, the motion of ion inside a Paul–trap

with the fractional potential in the Cantor-type cylin-

drical coordinates was modelled. The relationship

between force, mass, and the applied fields in

Newton’s second law and the Lorentz force law is

as follows,

F ¼ ma ðNewton’s second lawÞ and
F ¼ qE ðLorentz force lawwithoutmagnetic fieldÞ

(13)

where, F is the force applied to the ion, m is the

mass of the ion, a is the acceleration, q is the

ionic charge and E is the electric field. Here, F, a

and E are vectorial variables. The electric field

Figure 2. Field lines of electric fields; (a): a¼ 1, (b): a ¼ 0:95 and (c): a ¼ 0:9.

Figure 3. Ion trap simulation in 3D when a¼ 1, ring: ax2 þ
by2 � cz2 ¼ 1 and end cap: ax2 þ by2 � cz2 ¼ �1 with a¼ 1,
b¼ 1, c¼ 2.
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components in the trap with the fractional potential
are as follows,

Ea
r

Ea
z

2
6664

3
7775 ¼ Ea ¼ �raUðr; zÞ ¼

� @a

@ra
Uðr; zÞ

� @a

@za
Uðr; zÞ

2
666664

3
777775

¼

�
22aC aþ 3

2

� �
ffiffiffi
p

p ð2aþ 1Þr2a0
ðU� VcosXtÞra

22aþ1C aþ 3

2

� �
ffiffiffi
p

p ð2aþ 1Þr2a0
ðU� VcosXtÞza

2
666666666664

3
777777777775

(14)

Therefore, the equations of motion for the only
positive ion in the Paul–trap with the fractional
potential in the Cantor–type cylindrical coordinates
without using the magnetic field are given by,

d2z

dn
þ az � 2qzcos2nð Þ

22aC aþ 3

2

� �
ffiffiffi
p

p ð2aþ 1Þ za ¼ 0;

d2r

dn
þ ar � 2qrcos2nð Þ

22aC aþ 3

2

� �
ffiffiffi
p

p ð2aþ 1Þ ra ¼ 0

8>>>>>>>><
>>>>>>>>:

(15)

with r2a0 ¼ 2z2a0 and the assumptions,

n ¼ Xt
2
; az ¼ �2ar ¼ � 4qU

mr2a0 X2
; qz ¼ �2qr

¼ 2qV

mr2a0 X2

(16)

Assuming a¼ 1, basic motion equations are as

follows,

d2z

dn2
þ az � 2qzcos2nð Þz ¼ 0;

d2r

dn2
þ ar � 2qrcos2nð Þr ¼ 0

8>>>><
>>>>:

(17)

Programming and numerical simulations

In this section, programming and numerical simula-

tions of the dynamical system for the trapped ion

inside Paul–trap are investigated and discussed. For

programming and numerical simulations, the charge

state of þ1 was considered. We first plot stability

regions in the (a, q) and ðV;�UÞ plans, ion trajecto-

ries in time, the evolution of phase space ion path,

resolution of the ion trap and fractional resolution of

the ion trap. Then, we study and discuss the effect of

the fractional potential on the mass resolution. The

effect of the fractional potential was examined for

ions of 131Xe and 132Xe.

Ion trajectories

Figure 5 shows the first stability region of Paul–trap

with the fractional potential when a ¼ 1; 0:95; 0:9.
As can be seen, changing the fractional parameter a
from 1 to 0.9, first stability region will be smaller

along the a axis and bigger along the q axis. The sta-

bility diagrams ðV;�UÞ plane for 131Xe with

X ¼ 2p� 1:05� 106 rad/s, z0 ¼ 0:707mm and a ¼
1; 0:95; 0:9 have been shown in Figure 6. When the

fractional parameter a decreases from 1 to 0.9, the

stability diagrams ðV;�UÞ plane become larger.

Figure 7 presents the ion trajectories in time when

az¼ 0, qz ¼ 0:9 and a ¼ 0:8; 0:9; 1, respectively. This
figure show that the ion trajectories are comparable

for all values of the fractional parameters a ¼ 0:8; 0:9

(a) (b)

Figure 4. Contour lines when a ¼ 1; 0:8; 0:6 and a¼ 1, b¼ 1, c¼ 2; (a): ring: ax2a þ by2a � cz2a ¼ 1 and (b): end cap:
ax2a þ by2a � cz2a ¼ �1.
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and 1. However, as the value of the parameter a
decreases, the ion rotation space increases.

The ion trajectories in z� _z plane for qz ¼ 0:32,
a ¼ 0:8; 0:9; 1 are shown in Figure 8. The left side
and right sides of this figure show the maxðzÞ and
maxð _zÞ versus fractional parameter a. As can be
seen in the right side, the rotation space of the ions
increases as the value of a decreases from 1 to 0.8. As
the left side shows, by decreasing the value of a from 1
to 0.6, the values of maxðzÞ and maxð _zÞ increase, but
maxðzÞ is increasing faster than maxð _zÞ. As Figure 8
shows, there are two periodic attractors in the system,
which are corresponding to forced oscillations con-
fined to the left or right well. The portraits of the
phase obviously reflect the existence of one or two
attractors and of fractal basin boundaries for the
trapped ion, assimilated with a periodically forced
double well oscillator. The system can converge rap-
idly to one of the two attractors, based on the initial
conditions and fractional parameter a. Generally the
attraction basins have a complicated shape, and the
boundary between them is fractal.24,46

Figure 9 shows the mechanical properties of the
confined ions analyzed through the ion displacements
in the phase space. Phase space ion trajectory for dif-
ferent values of r.f. fields with initial phases n0 ¼ p

4

and n0 ¼ � p
4 has been proposed for a ¼ 0:9 and

a¼ 1. The computational results in this figure show
the comparable phase space for different values of
fractional parameter a ¼ 0:9 and a¼ 1.

Effect of the fractional factor on the mass
resolution

This section presents the effect of fractional parame-
ter a on the mass resolution of trapped ions. As we
know, the resolution of a Paul–trap mass spectrome-
ter is a function of the mechanical accuracy of the

Figure 6. The stability diagram in ðV ;�UÞ plan for 131Xe with
X ¼ 2p� 1:05� 106 rad/s, z0 ¼ 0:707 mm and a ¼ 1; 0:95; 0:9.

Figure 5. The first stability region of Paul–trap when
a ¼ 1; 0:95; 0:9.

Figure 7. The ion trajectories in time for qz ¼ 0:9 and a ¼ 0:8; 0:9; 1.
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hyperboloid of the ion trap, Dr0 and the stability per-

formances of the electronics device, such as variations

in voltage amplitude DV and the r.f. frequency DX.46

The computational resolution will tell us how accu-

rate the form of the voltage signal is. To derive a

theoretical formula for the fractional resolution,

according to equation (17), there will be,

qz ¼ 2eV

mr2a0 X2
(18)

Considering the partial derivatives on the variables
of the stability parameters, expression of the resolu-
tion Dm can be computed as follows,

Dm ¼ 2a
2eV

r2aþ1
0 X2qz

 !
jDr0j þ 2e

r2a0 X2qz

 !
jDVj

þ 2
2eV

r2a0 X3qz

 !
jDXj (19)

then, there will be,

Dm ¼ 2a
2eV

r2a0 X2qz

 !
jDr0
r0

j þ 2eV

r2a0 X2qz

 !
jDV
V

j

þ 2
2eV

r2a0 X2qz

 !
jDX
X

j (20)

therefore, we have,

Dm ¼ m 2ajDr0
r0

j þ 2jDX
X

j þ jDV
V

j
� �

(21)

Thus, the fractional resolution is given by,

m

Dm
¼ 2ajDr0

r0
j þ 2jDX

X
j þ jDV

V
j

� ��1

(22)

Uncertainties j DXX j ¼ 10�7, jDVj ¼ 10�4 and
jDr0j ¼ 10�3 have been used for voltage, r.f. and
geometry for fractional mass resolution,46

Figure 8. Left: ion trajectories in z � _z plane for qz ¼ 0:32 and a ¼ 0:8; 0:9; 1; Right: maxðzÞ and maxð _zÞ vs a.

Figure 9. Evolution of phase space ion trajectory for different
values of the phase n0 ¼ p

4
and n0 ¼ � p

4
when a ¼ 0:9 and

a¼ 1.
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respectively. Assuming that X ¼ 2p� 1:05� 106 rad/s,
z0 ¼ 0:707, a¼ 0, maximum values of voltage V, Vmax,
as a function of the fractional parameter, a, and func-
tion of ion mass, m, for 131Xe and 1132Xe when
m¼ 131, 132 and a ¼ 0:9; 1,46 are presented in Figure
10. As can be seen, by increasing the fractional param-
eter a from 0.55 to 1, the maximum voltage, Vmax,
decreases rapidly like a negative exponential function.
Figure 11 shows the spacing between two signals, Dm,
as a function of the fractional parameter a. As can be
seen, by increasing the fractional parameter a from
0.55 to 1, the spacing between two signals, Dm,
decreases rapidly like an exponential function. This
means that, by reducing the fraction parameter a, the
separation can be performed more accurately.

Figure 12, indicates the fractional mass resolution
m=Dm as a function of fractional parameter a.

The results of this figure show that by decreasing
the fraction parameter a from 1 to 0.55, the fractional
mass resolution values rapidly increase from 400 to
1200. The higher fractional mass resolution indicates
better and more accurate separation. In Figures 10 to
12, to find the vertical values, we divided the interval
a ¼ ½0:55; 1� into N¼ 45 parts using the stepsize
h¼ 0.01, then Vmax, Dm and m=Dm values were
found in all these points. Then, all the curves were
plotted using the 45 found points, but to make the
curves easily visible, the markers have been used only
in ten points.

Maximum values of V, Vmax, as a function of ion
mass, m, for hypothetical values X ¼ 2p� 1:05� 106

rad/s, z0 ¼ 0:707mm, a¼ 0 and a ¼ 0:6; 0:8; 1 is
shown in Figure 13. This figure also shows the max-
imum values of voltage V for the ions 131Xe and 132Xe

Figure 10. Maximum values of V, Vmax, as a function of fractional
parameter a, when X ¼ 2p� 1:05� 106 rad/s, z0 ¼ 0:707 mm
and a¼ 0.

Figure 11. Spacing between two signals, Dm, as a function of
fractional parameter a.

Figure 13. Maximum values of V, Vmax, as a function of ion mass,
m, when X ¼ 2p� 1:05� 106 rad/s, z0 ¼ 0:707 mm, a¼ 0 and
a ¼ 0:6; 0:8; 1.

Figure 12. The fractional resolution of ion trap, m=Dm, as a
function of fractional parameter a.
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when the fractional values are a ¼ 0:6; a ¼ 0:8 and
a¼ 1. As can be seen, the maximum voltage for a ¼
0:6 and a ¼ 0:8 is less than the maximum voltage for
a¼ 1; and lower voltage indicates better and more
accurate separation. Figure 14 presents the spacing
between two signals, Dm, as a function of ion mass,
m, when the fractional parameters are a ¼ 0:6; a ¼
0:8 and a¼ 1. This figure also shows the values of
spacing between two signals for the ions 131Xe and
132Xe. As can be seen, Dmð Þa¼0:6 < Dmð Þa¼0:8 <
Dmð Þa¼1, and less Dm indicates better and more accu-
rate separation. In Figures 13 and 14, to find the ver-
tical values, we divided the interval m ¼ ½130:5; 132:5�
into N¼ 40 parts using the stepsize h¼ 0.05, then the
values of Vmax and Dm were found in all these points.
All the curves were plotted using the 45 found values,
but to make the curves easily visible, the markers have
been used only in five points.

Conclusion

A modified three-dimensional radio frequency Paul–
trap with fractional potential was introduced in this
study. The first stability region in (q, a) and ðV;�UÞ
planes was also shown. Moreover, effect of fractional
parameter a on the mass separation was studied.
Maximum values of voltage, Vmax, as a function of
the fractional parameter a for was derived for ions
131Xe and 132Xe assuming that X ¼ 2p� 1:05� 106

rad/s, z0 ¼ 0:707 mm and a¼ 0. Further, the spacing
between two signals, Dm, and mass fractional resolu-
tion, m=Dm, for ions 131Xe and 132Xe as a function of
the fractional parameter a was studied and discussed.
The fractional resolution of ion traps m=Dm increases
when the fractional parameter a decreases. As was
observed, with decreasing the fractional parameter a
from 1 to 0.55, the fractional mass resolution rapidly
increased from 400 to 1200. The high fractional res-
olution in good separation has high mass accuracy.
As shown, the maximum voltage for a ¼ 0:6 and a ¼

0:8 was less than the maximum voltage for a; and
lower voltage indicates better and more accurate sep-

aration. The general results of this paper showed that

the fractional parameter a can be an important and

effective controller to optimize ion mass separation.
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